
angr

The angr Project

Jan 30, 2024

CONTENTS

1 Introduction 3
1.1 Getting Support . 3
1.2 Citing angr . 4
1.3 Going further: . 4

2 Getting Started 5
2.1 Installing angr . 5
2.2 Reporting Bugs . 6
2.3 Developing angr . 7
2.4 Help Wanted . 9

3 Core Concepts 15
3.1 Core Concepts . 15
3.2 Loading a Binary . 20
3.3 Symbolic Expressions and Constraint Solving . 26
3.4 Machine State - memory, registers, and so on . 32
3.5 Simulation Managers . 38
3.6 Simulation and Instrumentation . 42
3.7 Analyses . 48
3.8 Symbolic Execution . 49
3.9 A final word of advice . 49

4 Build-in Analyses 51
4.1 Control-flow Graph Recovery (CFG) . 51
4.2 Backward Slicing . 56
4.3 Identifier . 58
4.4 angr Decompiler . 61

5 Advanced Topics 63
5.1 Gotchas when using angr . 63
5.2 Understanding the Execution Pipeline . 64
5.3 What’s Up With Mixins, Anyway? . 69
5.4 Optimization considerations . 72
5.5 Working with File System, Sockets, and Pipes . 74
5.6 Intermediate Representation . 79
5.7 Working with Data and Conventions . 83
5.8 Solver Engine . 86
5.9 Symbolic memory addressing . 91
5.10 Java Support . 92
5.11 Symbion: Interleaving symbolic and concrete execution . 93

i

5.12 Debug variable resolution . 95
5.13 Variable visibility . 96

6 Extending angr 99
6.1 Hooks and SimProcedures . 99
6.2 State Plugins . 103
6.3 Extending the Environment Model . 107
6.4 Writing Analyses . 110
6.5 Scripting angr management . 112

7 angr examples 115
7.1 Introduction . 115
7.2 Reversing . 115
7.3 Vulnerability Discovery . 118
7.4 Exploitation . 119

8 Frequently Asked Questions 121
8.1 Why is it named angr? . 121
8.2 How should “angr” be stylized? . 121
8.3 Why isn’t symbolic execution doing the thing I want? . 121
8.4 How can I get diagnostic information about what angr is doing? . 122
8.5 Why is angr so slow? . 122
8.6 How do I find bugs using angr? . 122
8.7 Why did you choose VEX instead of another IR (such as LLVM, REIL, BAP, etc)? 122
8.8 Why are some ARM addresses off-by-one? . 123
8.9 How do I serialize angr objects? . 123
8.10 What does UnsupportedIROpError("floating point support disabled") mean? 123
8.11 Why is angr’s CFG different from IDA’s? . 124
8.12 Why do I get incorrect register values when reading from a state during a SimInspect breakpoint? . . 124

9 Appendix 125
9.1 Cheatsheet . 125
9.2 List of Claripy Operations . 130
9.3 List of State Options . 131
9.4 CTF Challenge Examples . 134
9.5 Changelog . 138
9.6 Migrating to angr 9.1 . 150
9.7 Migrating to angr 8 . 150
9.8 Migrating to angr 7 . 153

10 API Reference 157
10.1 Project . 212
10.2 Plugin Ecosystem . 222
10.3 Program State . 224
10.4 Storage . 309
10.5 Memory Mixins . 336
10.6 Concretization Strategies . 379
10.7 Simulation Manager . 382
10.8 Exploration Techniques . 390
10.9 Simulation Engines . 427
10.10 Simulation Logging . 466
10.11 Procedures . 469
10.12 Calling Conventions and Types . 483
10.13 Knowledge Base . 520
10.14 Serialization . 617

ii

10.15 Analysis . 619
10.16 SimOS . 877
10.17 Function Signature Matching . 885
10.18 Utils . 886
10.19 Errors . 896
10.20 Distributed analysis . 902

11 Indices and tables 905

Python Module Index 907

Index 913

iii

iv

angr

Welcome to angr’s documentation! This documentation is intended to be a guide for learning angr, as well as a reference
for the API. If you’re new to angr,

The angr team maintains a number of libraries that are used as part of angr. These libraries are:

• archinfo - Information about CPU architectures

• pyvex - Python bindings to the VEX IR

• pypcode - Python bindings to the Pcode IR

• ailment - angr’s high-level intermediate language

• cle - Many-platform binary loader

• claripy - Solver abstraction layer

CONTENTS 1

https://api.angr.io/projects/archinfo/en/latest/
https://api.angr.io/projects/pyvex/en/latest/
https://api.angr.io/projects/pypcode/en/latest/
https://api.angr.io/projects/ailment/en/latest/
https://api.angr.io/projects/cle/en/latest/
https://api.angr.io/projects/claripy/en/latest/

angr

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

angr is a multi-architecture binary analysis toolkit, with the capability to perform dynamic symbolic execution (like
Mayhem, KLEE, etc.) and various static analyses on binaries. If you’d like to learn how to use it, you’re in the right
place!

We’ve tried to make using angr as pain-free as possible - our goal is to create a user-friendly binary analysis suite,
allowing a user to simply start up iPython and easily perform intensive binary analyses with a couple of commands.
That being said, binary analysis is complex, which makes angr complex. This documentation is an attempt to help out
with that, providing narrative explanation and exploration of angr and its design.

Several challenges must be overcome to programmatically analyze a binary. They are, roughly:

• Loading a binary into the analysis program.

• Translating a binary into an intermediate representation (IR).

• Performing the actual analysis. This could be:

– A partial or full-program static analysis (i.e., dependency analysis, program slicing).

– A symbolic exploration of the program’s state space (i.e., “Can we execute it until we find an overflow?”).

– Some combination of the above (i.e., “Let’s execute only program slices that lead to a memory write, to
find an overflow.”)

angr has components that meet all of these challenges. This documentation will explain how each component works,
and how they can all be used to accomplish your goals.

1.1 Getting Support

To get help with angr, you can ask via:

• the slack channel: angr.slack.com, for which you can get an account here.

• opening an issue on the appropriate github repository

3

https://angr.slack.com
https://angr.io/invite/

angr

1.2 Citing angr

If you use angr in an academic work, please cite the papers for which it was developed:

@article{shoshitaishvili2016state,
title={SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis},
author={Shoshitaishvili, Yan and Wang, Ruoyu and Salls, Christopher and Stephens, Nick␣

→˓and Polino, Mario and Dutcher, Audrey and Grosen, Jessie and Feng, Siji and Hauser,␣
→˓Christophe and Kruegel, Christopher and Vigna, Giovanni},
booktitle={IEEE Symposium on Security and Privacy},
year={2016}

}

@article{stephens2016driller,
title={Driller: Augmenting Fuzzing Through Selective Symbolic Execution},
author={Stephens, Nick and Grosen, Jessie and Salls, Christopher and Dutcher, Audrey␣

→˓and Wang, Ruoyu and Corbetta, Jacopo and Shoshitaishvili, Yan and Kruegel, Christopher␣
→˓and Vigna, Giovanni},
booktitle={NDSS},
year={2016}

}

@article{shoshitaishvili2015firmalice,
title={Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in␣

→˓Binary Firmware},
author={Shoshitaishvili, Yan and Wang, Ruoyu and Hauser, Christophe and Kruegel,␣

→˓Christopher and Vigna, Giovanni},
booktitle={NDSS},
year={2015}

}

1.3 Going further:

You can read this paper, explaining some of the internals, algorithms, and used techniques to get a better understanding
on what’s going on under the hood.

If you enjoy playing CTFs and would like to learn angr in a similar fashion, angr_ctf will be a fun way for you to get
familiar with much of the symbolic execution capability of angr. The angr_ctf repo is maintained by @jakespringer.

4 Chapter 1. Introduction

https://www.cs.ucsb.edu/~vigna/publications/2016_SP_angrSoK.pdf
https://github.com/jakespringer/angr_ctf
https://github.com/jakespringer/angr_ctf
https://github.com/jakespringer

CHAPTER

TWO

GETTING STARTED

2.1 Installing angr

angr is a library for Python 3.8+, and must be installed into a Python environment before it can be used.

Tip: It is recommended to use an isolated python environment rather than installing angr globally. Doing so reduces
dependency conflicts and aids in reproducibility while debugging. Some popular tools that accomplish this include:

• venv

• pipenv

• virtualenv

• virtualenvwrapper

• conda

2.1.1 Installing from PyPI

angr is published on PyPI, and using this is the easiest and recommended way to install angr. It can be installed angr
with pip:

pip install angr

Note: The PyPI distribution includes binary packages for most popular system configurations. If you are using a
system that is not supported by the binary packages, you will need to build the C dependencies from source. See the
Installing from Source section for more information.

2.1.2 Installing from Source

angr is a collection of Python packages, each of which is published on GitHub. The easiest way to install angr from
source is to use angr-dev.

To set up a development environment manually, first ensure that build dependencies are installed. These consist of
python development headers, make, and a C compiler. On Ubuntu, these can be installed with:

sudo apt-get install python3-dev build-essential

5

https://docs.python.org/3/library/venv.html
https://pipenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://docs.conda.io/en/latest/
https://pypi.org/
https://github.com/angr/angr-dev

angr

Then, checkout and install the following packages, in order:

• archinfo

• pyvex (clone with --recursive)

• cle

• claripy

• ailment

• angr (pip install with --no-build-isolation)

2.1.3 Troubleshooting

angr has no attribute Project, or similar

If angr can be imported but the Project class is missing, it is likely one of two problems:

1. There is a script named angr.py in the working directory. Rename it to something else.

2. There is a folder called angr in your working directory, possibly the cloned repository. Change the working
directory to somewhere else.

AttributeError: ‘module’ object has no attribute ‘KS_ARCH_X86’

The keystone package is installed, which conflicts with the keystone-engine package, an optional dependency of
angr. Uninstall keystone and install keystone-engine.

2.2 Reporting Bugs

If you’ve found something that angr isn’t able to solve and appears to be a bug, please let us know!

1. Create a fork off of angr/binaries and angr/angr

2. Give us a pull request with angr/binaries, with the binaries in question

3. Give us a pull request for angr/angr, with testcases that trigger the binaries in angr/tests/broken_x.py,
angr/tests/broken_y.py, etc

Please try to follow the testcase format that we have (so the code is in a test_blah function), that way we can very easily
merge that and make the scripts run.

An example is:

def test_some_broken_feature():
p = angr.Project("some_binary")
result = p.analyses.SomethingThatDoesNotWork()
assert result == "what it should *actually* be if it worked"

if __name__ == '__main__':
test_some_broken_feature()

This will greatly help us recreate your bug and fix it faster.

The ideal situation is that, when the bug is fixed, your testcases passes (i.e., the assert at the end does not raise an
AssertionError).

6 Chapter 2. Getting Started

https://github.com/angr/archinfo
https://github.com/angr/pyvex
https://github.com/angr/cle
https://github.com/angr/claripy
https://github.com/angr/ailment
https://github.com/angr/angr

angr

Then, we can just fix the bug and rename broken_x.py to test_x.py and the testcase will run in our internal CI at
every push, ensuring that we do not break this feature again.

2.3 Developing angr

These are some guidelines so that we can keep the codebase in good shape!

2.3.1 pre-commit

Many angr repos contain pre-commit hooks provided by pre-commit. Installing this is as easy as pip install
pre-commit. After git cloning an angr repository, if the repo contains a .pre-commit-config.yaml, run
pre-commit install. Future git commits will now invoke these hooks automatically.

2.3.2 Coding style

We format our code with black and otherwise try to get as close as the PEP8 code convention as is reasonable without
being dumb. If you use Vim, the python-mode plugin does all you need. You can also manually configure vim to adopt
this behavior.

Most importantly, please consider the following when writing code as part of angr:

• Try to use attribute access (see the @property decorator) instead of getters and setters wherever you can. This
isn’t Java, and attributes enable tab completion in iPython. That being said, be reasonable: attributes should be
fast. A rule of thumb is that if something could require a constraint solve, it should not be an attribute.

• Use our pylintrc from the angr-dev repo. It’s fairly permissive, but our CI server will fail your builds if pylint
complains under those settings.

• DO NOT, under ANY circumstances, raise Exception or assert False. Use the right exception type.
If there isn’t a correct exception type, subclass the core exception of the module that you’re working in (i.e.,
AngrError in angr, SimError in SimuVEX, etc) and raise that. We catch, and properly handle, the right types
of errors in the right places, but AssertionError and Exception are not handled anywhere and force-terminate
analyses.

• Avoid tabs; use space indentation instead. Even though it’s wrong, the de facto standard is 4 spaces. It is a good
idea to adopt this from the beginning, as merging code that mixes both tab and space indentation is awful.

• Avoid super long lines. It’s okay to have longer lines, but keep in mind that long lines are harder to read and
should be avoided. Let’s try to stick to 120 characters.

• Avoid extremely long functions, it is often better to break them up into smaller functions.

• Always use _ instead of __ for private members (so that we can access them when debugging). You might not
think that anyone has a need to call a given function, but trust us, you’re wrong.

• Format your code with black; config is already defined within pyproject.toml.

2.3. Developing angr 7

https://pre-commit.com/
https://github.com/psf/black
http://legacy.python.org/dev/peps/pep-0008/
https://github.com/klen/python-mode
https://wiki.python.org/moin/Vim
https://github.com/angr/angr-dev/blob/master/pylintrc

angr

2.3.3 Documentation

Document your code. Every class definition and public function definition should have some description of:

• What it does.

• What are the type and the meaning of the parameters.

• What it returns.

Class docstrings will be enforced by our linter. Do not under any circumstances write a docstring which doesn’t provide
more information than the name of the class. What you should try to write is a description of the environment that
the class should be used in. If the class should not be instantiated by end-users, write a description of where it will
be generated and how instances can be acquired. If the class should be instanciated by end-users, explain what kind
of object it represents at its core, what behavior is expected of its parameters, and how to safely manage objects of its
type.

We use Sphinx to generate the API documentation. Sphinx supports docstrings written in ReStructured Text with
special keywords to document function and class parameters, return values, return types, members, etc.

Here is an example of function documentation. Ideally the parameter descriptions should be aligned vertically to make
the docstrings as readable as possible.

def prune(self, filter_func=None, from_stash=None, to_stash=None):
"""
Prune unsatisfiable paths from a stash.

:param filter_func: Only prune paths that match this filter.
:param from_stash: Prune paths from this stash. (default: 'active')
:param to_stash: Put pruned paths in this stash. (default: 'pruned')
:returns: The resulting PathGroup.
:rtype: PathGroup
"""

This format has the advantage that the function parameters are clearly identified in the generated documentation. How-
ever, it can make the documentation repetitive, in some cases a textual description can be more readable. Pick the
format you feel is more appropriate for the functions or classes you are documenting.

def read_bytes(self, addr, n):
"""
Read `n` bytes at address `addr` in memory and return an array of bytes.
"""

2.3.4 Unit tests

If you’re pushing a new feature and it is not accompanied by a test case it will be broken in very short order. Please
write test cases for your stuff.

We have an internal CI server to run tests to check functionality and regression on each commit. In order to have our
server run your tests, write your tests in a format acceptable to nosetests in a file matching test_*.py in the tests
folder of the appropriate repository. A test file can contain any number of functions of the form def test_*(): or
classes of the form class Test*(unittest.TestCase):. Each of them will be run as a test, and if they raise any
exceptions or assertions, the test fails. Do not use the nose.tools.assert_* functions, as we are presently trying to
migrate to nose2. Use assert statements with descriptive messages or the unittest.TestCase assert methods.

Look at the existing tests for examples. Many of them use an alternate format where the test_* function is actually a
generator that yields tuples of functions to call and their arguments, for easy parametrization of tests.

8 Chapter 2. Getting Started

http://www.sphinx-doc.org/en/stable/
http://openalea.gforge.inria.fr/doc/openalea/doc/_build/html/source/sphinx/rest_syntax.html#auto-document-your-python-code
http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists
https://nose.readthedocs.org/en/latest/

angr

Finally, do not add docstrings to your test functions.

2.4 Help Wanted

Todo: This page is woefully out of date. We need to update it.

angr is a huge project, and it’s hard to keep up. Here, we list some big TODO items that we would love community
contributions for in the hope that it can direct community involvement. They (will) have a wide range of complexity,
and there should be something for all skill levels!

We tag issues on our github repositories that would be good for community involvement as “Help wanted”. To see the
exhaustive list of these, use this github search!

2.4.1 Documentation

There are many parts of angr that suffer from little or no documentation. We desperately need community help in this
area.

API

We are always behind on documentation. We’ve created several tracking issues on github to understand what’s still
missing:

1. angr

2. claripy

3. cle

4. pyvex

GitBook

This book is missing some core areas. Specifically, the following could be improved:

1. Finish some of the TODOs floating around the book.

2. Organize the Examples page in some way that makes sense. Right now, most of the examples are very redundant.
It might be cool to have a simple table of most of them so that the page is not so overwhelming.

angr course

Developing a “course” of sorts to get people started with angr would be really beneficial. Steps have already been made
in this direction here, but more expansion would be beneficial.

Ideally, the course would have a hands-on component, of increasing difficulty, that would require people to use more
and more of angr’s capabilities.

2.4. Help Wanted 9

https://github.com/search?utf8=%E2%9C%93&q=user%3Aangr+label%3A%22help+wanted%22+state%3Aopen&type=Issues&ref=advsearch&l=&l=
https://github.com/angr/angr/issues/145
https://github.com/angr/claripy/issues/17
https://github.com/angr/cle/issues/29
https://github.com/angr/pyvex/issues/34
https://github.com/angr/angr-doc/pull/74

angr

2.4.2 Research re-implementation

Unfortunately, not everyone bases their research on angr ;-). Until that’s remedied, we’ll need to periodically implement
related work, on top of angr, to make it reusable within the scope of the framework. This section lists some of this
related work that’s ripe for reimplementation in angr.

Redundant State Detection for Dynamic Symbolic Execution

Bugrara, et al. describe a method to identify and trim redundant states, increasing the speed of symbolic execution by
up to 50 times and coverage by 4%. This would be great to have in angr, as an ExplorationTechnique. The paper is
here: http://nsl.cs.columbia.edu/projects/minestrone/papers/atc13-bugrara.pdf

In-Vivo Multi-Path Analysis of Software Systems

Rather than developing symbolic summaries for every system call, we can use a technique proposed by S2E for con-
cretizing necessary data and dispatching them to the OS itself. This would make angr applicable to a much larger set
of binaries than it can currently analyze.

While this would be most useful for system calls, once it is implemented, it could be trivially applied to any location
of code (i.e., library functions). By carefully choosing which library functions are handled like this, we can greatly
increase angr’s scalability.

2.4.3 Development

We have several projects in mind that primarily require development effort.

angr-management

The angr GUI, angr-management needs a lot of work. Here is a non-exhaustive list of what is currently missing in
angr-management:

• A navigator toolbar showing content in a program’s memory space, just like IDA Pro’s navigator toolbar.

• A text-based disassembly view of the program.

• Better view showing details in program states during path exploration, including modifiable register view, mem-
ory view, file descriptor view, etc.

• A GUI for cross referencing.

Exposing angr’s capabilities in a usable way, graphically, would be really useful!

IDA Plugins

Much of angr’s functionality could be exposed via IDA. For example, angr’s data dependence graph could be exposed
in IDA through annotations, or obfuscated values can be resolved using symbolic execution.

10 Chapter 2. Getting Started

http://nsl.cs.columbia.edu/projects/minestrone/papers/atc13-bugrara.pdf
http://dslab.epfl.ch/pubs/s2e.pdf
https://github.com/angr/angr-management

angr

Additional architectures

More architecture support would make angr all the more useful. Supporting a new architecture with angr would involve:

1. Adding the architecture information to archinfo

2. Adding an IR translation. This may be either an extension to PyVEX, producing IRSBs, or another IR entirely.

3. If your IR is not VEX, add a SimEngine to support it.

4. Adding a calling convention (angr.SimCC) to support SimProcedures (including system calls)

5. Adding or modifying an angr.SimOS to support initialization activities.

6. Creating a CLE backend to load binaries, or extending the CLE ELF backend to know about the new architecture
if the binary format is ELF.

ideas for new architectures:
• PIC, AVR, other embedded architectures

• SPARC (there is some preliminary libVEX support for SPARC here)

ideas for new IRs:
• LLVM IR (with this, we can extend angr from just a Binary Analysis Framework to a Program Analysis Frame-

work and expand its capabilities in other ways!)

• SOOT (there is no reason that angr can’t analyze Java code, although doing so would require some extensions to
our memory model)

Environment support

We use the concept of “function summaries” in angr to model the environment of operating systems (i.e., the effects
of their system calls) and library functions. Extending this would be greatly helpful in increasing angr’s utility. These
function summaries can be found here.

A specific subset of this is system calls. Even more than library function SimProcedures (without which angr can always
execute the actual function), we have very few workarounds for missing system calls. Every implemented system call
extends the set of binaries that angr can handle.

2.4.4 Design Problems

There are some outstanding design challenges regarding the integration of additional functionalities into angr.

Type annotation and type information usage

angr has fledgling support for types, in the sense that it can parse them out of header files. However, those types are
not well exposed to do anything useful with. Improving this support would make it possible to, for example, annotate
certain memory regions with certain type information and interact with them intelligently. Consider, for example,
interacting with a linked list like this: print state.mem[state.regs.rax].llist.next.next.value.

(editor’s note: you can actually already do this)

2.4. Help Wanted 11

https://github.com/angr/archinfo
https://bitbucket.org/iraisr/valgrind-solaris
https://github.com/angr/angr/tree/master/angr/procedures

angr

2.4.5 Research Challenges

Historically, angr has progressed in the course of research into novel areas of program analysis. Here, we list several
self-contained research projects that can be tackled.

Semantic function identification/diffing

Current function diffing techniques (TODO: some examples) have drawbacks. For the CGC, we created a semantic-
based binary identification engine (https://github.com/angr/identifier) that can identify functions based on testcases.
There are two areas of improvement, each of which is its own research project:

1. Currently, the testcases used by this component are human-generated. However, symbolic execution can be used
to automatically generate testcases that can be used to recognize instances of a given function in other binaries.

2. By creating testcases that achieve a “high-enough” code coverage of a given function, we can detect changes
in functionality by applying the set of testcases to another implementation of the same function and analyzing
changes in code coverage. This can then be used as a sematic function diff.

Applying AFL’s path selection criteria to symbolic execution

AFL does an excellent job in identifying “unique” paths during fuzzing by tracking the control flow transitions taken
by every path. This same metric can be applied to symbolic exploration, and would probably do a depressingly good
job, considering how simple it is.

2.4.6 Overarching Research Directions

There are areas of program analysis that are not well explored. We list general directions of research here, but readers
should keep in mind that these directions likely describe potential undertakings of entire PhD dissertations.

Process interactions

Almost all work in the field of binary analysis deals with single binaries, but this is often unrealistic in the real world.
For example, the type of input that can be passed to a CGI program depend on pre-processing by a web server. Currently,
there is no way to support the analysis of multiple concurrent processes in angr, and many open questions in the field
(i.e., how to model concurrent actions).

Intra-process concurrency

Similar to the modeling of interactions between processes, little work has been done in understanding the interaction
of concurrent threads in the same process. Currently, angr has no way to reason about this, and it is unclear from the
theoretical perspective how to approach this.

A subset of this problem is the analysis of signal handlers (or hardware interrupts). Each signal handler can be modeled
as a thread that can be executed at any time that a signal can be triggered. Understanding when it is meaningful to analyze
these handlers is an open problem. One system that does reason about the effect of interrupts is FIE.

12 Chapter 2. Getting Started

https://github.com/angr/identifier
http://pages.cs.wisc.edu/~davidson/fie/

angr

Path explosion

Many approaches (such as Veritesting) attempt to mitigate the path explosion problem in symbolic execution. However,
despite these efforts, path explosion is still the main problem preventing symbolic execution from being mainstream.

angr provides an excellent base to implement new techniques to control path explosion. Most approaches can be easily
implemented as ExplorationTechnique s and quickly evaluated (for example, on the CGC dataset).

2.4. Help Wanted 13

https://users.ece.cmu.edu/~dbrumley/pdf/Avgerinosetal._2014_EnhancingSymbolicExecutionwithVeritesting.pdf
https://github.com/CyberGrandChallenge/samples

angr

14 Chapter 2. Getting Started

CHAPTER

THREE

CORE CONCEPTS

3.1 Core Concepts

To get started with angr, you’ll need to have a basic overview of some fundamental angr concepts and how to construct
some basic angr objects. We’ll go over this by examining what’s directly available to you after you’ve loaded a binary!

Your first action with angr will always be to load a binary into a project. We’ll use /bin/true for these examples.

>>> import angr
>>> proj = angr.Project('/bin/true')

A project is your control base in angr. With it, you will be able to dispatch analyses and simulations on the executable
you just loaded. Almost every single object you work with in angr will depend on the existence of a project in some
form.

Tip: Using and exploring angr in IPython (or other Python command line interpreters) is a main use case that we
design angr for. When you are not sure what interfaces are available, tab completion is your friend!

Sometimes tab completion in IPython can be slow. We find the following workaround helpful without degrading the
validity of completion results:

Drop this file in IPython profile's startup directory to avoid running it every time.
import IPython
py = IPython.get_ipython()
py.Completer.use_jedi = False

3.1.1 Basic properties

First, we have some basic properties about the project: its CPU architecture, its filename, and the address of its entry
point.

>>> import monkeyhex # this will format numerical results in hexadecimal
>>> proj.arch
<Arch AMD64 (LE)>
>>> proj.entry
0x401670
>>> proj.filename
'/bin/true'

15

angr

• arch is an instance of an archinfo.Arch object for whichever architecture the program is compiled, in this case
little-endian amd64. It contains a ton of clerical data about the CPU it runs on, which you can peruse at your
leisure. The common ones you care about are arch.bits, arch.bytes (that one is a @property declaration
on the main Arch class), arch.name, and arch.memory_endness.

• entry is the entry point of the binary!

• filename is the absolute filename of the binary. Riveting stuff!

3.1.2 Loading

Getting from a binary file to its representation in a virtual address space is pretty complicated! We have a module
called CLE to handle that. CLE’s result, called the loader, is available in the .loader property. We’ll get into detail
on how to use this soon, but for now just know that you can use it to see the shared libraries that angr loaded alongside
your program and perform basic queries about the loaded address space.

