State Plugins

If you want to store some data on a state and have that information propogated from successor to successor, the easiest way to do this is with state.globals. However, this can become obnoxious with large amounts of interesting data, doesn't work at all for merging states, and isn't very object-oriented.

The solution to these problems is to write a State Plugin - an appendix to the state that holds data and implements an interface for dealing with the lifecycle of a state.

My First Plugin

Let's get started! All state plugins are implemented as subclasses of angr.SimStatePlugin. Once you've read this document, you can use the API reference for this class (TODO update this link when the class is actually part of the docs????) to quickly review the semantics of all the interfaces you should implement.

The most important method you need to implement is copy---it should return a copy of the plugin. Short of that, you can do whatever you want. Just make sure to call the superclass initializer!

>>> import angr
>>> class MyFirstPlugin(angr.SimStatePlugin):
...     def __init__(self, foo):
...         super(MyFirstPlugin, self).__init__()
... = foo
...     def copy(self):
...         return MyFirstPlugin(

>>> state = angr.SimState(arch='AMD64')
>>> state.register_plugin('my_plugin', MyFirstPlugin('bar'))
>>> assert == 'bar'

>>> state2 = state.copy()
>>> = 'baz'
>>> state3 = state.copy()
>>> assert == 'bar'
>>> assert == 'baz'

It works! Note that plugins automatically become available as attributes on the state. state.get_plugin(name) is also available as a more programmatic interface.

Where's the state?

State plugins have access to the state, right? So why isn't it part of the initializer? It turns out, there are a plethora of issues related to initialization order and dependency issues, so to simplify things as much as possible, the state is not part of the initializer but is rather set onto the state in a separate phase, by using the set_state method. You can override this state if you need to do things like propogate the state to subcomponents or extract architectural information.

>>> def set_state(self, state):
...     super(SimStatePlugin, self).set_state(state)
...     self.symbolic_word = claripy.BVS('my_variable', self.state.arch.bits)

Note the self.state! That's what the super set_state sets up.

However, there's no guarantee on what order the states will be set onto the plugins in, so if you need to interact with other plugins for initialization, you need to override the init_state method.

Once again, there's no guarantee on what order these will be called in, so the rule is to make sure you set yourself up good enough during set_state so that if someone else tries to interact with you, no type errors will happen. Here's an example of a good use of init_state, to map a memory region in the state. The use of an instance variable (presumably copied as part of copy()) ensures this only happens the first time the plugin is added to a state.

>>> def init_state(self):
...     if self.region is None:
...        self.region = self.state.memory.map_region(SOMEWHERE, 0x1000, 7)

Note: weak references

self.state is not the state itself, but rather a weak proxy to the state. You can still use this object as a normal state, but attempts to store it persistently will not work.


The other element besides copying in the state lifecycle is merging. As input you get the plugins to merge and a list of "merge conditions" - symbolic booleans that are the "guard conditions" describing when the values from each state should actually apply.

The important properties of the merge conditions are:

  • They are mutually exclusive and span an entire domain - exactly one may be satisfied at once, and there will be additional constraints to ensure that at least one must be satisfied.
  • len(merge_conditions) == len(others) + 1, since self counts too.
  • zip(merge_conditions, [self] + others) will correctly pair merge conditions with plugins.

During the merge function, you should mutate self to become the merged version of itself and all the others, with respect to the merge conditions. This involves using the if-then-else structure that claripy provides. Here is an example of constructing this merged structure by merging a bitvector instance variable called myvar, producing a binary tree of if-then-else expressions searching for the correct condition:

for other_plugin, condition in zip(others, merge_conditions[1:]): # chop off self's condition
    self.myvar = claripy.If(condition, other_plugin.myvar, self.myvar)

This is such a common construction that we provide a utility to perform it automatically: claripy.ite_cases. The following code snippet is identical to the previous one:

self.myvar = claripy.ite_cases(zip(merge_conditions[1:], [o.myvar for o in others]), self.myvar)

Keep in mind that like the rest of the top-level claripy functions, ite_cases and If are also available from state.solver, and these versions will perform SimActionObject unwrapping if applicable.

Common Ancestor

The full prototype of the merge interface is def merge(self, others, merge_conditions, common_ancestor=None). others and merge_conditions have been discussed in depth already.

The common ancestor is the instance of the plugin from the most recent common ancestor of the states being merged. It may not be available for all merges, in which case it will be None. There are no rules for how exactly you should use this to improve the quality of your merges, but you may find it useful in more complex setups.


There is another kind of merging called widening which takes several states and produces a more general state. It is used during static analysis.



In order to support serialization of states which contain your plugin, you should implement the __getstate__/__setstate__ magic method pair. Keep in mind the following guidelines:

  • Your serialization result should not include the state.
  • After deserialization, set_state() will be called again.

This means that plugins are "detached" from the state and serialized in an isolated environment, and then reattached to the state on deserialization.

Plugins all the way down

You may have components within your state plugins which are large and complicated and start breaking object-orientation in order to make copy/merge work well with the state lifecycle. You're in luck! Things can be state plugins even if they aren't directly attached to a state. A great example of this is SimFile, which is a state plugin but is stored in the filesystem plugin, and is never used with SimState.register_plugin. When you're doing this, there are a handful of rules to remember which will keep your plugins safe and happy:

  • Make sure that only one refernce to each plugin object exists. This is a limitation which will be addressed in an upcoming release of angr.
  • While passing arguments down into sub-plugins merge() routines, make sure you unwrap others and common_ancestor into the appropriate types. For example, if PluginA contains a PluginB, the former should do the following:
>>> def merge(self, others, merge_conditions, common_ancestor=None):
...     # ... merge self
...     self.plugin_b.merge([o.plugin_b for o in others], merge_conditions,
...         common_ancestor=None if common_ancestor is None else common_ancestor.plugin_b)

Setting Defaults

To make it so that a plugin will automatically become available on a state when requested, without having to register it with the state first, you can register it as a default. The following code example will make it so that whenever you access state.my_plugin, a new instance of MyPlugin will be instanciated and registered with the state.


results matching ""

    No results matching ""