>>> proj.loader
<Loaded true, maps [0x400000:0x5004000]>

>>> proj.loader.shared_objects # may look a little different for you!
{'ld-linux-x86-64.so.2': <ELF Object ld-2.24.so, maps [0x2000000:0x2227167]>,
'libc.so.6': <ELF Object libc-2.24.so, maps [0x1000000:0x13c699f]>}

>>> proj.loader.min_addr
0x400000
>>> proj.loader.max_addr
0x5004000

>>> proj.loader.main_object # we've loaded several binaries into this project. Here's␣
→˓the main one!
<ELF Object true, maps [0x400000:0x60721f]>

>>> proj.loader.main_object.execstack # sample query: does this binary have an␣
→˓executable stack?
False
>>> proj.loader.main_object.pic # sample query: is this binary position-independent?
True

3.1.3 The factory

There are a lot of classes in angr, and most of them require a project to be instantiated. Instead of making you pass
around the project everywhere, we provide project.factory, which has several convenient constructors for common
objects you’ll want to use frequently.

This section will also serve as an introduction to several basic angr concepts. Strap in!

16 Chapter 3. Core Concepts

https://github.com/angr/archinfo/blob/master/archinfo/arch_amd64.py
https://github.com/angr/archinfo/blob/master/archinfo/arch_amd64.py
https://github.com/angr/archinfo/blob/master/archinfo/arch.py

angr

Blocks

First, we have project.factory.block(), which is used to extract a basic block of code from a given address. This
is an important fact - angr analyzes code in units of basic blocks. You will get back a Block object, which can tell you
lots of fun things about the block of code:

>>> block = proj.factory.block(proj.entry) # lift a block of code from the program's␣
→˓entry point
<Block for 0x401670, 42 bytes>

>>> block.pp() # pretty-print a disassembly to stdout
0x401670: xor ebp, ebp
0x401672: mov r9, rdx
0x401675: pop rsi
0x401676: mov rdx, rsp
0x401679: and rsp, 0xfffffffffffffff0
0x40167d: push rax
0x40167e: push rsp
0x40167f: lea r8, [rip + 0x2e2a]
0x401686: lea rcx, [rip + 0x2db3]
0x40168d: lea rdi, [rip - 0xd4]
0x401694: call qword ptr [rip + 0x205866]

>>> block.instructions # how many instructions are there?
0xb
>>> block.instruction_addrs # what are the addresses of the instructions?
[0x401670, 0x401672, 0x401675, 0x401676, 0x401679, 0x40167d, 0x40167e, 0x40167f,␣
→˓0x401686, 0x40168d, 0x401694]

Additionally, you can use a Block object to get other representations of the block of code:

>>> block.capstone # capstone disassembly
<CapstoneBlock for 0x401670>
>>> block.vex # VEX IRSB (that's a Python internal address,␣
→˓not a program address)
<pyvex.block.IRSB at 0x7706330>

States

Here’s another fact about angr - the Project object only represents an “initialization image” for the program. When
you’re performing execution with angr, you are working with a specific object representing a simulated program state
- a SimState. Let’s grab one right now!

>>> state = proj.factory.entry_state()
<SimState @ 0x401670>

A SimState contains a program’s memory, registers, filesystem data. . . any “live data” that can be changed by execution
has a home in the state. We’ll cover how to interact with states in depth later, but for now, let’s use state.regs and
state.mem to access the registers and memory of this state:

>>> state.regs.rip # get the current instruction pointer
<BV64 0x401670>
>>> state.regs.rax

(continues on next page)

3.1. Core Concepts 17

https://en.wikipedia.org/wiki/Basic_block

angr

(continued from previous page)

<BV64 0x1c>
>>> state.mem[proj.entry].int.resolved # interpret the memory at the entry point as a C␣
→˓int
<BV32 0x8949ed31>

Those aren’t Python ints! Those are bitvectors. Python integers don’t have the same semantics as words on a CPU, e.g.
wrapping on overflow, so we work with bitvectors, which you can think of as an integer as represented by a series of
bits, to represent CPU data in angr. Note that each bitvector has a .length property describing how wide it is in bits.

We’ll learn all about how to work with them soon, but for now, here’s how to convert from Python ints to bitvectors
and back again:

>>> bv = state.solver.BVV(0x1234, 32) # create a 32-bit-wide bitvector with value␣
→˓0x1234
<BV32 0x1234> # BVV stands for bitvector value
>>> state.solver.eval(bv) # convert to Python int
0x1234

You can store these bitvectors back to registers and memory, or you can directly store a Python integer and it’ll be
converted to a bitvector of the appropriate size:

>>> state.regs.rsi = state.solver.BVV(3, 64)
>>> state.regs.rsi
<BV64 0x3>

>>> state.mem[0x1000].long = 4
>>> state.mem[0x1000].long.resolved
<BV64 0x4>

The mem interface is a little confusing at first, since it’s using some pretty hefty Python magic. The short version of
how to use it is:

• Use array[index] notation to specify an address

• Use .<type> to specify that the memory should be interpreted as type (common values: char, short, int, long,
size_t, uint8_t, uint16_t. . .)

• From there, you can either:

– Store a value to it, either a bitvector or a Python int

– Use .resolved to get the value as a bitvector

– Use .concrete to get the value as a Python int

There are more advanced usages that will be covered later!

Finally, if you try reading some more registers you may encounter a very strange looking value:

>>> state.regs.rdi
<BV64 reg_48_11_64{UNINITIALIZED}>

This is still a 64-bit bitvector, but it doesn’t contain a numerical value. Instead, it has a name! This is called a symbolic
variable and it is the underpinning of symbolic execution. Don’t panic! We will discuss all of this in detail exactly two
chapters from now.

18 Chapter 3. Core Concepts

https://docs.python.org/3/library/functions.html#type

angr

Simulation Managers

If a state lets us represent a program at a given point in time, there must be a way to get it to the next point in time. A
simulation manager is the primary interface in angr for performing execution, simulation, whatever you want to call it,
with states. As a brief introduction, let’s show how to tick that state we created earlier forward a few basic blocks.

First, we create the simulation manager we’re going to be using. The constructor can take a state or a list of states.

>>> simgr = proj.factory.simulation_manager(state)
<SimulationManager with 1 active>
>>> simgr.active
[<SimState @ 0x401670>]

A simulation manager can contain several stashes of states. The default stash, active, is initialized with the state we
passed in. We could look at simgr.active[0] to look at our state some more, if we haven’t had enough!

Now. . . get ready, we’re going to do some execution.

>>> simgr.step()

We’ve just performed a basic block’s worth of symbolic execution! We can look at the active stash again, noticing that
it’s been updated, and furthermore, that it has not modified our original state. SimState objects are treated as immutable
by execution - you can safely use a single state as a “base” for multiple rounds of execution.

>>> simgr.active
[<SimState @ 0x1020300>]
>>> simgr.active[0].regs.rip # new and exciting!
<BV64 0x1020300>
>>> state.regs.rip # still the same!
<BV64 0x401670>

/bin/true isn’t a very good example for describing how to do interesting things with symbolic execution, so we’ll
stop here for now.

3.1.4 Analyses

angr comes pre-packaged with several built-in analyses that you can use to extract some fun kinds of information from
a program. Here they are:

>>> proj.analyses. # Press TAB here in ipython to get an autocomplete-listing␣
→˓of everything:
proj.analyses.BackwardSlice proj.analyses.CongruencyCheck proj.analyses.
→˓reload_analyses
proj.analyses.BinaryOptimizer proj.analyses.DDG proj.analyses.
→˓StaticHooker
proj.analyses.BinDiff proj.analyses.DFG proj.analyses.
→˓VariableRecovery
proj.analyses.BoyScout proj.analyses.Disassembly proj.analyses.
→˓VariableRecoveryFast
proj.analyses.CDG proj.analyses.GirlScout proj.analyses.
→˓Veritesting
proj.analyses.CFG proj.analyses.Identifier proj.analyses.VFG
proj.analyses.CFGEmulated proj.analyses.LoopFinder proj.analyses.VSA_
→˓DDG
proj.analyses.CFGFast proj.analyses.Reassembler

3.1. Core Concepts 19

angr

A couple of these are documented later in this book, but in general, if you want to find how to use a given analysis, you
should look in the api documentation for angr.analyses. As an extremely brief example: here’s how you construct
and use a quick control-flow graph:

Originally, when we loaded this binary it also loaded all its dependencies into the␣
→˓same virtual address space
This is undesirable for most analysis.
>>> proj = angr.Project('/bin/true', auto_load_libs=False)
>>> cfg = proj.analyses.CFGFast()
<CFGFast Analysis Result at 0x2d85130>

cfg.graph is a networkx DiGraph full of CFGNode instances
You should go look up the networkx APIs to learn how to use this!
>>> cfg.graph
<networkx.classes.digraph.DiGraph at 0x2da43a0>
>>> len(cfg.graph.nodes())
951

To get the CFGNode for a given address, use cfg.get_any_node
>>> entry_node = cfg.get_any_node(proj.entry)
>>> len(list(cfg.graph.successors(entry_node)))
2

3.1.5 Now what?

Having read this page, you should now be acquainted with several important angr concepts: basic blocks, states, bitvec-
tors, simulation managers, and analyses. You can’t really do anything interesting besides just use angr as a glorified
debugger, though! Keep reading, and you will unlock deeper powers. . .

3.2 Loading a Binary

Previously, you saw just the barest taste of angr’s loading facilities - you loaded /bin/true, and then loaded it again
without its shared libraries. You also saw proj.loader and a few things it could do. Now, we’ll dive into the nuances
of these interfaces and the things they can tell you.

We briefly mentioned angr’s binary loading component, CLE. CLE stands for “CLE Loads Everything”, and is respon-
sible for taking a binary (and any libraries that it depends on) and presenting it to the rest of angr in a way that is easy
to work with.

3.2.1 The Loader

Let’s load examples/fauxware/fauxware and take a deeper look at how to interact with the loader.

>>> import angr, monkeyhex
>>> proj = angr.Project('examples/fauxware/fauxware')
>>> proj.loader
<Loaded fauxware, maps [0x400000:0x5008000]>

20 Chapter 3. Core Concepts

angr

Loaded Objects

The CLE loader (cle.Loader) represents an entire conglomerate of loaded binary objects, loaded and mapped into
a single memory space. Each binary object is loaded by a loader backend that can handle its filetype (a subclass of
cle.Backend). For example, cle.ELF is used to load ELF binaries.

There will also be objects in memory that don’t correspond to any loaded binary. For example, an object used to provide
thread-local storage support, and an externs object used to provide unresolved symbols.

You can get the full list of objects that CLE has loaded with loader.all_objects, as well as several more targeted
classifications:

All loaded objects
>>> proj.loader.all_objects
[<ELF Object fauxware, maps [0x400000:0x60105f]>,
<ELF Object libc-2.23.so, maps [0x1000000:0x13c999f]>,
<ELF Object ld-2.23.so, maps [0x2000000:0x2227167]>,
<ELFTLSObject Object cle##tls, maps [0x3000000:0x3015010]>,
<ExternObject Object cle##externs, maps [0x4000000:0x4008000]>,
<KernelObject Object cle##kernel, maps [0x5000000:0x5008000]>]

This is the "main" object, the one that you directly specified when loading the project
>>> proj.loader.main_object
<ELF Object fauxware, maps [0x400000:0x60105f]>

This is a dictionary mapping from shared object name to object
>>> proj.loader.shared_objects
{ 'fauxware': <ELF Object fauxware, maps [0x400000:0x60105f]>,
'libc.so.6': <ELF Object libc-2.23.so, maps [0x1000000:0x13c999f]>,
'ld-linux-x86-64.so.2': <ELF Object ld-2.23.so, maps [0x2000000:0x2227167]> }

Here's all the objects that were loaded from ELF files
If this were a windows program we'd use all_pe_objects!
>>> proj.loader.all_elf_objects
[<ELF Object fauxware, maps [0x400000:0x60105f]>,
<ELF Object libc-2.23.so, maps [0x1000000:0x13c999f]>,
<ELF Object ld-2.23.so, maps [0x2000000:0x2227167]>]

Here's the "externs object", which we use to provide addresses for unresolved imports␣
→˓and angr internals
>>> proj.loader.extern_object
<ExternObject Object cle##externs, maps [0x4000000:0x4008000]>

This object is used to provide addresses for emulated syscalls
>>> proj.loader.kernel_object
<KernelObject Object cle##kernel, maps [0x5000000:0x5008000]>

Finally, you can to get a reference to an object given an address in it
>>> proj.loader.find_object_containing(0x400000)
<ELF Object fauxware, maps [0x400000:0x60105f]>

You can interact directly with these objects to extract metadata from them:

>>> obj = proj.loader.main_object

(continues on next page)

3.2. Loading a Binary 21

angr

(continued from previous page)

The entry point of the object
>>> obj.entry
0x400580

>>> obj.min_addr, obj.max_addr
(0x400000, 0x60105f)

Retrieve this ELF's segments and sections
>>> obj.segments
<Regions: [<ELFSegment memsize=0xa74, filesize=0xa74, vaddr=0x400000, flags=0x5,␣
→˓offset=0x0>,

<ELFSegment memsize=0x238, filesize=0x228, vaddr=0x600e28, flags=0x6,␣
→˓offset=0xe28>]>
>>> obj.sections
<Regions: [<Unnamed | offset 0x0, vaddr 0x0, size 0x0>,

<.interp | offset 0x238, vaddr 0x400238, size 0x1c>,
<.note.ABI-tag | offset 0x254, vaddr 0x400254, size 0x20>,
...etc

You can get an individual segment or section by an address it contains:
>>> obj.find_segment_containing(obj.entry)
<ELFSegment memsize=0xa74, filesize=0xa74, vaddr=0x400000, flags=0x5, offset=0x0>
>>> obj.find_section_containing(obj.entry)
<.text | offset 0x580, vaddr 0x400580, size 0x338>

Get the address of the PLT stub for a symbol
>>> addr = obj.plt['strcmp']
>>> addr
0x400550
>>> obj.reverse_plt[addr]
'strcmp'

Show the prelinked base of the object and the location it was actually mapped into␣
→˓memory by CLE
>>> obj.linked_base
0x400000
>>> obj.mapped_base
0x400000

Symbols and Relocations

You can also work with symbols while using CLE. A symbol is a fundamental concept in the world of executable
formats, effectively mapping a name to an address.

The easiest way to get a symbol from CLE is to use loader.find_symbol, which takes either a name or an address
and returns a Symbol object.

>>> strcmp = proj.loader.find_symbol('strcmp')
>>> strcmp
<Symbol "strcmp" in libc.so.6 at 0x1089cd0>

The most useful attributes on a symbol are its name, its owner, and its address, but the “address” of a symbol can be

22 Chapter 3. Core Concepts

angr

ambiguous. The Symbol object has three ways of reporting its address:

• .rebased_addr is its address in the global address space. This is what is shown in the print output.

• .linked_addr is its address relative to the prelinked base of the binary. This is the address reported in, for
example, readelf(1).

• .relative_addr is its address relative to the object base. This is known in the literature (particularly the
Windows literature) as an RVA (relative virtual address).

>>> strcmp.name
'strcmp'

>>> strcmp.owner
<ELF Object libc-2.23.so, maps [0x1000000:0x13c999f]>

>>> strcmp.rebased_addr
0x1089cd0
>>> strcmp.linked_addr
0x89cd0
>>> strcmp.relative_addr
0x89cd0

In addition to providing debug information, symbols also support the notion of dynamic linking. libc provides the
strcmp symbol as an export, and the main binary depends on it. If we ask CLE to give us a strcmp symbol from
the main object directly, it’ll tell us that this is an import symbol. Import symbols do not have meaningful addresses
associated with them, but they do provide a reference to the symbol that was used to resolve them, as .resolvedby.

>>> strcmp.is_export
True
>>> strcmp.is_import
False

On Loader, the method is find_symbol because it performs a search operation to find␣
→˓the symbol.
On an individual object, the method is get_symbol because there can only be one symbol␣
→˓with a given name.
>>> main_strcmp = proj.loader.main_object.get_symbol('strcmp')
>>> main_strcmp
<Symbol "strcmp" in fauxware (import)>
>>> main_strcmp.is_export
False
>>> main_strcmp.is_import
True
>>> main_strcmp.resolvedby
<Symbol "strcmp" in libc.so.6 at 0x1089cd0>

The specific ways that the links between imports and exports should be registered in memory are handled by another
notion called relocations. A relocation says, “when you match [import] up with an export symbol, please write the ex-
port’s address to [location], formatted as [format].” We can see the full list of relocations for an object (as Relocation
instances) as obj.relocs, or just a mapping from symbol name to Relocation as obj.imports. There is no corre-
sponding list of export symbols.

A relocation’s corresponding import symbol can be accessed as .symbol. The address the relocation will write to is
accessable through any of the address identifiers you can use for Symbol, and you can get a reference to the object
requesting the relocation with .owner as well.

3.2. Loading a Binary 23

angr

Relocations don't have a good pretty-printing, so those addresses are Python-internal,␣
→˓unrelated to our program
>>> proj.loader.shared_objects['libc.so.6'].imports
{'__libc_enable_secure': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at␣
→˓0x7ff5c5fce780>,
'__tls_get_addr': <cle.backends.elf.relocation.amd64.R_X86_64_JUMP_SLOT at␣
→˓0x7ff5c6018358>,
'_dl_argv': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at 0x7ff5c5fd2e48>,
'_dl_find_dso_for_object': <cle.backends.elf.relocation.amd64.R_X86_64_JUMP_SLOT at␣
→˓0x7ff5c6018588>,
'_dl_starting_up': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at␣
→˓0x7ff5c5fd2550>,
'_rtld_global': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at 0x7ff5c5fce4e0>,
'_rtld_global_ro': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at␣
→˓0x7ff5c5fcea20>}

If an import cannot be resolved to any export, for example, because a shared library could not be found, CLE will
automatically update the externs object (loader.extern_obj) to claim it provides the symbol as an export.

3.2.2 Loading Options

If you are loading something with angr.Project and you want to pass an option to the cle.Loader instance that
Project implicitly creates, you can just pass the keyword argument directly to the Project constructor, and it will be
passed on to CLE. You should look at the CLE API docs. if you want to know everything that could possibly be passed
in as an option, but we will go over some important and frequently used options here.

We’ve discussed auto_load_libs already - it enables or disables CLE’s attempt to automatically resolve shared library
dependencies, and is on by default. Additionally, there is the opposite, except_missing_libs, which, if set to true,
will cause an exception to be thrown whenever a binary has a shared library dependency that cannot be resolved.

You can pass a list of strings to force_load_libs and anything listed will be treated as an unresolved shared library
dependency right out of the gate, or you can pass a list of strings to skip_libs to prevent any library of that name from
being resolved as a dependency. Additionally, you can pass a list of strings (or a single string) to ld_path, which will
be used as an additional search path for shared libraries, before any of the defaults: the same directory as the loaded
program, the current working directory, and your system libraries.

If you want to specify some options that only apply to a specific binary object, CLE will let you do that too. The
parameters main_opts and lib_opts do this by taking dictionaries of options. main_opts is a mapping from option
names to option values, while lib_opts is a mapping from library name to dictionaries mapping option names to
option values.

The options that you can use vary from backend to backend, but some common ones are:

• backend - which backend to use, as either a class or a name

• base_addr - a base address to use

• entry_point - an entry point to use

• arch - the name of an architecture to use

Example:

>>> angr.Project('examples/fauxware/fauxware', main_opts={'backend': 'blob', 'arch':
→˓'i386'}, lib_opts={'libc.so.6': {'backend': 'elf'}})
<Project examples/fauxware/fauxware>

24 Chapter 3. Core Concepts

https://docs.angr.io/projects/cle/en/latest/api.html

angr

Backends

CLE currently has backends for statically loading ELF, PE, CGC, Mach-O and ELF core dump files, as well as loading
files into a flat address space. CLE will automatically detect the correct backend to use in most cases, so you shouldn’t
need to specify which backend you’re using unless you’re doing some pretty weird stuff.

You can force CLE to use a specific backend for an object by including a key in its options dictionary, as described
above. Some backends cannot autodetect which architecture to use and must have a arch specified. The key doesn’t
need to match any list of architectures; angr will identify which architecture you mean given almost any common
identifier for any supported arch.

To refer to a backend, use the name from this table:

backend
name

description requires
arch?

elf Static loader for ELF files based on PyELFTools no
pe Static loader for PE files based on PEFile no
mach-o Static loader for Mach-O files. Does not support dynamic linking or rebasing. no
cgc Static loader for Cyber Grand Challenge binaries no
backedcgc Static loader for CGC binaries that allows specifying memory and register

backers
no

elfcore Static loader for ELF core dumps no
blob Loads the file into memory as a flat image yes

3.2.3 Symbolic Function Summaries

By default, Project tries to replace external calls to library functions by using symbolic summaries termed SimPro-
cedures - effectively just Python functions that imitate the library function’s effect on the state. We’ve implemented
a whole bunch of functions as SimProcedures. These builtin procedures are available in the angr.SIM_PROCEDURES
dictionary, which is two-leveled, keyed first on the package name (libc, posix, win32, stubs) and then on the name of
the library function. Executing a SimProcedure instead of the actual library function that gets loaded from your system
makes analysis a LOT more tractable, at the cost of some potential inaccuracies <Gotchas when using angr>.

When no such summary is available for a given function:

• if auto_load_libs is True (this is the default), then the real library function is executed instead. This may or
may not be what you want, depending on the actual function. For example, some of libc’s functions are extremely
complex to analyze and will most likely cause an explosion of the number of states for the path trying to execute
them.

• if auto_load_libs is False, then external functions are unresolved, and Project will resolve them to a generic
“stub” SimProcedure called ReturnUnconstrained. It does what its name says: it returns a unique uncon-
strained symbolic value each time it is called.

• if use_sim_procedures (this is a parameter to angr.Project, not cle.Loader) is False (it is True by
default), then only symbols provided by the extern object will be replaced with SimProcedures, and they will be
replaced by a stub ReturnUnconstrained, which does nothing but return a symbolic value.

• you may specify specific symbols to exclude from being replaced with SimProcedures with the parameters to
angr.Project: exclude_sim_procedures_list and exclude_sim_procedures_func.

• Look at the code for angr.Project._register_object for the exact algorithm.

The mechanism by which angr replaces library code with a Python summary is called hooking, and you can do it too!
When performing simulation, at every step angr checks if the current address has been hooked, and if so, runs the hook
instead of the binary code at that address. The API to let you do this is proj.hook(addr, hook), where hook is a

3.2. Loading a Binary 25

https://github.com/angr/angr/tree/master/angr/procedures

angr

SimProcedure instance. You can manage your project’s hooks with .is_hooked, .unhook, and .hooked_by, which
should hopefully not require explanation.

There is an alternate API for hooking an address that lets you specify your own off-the-cuff function to use as a hook,
by using proj.hook(addr) as a function decorator. If you do this, you can also optionally specify a length keyword
argument to make execution jump some number of bytes forward after your hook finishes.

>>> stub_func = angr.SIM_PROCEDURES['stubs']['ReturnUnconstrained'] # this is a CLASS
>>> proj.hook(0x10000, stub_func()) # hook with an instance of the class

>>> proj.is_hooked(0x10000) # these functions should be pretty self-
→˓explanitory
True
>>> proj.hooked_by(0x10000)
<ReturnUnconstrained>
>>> proj.unhook(0x10000)

>>> @proj.hook(0x20000, length=5)
... def my_hook(state):
... state.regs.rax = 1

>>> proj.is_hooked(0x20000)
True

Furthermore, you can use proj.hook_symbol(name, hook), providing the name of a symbol as the first argument,
to hook the address where the symbol lives. One very important usage of this is to extend the behavior of angr’s built-in
library SimProcedures. Since these library functions are just classes, you can subclass them, overriding pieces of their
behavior, and then use your subclass in a hook.

3.2.4 So far so good!

By now, you should have a reasonable understanding of how to control the environment in which your analysis happens,
on the level of the CLE loader and the angr Project. You should also understand that angr makes a reasonable attempt
to simplify its analysis by hooking complex library functions with SimProcedures that summarize the effects of the
functions.

In order to see all the things you can do with the CLE loader and its backends, look at the CLE API docs.

3.3 Symbolic Expressions and Constraint Solving

angr’s power comes not from it being an emulator, but from being able to execute with what we call symbolic variables.
Instead of saying that a variable has a concrete numerical value, we can say that it holds a symbol, effectively just a
name. Then, performing arithmetic operations with that variable will yield a tree of operations (termed an abstract
syntax tree or AST, from compiler theory). ASTs can be translated into constraints for an SMT solver, like z3, in order
to ask questions like “given the output of this sequence of operations, what must the input have been?” Here, you’ll
learn how to use angr to answer this.

26 Chapter 3. Core Concepts

https://docs.angr.io/projects/cle/en/latest/api.html

angr

3.3.1 Working with Bitvectors

Let’s get a dummy project and state so we can start playing with numbers.

>>> import angr, monkeyhex
>>> proj = angr.Project('/bin/true')
>>> state = proj.factory.entry_state()

A bitvector is just a sequence of bits, interpreted with the semantics of a bounded integer for arithmetic. Let’s make a
few.

64-bit bitvectors with concrete values 1 and 100
>>> one = state.solver.BVV(1, 64)
>>> one
<BV64 0x1>
>>> one_hundred = state.solver.BVV(100, 64)
>>> one_hundred
<BV64 0x64>

create a 27-bit bitvector with concrete value 9
>>> weird_nine = state.solver.BVV(9, 27)
>>> weird_nine
<BV27 0x9>

As you can see, you can have any sequence of bits and call them a bitvector. You can do math with them too:

>>> one + one_hundred
<BV64 0x65>

You can provide normal Python integers and they will be coerced to the
appropriate type: >>> one_hundred + 0x100 <BV64 0x164>

The semantics of normal wrapping arithmetic apply
>>> one_hundred - one*200
<BV64 0xffffffffffffff9c>

You cannot say one + weird_nine, though. It is a type error to perform an operation on bitvectors of differing
lengths. You can, however, extend weird_nine so it has an appropriate number of bits:

>>> weird_nine.zero_extend(64 - 27)
<BV64 0x9>
>>> one + weird_nine.zero_extend(64 - 27)
<BV64 0xa>

zero_extend will pad the bitvector on the left with the given number of zero bits. You can also use sign_extend
to pad with a duplicate of the highest bit, preserving the value of the bitvector under two’s compliment signed integer
semantics.

Now, let’s introduce some symbols into the mix.

Create a bitvector symbol named "x" of length 64 bits
>>> x = state.solver.BVS("x", 64)
>>> x
<BV64 x_9_64>
>>> y = state.solver.BVS("y", 64)

(continues on next page)

3.3. Symbolic Expressions and Constraint Solving 27

angr

(continued from previous page)

>>> y
<BV64 y_10_64>

x and y are now symbolic variables, which are kind of like the variables you learned to work with in 7th grade algebra.
Notice that the name you provided has been been mangled by appending an incrementing counter and You can do as
much arithmetic as you want with them, but you won’t get a number back, you’ll get an AST instead.

>>> x + one
<BV64 x_9_64 + 0x1>

>>> (x + one) / 2
<BV64 (x_9_64 + 0x1) / 0x2>

>>> x - y
<BV64 x_9_64 - y_10_64>

Technically x and y and even one are also ASTs - any bitvector is a tree of operations, even if that tree is only one layer
deep. To understand this, let’s learn how to process ASTs.

Each AST has a .op and a .args. The op is a string naming the operation being performed, and the args are the values
the operation takes as input. Unless the op is BVV or BVS (or a few others. . .), the args are all other ASTs, the tree
eventually terminating with BVVs or BVSs.

>>> tree = (x + 1) / (y + 2)
>>> tree
<BV64 (x_9_64 + 0x1) / (y_10_64 + 0x2)>
>>> tree.op
'__floordiv__'
>>> tree.args
(<BV64 x_9_64 + 0x1>, <BV64 y_10_64 + 0x2>)
>>> tree.args[0].op
'__add__'
>>> tree.args[0].args
(<BV64 x_9_64>, <BV64 0x1>)
>>> tree.args[0].args[1].op
'BVV'
>>> tree.args[0].args[1].args
(1, 64)

From here on out, we will use the word “bitvector” to refer to any AST whose topmost operation produces a bitvector.
There can be other data types represented through ASTs, including floating point numbers and, as we’re about to see,
booleans.

3.3.2 Symbolic Constraints

Performing comparison operations between any two similarly-typed ASTs will yield another AST - not a bitvector, but
now a symbolic boolean.

>>> x == 1
<Bool x_9_64 == 0x1>
>>> x == one
<Bool x_9_64 == 0x1>

(continues on next page)

28 Chapter 3. Core Concepts

angr

(continued from previous page)

>>> x > 2
<Bool x_9_64 > 0x2>
>>> x + y == one_hundred + 5
<Bool (x_9_64 + y_10_64) == 0x69>
>>> one_hundred > 5
<Bool True>
>>> one_hundred > -5
<Bool False>

One tidbit you can see from this is that the comparisons are unsigned by default. The -5 in the last example is coerced
to <BV64 0xfffffffffffffffb>, which is definitely not less than one hundred. If you want the comparison to be
signed, you can say one_hundred.SGT(-5) (that’s “signed greater-than”). A full list of operations can be found at
the end of this chapter.

This snippet also illustrates an important point about working with angr - you should never directly use a comparison
between variables in the condition for an if- or while-statement, since the answer might not have a concrete truth value.
Even if there is a concrete truth value, if one > one_hundred will raise an exception. Instead, you should use
solver.is_true and solver.is_false, which test for concrete truthyness/falsiness without performing a constraint
solve.

>>> yes = one == 1
>>> no = one == 2
>>> maybe = x == y
>>> state.solver.is_true(yes)
True
>>> state.solver.is_false(yes)
False
>>> state.solver.is_true(no)
False
>>> state.solver.is_false(no)
True
>>> state.solver.is_true(maybe)
False
>>> state.solver.is_false(maybe)
False

3.3.3 Constraint Solving

You can treat any symbolic boolean as an assertion about the valid values of a symbolic variable by adding it as a
constraint to the state. You can then query for a valid value of a symbolic variable by asking for an evaluation of a
symbolic expression.

An example will probably be more clear than an explanation here:

>>> state.solver.add(x > y)
>>> state.solver.add(y > 2)
>>> state.solver.add(10 > x)
>>> state.solver.eval(x)
4

By adding these constraints to the state, we’ve forced the constraint solver to consider them as assertions that must
be satisfied about any values it returns. If you run this code, you might get a different value for x, but that value will
definitely be greater than 3 (since y must be greater than 2 and x must be greater than y) and less than 10. Furthermore,

3.3. Symbolic Expressions and Constraint Solving 29

angr

if you then say state.solver.eval(y), you’ll get a value of y which is consistent with the value of x that you got.
If you don’t add any constraints between two queries, the results will be consistent with each other.

From here, it’s easy to see how to do the task we proposed at the beginning of the chapter - finding the input that
produced a given output.

get a fresh state without constraints
>>> state = proj.factory.entry_state()
>>> input = state.solver.BVS('input', 64)
>>> operation = (((input + 4) * 3) >> 1) + input
>>> output = 200
>>> state.solver.add(operation == output)
>>> state.solver.eval(input)
0x3333333333333381

Note that, again, this solution only works because of the bitvector semantics. If we were operating over the domain of
integers, there would be no solutions!

If we add conflicting or contradictory constraints, such that there are no values that can be assigned to the variables such
that the constraints are satisfied, the state becomes unsatisfiable, or unsat, and queries against it will raise an exception.
You can check the satisfiability of a state with state.satisfiable().

>>> state.solver.add(input < 2**32)
>>> state.satisfiable()
False

You can also evaluate more complex expressions, not just single variables.

fresh state
>>> state = proj.factory.entry_state()
>>> state.solver.add(x - y >= 4)
>>> state.solver.add(y > 0)
>>> state.solver.eval(x)
5
>>> state.solver.eval(y)
1
>>> state.solver.eval(x + y)
6

From this we can see that eval is a general purpose method to convert any bitvector into a Python primitive while
respecting the integrity of the state. This is why we use eval to convert from concrete bitvectors to Python ints, too!

Also note that the x and y variables can be used in this new state despite having been created using an old state. Variables
are not tied to any one state, and can exist freely.

3.3.4 Floating point numbers

z3 has support for the theory of IEEE754 floating point numbers, and so angr can use them as well. The main difference
is that instead of a width, a floating point number has a sort. You can create floating point symbols and values with
FPV and FPS.

fresh state
>>> state = proj.factory.entry_state()
>>> a = state.solver.FPV(3.2, state.solver.fp.FSORT_DOUBLE)
>>> a

(continues on next page)

30 Chapter 3. Core Concepts

angr

(continued from previous page)

<FP64 FPV(3.2, DOUBLE)>

>>> b = state.solver.FPS('b', state.solver.fp.FSORT_DOUBLE)
>>> b
<FP64 FPS('FP_b_0_64', DOUBLE)>

>>> a + b
<FP64 fpAdd('RNE', FPV(3.2, DOUBLE), FPS('FP_b_0_64', DOUBLE))>

>>> a + 4.4
<FP64 FPV(7.6000000000000005, DOUBLE)>

>>> b + 2 < 0
<Bool fpLT(fpAdd('RNE', FPS('FP_b_0_64', DOUBLE), FPV(2.0, DOUBLE)), FPV(0.0, DOUBLE))>

So there’s a bit to unpack here - for starters the pretty-printing isn’t as smart about floating point numbers. But past
that, most operations actually have a third parameter, implicitly added when you use the binary operators - the rounding
mode. The IEEE754 spec supports multiple rounding modes (round-to-nearest, round-to-zero, round-to-positive, etc),
so z3 has to support them. If you want to specify the rounding mode for an operation, use the fp operation explicitly
(solver.fpAdd for example) with a rounding mode (one of solver.fp.RM_*) as the first argument.

Constraints and solving work in the same way, but with eval returning a floating point number:

>>> state.solver.add(b + 2 < 0)
>>> state.solver.add(b + 2 > -1)
>>> state.solver.eval(b)
-2.4999999999999996

This is nice, but sometimes we need to be able to work directly with the representation of the float as a bitvector. You
can interpret bitvectors as floats and vice versa, with the methods raw_to_bv and raw_to_fp:

>>> a.raw_to_bv()
<BV64 0x400999999999999a>
>>> b.raw_to_bv()
<BV64 fpToIEEEBV(FPS('FP_b_0_64', DOUBLE))>

>>> state.solver.BVV(0, 64).raw_to_fp()
<FP64 FPV(0.0, DOUBLE)>
>>> state.solver.BVS('x', 64).raw_to_fp()
<FP64 fpToFP(x_1_64, DOUBLE)>

These conversions preserve the bit-pattern, as if you casted a float pointer to an int pointer or vice versa. However, if
you want to preserve the value as closely as possible, as if you casted a float to an int (or vice versa), you can use a
different set of methods, val_to_fp and val_to_bv. These methods must take the size or sort of the target value as
a parameter, due to the floating-point nature of floats.

>>> a
<FP64 FPV(3.2, DOUBLE)>
>>> a.val_to_bv(12)
<BV12 0x3>
>>> a.val_to_bv(12).val_to_fp(state.solver.fp.FSORT_FLOAT)
<FP32 FPV(3.0, FLOAT)>

These methods can also take a signed parameter, designating the signedness of the source or target bitvector.

3.3. Symbolic Expressions and Constraint Solving 31

angr

3.3.5 More Solving Methods

eval will give you one possible solution to an expression, but what if you want several? What if you want to ensure
that the solution is unique? The solver provides you with several methods for common solving patterns:

• solver.eval(expression) will give you one possible solution to the given expression.

• solver.eval_one(expression) will give you the solution to the given expression, or throw an error if more
than one solution is possible.

• solver.eval_upto(expression, n) will give you up to n solutions to the given expression, returning fewer
than n if fewer than n are possible.

• solver.eval_atleast(expression, n) will give you n solutions to the given expression, throwing an error
if fewer than n are possible.

• solver.eval_exact(expression, n) will give you n solutions to the given expression, throwing an error if
fewer or more than are possible.

• solver.min(expression) will give you the minimum possible solution to the given expression.

• solver.max(expression) will give you the maximum possible solution to the given expression.

Additionally, all of these methods can take the following keyword arguments:

• extra_constraints can be passed as a tuple of constraints. These constraints will be taken into account for
this evaluation, but will not be added to the state.

• cast_to can be passed a data type to cast the result to. Currently, this can only be int and bytes, which
will cause the method to return the corresponding representation of the underlying data. For example, state.
solver.eval(state.solver.BVV(0x41424344, 32), cast_to=bytes) will return b'ABCD'.

3.3.6 Summary

That was a lot!! After reading this, you should be able to create and manipulate bitvectors, booleans, and floating point
values to form trees of operations, and then query the constraint solver attached to a state for possible solutions under a
set of constraints. Hopefully by this point you understand the power of using ASTs to represent computations, and the
power of a constraint solver.

In the appendix, you can find a reference for all the additional operations you can apply to ASTs, in case you ever need
a quick table to look at.

3.4 Machine State - memory, registers, and so on

So far, we’ve only used angr’s simulated program states (SimState objects) in the barest possible way in order to
demonstrate basic concepts about angr’s operation. Here, you’ll learn about the structure of a state object and how to
interact with it in a variety of useful ways.

32 Chapter 3. Core Concepts

angr

3.4.1 Review: Reading and writing memory and registers

If you’ve been reading this book in order (and you should be, at least for this first section), you already saw the basics
of how to access memory and registers. state.regs provides read and write access to the registers through attributes
with the names of each register, and state.mem provides typed read and write access to memory with index-access
notation to specify the address followed by an attribute access to specify the type you would like to interpret the memory
as.

Additionally, you should now know how to work with ASTs, so you can now understand that any bitvector-typed AST
can be stored in registers or memory.

Here are some quick examples for copying and performing operations on data from the state:

>>> import angr, claripy
>>> proj = angr.Project('/bin/true')
>>> state = proj.factory.entry_state()

copy rsp to rbp
>>> state.regs.rbp = state.regs.rsp

store rdx to memory at 0x1000
>>> state.mem[0x1000].uint64_t = state.regs.rdx

dereference rbp
>>> state.regs.rbp = state.mem[state.regs.rbp].uint64_t.resolved

add rax, qword ptr [rsp + 8]
>>> state.regs.rax += state.mem[state.regs.rsp + 8].uint64_t.resolved

3.4.2 Basic Execution

Earlier, we showed how to use a Simulation Manager to do some basic execution. We’ll show off the full capabilities
of the simulation manager in the next chapter, but for now we can use a much simpler interface to demonstrate how
symbolic execution works: state.step(). This method will perform one step of symbolic execution and return
an object called angr.engines.successors.SimSuccessors. Unlike normal emulation, symbolic execution can
produce several successor states that can be classified in a number of ways. For now, what we care about is the .
successors property of this object, which is a list containing all the “normal” successors of a given step.

Why a list, instead of just a single successor state? Well, angr’s process of symbolic execution is just the taking the
operations of the individual instructions compiled into the program and performing them to mutate a SimState. When
a line of code like if (x > 4) is reached, what happens if x is a symbolic bitvector? Somewhere in the depths of
angr, the comparison x > 4 is going to get performed, and the result is going to be <Bool x_32_1 > 4>.

That’s fine, but the next question is, do we take the “true” branch or the “false” one? The answer is, we take both! We
generate two entirely separate successor states - one simulating the case where the condition was true and simulating
the case where the condition was false. In the first state, we add x > 4 as a constraint, and in the second state, we add
!(x > 4) as a constraint. That way, whenever we perform a constraint solve using either of these successor states, the
conditions on the state ensure that any solutions we get are valid inputs that will cause execution to follow the same
path that the given state has followed.

To demonstrate this, let’s use a fake firmware image <../examples/fauxware/fauxware> as an example. If you look at
the source code <../examples/fauxware/fauxware.c> for this binary, you’ll see that the authentication mechanism for
the firmware is backdoored; any username can be authenticated as an administrator with the password “SOSNEAKY”.
Furthermore, the first comparison against user input that happens is the comparison against the backdoor, so if we step

3.4. Machine State - memory, registers, and so on 33

angr

until we get more than one successor state, one of those states will contain conditions constraining the user input to be
the backdoor password. The following snippet implements this:

>>> proj = angr.Project('examples/fauxware/fauxware')
>>> state = proj.factory.entry_state(stdin=angr.SimFile) # ignore that argument for now␣
→˓- we're disabling a more complicated default setup for the sake of education
>>> while True:
... succ = state.step()
... if len(succ.successors) == 2:
... break
... state = succ.successors[0]

>>> state1, state2 = succ.successors
>>> state1
<SimState @ 0x400629>
>>> state2
<SimState @ 0x400699

Don’t look at the constraints on these states directly - the branch we just went through involves the result of strcmp,
which is a tricky function to emulate symbolically, and the resulting constraints are very complicated.

The program we emulated took data from standard input, which angr treats as an infinite stream of symbolic data
by default. To perform a constraint solve and get a possible value that input could have taken in order to satisfy the
constraints, we’ll need to get a reference to the actual contents of stdin. We’ll go over how our file and input subsystems
work later on this very page, but for now, just use state.posix.stdin.load(0, state.posix.stdin.size) to
retrieve a bitvector representing all the content read from stdin so far.

>>> input_data = state1.posix.stdin.load(0, state1.posix.stdin.size)

>>> state1.solver.eval(input_data, cast_to=bytes)
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00SOSNEAKY\x00\x00\x00'

>>> state2.solver.eval(input_data, cast_to=bytes)
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00S\x00\x80N\x00\x00 \x00\x00\x00\x00'

As you can see, in order to go down the state1 path, you must have given as a password the backdoor string “SOS-
NEAKY”. In order to go down the state2 path, you must have given something besides “SOSNEAKY”. z3 has
helpfully provided one of the billions of strings fitting this criteria.

Fauxware was the first program angr’s symbolic execution ever successfully worked on, back in 2013. By finding its
backdoor using angr you are participating in a grand tradition of having a bare-bones understanding of how to use
symbolic execution to extract meaning from binaries!

3.4.3 State Presets

So far, whenever we’ve been working with a state, we’ve created it with project.factory.entry_state(). This is
just one of several state constructors available on the project factory:

• .blank_state() constructs a “blank slate” blank state, with most of its data left uninitialized. When accessing
uninitialized data, an unconstrained symbolic value will be returned.

• .entry_state() constructs a state ready to execute at the main binary’s entry point.

• .full_init_state() constructs a state that is ready to execute through any initializers that need to be run
before the main binary’s entry point, for example, shared library constructors or preinitializers. When it is
finished with these it will jump to the entry point.

34 Chapter 3. Core Concepts

angr

• .call_state() constructs a state ready to execute a given function.

You can customize the state through several arguments to these constructors:

• All of these constructors can take an addr argument to specify the exact address to start.

• If you’re executing in an environment that can take command line arguments or an environment, you can pass a
list of arguments through args and a dictionary of environment variables through env into entry_state and
full_init_state. The values in these structures can be strings or bitvectors, and will be serialized into the
state as the arguments and environment to the simulated execution. The default args is an empty list, so if the
program you’re analyzing expects to find at least an argv[0], you should always provide that!

• If you’d like to have argc be symbolic, you can pass a symbolic bitvector as argc to the entry_state and
full_init_state constructors. Be careful, though: if you do this, you should also add a constraint to the
resulting state that your value for argc cannot be larger than the number of args you passed into args.

• To use the call state, you should call it with .call_state(addr, arg1, arg2, ...), where addr is the
address of the function you want to call and argN is the Nth argument to that function, either as a Python integer,
string, or array, or a bitvector. If you want to have memory allocated and actually pass in a pointer to an object,
you should wrap it in an PointerWrapper, i.e. angr.PointerWrapper("point to me!"). The results of this
API can be a little unpredictable, but we’re working on it.

• To specify the calling convention used for a function with call_state, you can pass a SimCC instance as the
cc argument.:raw-html-m2r:
 We try to pick a sane default, but for special cases you will need to help angr
out.

There are several more options that can be used in any of these constructors! See the docs on the project.factory
object (an angr.factory.AngrObjectFactory) for more details.

3.4.4 Low level interface for memory

The state.mem interface is convenient for loading typed data from memory, but when you want to do raw loads and
stores to and from ranges of memory, it’s very cumbersome. It turns out that state.mem is actually just a bunch of logic
to correctly access the underlying memory storage, which is just a flat address space filled with bitvector data: state.
memory. You can use state.memory directly with the .load(addr, size) and .store(addr, val) methods:

>>> s = proj.factory.blank_state()
>>> s.memory.store(0x4000, s.solver.BVV(0x0123456789abcdef0123456789abcdef, 128))
>>> s.memory.load(0x4004, 6) # load-size is in bytes
<BV48 0x89abcdef0123>

As you can see, the data is loaded and stored in a “big-endian” fashion, since the primary purpose of state.memory is
to load an store swaths of data with no attached semantics. However, if you want to perform a byteswap on the loaded
or stored data, you can pass a keyword argument endness - if you specify little-endian, byteswap will happen. The
endness should be one of the members of the Endness enum in the archinfo package used to hold declarative data
about CPU architectures for angr. Additionally, the endness of the program being analyzed can be found as arch.
memory_endness - for instance state.arch.memory_endness.

>>> import archinfo
>>> s.memory.load(0x4000, 4, endness=archinfo.Endness.LE)
<BV32 0x67452301>

There is also a low-level interface for register access, state.registers, that uses the exact same API as state.
memory, but explaining its behavior involves a dive into the abstractions that angr uses to seamlessly work with multiple
architectures. The short version is that it is simply a register file, with the mapping between registers and offsets defined
in archinfo.

3.4. Machine State - memory, registers, and so on 35

https://github.com/angr/archinfo

angr

3.4.5 State Options

There are a lot of little tweaks that can be made to the internals of angr that will optimize behavior in some situations
and be a detriment in others. These tweaks are controlled through state options.

On each SimState object, there is a set (state.options) of all its enabled options. Each option (really just a string)
controls the behavior of angr’s execution engine in some minute way. A listing of the full domain of options, along
with the defaults for different state types, can be found in the appendix. You can access an individual option for adding
to a state through angr.options. The individual options are named with CAPITAL_LETTERS, but there are also
common groupings of objects that you might want to use bundled together, named with lowercase_letters.

When creating a SimState through any constructor, you may pass the keyword arguments add_options and
remove_options, which should be sets of options that modify the initial options set from the default.

Example: enable lazy solves, an option that causes state satisfiability to be checked␣
→˓as infrequently as possible.
This change to the settings will be propagated to all successor states created from␣
→˓this state after this line.
>>> s.options.add(angr.options.LAZY_SOLVES)

Create a new state with lazy solves enabled
>>> s = proj.factory.entry_state(add_options={angr.options.LAZY_SOLVES})

Create a new state without simplification options enabled
>>> s = proj.factory.entry_state(remove_options=angr.options.simplification)

3.4.6 State Plugins

With the exception of the set of options just discussed, everything stored in a SimState is actually stored in a plugin
attached to the state. Almost every property on the state we’ve discussed so far is a plugin - memory, registers, mem,
regs, solver, etc. This design allows for code modularity as well as the ability to easily implement new kinds of data
storage for other aspects of an emulated state, or the ability to provide alternate implementations of plugins.

For example, the normal memory plugin simulates a flat memory space, but analyses can choose to enable the “abstract
memory” plugin, which uses alternate data types for addresses to simulate free-floating memory mappings independent
of address, to provide state.memory. Conversely, plugins can reduce code complexity: state.memory and state.
registers are actually two different instances of the same plugin, since the registers are emulated with an address
space as well.

36 Chapter 3. Core Concepts

angr

The globals plugin

state.globals is an extremely simple plugin: it implements the interface of a standard Python dict, allowing you to
store arbitrary data on a state.

The history plugin

state.history is a very important plugin storing historical data about the path a state has taken during execution. It
is actually a linked list of several history nodes, each one representing a single round of execution—you can traverse
this list with state.history.parent.parent etc.

To make it more convenient to work with this structure, the history also provides several efficient iterators over the
history of certain values. In general, these values are stored as history.recent_NAME and the iterator over them
is just history.NAME. For example, for addr in state.history.bbl_addrs: print hex(addr) will print
out a basic block address trace for the binary, while state.history.recent_bbl_addrs is the list of basic blocks
executed in the most recent step, state.history.parent.recent_bbl_addrs is the list of basic blocks executed
in the previous step, etc. If you ever need to quickly obtain a flat list of these values, you can access .hardcopy,
e.g. state.history.bbl_addrs.hardcopy. Keep in mind though, index-based accessing is implemented on the
iterators.

Here is a brief listing of some of the values stored in the history:

• history.descriptions is a listing of string descriptions of each of the rounds of execution performed on the
state.

• history.bbl_addrs is a listing of the basic block addresses executed by the state. There may be more than one
per round of execution, and not all addresses may correspond to binary code - some may be addresses at which
SimProcedures are hooked.

• history.jumpkinds is a listing of the disposition of each of the control flow transitions in the state’s history,
as VEX enum strings.

• history.jump_guards is a listing of the conditions guarding each of the branches that the state has encountered.

• history.events is a semantic listing of “interesting events” which happened during execution, such as the
presence of a symbolic jump condition, the program popping up a message box, or execution terminating with
an exit code.

• history.actions is usually empty, but if you add the angr.options.refs options to the state, it will be
populated with a log of all the memory, register, and temporary value accesses performed by the program.

The callstack plugin

angr will track the call stack for the emulated program. On every call instruction, a frame will be added to the top of the
tracked callstack, and whenever the stack pointer drops below the point where the topmost frame was called, a frame
is popped. This allows angr to robustly store data local to the current emulated function.

Similar to the history, the callstack is also a linked list of nodes, but there are no provided iterators over the contents
of the nodes - instead you can directly iterate over state.callstack to get the callstack frames for each of the active
frames, in order from most recent to oldest. If you just want the topmost frame, this is state.callstack.

• callstack.func_addr is the address of the function currently being executed

• callstack.call_site_addr is the address of the basic block which called the current function

• callstack.stack_ptr is the value of the stack pointer from the beginning of the current function

• callstack.ret_addr is the location that the current function will return to if it returns

3.4. Machine State - memory, registers, and so on 37

angr

3.4.7 More about I/O: Files, file systems, and network sockets

Please refer to Working with File System, Sockets, and Pipes for a more complete and detailed documentation of how
I/O is modeled in angr.

3.4.8 Copying and Merging

A state supports very fast copies, so that you can explore different possibilities:

>>> proj = angr.Project('/bin/true')
>>> s = proj.factory.blank_state()
>>> s1 = s.copy()
>>> s2 = s.copy()

>>> s1.mem[0x1000].uint32_t = 0x41414141
>>> s2.mem[0x1000].uint32_t = 0x42424242

States can also be merged together.

merge will return a tuple. the first element is the merged state
the second element is a symbolic variable describing a state flag
the third element is a boolean describing whether any merging was done
>>> (s_merged, m, anything_merged) = s1.merge(s2)

this is now an expression that can resolve to "AAAA" *or* "BBBB"
>>> aaaa_or_bbbb = s_merged.mem[0x1000].uint32_t

Todo: describe limitations of merging

3.5 Simulation Managers

The most important control interface in angr is the SimulationManager, which allows you to control symbolic execution
over groups of states simultaneously, applying search strategies to explore a program’s state space. Here, you’ll learn
how to use it.

Simulation managers let you wrangle multiple states in a slick way. States are organized into “stashes”, which you can
step forward, filter, merge, and move around as you wish. This allows you to, for example, step two different stashes of
states at different rates, then merge them together. The default stash for most operations is the active stash, which is
where your states get put when you initialize a new simulation manager.

38 Chapter 3. Core Concepts

angr

3.5.1 Stepping

The most basic capability of a simulation manager is to step forward all states in a given stash by one basic block. You
do this with .step().

>>> import angr
>>> proj = angr.Project('examples/fauxware/fauxware', auto_load_libs=False)
>>> state = proj.factory.entry_state()
>>> simgr = proj.factory.simgr(state)
>>> simgr.active
[<SimState @ 0x400580>]

>>> simgr.step()
>>> simgr.active
[<SimState @ 0x400540>]

Of course, the real power of the stash model is that when a state encounters a symbolic branch condition, both of the
successor states appear in the stash, and you can step both of them in sync. When you don’t really care about controlling
analysis very carefully and you just want to step until there’s nothing left to step, you can just use the .run() method.

Step until the first symbolic branch
>>> while len(simgr.active) == 1:
... simgr.step()

>>> simgr
<SimulationManager with 2 active>
>>> simgr.active
[<SimState @ 0x400692>, <SimState @ 0x400699>]

Step until everything terminates
>>> simgr.run()
>>> simgr
<SimulationManager with 3 deadended>

We now have 3 deadended states! When a state fails to produce any successors during execution, for example, because
it reached an exit syscall, it is removed from the active stash and placed in the deadended stash.

3.5.2 Stash Management

Let’s see how to work with other stashes.

To move states between stashes, use .move(), which takes from_stash, to_stash, and filter_func (optional,
default is to move everything). For example, let’s move everything that has a certain string in its output:

>>> simgr.move(from_stash='deadended', to_stash='authenticated', filter_func=lambda s: b
→˓'Welcome' in s.posix.dumps(1))
>>> simgr
<SimulationManager with 2 authenticated, 1 deadended>

We were able to just create a new stash named “authenticated” just by asking for states to be moved to it. All the states
in this stash have “Welcome” in their stdout, which is a fine metric for now.

Each stash is just a list, and you can index into or iterate over the list to access each of the individual states, but there
are some alternate methods to access the states too. If you prepend the name of a stash with one_, you will be given

3.5. Simulation Managers 39

angr

the first state in the stash. If you prepend the name of a stash with mp_, you will be given a mulpyplexed version of the
stash.

>>> for s in simgr.deadended + simgr.authenticated:
... print(hex(s.addr))
0x1000030
0x1000078
0x1000078

>>> simgr.one_deadended
<SimState @ 0x1000030>
>>> simgr.mp_authenticated
MP([<SimState @ 0x1000078>, <SimState @ 0x1000078>])
>>> simgr.mp_authenticated.posix.dumps(0)
MP(['\x00\x00\x00\x00\x00\x00\x00\x00\x00SOSNEAKY\x00',

'\x00\x00\x00\x00\x00\x00\x00\x00\x00S\x80\x80\x80\x80@\x80@\x00'])

Of course, step, run, and any other method that operates on a single stash of paths can take a stash argument,
specifying which stash to operate on.

There are lots of fun tools that the simulation manager provides you for managing your stashes. We won’t go into the
rest of them for now, but you should check out the API documentation. TODO: link

Stash types

You can use stashes for whatever you like, but there are a few stashes that will be used to categorize some special kinds
of states. These are:

Stash Description
ac-
tive

This stash contains the states that will be stepped by default, unless an alternate stash is specified.

dead-
ended

A state goes to the deadended stash when it cannot continue the execution for some reason, including no more
valid instructions, unsat state of all of its successors, or an invalid instruction pointer.

prunedWhen using LAZY_SOLVES, states are not checked for satisfiability unless absolutely necessary. When a state
is found to be unsat in the presence of LAZY_SOLVES, the state hierarchy is traversed to identify when, in its
history, it initially became unsat. All states that are descendants of that point (which will also be unsat, since
a state cannot become un-unsat) are pruned and put in this stash.

un-
con-
strained

If the save_unconstrained option is provided to the SimulationManager constructor, states that are deter-
mined to be unconstrained (i.e., with the instruction pointer controlled by user data or some other source of
symbolic data) are placed here.

un-
sat

If the save_unsat option is provided to the SimulationManager constructor, states that are determined to be
unsatisfiable (i.e., they have constraints that are contradictory, like the input having to be both “AAAA” and
“BBBB” at the same time) are placed here.

There is another list of states that is not a stash: errored. If, during execution, an error is raised, then the state will
be wrapped in an ErrorRecord object, which contains the state and the error it raised, and then the record will be
inserted into errored. You can get at the state as it was at the beginning of the execution tick that caused the error
with record.state, you can see the error that was raised with record.error, and you can launch a debug shell at
the site of the error with record.debug(). This is an invaluable debugging tool!

40 Chapter 3. Core Concepts

https://github.com/zardus/mulpyplexer

angr

3.5.3 Simple Exploration

An extremely common operation in symbolic execution is to find a state that reaches a certain address, while discarding
all states that go through another address. Simulation manager has a shortcut for this pattern, the .explore() method.

When launching .explore() with a find argument, execution will run until a state is found that matches the find
condition, which can be the address of an instruction to stop at, a list of addresses to stop at, or a function which takes
a state and returns whether it meets some criteria. When any of the states in the active stash match the find condition,
they are placed in the found stash, and execution terminates. You can then explore the found state, or decide to discard
it and continue with the other ones. You can also specify an avoid condition in the same format as find. When a state
matches the avoid condition, it is put in the avoided stash, and execution continues. Finally, the num_find argument
controls the number of states that should be found before returning, with a default of 1. Of course, if you run out of
states in the active stash before finding this many solutions, execution will stop anyway.

Let’s look at a simple crackme example <./examples.md#reverseme-modern-binary-exploitation—csci-4968>:

First, we load the binary.

>>> proj = angr.Project('examples/CSCI-4968-MBE/challenges/crackme0x00a/crackme0x00a')

Next, we create a SimulationManager.

>>> simgr = proj.factory.simgr()

Now, we symbolically execute until we find a state that matches our condition (i.e., the “win” condition).

>>> simgr.explore(find=lambda s: b"Congrats" in s.posix.dumps(1))
<SimulationManager with 1 active, 1 found>

Now, we can get the flag out of that state!

>>> s = simgr.found[0]
>>> print(s.posix.dumps(1))
Enter password: Congrats!

>>> flag = s.posix.dumps(0)
>>> print(flag)
g00dJ0B!

Pretty simple, isn’t it?

Other examples can be found by browsing the examples.

Exploration Techniques

angr ships with several pieces of canned functionality that let you customize the behavior of a simulation manager, called
exploration techniques. The archetypical example of why you would want an exploration technique is to modify the
pattern in which the state space of the program is explored - the default “step everything at once” strategy is effectively
breadth-first search, but with an exploration technique you could implement, for example, depth-first search. However,
the instrumentation power of these techniques is much more flexible than that - you can totally alter the behavior of
angr’s stepping process. Writing your own exploration techniques will be covered in a later chapter.

To use an exploration technique, call simgr.use_technique(tech), where tech is an instance of an ExplorationTech-
nique subclass. angr’s built-in exploration techniques can be found under angr.exploration_techniques.

Here’s a quick overview of some of the built-in ones:

3.5. Simulation Managers 41

angr

• DFS: Depth first search, as mentioned earlier. Keeps only one state active at once, putting the rest in the deferred
stash until it deadends or errors.

• Explorer: This technique implements the .explore() functionality, allowing you to search for and avoid ad-
dresses.

• LengthLimiter: Puts a cap on the maximum length of the path a state goes through.

• LoopSeer: Uses a reasonable approximation of loop counting to discard states that appear to be going through
a loop too many times, putting them in a spinning stash and pulling them out again if we run out of otherwise
viable states.

• ManualMergepoint: Marks an address in the program as a merge point, so states that reach that address will be
briefly held, and any other states that reach that same point within a timeout will be merged together.

• MemoryWatcher: Monitors how much memory is free/available on the system between simgr steps and stops
exploration if it gets too low.

• Oppologist: The “operation apologist” is an especially fun gadget - if this technique is enabled and angr encoun-
ters an unsupported instruction, for example a bizzare and foreign floating point SIMD op, it will concretize all
the inputs to that instruction and emulate the single instruction using the unicorn engine, allowing execution to
continue.

• Spiller: When there are too many states active, this technique can dump some of them to disk in order to keep
memory consumption low.

• Threading: Adds thread-level parallelism to the stepping process. This doesn’t help much because of Python’s
global interpreter locks, but if you have a program whose analysis spends a lot of time in angr’s native-code
dependencies (unicorn, z3, libvex) you can seem some gains.

• Tracer: An exploration technique that causes execution to follow a dynamic trace recorded from some other
source. The dynamic tracer repository has some tools to generate those traces.

• Veritesting: An implementation of a CMU paper on automatically identifying useful merge points. This is so
useful, you can enable it automatically with veritesting=True in the SimulationManager constructor! Note
that it frequenly doesn’t play nice with other techniques due to the invasive way it implements static symbolic
execution.

Look at the API documentation for the SimulationManager and ExplorationTechnique classes for more infor-
mation.

3.6 Simulation and Instrumentation

When you ask for a step of execution to happen in angr, something has to actually perform the step. angr uses a series
of engines (subclasses of the SimEngine class) to emulate the effects that of a given section of code has on an input
state. The execution core of angr simply tries all the available engines in sequence, taking the first one that is able to
handle the step. The following is the default list of engines, in order:

• The failure engine kicks in when the previous step took us to some uncontinuable state

• The syscall engine kicks in when the previous step ended in a syscall

• The hook engine kicks in when the current address is hooked

• The unicorn engine kicks in when the UNICORN state option is enabled and there is no symbolic data in the state

• The VEX engine kicks in as the final fallback.

42 Chapter 3. Core Concepts

https://github.com/angr/tracer
https://users.ece.cmu.edu/~dbrumley/pdf/Avgerinos%20et%20al._2014_Enhancing%20Symbolic%20Execution%20with%20Veritesting.pdf

angr

3.6.1 SimSuccessors

The code that actually tries all the engines in turn is project.factory.successors(state, **kwargs),
which passes its arguments onto each of the engines. This function is at the heart of state.step() and
simulation_manager.step(). It returns a SimSuccessors object, which we discussed briefly before. The purpose
of SimSuccessors is to perform a simple categorization of the successor states, stored in various list attributes. They
are:

3.6. Simulation and Instrumentation 43

angr

At-
tribute

Guard
Con-
di-
tion

In-
struc-
tion
Pointer

Description

successorsTrue
(can
be
sym-
bolic,
but
con-
strained
to
True)

Can be
sym-
bolic
(but
256 so-
lutions
or less;
see
unconstrained_successors).

A normal, satisfiable successor state to the state processed by the engine. The instruction
pointer of this state may be symbolic (i.e., a computed jump based on user input), so the
state might actually represent several potential continuations of execution going forward.

unsat_successorsFalse
(can
be
sym-
bolic,
but
con-
strained
to
False).

Can be
sym-
bolic.

Unsatisfiable successors. These are successors whose guard conditions can only be false
(i.e., jumps that cannot be taken, or the default branch of jumps that must be taken).

flat_successorsTrue
(can
be
sym-
bolic,
but
con-
strained
to
True).

Con-
crete
value.

As noted above, states in the successors list can have symbolic instruction pointers. This
is rather confusing, as elsewhere in the code (i.e., in SimEngineVEX.process, when it’s
time to step that state forward), we make assumptions that a single program state only
represents the execution of a single spot in the code. To alleviate this, when we encounter
states in successors with symbolic instruction pointers, we compute all possible concrete
solutions (up to an arbitrary threshold of 256) for them, and make a copy of the state for
each such solution. We call this process “flattening”. These flat_successors are states,
each of which has a different, concrete instruction pointer. For example, if the instruction
pointer of a state in successors was X+5, where X had constraints of X > 0x800000 and
X <= 0x800010, we would flatten it into 16 different flat_successors states, one with
an instruction pointer of 0x800006, one with 0x800007, and so on until 0x800015.

unconstrained_successorsTrue
(can
be
sym-
bolic,
but
con-
strained
to
True).

Sym-
bolic
(with
more
than
256
solu-
tions).

During the flattening procedure described above, if it turns out that there are more than 256
possible solutions for the instruction pointer, we assume that the instruction pointer has been
overwritten with unconstrained data (i.e., a stack overflow with user data). This assumption
is not sound in general. Such states are placed in unconstrained_successors and not
in successors.

all_successorsAny-
thing

Can be
sym-
bolic.

This is successors + unsat_successors + unconstrained_successors.

44 Chapter 3. Core Concepts

angr

3.6.2 Breakpoints

Todo: rewrite this to fix the narrative

Like any decent execution engine, angr supports breakpoints. This is pretty cool! A point is set as follows:

>>> import angr
>>> b = angr.Project('examples/fauxware/fauxware')

get our state
>>> s = b.factory.entry_state()

add a breakpoint. This breakpoint will drop into ipdb right before a memory write␣
→˓happens.
>>> s.inspect.b('mem_write')

on the other hand, we can have a breakpoint trigger right *after* a memory write␣
→˓happens.
we can also have a callback function run instead of opening ipdb.
>>> def debug_func(state):
... print("State %s is about to do a memory write!")

>>> s.inspect.b('mem_write', when=angr.BP_AFTER, action=debug_func)

or, you can have it drop you in an embedded IPython!
>>> s.inspect.b('mem_write', when=angr.BP_AFTER, action=angr.BP_IPYTHON)

There are many other places to break than a memory write. Here is the list. You can break at BP_BEFORE or
BP_AFTER for each of these events.

3.6. Simulation and Instrumentation 45

angr

Event type Event meaning
mem_read Memory is being read.
mem_write Memory is being written.
ad-
dress_concretization

A symbolic memory access is being resolved.

reg_read A register is being read.
reg_write A register is being written.
tmp_read A temp is being read.
tmp_write A temp is being written.
expr An expression is being created (i.e., a result of an arithmetic operation or a constant in the

IR).
statement An IR statement is being translated.
instruction A new (native) instruction is being translated.
irsb A new basic block is being translated.
constraints New constraints are being added to the state.
exit A successor is being generated from execution.
fork A symbolic execution state has forked into multiple states.
symbolic_variable A new symbolic variable is being created.
call A call instruction is hit.
return A ret instruction is hit.
simprocedure A simprocedure (or syscall) is executed.
dirty A dirty IR callback is executed.
syscall A syscall is executed (called in addition to the simprocedure event).
engine_process A SimEngine is about to process some code.

These events expose different attributes:

Event type Attribute name Attribute availability Attribute meaning
mem_read mem_read_address BP_BEFORE or BP_AFTER The address at which memory is being read.
mem_read mem_read_expr BP_AFTER The expression at that address.
mem_read mem_read_length BP_BEFORE or BP_AFTER The length of the memory read.
mem_read mem_read_condition BP_BEFORE or BP_AFTER The condition of the memory read.
mem_write mem_write_address BP_BEFORE or BP_AFTER The address at which memory is being written.
mem_write mem_write_length BP_BEFORE or BP_AFTER The length of the memory write.
mem_write mem_write_expr BP_BEFORE or BP_AFTER The expression that is being written.
mem_write mem_write_condition BP_BEFORE or BP_AFTER The condition of the memory write.
reg_read reg_read_offset BP_BEFORE or BP_AFTER The offset of the register being read.
reg_read reg_read_length BP_BEFORE or BP_AFTER The length of the register read.
reg_read reg_read_expr BP_AFTER The expression in the register.
reg_read reg_read_condition BP_BEFORE or BP_AFTER The condition of the register read.
reg_write reg_write_offset BP_BEFORE or BP_AFTER The offset of the register being written.
reg_write reg_write_length BP_BEFORE or BP_AFTER The length of the register write.
reg_write reg_write_expr BP_BEFORE or BP_AFTER The expression that is being written.
reg_write reg_write_condition BP_BEFORE or BP_AFTER The condition of the register write.
tmp_read tmp_read_num BP_BEFORE or BP_AFTER The number of the temp being read.
tmp_read tmp_read_expr BP_AFTER The expression of the temp.
tmp_write tmp_write_num BP_BEFORE or BP_AFTER The number of the temp written.
tmp_write tmp_write_expr BP_AFTER The expression written to the temp.
expr expr BP_BEFORE or BP_AFTER The IR expression.
expr expr_result BP_AFTER The value (e.g. AST) which the expression was evaluated to.

continues on next page

46 Chapter 3. Core Concepts

angr

Table 1 – continued from previous page
Event type Attribute name Attribute availability Attribute meaning
statement statement BP_BEFORE or BP_AFTER The index of the IR statement (in the IR basic block).
instruction instruction BP_BEFORE or BP_AFTER The address of the native instruction.
irsb address BP_BEFORE or BP_AFTER The address of the basic block.
constraints added_constraints BP_BEFORE or BP_AFTER The list of constraint expressions being added.
call function_address BP_BEFORE or BP_AFTER The name of the function being called.
exit exit_target BP_BEFORE or BP_AFTER The expression representing the target of a SimExit.
exit exit_guard BP_BEFORE or BP_AFTER The expression representing the guard of a SimExit.
exit exit_jumpkind BP_BEFORE or BP_AFTER The expression representing the kind of SimExit.
symbolic_variable symbolic_name BP_AFTER The name of the symbolic variable being created. The solver engine might modify this name (by appending a unique ID and length). Check the symbolic_expr for the final symbolic expression.
symbolic_variable symbolic_size BP_AFTER The size of the symbolic variable being created.
symbolic_variable symbolic_expr BP_AFTER The expression representing the new symbolic variable.
address_concretization address_concretization_strategy BP_BEFORE or BP_AFTER The SimConcretizationStrategy being used to resolve the address. This can be modified by the breakpoint handler to change the strategy that will be applied. If your breakpoint handler sets this to None, this strategy will be skipped.
address_concretization address_concretization_action BP_BEFORE or BP_AFTER The SimAction object being used to record the memory action.
address_concretization address_concretization_memory BP_BEFORE or BP_AFTER The SimMemory object on which the action was taken.
address_concretization address_concretization_expr BP_BEFORE or BP_AFTER The AST representing the memory index being resolved. The breakpoint handler can modify this to affect the address being resolved.
address_concretization address_concretization_add_constraints BP_BEFORE or BP_AFTER Whether or not constraints should/will be added for this read.
address_concretization address_concretization_result BP_AFTER The list of resolved memory addresses (integers). The breakpoint handler can overwrite these to effect a different resolution result.
syscall syscall_name BP_BEFORE or BP_AFTER The name of the system call.
simprocedure simprocedure_name BP_BEFORE or BP_AFTER The name of the simprocedure.
simprocedure simprocedure_addr BP_BEFORE or BP_AFTER The address of the simprocedure.
simprocedure simprocedure_result BP_AFTER The return value of the simprocedure. You can also override it in BP_BEFORE, which will cause the actual simprocedure to be skipped and for your return value to be used instead.
simprocedure simprocedure BP_BEFORE or BP_AFTER The actual SimProcedure object.
dirty dirty_name BP_BEFORE or BP_AFTER The name of the dirty call.
dirty dirty_handler BP_BEFORE The function that will be run to handle the dirty call. You can override this.
dirty dirty_args BP_BEFORE or BP_AFTER The address of the dirty.
dirty dirty_result BP_AFTER The return value of the dirty call. You can also override it in BP_BEFORE, which will cause the actual dirty call to be skipped and for your return value to be used instead.
engine_process sim_engine BP_BEFORE or BP_AFTER The SimEngine that is processing.
engine_process successors BP_BEFORE or BP_AFTER The SimSuccessors object defining the result of the engine.

These attributes can be accessed as members of state.inspect during the appropriate breakpoint callback to access
the appropriate values. You can even modify these value to modify further uses of the values!

>>> def track_reads(state):
... print('Read', state.inspect.mem_read_expr, 'from', state.inspect.mem_read_
→˓address)
...
>>> s.inspect.b('mem_read', when=angr.BP_AFTER, action=track_reads)

Additionally, each of these properties can be used as a keyword argument to inspect.b to make the breakpoint con-
ditional:

This will break before a memory write if 0x1000 is a possible value of its target␣
→˓expression
>>> s.inspect.b('mem_write', mem_write_address=0x1000)

This will break before a memory write if 0x1000 is the *only* value of its target␣
→˓expression
>>> s.inspect.b('mem_write', mem_write_address=0x1000, mem_write_address_unique=True)

This will break after instruction 0x8000, but only 0x1000 is a possible value of the␣
→˓last expression that was read from memory

(continues on next page)

3.6. Simulation and Instrumentation 47

angr

(continued from previous page)

>>> s.inspect.b('instruction', when=angr.BP_AFTER, instruction=0x8000, mem_read_
→˓expr=0x1000)

Cool stuff! In fact, we can even specify a function as a condition:

this is a complex condition that could do anything! In this case, it makes sure that␣
→˓RAX is 0x41414141 and
that the basic block starting at 0x8004 was executed sometime in this path's history
>>> def cond(state):
... return state.eval(state.regs.rax, cast_to=str) == 'AAAA' and 0x8004 in state.
→˓inspect.backtrace

>>> s.inspect.b('mem_write', condition=cond)

That is some cool stuff!

Caution about mem_read breakpoint

The mem_read breakpoint gets triggered anytime there are memory reads by either the executing program or the binary
analysis. If you are using breakpoint on mem_read and also using state.mem to load data from memory addresses,
then know that the breakpoint will be fired as you are technically reading memory.

So if you want to load data from memory and not trigger any mem_read breakpoint you have had set up, then use
state.memory.load with the keyword arguments disable_actions=True and inspect=False.

This is also true for state.find and you can use the same keyword arguments to prevent mem_read breakpoints from
firing.

3.7 Analyses

angr’s goal is to make it easy to carry out useful analyses on binary programs. To this end, angr allows you to package
analysis code in a common format that can be easily applied to any project. We will cover writing your own analyses
Writing Analyses, but the idea is that all the analyses appear under project.analyses (for example, project.
analyses.CFGFast()) and can be called as functions, returning analysis result instances.

48 Chapter 3. Core Concepts

angr

3.7.1 Built-in Analyses

Name Description
CFGFast Constructs a fast Control Flow Graph of the program
CFGEmu-
lated

Constructs an accurate Control Flow Graph of the program

VFG Performs VSA on every function of the program, creating a Value Flow Graph and detecting stack
variables

DDG Calculates a Data Dependency Graph, allowing one to determine what statements a given value de-
pends on

Backward-
Slice

Computes a Backward Slice of a program with respect to a certain target

Identifier Identifies common library functions in CGC binaries
More! angr has quite a few analyses, most of which work! If you’d like to know how to use one, please submit

an issue requesting documentation.

3.7.2 Resilience

Analyses can be written to be resilient, and catch and log basically any error. These errors, depending on how they’re
caught, are logged to the errors or named_errors attribute of the analysis. However, you might want to run an
analysis in “fail fast” mode, so that errors are not handled. To do this, the argument fail_fast=True can be passed
into the analysis constructor.

3.8 Symbolic Execution

Symbolic execution allows at a time in emulation to determine for a branch all conditions necessary to take a branch
or not. Every variable is represented as a symbolic value, and each branch as a constraint. Thus, symbolic execution
allows us to see which conditions allows the program to go from a point A to a point B, by resolving the constraints.

If you’ve read this far, you can see how the components of angr work together to make this possible. Read on to learn
about how to make the leap from tools to results.

Todo: A real introduction to the concept of symbolic execution.

3.9 A final word of advice

Congratulations! If you’ve read this far through the book (editor’s note: this comment only really applies when we’ve
actually finished writing all the TODOs so far) then you’ve been introduced to all the fundamental components of angr
necessary to get started with binary analysis.

Ultimately, angr is just an emulator. It is a highly instrumentable and very unique emulator with lots of considerations
for environment, true, but at its core, the work you do with angr is about extracting knowledge about how a bunch of
bytecode behaves on a CPU. In designing angr, we’ve tried to provide you with the tools and abstractions on top of
this emulator to make certain common tasks more useful, but there’s no problem you can’t solve just by working with
a SimState and observing the affects of .step().

As you read further into this book, we’ll describe more technical subjects and how to tune angr’s behavior for compli-
cated scenarios. This knowledge should inform your use of angr so you can take the quickest path to a solution to any

3.8. Symbolic Execution 49

angr

given problem, but ultimately, you will want to solve problems by exercising creativity with the tools at your disposal.
If you can take a problem and wrangle it into a form where it has defined and tractable inputs and outputs, you can
absolutely use angr to achieve your goals, given that these goals involve analyzing binaries. None of the abstractions
or instrumentations we provide are the end-all of how to use angr for a given task - angr is designed so it can be used
in as integrated or as ad-hoc of a manner as you desire. If you see a path from problem to solution, take it.

Of course, it’s very difficult to become well-acquainted with such a huge piece of technology as angr. To this end you
can absolutely lean on the community (through the angr slack is the best option) to discuss angr and solving problems
with it.

Good luck!

50 Chapter 3. Core Concepts

https://angr.io/invite

CHAPTER

FOUR

BUILD-IN ANALYSES

4.1 Control-flow Graph Recovery (CFG)

angr includes analyses to recover the control-flow graph of a binary program. This also includes recovery of function
boundaries, as well as reasoning about indirect jumps and other useful metadata.

4.1.1 General ideas

A basic analysis that one might carry out on a binary is a Control Flow Graph. A CFG is a graph with (conceptually)
basic blocks as nodes and jumps/calls/rets/etc as edges.

In angr, there are two types of CFG that can be generated: a static CFG (CFGFast) and a dynamic CFG (CFGEmulated).

CFGFast uses static analysis to generate a CFG. It is significantly faster, but is theoretically bounded by the fact that
some control-flow transitions can only be resolved at execution-time. This is the same sort of CFG analysis performed
by other popular reverse-engineering tools, and its results are comparable with their output.

CFGEmulated uses symbolic execution to capture the CFG. While it is theoretically more accurate, it is dramatically
slower. It is also typically less complete, due to issues with the accuracy of emulation (system calls, missing hardware
features, and so on)

If you are unsure which CFG to use, or are having problems with CFGEmulated, try CFGFast first.

A CFG can be constructed by doing:

>>> import angr
load your project
>>> p = angr.Project('/bin/true', load_options={'auto_load_libs': False})

Generate a static CFG
>>> cfg = p.analyses.CFGFast()

generate a dynamic CFG
>>> cfg = p.analyses.CFGEmulated(keep_state=True)

51

angr

4.1.2 Using the CFG

The CFG, at its core, is a NetworkX di-graph. This means that all of the normal NetworkX APIs are available:

>>> print("This is the graph:", cfg.graph)
>>> print("It has %d nodes and %d edges" % (len(cfg.graph.nodes()), len(cfg.graph.
→˓edges())))

The nodes of the CFG graph are instances of class CFGNode. Due to context sensitivity, a given basic block can have
multiple nodes in the graph (for multiple contexts).

this grabs *any* node at a given location:
>>> entry_node = cfg.get_any_node(p.entry)

on the other hand, this grabs all of the nodes
>>> print("There were %d contexts for the entry block" % len(cfg.get_all_nodes(p.entry)))

we can also look up predecessors and successors
>>> print("Predecessors of the entry point:", entry_node.predecessors)
>>> print("Successors of the entry point:", entry_node.successors)
>>> print("Successors (and type of jump) of the entry point:", [jumpkind + " to " +␣
→˓str(node.addr) for node,jumpkind in cfg.get_successors_and_jumpkind(entry_node)])

Viewing the CFG

Control-flow graph rendering is a hard problem. angr does not provide any built-in mechanism for rendering the output
of a CFG analysis, and attempting to use a traditional graph rendering library, like matplotlib, will result in an unusable
image.

One solution for viewing angr CFGs is found in axt’s angr-utils repository.

4.1.3 Shared Libraries

The CFG analysis does not distinguish between code from different binary objects. This means that by default, it will
try to analyze control flow through loaded shared libraries. This is almost never intended behavior, since this will
extend the analysis time to several days, probably. To load a binary without shared libraries, add the following keyword
argument to the Project constructor: load_options={'auto_load_libs': False}

4.1.4 Function Manager

The CFG result produces an object called the Function Manager, accessible through cfg.kb.functions. The most
common use case for this object is to access it like a dictionary. It maps addresses to Function objects, which can tell
you properties about a function.

>>> entry_func = cfg.kb.functions[p.entry]

Functions have several important properties!

• entry_func.block_addrs is a set of addresses at which basic blocks belonging to the function begin.

• entry_func.blocks is the set of basic blocks belonging to the function, that you can explore and disassemble
using capstone.

52 Chapter 4. Build-in Analyses

https://networkx.github.io/
https://github.com/axt/angr-utils

angr

• entry_func.string_references() returns a list of all the constant strings that were referred to at any point
in the function. They are formatted as (addr, string) tuples, where addr is the address in the binary’s data
section the string lives, and string is a Python string that contains the value of the string.

• entry_func.returning is a boolean value signifying whether or not the function can return. False indicates
that all paths do not return.

• entry_func.callable is an angr Callable object referring to this function. You can call it like a Python
function with Python arguments and get back an actual result (may be symbolic) as if you ran the function with
those arguments!

• entry_func.transition_graph is a NetworkX DiGraph describing control flow within the function itself. It
resembles the control-flow graphs IDA displays on a per-function level.

• entry_func.name is the name of the function.

• entry_func.has_unresolved_calls and entry.has_unresolved_jumps have to do with detecting im-
precision within the CFG. Sometimes, the analysis cannot detect what the possible target of an indirect call or
jump could be. If this occurs within a function, that function will have the appropriate has_unresolved_*
value set to True.

• entry_func.get_call_sites() returns a list of all the addresses of basic blocks which end in calls out to
other functions.

• entry_func.get_call_target(callsite_addr) will, given callsite_addr from the list of call site ad-
dresses, return where that callsite will call out to.

• entry_func.get_call_return(callsite_addr) will, given callsite_addr from the list of call site ad-
dresses, return where that callsite should return to.

and many more !

4.1.5 CFGFast details

CFGFast peforms a static control-flow and function recovery. Starting with the entry point (or any user-defined points)
roughly the following procedure is performed:

1) The basic block is lifted to VEX IR, and all its exits (jumps, calls, returns, or continuation to the next block) are
collected

2) For each exit, if this exit is a constant address, we add an edge to the CFG of the correct type, and add the
destination block to the set of blocks to be analyzed.

3) In the event of a function call, the destination block is also considered the start of a new function. If the target
function is known to return, the block after the call is also analyzed.

4) In the event of a return, the current function is marked as returning, and the appropriate edges in the callgraph
and CFG are updated.

5) For all indirect jumps (block exits with a non-constant destination) Indirect Jump Resolution is performed.

4.1. Control-flow Graph Recovery (CFG) 53

angr

Finding function starts

CFGFast supports multiple ways of deciding where a function starts and ends.

First the binary’s main entry point will be analyzed. For binaries with symbols (e.g., non-stripped ELF and PE binaries)
all function symbols will be used as possible starting points. For binaries without symbols, such as stripped binaries,
or binaries loaded using the blob loader backend, CFG will scan the binary for a set of function prologues defined for
the binary’s architecture. Finally, by default, the binary’s entire code section will be scanned for executable contents,
regardless of prologues or symbols.

In addition to these, as with CFGEmulated, function starts will also be considered when they are the target of a “call”
instruction on the given architecture.

All of these options can be disabled

FakeRets and function returns

When a function call is observed, we first assume that the callee function eventually returns, and treat the block after it
as part of the caller function. This inferred control-flow edge is known as a “FakeRet”. If, in analyzing the callee, we
find this not to be true, we update the CFG, removing this “FakeRet”, and updating the callgraph and function blocks
accordingly. As such, the CFG is recovered twice. In doing this, the set of blocks in each function, and whether the
function returns, can be recovered and propagated directly.

Indirect Jump Resolution

Options

These are the most useful options when working with CFGFast:

Option Description
force_complete_scan(Default: True) Treat the entire binary as code for the purposes of function detection. If you have

a blob (e.g., mixed code and data) you want to turn this off.
func-
tion_starts

A list of addresses, to use as entry points into the analysis.

normalize (Default: False) Normalize the resulting functions (e.g., each basic block belongs to at most one
function, back-edges point to the start of basic blocks)

re-
solve_indirect_jumps

(Default: True) Perform additional analysis to attempt to find targets for every indirect jump found
during CFG creation.

more! Examine the docstring on p.analyses.CFGFast for more up-to-date options

4.1.6 CFGEmulated details

Options

The most common options for CFGEmulated include:

54 Chapter 4. Build-in Analyses

angr

Option Description
con-
text_sensitivity_level

This sets the context sensitivity level of the analysis. See the context sensitivity level section
below for more information. This is 1 by default.

starts A list of addresses, to use as entry points into the analysis.
avoid_runs A list of addresses to ignore in the analysis.
call_depth Limit the depth of the analysis to some number calls. This is useful for checking which

functions a specific function can directly jump to (by setting call_depth to 1).
initial_state An initial state can be provided to the CFG, which it will use throughout its analysis.
keep_state To save memory, the state at each basic block is discarded by default. If keep_state is True,

the state is saved in the CFGNode.
en-
able_symbolic_back_traversal

Whether to enable an intensive technique for resolving indirect jumps

en-
able_advanced_backward_slicing

Whether to enable another intensive technique for resolving direct jumps

more! Examine the docstring on p.analyses.CFGEmulated for more up-to-date options

Context Sensitivity Level

angr constructs a CFG by executing every basic block and seeing where it goes. This introduces some challenges: a
basic block can act differently in different contexts. For example, if a block ends in a function return, the target of that
return will be different, depending on different callers of the function containing that basic block.

The context sensitivity level is, conceptually, the number of such callers to keep on the callstack. To explain this
concept, let’s look at the following code:

void error(char *error)
{

puts(error);
}

void alpha()
{

puts("alpha");
error("alpha!");

}

void beta()
{

puts("beta");
error("beta!");

}

void main()
{

alpha();
beta();

}

The above sample has four call chains: main>alpha>puts, main>alpha>error>puts and main>beta>puts, and
main>beta>error>puts. While, in this case, angr can probably execute both call chains, this becomes unfeasible for
larger binaries. Thus, angr executes the blocks with states limited by the context sensitivity level. That is, each function
is re-analyzed for each unique context that it is called in.

4.1. Control-flow Graph Recovery (CFG) 55

angr

For example, the puts() function above will be analyzed with the following contexts, given different context sensitivity
levels:

Level Meaning Contexts
0 Callee-only puts
1 One caller, plus callee alpha>puts beta>puts error>puts
2 Two callers, plus

callee
alpha>error>puts main>alpha>puts beta>error>puts main>beta>puts

3 Three callers, plus
callee

main>alpha>error>puts main>alpha>puts main>beta>error>puts
main>beta>puts

The upside of increasing the context sensitivity level is that more information can be gleaned from the CFG. For
example, with context sensitivity of 1, the CFG will show that, when called from alpha, puts returns to alpha, when
called from error, puts returns to error, and so forth. With context sensitivity of 0, the CFG simply shows that
puts returns to alpha, beta, and error. This, specifically, is the context sensitivity level used in IDA. The downside
of increasing the context sensitivity level is that it exponentially increases the analysis time.

4.2 Backward Slicing

A program slice is a subset of statements that is obtained from the original program, usually by removing zero or more
statements. Slicing is often helpful in debugging and program understanding. For instance, it’s usually easier to locate
the source of a variable on a program slice.

A backward slice is constructed from a target in the program, and all data flows in this slice end at the target.

angr has a built-in analysis, called BackwardSlice, to construct a backward program slice. This section will act as a
how-to for angr’s BackwardSlice analysis, and followed by some in-depth discussion over the implementation choices
and limitations.

4.2.1 First Step First

To build a BackwardSlice, you will need the following information as input.

• Required CFG. A control flow graph (CFG) of the program. This CFG must be an accurate CFG (CFGEmu-
lated).

• Required Target, which is the final destination that your backward slice terminates at.

• Optional CDG. A control dependence graph (CDG) derived from the CFG. angr has a built-in analysis CDG for
that purpose.

• Optional DDG. A data dependence graph (DDG) built on top of the CFG. angr has a built-in analysis DDG for
that purpose.

A BackwardSlice can be constructed with the following code:

>>> import angr
Load the project
>>> b = angr.Project("examples/fauxware/fauxware", load_options={"auto_load_libs": False}
→˓)

Generate a CFG first. In order to generate data dependence graph afterwards, you'll␣
→˓have to:

(continues on next page)

56 Chapter 4. Build-in Analyses

angr

(continued from previous page)

- keep all input states by specifying keep_state=True.
- store memory, register and temporary values accesses by adding the angr.options.refs␣
→˓option set.
Feel free to provide more parameters (for example, context_sensitivity_level) for CFG
recovery based on your needs.
>>> cfg = b.analyses.CFGEmulated(keep_state=True,
... state_add_options=angr.sim_options.refs,
... context_sensitivity_level=2)

Generate the control dependence graph
>>> cdg = b.analyses.CDG(cfg)

Build the data dependence graph. It might take a while. Be patient!
>>> ddg = b.analyses.DDG(cfg)

See where we wanna go... let's go to the exit() call, which is modeled as a
SimProcedure.
>>> target_func = cfg.kb.functions.function(name="exit")
We need the CFGNode instance
>>> target_node = cfg.get_any_node(target_func.addr)

Let's get a BackwardSlice out of them!
``targets`` is a list of objects, where each one is either a CodeLocation
object, or a tuple of CFGNode instance and a statement ID. Setting statement
ID to -1 means the very beginning of that CFGNode. A SimProcedure does not
have any statement, so you should always specify -1 for it.
>>> bs = b.analyses.BackwardSlice(cfg, cdg=cdg, ddg=ddg, targets=[(target_node, -1)])

Here is our awesome program slice!
>>> print(bs)

Sometimes it’s difficult to get a data dependence graph, or you may simply want build a program slice on top of a CFG.
That’s basically why DDG is an optional parameter. You can build a BackwardSlice solely based on CFG by doing:

>>> bs = b.analyses.BackwardSlice(cfg, control_flow_slice=True)
BackwardSlice (to [(<CFGNode exit (0x10000a0) [0]>, -1)])

4.2.2 Using The BackwardSlice Object

Before you go ahead and use BackwardSlice object, you should notice that the design of this class is fairly arbitrary
right now, and it is still subject to change in the near future. We’ll try our best to keep this documentation up-to-date.

4.2. Backward Slicing 57

angr

Members

After construction, a BackwardSlice has the following members which describe a program slice:

Member Mode Meaning
runs_in_slice CFG-

only
A networkx.DiGraph instance showing addresses of blocks and SimProcedures in the
program slice, as well as transitions between them

cfg_nodes_in_sliceCFG-
only

A networkx.DiGraph instance showing CFGNodes in the program slice and transitions
in between

cho-
sen_statements

With
DDG

A dict mapping basic block addresses to lists of statement IDs that are part of the program
slice

cho-
sen_exits

With
DDG

A dict mapping basic block addresses to a list of “exits”. Each exit in the list is a valid
transition in the program slice

Each “exit” in chosen_exit is a tuple including a statement ID and a list of target addresses. For example, an “exit”
might look like the following:

(35, [0x400020])

If the “exit” is the default exit of a basic block, it’ll look like the following:

("default", [0x400085])

Export an Annotated Control Flow Graph

User-friendly Representation

Take a look at BackwardSlice.dbg_repr()!

4.2.3 Implementation Choices

4.2.4 Limitations

Completeness

Soundness

4.3 Identifier

The identifier uses test cases to identify common library functions in CGC binaries. It prefilters by finding some basic
information about stack variables/arguments. The information of about stack variables can be generally useful in other
projects.

>>> import angr

get all the matches
>>> p = angr.Project("../binaries/tests/i386/identifiable")
note analysis is executed via the Identifier call
>>> idfer = p.analyses.Identifier()

(continues on next page)

58 Chapter 4. Build-in Analyses

angr

(continued from previous page)

>>> for funcInfo in idfer.func_info:
... print(hex(funcInfo.addr), funcInfo.name)

0x8048e60 memcmp
0x8048ef0 memcpy
0x8048f60 memmove
0x8049030 memset
0x8049320 fdprintf
0x8049a70 sprintf
0x8049f40 strcasecmp
0x804a0f0 strcmp
0x804a190 strcpy
0x804a260 strlen
0x804a3d0 strncmp
0x804a620 strtol
0x804aa00 strtol
0x80485b0 free
0x804aab0 free
0x804aad0 free
0x8048660 malloc
0x80485b0 free

4.3. Identifier 59

angr

60 Chapter 4. Build-in Analyses

angr

4.4 angr Decompiler

4.4.1 Analysis Passes

Name Description Sub-analysis
CFG recovery Recover the control flow graph. Indirect branch resolving
Indirect branch re-
solving

Resolve the targets of indirect branches. Jump table resolving

Removing align-
ment blocks
Calling conven-
tion recovery
Stack pointer
analysis

Determine values of stack pointer at each
instruction.

IR Lifting Lift the original representation to AIL,
block by block.

AIL graph build-
ing
Rewriting single-
target indirect
branches

Replace single-target indirect branches
with direct branches.

Making return
statements

Convert Ijk_Ret jump kinds into AIL Re-
turn statements.

Simplifying AIL
blocks

Simplify each AIL block. Constant folding, copy propagation, dead assign-
ment elimination, peephole optimizations

Reaching defini-
tion analysis
Constant folding
Copy propagation
Dead assignment
elimination
Peephole opti-
mizations
Simplifying AIL
function

Simplify the entire AIL function. Assignment expression folding, unifying local
variables, call expression folding, reaching def-
inition analysis

Assignment ex-
pression folding

Eliminate variables that are assigned to
once and used once.

Copy propagation

Unifying local
variables

Find local variables that are always equiv-
alent and eliminate redundant copies.

Copy propagation

Call expression
folding

Fold call expressions into the variable
where its return value is stored.

Copy propagation

Call site building Apply calling conventions to each call site
and rewrite call statements to ones with ar-
guments

Reaching definition analysis

Variable recovery Identify local and global variables.
Variable type in-
ference

Collect type constraints and infer variable
types.

Simplification
passes
Region identifica-
tion

Identify single-entry, single-exit regions.

Structure analysis Structure each identified region to create
high-level control flow structures.

Code generation4.4. angr Decompiler 61

angr

62 Chapter 4. Build-in Analyses

CHAPTER

FIVE

ADVANCED TOPICS

5.1 Gotchas when using angr

This section contains a list of gotchas that users/victims of angr frequently run into.

5.1.1 SimProcedure inaccuracy

To make symbolic execution more tractable, angr replaces common library functions with summaries written in Python.
We call these summaries SimProcedures. SimProcedures allow us to mitigate path explosion that would otherwise be
introduced by, for example, strlen running on a symbolic string.

Unfortunately, our SimProcedures are far from perfect. If angr is displaying unexpected behavior, it might be caused
by a buggy/incomplete SimProcedure. There are several things that you can do:

1. Disable the SimProcedure (you can exclude specific SimProcedures by passing options to the angr.Project
class. This has the drawback of likely leading to a path explosion, unless you are very careful about constraining
the input to the function in question. The path explosion can be partially mitigated with other angr capabilities
(such as Veritesting).

2. Replace the SimProcedure with something written directly to the situation in question. For example, our scanf
implementation is not complete, but if you just need to support a single, known format string, you can write a
hook to do exactly that.

3. Fix the SimProcedure.

5.1.2 Unsupported syscalls

System calls are also implemented as SimProcedures. Unfortunately, there are system calls that we have not yet imple-
mented in angr. There are several workarounds for an unsupported system call:

1. Implement the system call.

Todo: document this process

2. Hook the callsite of the system call (using project.hook) to make the required modifications to the state in an
ad-hoc way.

3. Use the state.posix.queued_syscall_returns list to queue syscall return values. If a return value is
queued, the system call will not be executed, and the value will be used instead. Furthermore, a function can be
queued instead as the “return value”, which will result in that function being applied to the state when the system
call is triggered.

63

angr

5.1.3 Symbolic memory model

The default memory model used by angr is inspired by Mayhem. This memory model supports limited symbolic reads
and writes. If the memory index of a read is symbolic and the range of possible values of this index is too wide, the
index is concretized to a single value. If the memory index of a write is symbolic at all, the index is concretized to a
single value. This is configurable by changing the memory concretization strategies of state.memory.

5.1.4 Symbolic lengths

SimProcedures, and especially system calls such as read() and write() might run into a situation where the length
of a buffer is symbolic. In general, this is handled very poorly: in many cases, this length will end up being concretized
outright or retroactively concretized in later steps of execution. Even in cases when it is not, the source or destination
file might end up looking a bit “weird”.

5.1.5 Division by Zero

Z3 has some issues with divisions by zero. For example:

>>> z = z3.Solver()
>>> a = z3.BitVec('a', 32)
>>> b = z3.BitVec('b', 32)
>>> c = z3.BitVec('c', 32)
>>> z.add(a/b == c)
>>> z.add(b == 0)
>>> z.check()
>>> print(z.model().eval(b), z.model().eval(a/b))
0 4294967295

This makes it very difficult to handle certain situations in Claripy. We post-process the VEX IR itself to explicitly
check for zero-divisions and create IRSB side-exits corresponding to the exceptional case, but SimProcedures and
custom analysis code may let occurrences of zero divisions split through, which will then cause weird issues in your
analysis. Be safe — when dividing, add a constraint against the denominator being zero.

5.2 Understanding the Execution Pipeline

If you’ve made it this far you know that at its core, angr is a highly flexible and intensely instrumentable emulator.
In order to get the most mileage out of it, you’ll want to know what happens at every step of the way when you say
simgr.run().

This is intended to be a more advanced document; you’ll need to understand the function and intent of
SimulationManager, ExplorationTechnique, SimState, and SimEngine in order to understand what we’re talk-
ing about at times! You may want to have the angr source open to follow along with this.

At every step along the way, each function will take **kwargs and pass them along to the next function in the hierarchy,
so you can pass parameters to any point in the hierarchy and they will trickle down to everything below.

64 Chapter 5. Advanced Topics

https://users.ece.cmu.edu/~dbrumley/pdf/Cha%20et%20al._2012_Unleashing%20Mayhem%20on%20Binary%20Code.pdf

angr

5.2.1 Simulation Managers

So you’ve set your analysis in motion. Time to begin our journey.

run()

SimulationManager.run() takes several optional parameters, all of which control when to break out of the stepping
loop. Notably, n, and until. n is used immediately - the run function loops, calling the step() function and passing
on all its parameters until either n steps have happened or some other termination condition has occurred. If n is not
provided, it defaults to 1, unless an until function is provided, in which case there will be no numerical cap on the
loop. Additionally, the stash that is being used is taken into consideration, as if it becomes empty execution must
terminate.

So, in summary, when you call run(), step() will be called in a loop until any of the following:

1. The n number of steps have elapsed

2. The until function returns true

3. The exploration techniques complete() hooks (combined via the SimulationManager.completion_mode
parameter/attribute - it is by default the any builtin function but can be changed to all for example) indicate that
the analysis is complete

4. The stash being executed becomes empty

An aside: explore()

SimulationManager.explore() is a very thin wrapper around run() which adds the Explorer exploration tech-
nique, since performing one-off explorations is a very common action. Its code in its entirety is below:

num_find += len(self._stashes[find_stash]) if find_stash in self._stashes else 0
tech = self.use_technique(Explorer(find, avoid, find_stash, avoid_stash, cfg, num_find))

try:
self.run(stash=stash, n=n, **kwargs)

finally:
self.remove_technique(tech)

return self

Exploration technique hooking

From here down, every function in the simulation manager can be instrumented by an exploration technique. The
exact mechanism through which this works is that when you call SimulationManager.use_technique(), angr
monkeypatches the simulation manager to replace any function implemented in the exploration technique’s body with
a function which will first call the exploration technique’s function, and then on the second call will call the original
function. This is somewhat messy to implement and certainly not thread safe by any means, but does produce a clean
and powerful interface for exploration techniques to instrument stepping behavior, either before or after the original
function is called, even choosing whether or not to call the original function whatsoever. Additionally, it allows mul-
tiple exploration techniques to hook the same function, as the monkeypatched function simply becomes the “original”
function for the next-applied hook.

5.2. Understanding the Execution Pipeline 65

angr

step()

There is a lot of complicated logic in step() to handle degenerate cases - mostly implementing the population of
the deadended stash, the save_unsat option, and calling the filter() exploration technique hooks. Beyond this,
though, most of the logic is looping through the stash specified by the stash argument and calling step_state()
on each state, then applying the dict result of step_state() to the stash list. Finally, if the step_func parameter is
provided, it is called with the simulation manager as a parameter before the step ends.

step_state()

The default step_state(), which can be overridden or instrumented by exploration techniques, is also simple - it
calls successors(), which returns a SimSuccessors object, and then translates it into a dict mapping stash names to
new states which should be added to that stash. It also implements error handling - if successors() throws an error,
it will be caught and an ErrorRecord will be inserted into SimulationManager.errored.

successors()

We’ve almost made it out of SimulationManager. successors(), which can also be instrumented by exploration
techniques, is supposed to take a state and step it forward, returning a SimSuccessors object categorizing its successors
independently of any stash logic. If the successor_func parameter was provided, it is used and its return value is
returned directly. If this parameter was not provided, we use the project.factory.successors method to tick the
state forward and get our SimSuccessors.

5.2.2 The Engine

When we get to the actual successors generation, we need to figure out how to actually perform the execution. Hope-
fully, the angr documentation has been organized in a way such that by the time you reach this page, you know that a
SimEngine is a device that knows how to take a state and produce its successors. There is only one “default engine”
per project, but you can provide the engine parameter to specify which engine will be used to perform the step.

Keep in mind that this parameter can be provided way at the top, to .step(), .explore(), .run() or anything else
that starts execution, and they will be filtered down to this level. Any additional parameters will continue being passed
down, until they reach the part of the engine they are intended for. The engine will discard any parameters it doesn’t
understand.

Generally, the main entry point of an engine is SimEngine.process(), which can return whatever result it likes, but
for simulation managers, engines are required to use SuccessorsMixin, which provides a process() method, which
creates a SimSuccessors object and then calls process_successors() so that other mixins can fill it out.

angr’s default engine, the UberEngine, contains several mixins which provide the process_successors() method:

• SimEngineFailure - handles stepping states with degenerate jumpkinds

• SimEngineSyscall - handles stepping states which have performed a syscall and need it executed

• HooksMixin - handles stepping states which have reached a hooked address and need the hook executed

• SimEngineUnicorn - executes machine code via the unicorn engine

• SootMixin - executes java bytecode via the SOOT IR

• HeavyVEXMixin - executes machine code via the VEX IR

Each of these mixins is implemented to fill out the SimSuccessors object if they can handle the current state, otherwise
they call super() to pass the job on to the next class in the stack.

66 Chapter 5. Advanced Topics

angr

5.2.3 Engine mixins

SimEngineFailure handles error cases. It is only used when the previous jumpkind is one of Ijk_EmFail,
Ijk_MapFail, Ijk_Sig*, Ijk_NoDecode (but only if the address is not hooked), or Ijk_Exit. In the first four
cases, its action is to raise an exception. In the last case, its action is to simply produce no successors.

SimEngineSyscall services syscalls. It is used when the previous jumpkind is anything of the form Ijk_Sys*. It
works by making a call into SimOS to retrieve the SimProcedure that should be run to respond to this syscall, and then
running it! Pretty simple.

HooksMixin provides the hooking functionality in angr. It is used when a state is at an address that is hooked, and the
previous jumpkind is not Ijk_NoHook. It simply looks up the associated SimProcedure and runs it on the state! It also
takes the parameter procedure, which will cause the given procedure to be run for the current step even if the address
is not hooked.

SimEngineUnicorn performs concrete execution with the Unicorn Engine. It is used when the state option o.UNICORN
is enabled, and a myriad of other conditions designed for maximum efficiency (described below) are met.

SootMixin performs execution over the SOOT IR. Not very important unless you are analyzing java bytecode, in which
case it is very important.

SimEngineVEX is the big fellow. It is used whenever any of the previous can’t be used. It attempts to lift bytes from
the current address into an IRSB, and then executes that IRSB symbolically. There are a huge number of parameters
that can control this process, so it is best to reference the API doc for angr.engines.vex.engine.SimEngineVEX.
process() describing them.

The exact process by which SimEngineVEX digs into an IRSB is a little complicated, but essentially it runs all the
block’s statements in order. This code is worth reading if you want to see the true inner core of angr’s symbolic
execution.

5.2.4 When using Unicorn Engine

If you add the o.UNICORN state option, at every step SimEngineUnicorn will be invoked, and try to see if it is allowed
to use Unicorn to execute concretely.

What you REALLY want to do is to add the predefined set o.unicorn (lowercase) of options to your state:

unicorn = { UNICORN, UNICORN_SYM_REGS_SUPPORT, INITIALIZE_ZERO_REGISTERS, UNICORN_HANDLE_
→˓TRANSMIT_SYSCALL }

These will enable some additional functionalities and defaults which will greatly enhance your experience. Addition-
ally, there are a lot of options you can tune on the state.unicorn plugin.

A good way to understand how unicorn works is by examining the logging output (logging.getLogger('angr.
engines.unicorn_engine').setLevel('DEBUG'); logging.getLogger('angr.state_plugins.
unicorn_engine').setLevel('DEBUG') from a sample run of unicorn.

INFO | 2017-02-25 08:19:48,012 | angr.state_plugins.unicorn | started emulation at␣
→˓0x4012f9 (1000000 steps)

Here, angr diverts to unicorn engine, beginning with the basic block at 0x4012f9. The maximum step count is set to
1000000, so if execution stays in Unicorn for 1000000 blocks, it’ll automatically pop out. This is to avoid hanging in
an infinite loop. The block count is configurable via the state.unicorn.max_steps variable.

INFO | 2017-02-25 08:19:48,014 | angr.state_plugins.unicorn | mmap [0x401000,␣
→˓0x401fff], 5 (symbolic)
INFO | 2017-02-25 08:19:48,016 | angr.state_plugins.unicorn | mmap [0x7fffffffffe0000,

(continues on next page)

5.2. Understanding the Execution Pipeline 67

angr

(continued from previous page)

→˓ 0x7fffffffffeffff], 3 (symbolic)
INFO | 2017-02-25 08:19:48,019 | angr.state_plugins.unicorn | mmap [0x6010000,␣
→˓0x601ffff], 3
INFO | 2017-02-25 08:19:48,022 | angr.state_plugins.unicorn | mmap [0x602000,␣
→˓0x602fff], 3 (symbolic)
INFO | 2017-02-25 08:19:48,023 | angr.state_plugins.unicorn | mmap [0x400000,␣
→˓0x400fff], 5
INFO | 2017-02-25 08:19:48,025 | angr.state_plugins.unicorn | mmap [0x7000000,␣
→˓0x7000fff], 5

angr performs lazy mapping of data that is accessed by unicorn engine, as it is accessed. 0x401000 is the page of
instructions that it is executing, 0x7fffffffffe0000 is the stack, and so on. Some of these pages are symbolic, meaning
that they contain at least some data that, when accessed, will cause execution to abort out of Unicorn.

INFO | 2017-02-25 08:19:48,037 | angr.state_plugins.unicorn | finished emulation at␣
→˓0x7000080 after 3 steps: STOP_STOPPOINT

Execution stays in Unicorn for 3 basic blocks (a computational waste, considering the required setup), after which it
reaches a simprocedure location and jumps out to execute the simproc in angr.

INFO | 2017-02-25 08:19:48,076 | angr.state_plugins.unicorn | started emulation at␣
→˓0x40175d (1000000 steps)
INFO | 2017-02-25 08:19:48,077 | angr.state_plugins.unicorn | mmap [0x401000,␣
→˓0x401fff], 5 (symbolic)
INFO | 2017-02-25 08:19:48,079 | angr.state_plugins.unicorn | mmap [0x7fffffffffe0000,
→˓ 0x7fffffffffeffff], 3 (symbolic)
INFO | 2017-02-25 08:19:48,081 | angr.state_plugins.unicorn | mmap [0x6010000,␣
→˓0x601ffff], 3

After the simprocedure, execution jumps back into Unicorn.

WARNING | 2017-02-25 08:19:48,082 | angr.state_plugins.unicorn | fetching empty page␣
→˓[0x0, 0xfff]
INFO | 2017-02-25 08:19:48,103 | angr.state_plugins.unicorn | finished emulation at␣
→˓0x401777 after 1 steps: STOP_EXECNONE

Execution bounces out of Unicorn almost right away because the binary accessed the zero-page.

INFO | 2017-02-25 08:19:48,120 | angr.engines.unicorn_engine | not enough runs since␣
→˓last unicorn (100)
INFO | 2017-02-25 08:19:48,125 | angr.engines.unicorn_engine | not enough runs since␣
→˓last unicorn (99)

To avoid thrashing in and out of Unicorn (which is expensive), we have cooldowns (attributes of the state.unicorn
plugin) that wait for certain conditions to hold (i.e., no symbolic memory accesses for X blocks) before jumping back
into unicorn when a unicorn run is aborted due to anything but a simprocedure or syscall. Here, the condition it’s
waiting for is for 100 blocks to be executed before jumping back in.

68 Chapter 5. Advanced Topics

angr

5.3 What’s Up With Mixins, Anyway?

If you are trying to work more intently with the deeper parts of angr, you will need to understand one of the design
patterns we use frequently: the mixin pattern.

In brief, the mixin pattern is where Python’s subclassing features is used not to implement IS-A relationships (a Child is
a kind of Person) but instead to implement pieces of functionality for a type in different classes to make more modular
and maintainable code. Here’s an example of the mixin pattern in action:

class Base:
def add_one(self, v):

return v + 1

class StringsMixin(Base):
def add_one(self, v):

coerce = type(v) is str
if coerce:

v = int(v)
result = super().add_one(v)
if coerce:

result = str(result)
return result

class ArraysMixin(Base):
def add_one(self, v):

if type(v) is list:
return [super().add_one(v_x) for v_x in v]

else:
return super().add_one(v)

class FinalClass(ArraysMixin, StringsMixin, Base):
pass

With this construction, we are able to define a very simple interface in the Base class, and by “mixing in” two mixins,
we can create the FinalClass which has the same interface but with additional features. This is accomplished through
Python’s powerful multiple inheritance model, which handles method dispatch by creating a method resolution order,
or MRO, which is unsuprisingly a list which determines the order in which methods are called as execution proceeds
through super() calls. You can view a class’ MRO as such:

FinalClass.__mro__

(FinalClass, ArraysMixin, StringsMixin, Base, object)

This means that when we take an instance of FinalClass and call add_one(), Python first checks to see if
FinalClass defines an add_one, and then ArraysMixin, and so on and so forth. Furthermore, when ArraysMixin
calls super().add_one(), Python will skip past ArraysMixin in the MRO, first checking if StringsMixin defines
an add_one, and so forth.

Because multiple inheritance can create strange dependency graphs in the subclass relationship, there are rules for
generating the MRO and for determining if a given mix of mixins is even allowed. This is important to understand
when building complex classes with many mixins which have dependencies on each other. In short: left-to-right,
depth-first, but deferring any base classes which are shared by multiple subclasses (the merge point of a diamond
pattern in the inheritance graph) until the last point where they would be encountered in this depth-first search. For
example, if you have classes A, B(A), C(B), D(A), E(C, D), then the method resolution order will be E, C, B, D, A. If

5.3. What’s Up With Mixins, Anyway? 69

angr

there is any case in which the MRO would be ambiguous, the class construction is illegal and will throw an exception
at import time.

This is complicated! If you find yourself confused, the canonical document explaining the rationale, history, and
mechanics of Python’s multiple inheritence can be found here.

5.3.1 Mixins in Claripy Solvers

Todo: Write this section

5.3.2 Mixins in angr Engines

The main entry point to a SimEngine is process(), but how do we determine what that does?

The mixin model is used in SimEngine and friends in order to allow pieces of functionality to be reused between static
and symbolic analyses. The default engine, UberEngine, is defined as follows:

class UberEngine(SimEngineFailure,
SimEngineSyscall,
HooksMixin,
SimEngineUnicorn,
SuperFastpathMixin,
TrackActionsMixin,
SimInspectMixin,
HeavyResilienceMixin,
SootMixin,
HeavyVEXMixin

):
pass

Each of these mixins provides either execution through a different medium or some additional instrumentation fea-
ture. Though they are not listed here explicitly, there are some base classes implicit to this hierarchy which set up the
way this class is traversed. Most of these mixins inherit from SuccessorsMixin, which is what provides the basic
process() implementation. This function sets up the SimSuccessors for the rest of the mixins to fill in, and then
calls process_successors(), which each of the mixins which provide some mode of execution implement. If the
mixin can handle the step, it does so and returns, otherwise it calls super().process_successors(). In this way,
the MRO for the engine class determines what the order of precedence for the engine’s pieces is.

HeavyVEXMixin and friends

Let’s take a closer look at the last mixin, HeavyVEXMixin. If you look at the module hierarchy of the angr engines
submodule, you will see that the vex submodule has a lot of pieces in it which are organized by how tightly tied to
particular state types or data types they are. The heavy VEX mixin is one version of the culmination of all of these.
Let’s look at its definition:

class HeavyVEXMixin(SuccessorsMixin, ClaripyDataMixin, SimStateStorageMixin, VEXMixin,␣
→˓VEXLifter):

...
a WHOLE lot of implementation

70 Chapter 5. Advanced Topics

https://www.python.org/download/releases/2.3/mro/

angr

So, the heavy VEX mixin is meant to provide fully instrumented symbolic execution on a SimState. What does this
entail? The mixins tell the tale.

First, the plain VEXMixin. This mixin is designed to provide the barest-bones framework for processing a VEX block.
Take a look at its source code. Its main purpose is to perform the preliminary digestion of the VEX IRSB and dispatch
processing of it to methods which are provided by mixins - look at the methods which are either pass or return
NotImplemented. Notice that absolutely none of its code makes any assumption whatsoever of what the type of
state is or even what the type of the data words inside state are. This job is delegated to other mixins, making the
VEXMixin an appropriate base class for literally any analysis on VEX blocks.

The next-most interesting mixin is the ClaripyDataMixin, whose source code is here. This mixin actually integrates
the fact that we are executing over the domain of Claripy ASTs. It does this by implementing some of the methods
which are unimplemented in the VEXMixin, most importantly the ITE expression, all the operations, and the clean
helpers.

In terms of what it looks like to actually touch the SimState, the SimStateStorageMixin provides the glue between
the VEXMixin’s interface for memory writes et al and SimState’s interface for memory writes and such. It is unre-
markable, except for a small interaction between it and the ClaripyDataMixin. The Claripy mixin also overrides
the memory/register read/write functions, for the purpose of converting between the bitvector and floating-point types,
since the vex interface expects to be able to load and store floats, but the SimState interface wants to load and store
only bitvectors. Because of this, the claripy mixin must come before the storage mixin in the MRO. This is very much
an interaction like the one in the add_one example at the start of this page - one mixin serves as a data filtering layer
for another mixin.

Instrumenting the data layer

Let’s turn our attention to a mixin which is not included in the HeavyVEXMixin but rather mixed into the UberEngine
formula explicitly: the TrackActionsMixin. This mixin implements “SimActions”, which is angr parlance for
dataflow tracking. Again, look at the source code. The way it does this is that it wraps and unwraps the data layer to
pass around additional information about data flows. Look at how it instruments RdTmp, for instance. It immediately
super()-calls to the next method in the MRO, but instead of returning that data it returns a tuple of the data and its
dependencies, which depending on whether you want temporary variables to be atoms in the dataflow model, will either
be just the tmp which was read or the dependencies of the value written to that tmp.

This pattern continues for every single method that this mixin touches - any expression it receives must be unpacked
into the expression and its dependencies, and any result must be packaged with its dependencies before it is returned.
This works because the mixin above it makes no assumptions about what data it is passing around, and the mixin
below it never gets to see any dependencies whatsoever. In fact, there could be multiple mixins performing this kind
of wrap-unwrap trick and they could all coexist peacefully!

Note that a mixin which instruments the data layer in this way is obligated to override every single method which takes
or returns an expression value, even if it doesn’t perform any operation on the expression other than doing the wrapping
and unwrapping. To understand why, imagine that the mixin does not override the handle_vex_const expression,
so immediate value loads are not annotated with dependencies. The expression value which will be returned from the
mixin which does provide handle_vex_const will not be a tuple of (expression, deps), it will just be the expression.
Imagine this execution is taking place in the context of a WrTmp(t0, Const(0)). The const expression will be passed
down to the WrTmp handler along with the identifier of the tmp to write to. However, since handle_vex_stmt_WrTmp
will be overridden by our mixin which touches the data layer, it expects to be passed the tuple including the deps, and
so it will crash when trying to unpack the not-a-tuple value.

In this way, you can sort of imagine that a mixin which instruments the data layer in this way is actually creating a
contract within Python’s nonexistent typesystem - you are guaranteed to receive back any types you return, but you
must pass down any types you receive as return values from below.

5.3. What’s Up With Mixins, Anyway? 71

https://github.com/angr/angr/blob/master/angr/engines/vex/light/light.py
https://github.com/angr/angr/blob/master/angr/engines/vex/claripy/datalayer.py
https://github.com/angr/angr/blob/master/angr/engines/vex/heavy/actions.py

angr

5.3.3 Mixins in the memory model

Todo: write this section

5.4 Optimization considerations

The performance of angr as an analysis tool or emulator is greatly handicapped by the fact that lots of it is written in
Python. Regardless, there are a lot of optimizations and tweaks you can use to make angr faster and lighter.

5.4.1 General speed tips

• Use pypy. Pypy is an alternate Python interpreter that performs optimized jitting of Python code. In our tests,
it’s a 10x speedup out of the box.

• Only use the SimEngine mixins that you need. SimEngine uses a mixin model which allows you to add and remove
features by constructing new classes. The default engine mixes in every possible features, and the consequence
of that is that it is slower than it needs to be. Look at the definition for UberEngine (the default SimEngine),
copy its declaration, and remove all the base classes which provide features you don’t need.

• Don’t load shared libraries unless you need them. The default setting in angr is to try at all costs to find shared
libraries that are compatible with the binary you’ve loaded, including loading them straight out of your OS
libraries. This can complicate things in a lot of scenarios. If you’re performing an analysis that’s anything more
abstract than bare-bones symbolic execution, ESPECIALLY control-flow graph construction, you might want
to make the tradeoff of sacrificing accuracy for tractability. angr does a reasonable job of making sane things
happen when library calls to functions that don’t exist try to happen.

• Use hooking and SimProcedures. If you’re enabling shared libraries, then you definitely want to have SimProce-
dures written for any complicated library function you’re jumping into. If there’s no autonomy requirement for
this project, you can often isolate individual problem spots where analysis hangs up and summarize them with a
hook.

• Use SimInspect. SimInspect is the most underused and one of the most powerful features of angr. You can hook
and modify almost any behavior of angr, including memory index resolution (which is often the slowest part of
any angr analysis).

• Write a concretization strategy. A more powerful solution to the problem of memory index resolution is a
concretization strategy.

• Use the Replacement Solver. You can enable it with the angr.options.REPLACEMENT_SOLVER state option.
The replacement solver allows you to specify AST replacements that are applied at solve-time. If you add replace-
ments so that all symbolic data is replaced with concrete data when it comes time to do the solve, the runtime
is greatly reduced. The API for adding a replacement is state.se._solver.add_replacement(old, new).
The replacement solver is a bit finicky, so there are some gotchas, but it’ll definitely help.

72 Chapter 5. Advanced Topics

http://pypy.org/
https://github.com/angr/angr/tree/master/angr/concretization_strategies

angr

5.4.2 If you’re performing lots of concrete or partially-concrete execution

• Use the unicorn engine. If you have unicorn engine installed, angr can be built to take advantage of it for concrete
emulation. To enable it, add the options in the set angr.options.unicorn to your state. Keep in mind that
while most items under angr.options are individual options, angr.options.unicorn is a bundle of options,
and is thus a set. NOTE: At time of writing the official version of unicorn engine will not work with angr - we
have a lot of patches to it to make it work well with angr. They’re all pending pull requests at this time, so sit
tight. If you’re really impatient, ping us about uploading our fork!

• Enable fast memory and fast registers. The state options angr.options.FAST_MEMORY and angr.options.
FAST_REGISTERS will do this. These will switch the memory/registers over to a less intensive memory model
that sacrifices accuracy for speed. TODO: document the specific sacrifices. Should be safe for mostly concrete
access though. NOTE: not compatible with concretization strategies.

• Concretize your input ahead of time. This is the approach taken by driller. When creating a state with
entry_state or the like, you can create a SimFile filled with symbolic data, pass it to the initialization function
as an argument entry_state(..., stdin=my_simfile), and then constrain the symbolic data in the SimFile
to what you want the input to be. If you don’t require any tracking of the data coming from stdin, you can forego
the symbolic part and just fill it with concrete data. If there are other sources of input besides standard input, do
the same for those.

• Use the afterburner. While using unicorn, if you add the UNICORN_THRESHOLD_CONCRETIZATION state option,
angr will accept thresholds after which it causes symbolic values to be concretized so that execution can spend
more time in Unicorn. Specifically, the following thresholds exist:

– state.unicorn.concretization_threshold_memory - this is the number of times a symbolic vari-
able, stored in memory, is allowed to kick execution out of Unicorn before it is forcefully concretized and
forced into Unicorn anyways.

– state.unicorn.concretization_threshold_registers - this is the number of times a symbolic
variable, stored in a register, is allowed to kick execution out of Unicorn before it is forcefully concretized
and forced into Unicorn anyways.

– state.unicorn.concretization_threshold_instruction - this is the number of times that any
given instruction can force execution out of Unicorn (by running into symbolic data) before any symbolic
data encountered at that instruction is concretized to force execution into Unicorn.

You can get further control of what is and isn’t concretized with the following sets:

– state.unicorn.always_concretize - a set of variable names that will always be concretized to force
execution into unicorn (in fact, the memory and register thresholds just end up causing variables to be added
to this list).

– state.unicorn.never_concretize - a set of variable names that will never be concretized and forced
into Unicorn under any condition.

– state.unicorn.concretize_at - a set of instruction addresses at which data should be concretized and
forced into Unicorn. The instruction threshold causes addresses to be added to this set.

Once something is concretized with the afterburner, you will lose track of that variable. The state will still be
consistent, but you’ll lose dependencies, as the stuff that comes out of Unicorn is just concrete bits with no
memory of what variables they came from. Still, this might be worth it for the speed in some cases, if you know
what you want to (or do not want to) concretize.

5.4. Optimization considerations 73

https://github.com/unicorn-engine/unicorn/
https://www.internetsociety.org/sites/default/files/blogs-media/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

angr

5.4.3 Memory optimization

The golden rule for memory optimization is to make sure you’re not keeping any references to data you don’t care about
anymore, especially related to states which have been left behind. If you find yourself running out of memory during
analysis, the first thing you want to do is make sure you haven’t caused a state explosion, meaning that the analysis is
accumulating program states too quickly. If the state count is in control, then you can start looking for reference leaks.
A good tool to do this with is https://github.com/rhelmot/dumpsterdiver, which gives you an interactive prompt for
exploring the reference graph of a Python process.

One specific consideration that should be made when analyzing programs with very long paths is that the state history
is designed to accumulate data infinitely. This is less of a problem than it could be because the data is stored in a smart
tree structure and never copied, but it will accumulate infinitely. To downsize a state’s history and free all data related
to old steps, call state.history.trim().

One particularly problematic member of the history dataset is the basic block trace and the stack pointer trace. When
using unicorn engine, these lists of ints can become huge very very quickly. To disable unicorn’s capture of ip and sp
data, remove the state options UNICORN_TRACK_BBL_ADDRS and UNICORN_TRACK_STACK_POINTERS.

5.5 Working with File System, Sockets, and Pipes

It’s very important to be able to control the environment that emulated programs see, including how symbolic data is
introduced from the environment! angr has a robust series of abstractions to help you set up the environment you want.

The root of any interaction with the filesystem, sockets, pipes, or terminals is a SimFile object. A SimFile is a storage
abstraction that defines a sequence of bytes, symbolic or otherwise. There are several kinds of SimFiles which store
their data very differently - the two easiest examples are SimFile (the base class is actually called SimFileBase),
which stores files as a flat address-space of data, and SimPackets, which stores a sequence of variable-sized reads.
The former is best for modeling programs that need to perform seeks on their files, and is the default storage for opened
files, while the latter is best for modeling programs that depend on short-reads or use scanf, and is the default storage
for stdin/stdout/stderr.

Because SimFiles can have such diverse storage mechanisms, the interface for interacting with them is very abstracted.
You can read from the file from some position, you can write to the file at some position, you can ask how many bytes
are currently stored in the file, and you can concretize the file, generating a testcase for it. If you know specifically which
SimFile class you’re working with, you can take much more powerful control over it, and as a result you’re encouraged
to manually create any files you want to work with when you create your initial state.

Specifically, each SimFile class creates its own abstraction of a “position” within the file - each read and write takes
a position and returns a new position that you should use to continue from where you left off. If you’re working with
SimFiles of unknown type you have to treat this position as a totally opaque object with no semantics other than the
contract with the read/write functions.

However! This is a very poor match to how programs generally interact with files, so angr also has a SimFileDescriptor
abstraction, which provides the familiar read/write/seek/tell interfaces but will also return error conditions when the
underlying storage don’t support the appropriate operations - just like normal file descriptors!

You may access the mapping from file descriptor number to file descriptor object in state.posix.fd. See the API
document for angr.storage.file.SimFileDescriptorBase for more details.

74 Chapter 5. Advanced Topics

https://github.com/rhelmot/dumpsterdiver

angr

5.5.1 Just tell me how to do what I want to do!

Okay okay!!

To create a SimFile, you should just create an instance of the class you want to use. Refer to angr.storage.file for
the full instructions.

Let’s go through a few illustrative examples, which cover how you can work with a concrete file, a symbolic file, a file
with mixed concrete and symbolic content, or streams.

Example 1: Create a file with concrete content

>>> import angr
>>> simfile = angr.SimFile('myconcretefile', content='hello world!\n')

Here’s a nuance - you can’t use SimFiles without a state attached, because reasons. You’ll never have to do this in a
real scenario (this operation happens automatically when you pass a SimFile into a constructor or the filesystem) but
let’s mock it up:

>>> proj = angr.Project('/bin/true')
>>> state = proj.factory.blank_state()
>>> simfile.set_state(state)

To demonstrate the behavior of these files we’re going to use the fact that the default SimFile position is just the number
of bytes from the start of the file. SimFile.read returns a tuple (bitvector data, actual size, new pos):

>>> data, actual_size, new_pos = simfile.read(0, 5)
>>> import claripy
>>> assert claripy.is_true(data == 'hello')
>>> assert claripy.is_true(actual_size == 5)
>>> assert claripy.is_true(new_pos == 5)

Continue the read, trying to read way too much:

>>> data, actual_size, new_pos = simfile.read(new_pos, 1000)

angr doesn’t try to sanitize the data returned, only the size - we returned 1000 bytes! The intent is that you’re only
allowed to use up to actual_size of them.

>>> assert len(data) == 1000*8 # bitvector sizes are in bits
>>> assert claripy.is_true(actual_size == 8)
>>> assert claripy.is_true(data.get_bytes(0, 8) == ' world!\n')
>>> assert claripy.is_true(new_pos == 13)

Example 2: Create a file with symbolic content and a defined size

>>> simfile = angr.SimFile('mysymbolicfile', size=0x20)
>>> simfile.set_state(state)

>>> data, actual_size, new_pos = simfile.read(0, 0x30)
>>> assert data.symbolic
>>> assert claripy.is_true(actual_size == 0x20)

5.5. Working with File System, Sockets, and Pipes 75

angr

The basic SimFile provides the same interface as state.memory, so you can load data directly:

>>> assert simfile.load(0, actual_size) is data.get_bytes(0, 0x20)

Example 3: Create a file with constrained symbolic content

>>> bytes_list = [claripy.BVS('byte_%d' % i, 8) for i in range(32)]
>>> bytes_ast = claripy.Concat(*bytes_list)
>>> mystate = proj.factory.entry_state(stdin=angr.SimFile('/dev/stdin', content=bytes_
→˓ast))
>>> for byte in bytes_list:
... mystate.solver.add(byte >= 0x20)
... mystate.solver.add(byte <= 0x7e)

Example 4: Create a file with some mixed concrete and symbolic content, but no EOF

>>> variable = claripy.BVS('myvar', 10*8)
>>> simfile = angr.SimFile('mymixedfile', content=variable.concat(claripy.BVV('\n')),␣
→˓has_end=False)
>>> simfile.set_state(state)

We can always query the number of bytes stored in the file:

>>> assert claripy.is_true(simfile.size == 11)

Reads will generate additional symbolic data past the current frontier:

>>> data, actual_size, new_pos = simfile.read(0, 15)
>>> assert claripy.is_true(actual_size == 15)
>>> assert claripy.is_true(new_pos == 15)

>>> assert claripy.is_true(data.get_bytes(0, 10) == variable)
>>> assert claripy.is_true(data.get_bytes(10, 1) == '\n')
>>> assert data.get_bytes(11, 4).symbolic

Example 5: Create a file with a symbolic size (has_end is implicitly true here)

>>> symsize = claripy.BVS('mysize', 64)
>>> state.solver.add(symsize >= 10)
>>> state.solver.add(symsize < 20)
>>> simfile = angr.SimFile('mysymsizefile', size=symsize)
>>> simfile.set_state(state)

Reads will encode all possibilities:

>>> data, actual_size, new_pos = simfile.read(0, 30)
>>> assert set(state.solver.eval_upto(actual_size, 30)) == set(range(10, 20))

The maximum size can’t be easily resolved, so the data returned is 30 bytes long, and we’re supposed to use it conjunc-
tion with actual_size.

76 Chapter 5. Advanced Topics

angr

>>> assert len(data) == 30*8

Symbolic read sizes work too!

>>> symreadsize = claripy.BVS('myreadsize', 64)
>>> state.solver.add(symreadsize >= 5)
>>> state.solver.add(symreadsize < 30)
>>> data, actual_size, new_pos = simfile.read(0, symreadsize)

All sizes between 5 and 20 should be possible:

>>> assert set(state.solver.eval_upto(actual_size, 30)) == set(range(5, 20))

Example 6: Working with streams (SimPackets)

So far, we’ve only used the SimFile class, which models a random-accessible file object. However, in real life, files are
not everything. Streams (standard I/O, TCP, etc.) are a great example: While they hold data like a normal file does,
they do not support random accesses, e.g., you cannot read out the second byte of stdin if you have already read passed
that position, and you cannot modify any byte that has been previously sent out to a network endpoint. This allows us
to design a simpler abstraction for streams in angr.

Believe it or not, this simpler abstraction for streams will benefit symbolic execution. Consider an example program
that calls scanf N times to read in N strings. With a traditional SimFile, as we do not know the length of each input
string, there does not exist any clear boundary in the file between these symbolic input strings. In this case, angr will
perform N symbolic reads where each read will generate a gigantic tree of claripy ASTs, with string lengths being
symbolic. This is a nightmare for constraint solving. Nevertheless, the fact that scanf is used on a stream (stdin)
dictates that there will be zero overlap between individual reads, regardless of the sizes of each symbolic input string.
We may as well model stdin as a stream that comprises of consecutive packets, instead of a file containing a sequence
of bytes. Each of the packet can be of a fixed length or a symbolic length. Since there will be absolutely no byte overlap
between packets, the constraints that angr will produce after executing this example program will be a lot simpler.

The key concept involved is “short reads”, i.e. when you ask for n bytes but actually get back fewer bytes than that.
We use a different class implementing SimFileBase, SimPackets, to automatically enable support for short reads. By
default, stdin, stdout, and stderr are all SimPackets objects.

>>> simfile = angr.SimPackets('mypackets')
>>> simfile.set_state(state)

This’ll just generate a single packet. For SimPackets, the position is just a packet number! If left unspecified,
short_reads is determined from a state option.

>>> data, actual_size, new_pos = simfile.read(0, 20, short_reads=True)
>>> assert len(data) == 20*8
>>> assert set(state.solver.eval_upto(actual_size, 30)) == set(range(21))

Data in a SimPackets is stored as tuples of (packet data, packet size) in .content.

>>> print(simfile.content)
[(<BV160 packet_0_mypackets>, <BV64 packetsize_0_mypackets>)]

>>> simfile.read(0, 1, short_reads=False)
>>> print(simfile.content)
[(<BV160 packet_0_mypackets>, <BV64 packetsize_0_mypackets>), (<BV8 packet_1_mypackets>,
→˓<BV64 0x1>)]

5.5. Working with File System, Sockets, and Pipes 77

angr

So hopefully you understand sort of the kind of data that a SimFile can store and what’ll happen when a program tries
to interact with it with various combinations of symbolic and concrete data. Those examples only covered reads, but
writes are pretty similar.

5.5.2 The filesystem, for real now

If you want to make a SimFile available to the program, we need to either stick it in the filesystem or serve stdin/stdout
from it.

The simulated filesystem is the state.fs plugin. You can store, load, and delete files from the filesystem, with the
insert, get, and delete methods. Refer to angr.state_plugins.filesystem for details.

So to make our file available as /tmp/myfile:

>>> state.fs.insert('/tmp/myfile', simfile)
>>> assert state.fs.get('/tmp/myfile') is simfile

Then, after execution, we would extract the file from the result state and use simfile.concretize() to generate a
testcase to reach that state. Keep in mind that concretize() returns different types depending on the file type - for a
SimFile it’s a bytestring and for SimPackets it’s a list of bytestrings.

The simulated filesystem supports a fun concept of “mounts”, where you can designate a subtree as instrumented by a
particular provider. The most common mount is to expose a part of the host filesystem to the guest, lazily importing
file data when the program asks for it:

>>> state.fs.mount('/', angr.SimHostFilesystem('./guest_chroot'))

You can write whatever kind of mount you want to instrument filesystem access by subclassing angr.SimMount!

5.5.3 Stdio streams

For stdin and friends, it’s a little more complicated. The relevant plugin is state.posix, which stores all abstractions
relevant to a POSIX-compliant environment. You can always get a state’s stdin SimFile with state.posix.stdin,
but you can’t just replace it - as soon as the state is created, references to this file are created in the file descriptors.
Because of this you need to specify it at the time the POSIX plugin is created:

>>> state.register_plugin('posix', angr.state_plugins.posix.SimSystemPosix(stdin=simfile,
→˓ stdout=simfile, stderr=simfile))
>>> assert state.posix.stdin is simfile
>>> assert state.posix.stdout is simfile
>>> assert state.posix.stderr is simfile

Or, there’s a nice shortcut while creating the state if you only need to specify stdin:

>>> state = proj.factory.entry_state(stdin=simfile)
>>> assert state.posix.stdin is simfile

Any of those places you can specify a SimFileBase, you can also specify a string or a bitvector (a flat SimFile with
fixed size will be created to hold it) or a SimFile type (it’ll be instantiated for you).

78 Chapter 5. Advanced Topics

angr

5.6 Intermediate Representation

In order to be able to analyze and execute machine code from different CPU architectures, such as MIPS, ARM, and
PowerPC in addition to the classic x86, angr performs most of its analysis on an intermediate representation, a structured
description of the fundamental actions performed by each CPU instruction. By understanding angr’s IR, VEX (which
we borrowed from Valgrind), you will be able to write very quick static analyses and have a better understanding of
how angr works.

The VEX IR abstracts away several architecture differences when dealing with different architectures, allowing a single
analysis to be run on all of them:

• Register names. The quantity and names of registers differ between architectures, but modern CPU designs hold
to a common theme: each CPU contains several general purpose registers, a register to hold the stack pointer, a
set of registers to store condition flags, and so forth. The IR provides a consistent, abstracted interface to registers
on different platforms. Specifically, VEX models the registers as a separate memory space, with integer offsets
(e.g., AMD64’s rax is stored starting at address 16 in this memory space).

• Memory access. Different architectures access memory in different ways. For example, ARM can access mem-
ory in both little-endian and big-endian modes. The IR abstracts away these differences.

• Memory segmentation. Some architectures, such as x86, support memory segmentation through the use of
special segment registers. The IR understands such memory access mechanisms.

• Instruction side-effects. Most instructions have side-effects. For example, most operations in Thumb mode
on ARM update the condition flags, and stack push/pop instructions update the stack pointer. Tracking these
side-effects in an ad hoc manner in the analysis would be crazy, so the IR makes these effects explicit.

There are lots of choices for an IR. We use VEX, since the uplifting of binary code into VEX is quite well supported.
VEX is an architecture-agnostic, side-effects-free representation of a number of target machine languages. It abstracts
machine code into a representation designed to make program analysis easier. This representation has four main classes
of objects:

• Expressions. IR Expressions represent a calculated or constant value. This includes memory loads, register
reads, and results of arithmetic operations.

• Operations. IR Operations describe a modification of IR Expressions. This includes integer arithmetic, floating-
point arithmetic, bit operations, and so forth. An IR Operation applied to IR Expressions yields an IR Expression
as a result.

• Temporary variables. VEX uses temporary variables as internal registers: IR Expressions are stored in tempo-
rary variables between use. The content of a temporary variable can be retrieved using an IR Expression. These
temporaries are numbered, starting at t0. These temporaries are strongly typed (e.g., “64-bit integer” or “32-bit
float”).

• Statements. IR Statements model changes in the state of the target machine, such as the effect of memory stores
and register writes. IR Statements use IR Expressions for values they may need. For example, a memory store
IR Statement uses an IR Expression for the target address of the write, and another IR Expression for the content.

• Blocks. An IR Block is a collection of IR Statements, representing an extended basic block (termed “IR Super
Block” or “IRSB”) in the target architecture. A block can have several exits. For conditional exits from the
middle of a basic block, a special Exit IR Statement is used. An IR Expression is used to represent the target of
the unconditional exit at the end of the block.

VEX IR is actually quite well documented in the libvex_ir.h file (https://github.com/angr/vex/blob/master/pub/
libvex_ir.h) in the VEX repository. For the lazy, we’ll detail some parts of VEX that you’ll likely interact with fairly
frequently. To begin with, here are some IR Expressions:

5.6. Intermediate Representation 79

https://github.com/angr/vex/blob/master/pub/libvex_ir.h
https://github.com/angr/vex/blob/master/pub/libvex_ir.h

angr

IR
Expres-
sion

Evaluated Value VEX
Output
Example

Con-
stant

A constant value. 0x4:I32

Read
Temp

The value stored in a VEX temporary variable. RdTmp(t10)

Get
Register

The value stored in a register. GET:I32(16)

Load
Mem-
ory

The value stored at a memory address, with the address specified by another IR Expres-
sion.

LDle:I32 /
LDbe:I64

Opera-
tion

A result of a specified IR Operation, applied to specified IR Expression arguments. Add32

If-Then-
Else

If a given IR Expression evaluates to 0, return one IR Expression. Otherwise, return
another.

ITE

Helper
Func-
tion

VEX uses C helper functions for certain operations, such as computing the conditional
flags registers of certain architectures. These functions return IR Expressions.

func-
tion_name()

These expressions are then, in turn, used in IR Statements. Here are some common ones:

IR
State-
ment

Meaning VEX Output Example

Write
Temp

Set a VEX temporary variable to the value of the given IR Expression. WrTmp(t1) = (IR Ex-
pression)

Put
Regis-
ter

Update a register with the value of the given IR Expression. PUT(16) = (IR Expres-
sion)

Store
Mem-
ory

Update a location in memory, given as an IR Expression, with a value, also
given as an IR Expression.

STle(0x1000) = (IR Ex-
pression)

Exit A conditional exit from a basic block, with the jump target specified by an IR
Expression. The condition is specified by an IR Expression.

if (condition) goto (Bor-
ing) 0x4000A00:I32

An example of an IR translation, on ARM, is produced below. In the example, the subtraction operation is translated
into a single IR block comprising 5 IR Statements, each of which contains at least one IR Expression (although, in real
life, an IR block would typically consist of more than one instruction). Register names are translated into numerical
indices given to the GET Expression and PUT Statement. The astute reader will observe that the actual subtraction
is modeled by the first 4 IR Statements of the block, and the incrementing of the program counter to point to the next
instruction (which, in this case, is located at 0x59FC8) is modeled by the last statement.

The following ARM instruction:

subs R2, R2, #8

Becomes this VEX IR:

t0 = GET:I32(16)
t1 = 0x8:I32

(continues on next page)

80 Chapter 5. Advanced Topics

angr

(continued from previous page)

t3 = Sub32(t0,t1)
PUT(16) = t3
PUT(68) = 0x59FC8:I32

Now that you understand VEX, you can actually play with some VEX in angr: We use a library called PyVEX that
exposes VEX into Python. In addition, PyVEX implements its own pretty-printing so that it can show register names
instead of register offsets in PUT and GET instructions.

PyVEX is accessable through angr through the Project.factory.block interface. There are many different rep-
resentations you could use to access syntactic properties of a block of code, but they all have in common the trait of
analyzing a particular sequence of bytes. Through the factory.block constructor, you get a Block object that can be
easily turned into several different representations. Try .vex for a PyVEX IRSB, or .capstone for a Capstone block.

Let’s play with PyVEX:

>>> import angr

load the program binary
>>> proj = angr.Project("/bin/true")

translate the starting basic block
>>> irsb = proj.factory.block(proj.entry).vex
and then pretty-print it
>>> irsb.pp()

translate and pretty-print a basic block starting at an address
>>> irsb = proj.factory.block(0x401340).vex
>>> irsb.pp()

this is the IR Expression of the jump target of the unconditional exit at the end of␣
→˓the basic block
>>> print(irsb.next)

this is the type of the unconditional exit (e.g., a call, ret, syscall, etc)
>>> print(irsb.jumpkind)

you can also pretty-print it
>>> irsb.next.pp()

iterate through each statement and print all the statements
>>> for stmt in irsb.statements:
... stmt.pp()

pretty-print the IR expression representing the data, and the *type* of that IR␣
→˓expression written by every store statement
>>> import pyvex
>>> for stmt in irsb.statements:
... if isinstance(stmt, pyvex.IRStmt.Store):
... print("Data:",)
... stmt.data.pp()
... print("")
... print("Type:",)
... print(stmt.data.result_type)

(continues on next page)

5.6. Intermediate Representation 81

https://github.com/angr/pyvex

angr

(continued from previous page)

... print("")

pretty-print the condition and jump target of every conditional exit from the basic␣
→˓block
>>> for stmt in irsb.statements:
... if isinstance(stmt, pyvex.IRStmt.Exit):
... print("Condition:",)
... stmt.guard.pp()
... print("")
... print("Target:",)
... stmt.dst.pp()
... print("")

these are the types of every temp in the IRSB
>>> print(irsb.tyenv.types)

here is one way to get the type of temp 0
>>> print(irsb.tyenv.types[0])

5.6.1 Condition flags computation (for x86 and ARM)

One of the most common instruction side-effects on x86 and ARM CPUs is updating condition flags, such as the
zero flag, the carry flag, or the overflow flag. Computer architects usually put the concatenation of these flags (yes,
concatenation of the flags, since each condition flag is 1 bit wide) into a special register (i.e. EFLAGS/RFLAGS on x86,
APSR/CPSR on ARM). This special register stores important information about the program state, and is critical for
correct emulation of the CPU.

VEX uses 4 registers as its “Flag thunk descriptors” to record details of the latest flag-setting operation. VEX has a
lazy strategy to compute the flags: when an operation that would update the flags happens, instead of computing the
flags, VEX stores a code representing this operation to the cc_op pseudo-register, and the arguments to the operation
in cc_dep1 and cc_dep2. Then, whenever VEX needs to get the actual flag values, it can figure out what the one bit
corresponding to the flag in question actually is, based on its flag thunk descriptors. This is an optimization in the flags
computation, as VEX can now just directly perform the relevant operation in the IR without bothering to compute and
update the flags’ value.

Amongst different operations that can be placed in cc_op, there is a special value 0 which corresponds to OP_COPY
operation. This operation is supposed to copy the value in cc_dep1 to the flags. It simply means that cc_dep1 contains
the flags’ value. angr uses this fact to let us efficiently retrieve the flags’ value: whenever we ask for the actual flags,
angr computes their value, then dumps them back into cc_dep1 and sets cc_op = OP_COPY in order to cache the
computation. We can also use this operation to allow the user to write to the flags: we just set cc_op = OP_COPY to
say that a new value being set to the flags, then set cc_dep1 to that new value.

82 Chapter 5. Advanced Topics

angr

5.7 Working with Data and Conventions

Frequently, you’ll want to access structured data from the program you’re analyzing. angr has several features to make
this less of a headache.

5.7.1 Working with types

angr has a system for representing types. These SimTypes are found in angr.types - an instance of any of these
classes represents a type. Many of the types are incomplete unless they are supplamented with a SimState - their size
depends on the architecture you’re running under. You may do this with ty.with_arch(arch), which returns a copy
of itself, with the architecture specified.

angr also has a light wrapper around pycparser, which is a C parser. This helps with getting instances of type objects:

>>> import angr, monkeyhex

note that SimType objects have their __repr__ defined to return their c type name,
so this function actually returned a SimType instance.
>>> angr.types.parse_type('int')
int

>>> angr.types.parse_type('char **')
char**

>>> angr.types.parse_type('struct aa {int x; long y;}')
struct aa

>>> angr.types.parse_type('struct aa {int x; long y;}').fields
OrderedDict([('x', int), ('y', long)])

Additionally, you may parse C definitions and have them returned to you in a dict, either of variable/function declarations
or of newly defined types:

>>> angr.types.parse_defns("int x; typedef struct llist { char* str; struct llist *next;␣
→˓} list_node; list_node *y;")
{'x': int, 'y': struct llist*}

>>> defs = angr.types.parse_types("int x; typedef struct llist { char* str; struct llist␣
→˓*next; } list_node; list_node *y;")
>>> defs
{'struct llist': struct llist, 'list_node': struct llist}

if you want to get both of these dicts at once, use parse_file, which returns both in␣
→˓a tuple.
>>> angr.types.parse_file("int x; typedef struct llist { char* str; struct llist *next; }
→˓ list_node; list_node *y;")
({'x': int, 'y': struct llist*},
{'struct llist': struct llist, 'list_node': struct llist})

>>> defs['list_node'].fields
OrderedDict([('str', char*), ('next', struct llist*)])

>>> defs['list_node'].fields['next'].pts_to.fields
(continues on next page)

5.7. Working with Data and Conventions 83

angr

(continued from previous page)

OrderedDict([('str', char*), ('next', struct llist*)])

If you want to get a function type and you don't want to construct it manually,
you can use parse_type
>>> angr.types.parse_type("int (int y, double z)")
(int, double) -> int

And finally, you can register struct definitions for future use:

>>> angr.types.register_types(angr.types.parse_type('struct abcd { int x; int y; }'))
>>> angr.types.register_types(angr.types.parse_types('typedef long time_t;'))
>>> angr.types.parse_defns('struct abcd a; time_t b;')
{'a': struct abcd, 'b': long}

These type objects aren’t all that useful on their own, but they can be passed to other parts of angr to specify data types.

5.7.2 Accessing typed data from memory

Now that you know how angr’s type system works, you can unlock the full power of the state.mem interface! Any
type that’s registered with the types module can be used to extract data from memory.

>>> p = angr.Project('examples/fauxware/fauxware')
>>> s = p.factory.entry_state()
>>> s.mem[0x601048]
<<untyped> <unresolvable> at 0x601048>

>>> s.mem[0x601048].long
<long (64 bits) <BV64 0x4008d0> at 0x601048>

>>> s.mem[0x601048].long.resolved
<BV64 0x4008d0>

>>> s.mem[0x601048].long.concrete
0x4008d0

>>> s.mem[0x601048].struct.abcd
<struct abcd {
.x = <BV32 0x4008d0>,
.y = <BV32 0x0>

} at 0x601048>

>>> s.mem[0x601048].struct.abcd.x
<int (32 bits) <BV32 0x4008d0> at 0x601048>

>>> s.mem[0x601048].struct.abcd.y
<int (32 bits) <BV32 0x0> at 0x60104c>

>>> s.mem[0x601048].deref
<<untyped> <unresolvable> at 0x4008d0>

>>> s.mem[0x601048].deref.string
<string_t <BV64 0x534f534e45414b59> at 0x4008d0>

(continues on next page)

84 Chapter 5. Advanced Topics

angr

(continued from previous page)

>>> s.mem[0x601048].deref.string.resolved
<BV64 0x534f534e45414b59>

>>> s.mem[0x601048].deref.string.concrete
b'SOSNEAKY'

The interface works like this:

• You first use [array index notation] to specify the address you’d like to load from

• If at that address is a pointer, you may access the deref property to return a SimMemView at the address present
in memory.

• You then specify a type for the data by simply accessing a property of that name. For a list of supported types,
look at state.mem.types.

• You can then refine the type. Any type may support any refinement it likes. Right now the only refinements
supported are that you may access any member of a struct by its member name, and you may index into a string
or array to access that element.

• If the address you specified initially points to an array of that type, you can say .array(n) to view the data as
an array of n elements.

• Finally, extract the structured data with .resolved or .concrete. .resolved will return bitvector values,
while .concrete will return integer, string, array, etc values, whatever best represents the data.

• Alternately, you may store a value to memory, by assigning to the chain of properties that you’ve constructed.
Note that because of the way Python works, x = s.mem[...].prop; x = val will NOT work, you must say
s.mem[...].prop = val.

If you define a struct using register_types(parse_type(struct_expr)), you can access it here as a type:

>>> s.mem[p.entry].struct.abcd
<struct abcd {
.x = <BV32 0x8949ed31>,
.y = <BV32 0x89485ed1>

} at 0x400580>

5.7.3 Working with Calling Conventions

A calling convention is the specific means by which code passes arguments and return values through function calls.
angr’s abstraction of calling conventions is called SimCC. You can construct new SimCC instances through the angr
object factory, with p.factory.cc(...). This will give a calling convention which is guessed based your guest
architecture and OS. If angr guesses wrong, you can explicitly pick one of the calling conventions in the angr.
calling_conventions module.

If you have a very wacky calling convention, you can use angr.calling_conventions.SimCCUsercall. This will
ask you to specify locations for the arguments and the return value. To do this, use instances of the SimRegArg or
SimStackArg classes. You can find them in the factory - p.factory.cc.Sim*Arg.

Once you have a SimCC object, you can use it along with a SimState object and a function prototype (a SimTypeFunc-
tion) to extract or store function arguments more cleanly. Take a look at the angr.calling_conventions.SimCC>
for details. Alternately, you can pass it to an interface that can use it to modify its own behavior, like p.factory.
call_state, or. . .

5.7. Working with Data and Conventions 85

angr

5.7.4 Callables

Callables are a Foreign Functions Interface (FFI) for symbolic execution. Basic callable usage is to create one with
myfunc = p.factory.callable(addr), and then call it! result = myfunc(args, ...) When you call the
callable, angr will set up a call_state at the given address, dump the given arguments into memory, and run a
path_group based on this state until all the paths have exited from the function. Then, it merges all the result states
together, pulls the return value out of that state, and returns it.

All the interaction with the state happens with the aid of a SimCC and a SimTypeFunction, to tell where to put
the arguments and where to get the return value. It will try to use a sane default for the architecture, but if you’d
like to customize it, you can pass a SimCC object in the cc keyword argument when constructing the callable. The
SimTypeFunction is required - you must pass the prototype parameter. If you pass a string to this parameter it will
be parsed as a function declaration.

You can pass symbolic data as function arguments, and everything will work fine. You can even pass more complicated
data, like strings, lists, and structures as native Python data (use tuples for structures), and it’ll be serialized as cleanly as
possible into the state. If you’d like to specify a pointer to a certain value, you can wrap it in a PointerWrapper object,
available as p.factory.callable.PointerWrapper. The exact semantics of how pointer-wrapping work are a little
confusing, but they can be boiled down to “unless you specify it with a PointerWrapper or a specific SimArrayType,
nothing will be wrapped in a pointer automatically unless it gets to the end and it hasn’t yet been wrapped in a pointer
yet and the original type is a string, array, or tuple.” The relevant code is actually in SimCC - it’s the setup_callsite
function.

If you don’t care for the actual return value of the call, you can say func.perform_call(arg, ...), and then the
properties func.result_state and func.result_path_group will be populated. They will actually be populated
even if you call the callable normally, but you probably care about them more in this case!

5.8 Solver Engine

angr’s solver engine is called Claripy. Claripy exposes the following design:

• Claripy ASTs (the subclasses of claripy.ast.Base) provide a unified way to interact with concrete and symbolic
expressions

• Frontends provide different paradigms for evaluating these expressions. For example, the FullFrontend solves
expressions using something like an SMT solver backend, while LightFrontend handles them by using an
abstract (and approximating) data domain backend.

• Each Frontend needs to, at some point, do actual operation and evaluations on an AST. ASTs don’t sup-
port this on their own. Instead, Backends translate ASTs into backend objects (i.e., Python primitives for
BackendConcrete, Z3 expressions for BackendZ3, strided intervals for BackendVSA, etc) and handle any ap-
propriate state-tracking objects (such as tracking the solver state in the case of BackendZ3). Roughly speaking,
frontends take ASTs as inputs and use backends to backend.convert() those ASTs into backend objects that
can be evaluated and otherwise reasoned about.

• FrontendMixins customize the operation of Frontends. For example, ModelCacheMixin caches solutions
from an SMT solver.

• The combination of a Frontend, a number of FrontendMixins, and a number of Backends comprise a claripy
Solver.

Internally, Claripy seamlessly mediates the co-operation of multiple disparate backends – concrete bitvectors, VSA
constructs, and SAT solvers. It is pretty badass.

Most users of angr will not need to interact directly with Claripy (except for, maybe, claripy AST objects, which
represent symbolic expressions) – angr handles most interactions with Claripy internally. However, for dealing with
expressions, an understanding of Claripy might be useful.

86 Chapter 5. Advanced Topics

angr

5.8.1 Claripy ASTs

Claripy ASTs abstract away the differences between mathematical constructs that Claripy supports. They define a tree
of operations (i.e., (a + b) / c) on any type of underlying data. Claripy handles the application of these operations
on the underlying objects themselves by dispatching requests to the backends.

Currently, Claripy supports the following types of ASTs:

Name Description Supported By (Claripy
Backends)

Example Code

BV This is a bitvector, whether
symbolic (with a name) or
concrete (with a value). It
has a size (in bits).

BackendConcrete, Back-
endVSA, BackendZ3

Create a 32-bit symbolic
bitvector “x”: clar-
ipy.BVS(‘x’, 32) Create a
32-bit bitvector with the
value 0xc001b3475: clar-
ipy.BVV(0xc001b3a75,
32)`Create a
32-bit “strided interval”
(see VSA documentation)
that can be any divisible-
by-10 number between
1000 and 2000: `clar-
ipy.SI(name=’x’, bits=32,
lower_bound=1000,
upper_bound=2000,
stride=10)`

FP This is a floating-point
number, whether symbolic
(with a name) or concrete
(with a value).

BackendConcrete, Back-
endZ3 Create a clar-

ipy.fp.FSORT_DOUBLE
symbolic floating point
“b”: `claripy.FPS(‘b’,

clar-
ipy.fp.FSORT_DOUBLE)`Create
a clar-
ipy.fp.FSORT_FLOAT
floating point with
value 3.2: clar-
ipy.FPV(3.2, clar-
ipy.fp.FSORT_FLOAT)

Bool This is a boolean operation
(True or False).

BackendConcrete, Back-
endVSA, BackendZ3

claripy.BoolV(True),
or claripy.true or
claripy.false, or by
comparing two ASTs (i.e.,
claripy.BVS('x', 32)
< claripy.BVS('y',
32)

All of the above creation code returns claripy.AST objects, on which operations can then be carried out.

ASTs provide several useful operations.

>>> import claripy

(continues on next page)

5.8. Solver Engine 87

angr

(continued from previous page)

>>> bv = claripy.BVV(0x41424344, 32)

Size - you can get the size of an AST with .size()
>>> assert bv.size() == 32

Reversing - .reversed is the reversed version of the BVV
>>> assert bv.reversed is claripy.BVV(0x44434241, 32)
>>> assert bv.reversed.reversed is bv

Depth - you can get the depth of the AST
>>> print(bv.depth)
>>> assert bv.depth == 1
>>> x = claripy.BVS('x', 32)
>>> assert (x+bv).depth == 2
>>> assert ((x+bv)/10).depth == 3

Applying a condition (==, !=, etc) on ASTs will return an AST that represents the condition being carried out. For
example:

>>> r = bv == x
>>> assert isinstance(r, claripy.ast.Bool)

>>> p = bv == bv
>>> assert isinstance(p, claripy.ast.Bool)
>>> assert p.is_true()

You can combine these conditions in different ways.

>>> q = claripy.And(claripy.Or(bv == x, bv * 2 == x, bv * 3 == x), x == 0)
>>> assert isinstance(p, claripy.ast.Bool)

The usefulness of this will become apparent when we discuss Claripy solvers.

In general, Claripy supports all of the normal Python operations (+, -, |, ==, etc), and provides additional ones via the
Claripy instance object. Here’s a list of available operations from the latter.

88 Chapter 5. Advanced Topics

angr

Name Description Example
LShR Logically shifts a bit expression (BVV, BV, SI) to the

right.
claripy.LShR(x, 10)

SignExt Sign-extends a bit expression. claripy.SignExt(32, x) or x.
sign_extend(32)

Ze-
roExt

Zero-extends a bit expression. claripy.ZeroExt(32, x) or x.
zero_extend(32)

Extract Extracts the given bits (zero-indexed from the right,
inclusive) from a bit expression.

Extract the rightmost byte of x: claripy.
Extract(7, 0, x) or x[7:0]

Concat Concatenates several bit expressions together into a
new bit expression.

claripy.Concat(x, y, z)

Ro-
tateLeft

Rotates a bit expression left. claripy.RotateLeft(x, 8)

Rota-
teRight

Rotates a bit expression right. claripy.RotateRight(x, 8)

Re-
verse

Endian-reverses a bit expression. claripy.Reverse(x) or x.reversed

And Logical And (on boolean expressions) claripy.And(x == y, x > 0)
Or Logical Or (on boolean expressions) claripy.Or(x == y, y < 10)
Not Logical Not (on a boolean expression) claripy.Not(x == y) is the same as x != y
If An If-then-else Choose the maximum of two expressions:

claripy.If(x > y, x, y)
ULE Unsigned less than or equal to. Check if x is less than or equal to y: claripy.

ULE(x, y)
ULT Unsigned less than. Check if x is less than y: claripy.ULT(x, y)
UGE Unsigned greater than or equal to. Check if x is greater than or equal to y:

claripy.UGE(x, y)
UGT Unsigned greater than. Check if x is greater than y: claripy.UGT(x,

y)
SLE Signed less than or equal to. Check if x is less than or equal to y: claripy.

SLE(x, y)
SLT Signed less than. Check if x is less than y: claripy.SLT(x, y)
SGE Signed greater than or equal to. Check if x is greater than or equal to y:

claripy.SGE(x, y)
SGT Signed greater than. Check if x is greater than y: claripy.SGT(x,

y)

Note: The default Python >, <, >=, and <= are unsigned in Claripy. This is different than their behavior in Z3, because
it seems more natural in binary analysis.

5.8. Solver Engine 89

angr

5.8.2 Solvers

The main point of interaction with Claripy are the Claripy Solvers. Solvers expose an API to interpret ASTs in different
ways and return usable values. There are several different solvers.

Name Description
Solver This is analogous to a z3.Solver(). It is a solver that tracks constraints on symbolic variables and

uses a constraint solver (currently, Z3) to evaluate symbolic expressions.
SolverVSA This solver uses VSA to reason about values. It is an approximating solver, but produces values without

performing actual constraint solves.
Solver-
Replace-
ment

This solver acts as a pass-through to a child solver, allowing the replacement of expressions on-the-fly.
It is used as a helper by other solvers and can be used directly to implement exotic analyses.

Solver-
Hybrid

This solver combines the SolverReplacement and the Solver (VSA and Z3) to allow for approximating
values. You can specify whether or not you want an exact result from your evaluations, and this solver
does the rest.

Solver-
Com-
posite

This solver implements optimizations that solve smaller sets of constraints to speed up constraint solving.

Some examples of solver usage:

create the solver and an expression
>>> s = claripy.Solver()
>>> x = claripy.BVS('x', 8)

now let's add a constraint on x
>>> s.add(claripy.ULT(x, 5))

>>> assert sorted(s.eval(x, 10)) == [0, 1, 2, 3, 4]
>>> assert s.max(x) == 4
>>> assert s.min(x) == 0

we can also get the values of complex expressions
>>> y = claripy.BVV(65, 8)
>>> z = claripy.If(x == 1, x, y)
>>> assert sorted(s.eval(z, 10)) == [1, 65]

and, of course, we can add constraints on complex expressions
>>> s.add(z % 5 != 0)
>>> assert s.eval(z, 10) == (1,)
>>> assert s.eval(x, 10) == (1,) # interestingly enough, since z can't be y, x can only␣
→˓be 1!

Custom solvers can be built by combining a Claripy Frontend (the class that handles the actual interaction with SMT
solver or the underlying data domain) and some combination of frontend mixins (that handle things like caching,
filtering out duplicate constraints, doing opportunistic simplification, and so on).

90 Chapter 5. Advanced Topics

angr

5.8.3 Claripy Backends

Backends are Claripy’s workhorses. Claripy exposes ASTs to the world, but when actual computation has to be done,
it pushes those ASTs into objects that can be handled by the backends themselves. This provides a unified interface
to the outside world while allowing Claripy to support different types of computation. For example, BackendConcrete
provides computation support for concrete bitvectors and booleans, BackendVSA introduces VSA constructs such as
StridedIntervals (and details what happens when operations are performed on them, and BackendZ3 provides support
for symbolic variables and constraint solving.

There are a set of functions that a backend is expected to implement. For all of these functions, the “public” version is
expected to be able to deal with claripy’s AST objects, while the “private” version should only deal with objects specific
to the backend itself. This is distinguished with Python idioms: a public function will be named func() while a private
function will be _func(). All functions should return objects that are usable by the backend in its private methods. If
this can’t be done (i.e., some functionality is being attempted that the backend can’t handle), the backend should raise
a BackendError. In this case, Claripy will move on to the next backend in its list.

All backends must implement a convert() function. This function receives a claripy AST and should return an object
that the backend can handle in its private methods. Backends should also implement a convert() method, which will
receive anything that is not a claripy AST object (i.e., an integer or an object from a different backend). If convert()
or convert() receives something that the backend can’t translate to a format that is usable internally, the backend
should raise BackendError, and thus won’t be used for that object. All backends must also implement any functions of
the base Backend abstract class that currently raise NotImplementedError().

Claripy’s contract with its backends is as follows: backends should be able to handle, in their private functions, any
object that they return from their private or public functions. Claripy will never pass an object to any backend private
function that did not originate as a return value from a private or public function of that backend. One exception to this
is convert() and convert(), as Claripy can try to stuff anything it feels like into _convert() to see if the backend can
handle that type of object.

Backend Objects

To perform actual, useful computation on ASTs, Claripy uses backend objects. A BackendObject is a result of the
operation represented by the AST. Claripy expects these objects to be returned from their respective backends, and will
pass such objects into that backend’s other functions.

5.9 Symbolic memory addressing

angr supports symbolic memory addressing, meaning that offsets into memory may be symbolic. Our implementation
of this is inspired by “Mayhem”. Specifically, this means that angr concretizes symbolic addresses when they are
used as the target of a write. This causes some surprises, as users tend to expect symbolic writes to be treated purely
symbolically, or “as symbolically” as we treat symbolic reads, but that is not the default behavior. However, like most
things in angr, this is configurable.

The address resolution behavior is governed by concretization strategies, which are subclasses of angr.
concretization_strategies.SimConcretizationStrategy. Concretization strategies for reads are set in
state.memory.read_strategies and for writes in state.memory.write_strategies. These strategies are
called, in order, until one of them is able to resolve addresses for the symbolic index. By setting your own concretiza-
tion strategies (or through the use of SimInspect address_concretization breakpoints, described above), you can
change the way angr resolves symbolic addresses.

For example, angr’s default concretization strategies for writes are:

1. A conditional concretization strategy that allows symbolic writes (with a maximum range of 128 possible solu-
tions) for any indices that are annotated with angr.plugins.symbolic_memory.MultiwriteAnnotation.

5.9. Symbolic memory addressing 91

angr

2. A concretization strategy that simply selects the maximum possible solution of the symbolic index.

To enable symbolic writes for all indices, you can either add the SYMBOLIC_WRITE_ADDRESSES state option at state cre-
ation time or manually insert a angr.concretization_strategies.SimConcretizationStrategyRange object
into state.memory.write_strategies. The strategy object takes a single argument, which is the maximum range
of possible solutions that it allows before giving up and moving on to the next (presumably non-symbolic) strategy.

5.9.1 Writing concretization strategies

Todo: Write this section

5.10 Java Support

angr also supports symbolically executing Java code and Android apps! This also includes Android apps using a
combination of compiled Java and native (C/C++) code.

Warning: Java support is experimental! Contribution from the community is highly encouraged! Pull requests
are very welcomed!

We implemented Java support by lifting the compiled Java code, both Java and DEX bytecode, leveraging our Soot
Python wrapper: pysoot. pysoot extracts a fully serializable interface from Android apps and Java code (unfortunately,
as of now, it only works on Linux). For every class of the generated IR (for instance, SootMethod), you can nicely
print its instructions (in a format similar to Soot shimple) using print() or str().

We then leverage the generated IR in a new angr engine able to run code in Soot IR: angr/engines/soot/engine.py. This
engine is also able to automatically switch to executing native code if the Java code calls any native method using the
JNI interface.

Together with the symbolic execution, we also implemented some basic static analysis, specifically a basic CFG recon-
struction analysis. Moreover, we added support for string constraint solving, modifying claripy and using the CVC4
solver.

5.10.1 How to install

Enabling Java support requires few more steps than typical angr installation. Assuming you installed angr-dev, activate
the virtualenv and run:

pip install -e ./claripy[cvc4-solver]
./setup.sh pysoot

92 Chapter 5. Advanced Topics

https://github.com/angr/pysoot
https://github.com/angr/angr/blob/master/angr/engines/soot/engine.py
https://github.com/angr/angr-dev

angr

Analyzing Android apps.

Analyzing Android apps (.APK files, containing Java code compiled to the DEX format) requires the Android SDK. Typ-
ically, it is installed in <HOME>/Android/SDK/platforms/platform-XX/android.jar, where XX is the Android
SDK version used by the app you want to analyze (you may want to install all the platforms required by the Android
apps you want to analyze).

5.10.2 Examples

There are multiple examples available:

• Easy Java crackmes: java_crackme1, java_simple3, java_simple4

• A more complex example (solving a CTF challenge): ictf2017_javaisnotfun, blogpost

• Symbolically executing an Android app (using a mix of Java and native code): java_androidnative1

• Many other low-level tests: test_java

5.11 Symbion: Interleaving symbolic and concrete execution

Let’s suppose you want to symbolically analyze a specific function of a program, but there is a huge initialization step
that you want to skip because it is not necessary for your analysis, or cannot properly be emulated by angr. For example,
maybe your program is running on an embedded system and you have access to a debug interface, but you can’t easily
replicate the hardware in a simulated environment.

This is the perfect scenario for Symbion, our interleaved execution technique!

We implemented a built-in system that let users define a ConcreteTarget that is used to “import” a concrete state
of the target program from an external source into angr. Once the state is imported you can make parts of the state
symbolic, use symbolic execution on this state, run your analyses, and finally concretize the symbolic parts and resume
concrete execution in the external environment. By iterating this process it is possible to implement run-time and
interactive advanced symbolic analyses that are backed up by the real program’s execution!

Isn’t that cool?

5.11.1 How to install

To use this technique you’ll need an implementation of a ConcreteTarget (effectively, an object that is going to be the
“glue” between angr and the external process.) We ship a default one (the AvatarGDBConcreteTarget, which control
an instance of a program being debugged under GDB) in the following repo https://github.com/angr/angr-targets.

Assuming you installed angr-dev, activate the virtualenv and run:

git clone https://github.com/angr/angr-targets.git
cd angr-targets
pip install .

Now you’re ready to go!

5.11. Symbion: Interleaving symbolic and concrete execution 93

https://github.com/angr/angr-examples/tree/master/examples/java_crackme1
https://github.com/angr/angr-examples/tree/master/examples/java_simple3
https://github.com/angr/angr-examples/tree/master/examples/java_simple4
https://github.com/angr/angr-examples/tree/master/examples/ictf2017_javaisnotfun
https://angr.io/blog/java_angr/
https://github.com/angr/angr-examples/tree/master/examples/java_androidnative1
https://github.com/angr/angr/blob/master/tests/test_java.py
https://github.com/angr/angr-targets

angr

5.11.2 Gists

Once you have created an entry state, instantiated a SimulationManager, and specified a list of stop_points using the
Symbion interface we are going to resume the concrete process execution.

Instantiating the ConcreteTarget
avatar_gdb = AvatarGDBConcreteTarget(avatar2.archs.x86.X86_64,

GDB_SERVER_IP, GDB_SERVER_PORT)

Creating the Project
p = angr.Project(binary_x64, concrete_target=avatar_gdb,

use_sim_procedures=True)

Getting an entry_state
entry_state = p.factory.entry_state()

Forget about these options as for now, will explain later.
entry_state.options.add(angr.options.SYMBION_SYNC_CLE)
entry_state.options.add(angr.options.SYMBION_KEEP_STUBS_ON_SYNC)

Use Symbion!
simgr.use_technique(angr.exploration_techniques.Symbion(find=[0x85b853])

When one of your stop_points (effectively a breakpoint) is hit, we give control to angr. A new plugin called concrete
is in charge of synchronizing the concrete state of the program inside a new SimState.

Roughly, synchronization does the following:

• All the registers’ values (NOT marked with concrete=False in the respective arch file in archinfo) are copied
inside the new SimState.

• The underlying memory backend is hooked in a way that all the further memory accesses triggered during sym-
bolic execution are redirected to the concrete process.

• If the project is initialized with SimProcedure (use_sim_procedures=True) we are going to re-hook the external
functions’ addresses with a SimProcedure if we happen to have it, otherwise with a SimProcedure stub (you
can control this decision by using the Options SYMBION_KEEP_STUBS_ON_SYNC). Conversely, the real
code of the function is executed inside angr (Warning: do that at your own risk!)

Once this process is completed, you can play with your new SimState backed by the concrete process stopped at that
particular stop_point.

5.11.3 Options

The way we synchronize the concrete process inside angr is customizable by 2 state options:

• SYMBION_SYNC_CLE: this option controls the synchronization of the memory mapping of the program
inside angr. When the project is created, the memory mapping inside angr is different from the one inside the
concrete process (this will change as soon as Symbion will be fully compatible with archr). If you want the
process mapping to be fully synchronized with the one of the concrete process, set this option to the SimState
before initializing the SimulationManager (Note that this is going to happen at the first synchronization of the
concrete process inside angr, NOT before)

entry_state.options.add(angr.options.SYMBION_SYNC_CLE)
simgr = project.factory.simgr(state)

94 Chapter 5. Advanced Topics

angr

• SYMBION_KEEP_STUBS_ON_SYNC: this option controls how we re-hook external functions with SimPro-
cedures. If the project has been initialized to use SimProcedures (use_sim_procedures=True), we are going to
re-hook external functions with SimProcedures (if we have that particular implementation) or with a generic
stub. If you want to execute SimProcedures for functions for which we have an available implementation and a
generic stub SimProcedure for the ones we have not, set this option to the SimState before initializing the Sim-
ulationManager. In the other case, we are going to execute the real code for the external functions that miss a
SimProcedure (no generic stub is going to be used).

entry_state.options.add(angr.options.SYMBION_KEEP_STUBS_ON_SYNC)
simgr = project.factory.simgr(state)

5.11.4 Example

You can find more information about this technique and a complete example in our blog post: https://angr.io/blog/
angr_symbion/. For more technical details a public paper will be available soon, or, ping @degrigis on our angr Slack
channel.

5.12 Debug variable resolution

angr now support resolve source level variable (debug variable) in binary with debug information. This article will
introduce you how to use it.

5.12.1 Setting up

To use it you need binary that is compiled with dwarf debuging information (ex: gcc -g) and load in angr with the
option load_debug_info. After that you need to run project.kb.dvars.load_from_dwarf() to set up the feature
and we’re set.

Overall it looks like this:

compile your binary with debug information
gcc -g -o debug_var debug_var.c

>>> import angr
>>> project = angr.Project('./examples/debug_var/simple_var', load_debug_info = True)
>>> project.kb.dvars.load_from_dwarf()

5.12.2 Core feature

With things now set up you can view the value in the angr memory view of the debug variable within a state
with: state.dvars['variable_name'].mem or the value that it point to if it is a pointer with: state.
dvars['pointer_name'].deref.mem. Here are some example:

Given the source code in examples/debug_var/simple_var.c

#include<stdio.h>

int global_var = 100;
int main(void){

(continues on next page)

5.12. Debug variable resolution 95

https://angr.io/blog/angr_symbion/
https://angr.io/blog/angr_symbion/

angr

(continued from previous page)

int a = 10;
int* b = &a;
printf("%d\n", *b);
{
int a = 24;
*b = *b + a;
int c[] = {5, 6, 7, 8};
printf("%d\n", a);

}
return 0;

}

Get a state before executing printf(%d\n", *b) (line 7)
the addr to line 7 is 0x401193 you can search for it with
>>> project.loader.main_object.addr_to_line
{...}
>>> addr = 0x401193
Create an simulation manager and run to that addr
>>> simgr = project.factory.simgr()
>>> simgr.explore(find = addr)
<SimulationManager with 1 found>
>>> state = simgr.found[0]
Resolve 'a' in state
>>> state.dvars['a'].mem
<int (32 bits) <BV32 0xa> at 0x7fffffffffeff30>
Dereference pointer b
>>> state.dvars['b'].deref.mem
<int (32 bits) <BV32 0xa> at 0x7fffffffffeff30>
It works as expected when resolving the value of b gives the address of a
>>> state.dvars['b'].mem
<reg64_t <BV64 0x7fffffffffeff30> at 0x7fffffffffeff38>

Side-note: For string type you can use .string instead of .mem to resolve it. For struct type you can resolve its member
by .member("member_name").mem. For array type you can use .array(index).mem to access the element in array.

5.13 Variable visibility

If you have many variable with the same name but in different scope, calling state.dvars['var_name'] would
resolve the variable with the nearest scope.

Example:

Find the addr before executing printf("%d\n", a) (line 12)
with the same method to find addr
>>> addr = 0x4011e0
Explore until find state
>>> simgr.move(from_stash='found', to_stash='active')
<SimulationManager with 1 active>
>>> simgr.explore(find = addr)
<SimulationManager with 1 found>
>>> state = simgr.found[0]

(continues on next page)

96 Chapter 5. Advanced Topics

angr

(continued from previous page)

Resolve 'a' in state before execute line 10
>>> state.dvars['a'].mem
<int (32 bits) <BV32 0x18> at 0x7fffffffffeff34>

Congratulation, you’ve now know how to resolve debug variable using angr, for more info check out the api-doc.

5.13. Variable visibility 97

angr

98 Chapter 5. Advanced Topics

CHAPTER

SIX

EXTENDING ANGR

6.1 Hooks and SimProcedures

Hooks in angr are very powerful! You can use them to modify a program’s behavior in any way you could imagine.
However, the exact way you might want to program a specific hook may be non-obvious. This chapter should serve as
a guide when programming SimProcedures.

6.1.1 Quick Start

Here’s an example that will remove all bugs from any program:

>>> from angr import Project, SimProcedure
>>> project = Project('examples/fauxware/fauxware')

>>> class BugFree(SimProcedure):
... def run(self, argc, argv):
... print('Program running with argc=%s and argv=%s' % (argc, argv))
... return 0

this assumes we have symbols for the binary
>>> project.hook_symbol('main', BugFree())

Run a quick execution!
>>> simgr = project.factory.simulation_manager()
>>> simgr.run() # step until no more active states
Program running with argc=<SAO <BV64 0x0>> and argv=<SAO <BV64 0x7fffffffffeffa0>>
<SimulationManager with 1 deadended>

Now, whenever program execution reaches the main function, instead of executing the actual main function, it will
execute this procedure! It just prints out a message, and returns.

Now, let’s talk about what happens on the edge of this function! When entering the function, where do the values
that go into the arguments come from? You can define your run() function with however many arguments you like,
and the SimProcedure runtime will automatically extract from the program state those arguments for you, via a calling
convention, and call your run function with them. Similarly, when you return a value from the run function, it is placed
into the state (again, according to the calling convention), and the actual control-flow action of returning from a function
is performed, which depending on the architecture may involve jumping to the link register or jumping to the result of
a stack pop.

It should be clear at this point that the SimProcedure we just wrote is meant to totally replace whatever function it is
hooked over top of. In fact, the original use case for SimProcedures was replacing library functions. More on that later.

99

angr

6.1.2 Implementation Context

On a Project class, the dict project._sim_procedures is a mapping from address to SimProcedure instances.
When the execution pipeline reaches an address that is present in that dict, that is, an address that is hooked, it will
execute project._sim_procedures[address].execute(state). This will consult the calling convention to ex-
tract the arguments, make a copy of itself in order to preserve thread safety, and run the run() method. It is important
to produce a new instance of the SimProcedure for each time it is run, since the process of running a SimProcedure
necessarily involves mutating state on the SimProcedure instance, so we need separate ones for each step, lest we run
into race conditions in multithreaded environments.

kwargs

This hierarchy implies that you might want to reuse a single SimProcedure in multiple hooks. What if you want to hook
the same SimProcedure in several places, but tweaked slightly each time? angr’s support for this is that any additional
keyword arguments you pass to the constructor of your SimProcedure will end up getting passed as keyword args to
your SimProcedure’s run() method. Pretty cool!

6.1.3 Data Types

If you were paying attention to the example earlier, you noticed that when we printed out the arguments to the run()
function, they came out as a weird <SAO <BV64 0xSTUFF>> class. This is a SimActionObject. Basically, you don’t
need to worry about it too much, it’s just a thin wrapper over a normal bitvector. It does a bit of tracking of what exactly
you do with it inside the SimProcedure—this is helpful for static analysis.

You may also have noticed that we directly returned the Python int 0 from the procedure. This will automatically be
promoted to a word-sized bitvector! You can return a native number, a bitvector, or a SimActionObject.

When you want to write a procedure that deals with floating point numbers, you will need to spec-
ify the calling convention manually. It’s not too hard, just provide a cc to the hook: `cc =
project.factory.cc_from_arg_kinds((True, True), ret_fp=True) and project.hook(address,
ProcedureClass(cc=mycc)) This method for passing in a calling convention works for all calling conventions, so
if angr’s autodetected one isn’t right, you can fix that.

6.1.4 Control Flow

How can you exit a SimProcedure? We’ve already gone over the simplest way to do this, returning a value from run().
This is actually shorthand for calling self.ret(value). self.ret() is the function which knows how to perform
the specific action of returning from a function.

SimProcedures can use lots of different functions like this!

• ret(expr): Return from a function

• jump(addr): Jump to an address in the binary

• exit(code): Terminate the program

• call(addr, args, continue_at): Call a function in the binary

• inline_call(procedure, *args): Call another SimProcedure in-line and return the results

That second-last one deserves some looking-at. We’ll get there after a quick detour. . .

100 Chapter 6. Extending angr

angr

Conditional Exits

What if we want to add a conditional branch out of a SimProcedure? In order to do that, you’ll need to work directly
with the SimSuccessors object for the current execution step.

The interface for this is `self.successors.add_successor(state, addr, guard, jumpkind). All of these
parameters should have an obvious meaning if you’ve followed along so far. Keep in mind that the state you pass in
will NOT be copied and WILL be mutated, so be sure to make a copy beforehand if there will be more work to do!

SimProcedure Continuations

How can we call a function in the binary and have execution resume within our SimProcedure? There is a whole bunch
of infrastructure called the “SimProcedure Continuation” that will let you do this. When you use self.call(addr,
args, continue_at), addr is expected to be the address you’d like to call, args is the tuple of arguments you’d like
to call it with, and continue_at is the name of another method in your SimProcedure class that you’d like execution
to continue at when it returns. This method must have the same signature as the run() method. Furthermore, you can
pass the keyword argument cc as the calling convention that ought to be used to communicate with the callee.

When you do this, you finish your current step, and execution will start again at the next step at the function you’ve
specified. When that function returns, it has to return to some concrete address! That address is specified by the
SimProcedure runtime: an address is allocated in angr’s externs segment to be used as the return site for returning to
the given method call. It is then hooked with a copy of the procedure instance tweaked to run the specified continue_at
function instead of run(), with the same args and kwargs as the first time.

There are two pieces of metadata you need to attach to your SimProcedure class in order to use the continuation
subsystem correctly:

• Set the class variable IS_FUNCTION = True

• Set the class variable local_vars to a tuple of strings, where each string is the name of an instance variable on
your SimProcedure whose value you would like to persist to when you return. Local variables can be any type
so long as you don’t mutate their instances.

You may have guessed by now that there exists some sort of auxiliary storage in order to hold on to all this data.
You would be right! The state plugin state.callstack has an entry called .procedure_data which is used by the
SimProcedure runtime to store information local to the current call frame. angr tracks the stack pointer in order to make
the current top of the state.callstack a meaningful local data store. It’s stuff that ought to be stored in memory in
a stack frame, but the data can’t be serialized and/or memory allocation is hard.

As an example, let’s look at the SimProcedure that angr uses internally to run all the shared library initializers for a
full_init_state for a linux program:

class LinuxLoader(angr.SimProcedure):
NO_RET = True
IS_FUNCTION = True
local_vars = ('initializers',)

def run(self):
self.initializers = self.project.loader.initializers
self.run_initializer()

def run_initializer(self):
if len(self.initializers) == 0:

self.project._simos.set_entry_register_values(self.state)
self.jump(self.project.entry)

else:
(continues on next page)

6.1. Hooks and SimProcedures 101

angr

(continued from previous page)

addr = self.initializers[0]
self.initializers = self.initializers[1:]
self.call(addr, (self.state.posix.argc, self.state.posix.argv, self.state.

→˓posix.environ), 'run_initializer')

This is a particularly clever usage of the SimProcedure continuations. First, notice that the current project is available
for use on the procedure instance. This is some powerful stuff you can get yourself into; for safety you generally only
want to use the project as a read-only or append-only data structure. Here we’re just getting the list of dynamic intializers
from the loader. Then, for as long as the list isn’t empty, we pop a single function pointer out of the list, being careful
not to mutate the list, since the list object is shared across states, and then call it, returning to the run_initializer
function again. When we run out of initializers, we set up the entry state and jump to the program entry point.

Very cool!

6.1.5 Global Variables

As a brief aside, you can store global variables in state.globals. This is a dictionary that just gets shallow-copied
from state to successor state. Because it’s only a shallow copy, its members are the same instances, so the same rules
as local variables in SimProcedure continuations apply. You need to be careful not to mutate any item that is used as a
global variable unless you know exactly what you’re doing.

6.1.6 Helping out static analysis

We’ve already looked at the class variable IS_FUNCTION, which allows you to use the SimProcedure continuation.
There are a few more class variables you can set, though these ones have no direct benefit to you - they merely mark
attributes of your function so that static analysis knows what it’s doing.

• NO_RET: Set this to true if control flow will never return from this function

• ADDS_EXITS: Set this to true if you do any control flow other than returning

• IS_SYSCALL: Self-explanatory

Furthermore, if you set ADDS_EXITS = True, you’ll need to define the method static_exits(). This function takes
a single parameter, a list of IRSBs that would be executed in the run-up to your function, and asks you to return a list
of all the exits that you know would be produced by your function in that case. The return value is expected to be a list
of tuples of (address (int), jumpkind (str)). This is meant to be a quick, best-effort analysis, and you shouldn’t try to do
anything crazy or intensive to get your answer.

6.1.7 User Hooks

The process of writing and using a SimProcedure makes a lot of assumptions that you want to hook over a whole
function. What if you don’t? There’s an alternate interface for hooking, a user hook, that lets you streamline the
process of hooking sections of code.

>>> @project.hook(0x1234, length=5)
... def set_rax(state):
... state.regs.rax = 1

This is a lot simpler! The idea is to use a single function instead of an entire SimProcedure subclass. No extraction of
arguments is performed, no complex control flow happens.

102 Chapter 6. Extending angr

angr

Control flow is controlled by the length argument. After the function finishes executing in this example, the next step
will start at 5 bytes after the hooked address. If the length argument is omitted or set to zero, execution will resume
executing the binary code at exactly the hooked address, without re-triggering the hook. The Ijk_NoHook jumpkind
allows this to happen.

If you want more control over control flow coming out of a user hook, you can return a list of successor states. Each
successor will be expected to have state.regs.ip, state.scratch.guard, and state.scratch.jumpkind set.
The IP is the target instruction pointer, the guard is a symbolic boolean representing a constraint to add to the state related
to it being taken as opposed to the others, and the jumpkind is a VEX enum string, like Ijk_Boring, representing the
nature of the branch.

The general rule is, if you want your SimProcedure to either be able to extract function arguments or cause a program
return, write a full SimProcedure class. Otherwise, use a user hook.

6.1.8 Hooking Symbols

As you should recall from the section on loading a binary, dynamically linked programs have a list of symbols that
they must import from the libraries they have listed as dependencies, and angr will make sure, rain or shine, that
every import symbol gets resolved by some address, whether it’s a real implementaion of the function or just a dummy
address hooked with a do-nothing stub. As a result, you can just use the Project.hook_symbol API to hook the
address referred to by a symbol!

This means that you can replace library functions with your own code. For instance, to replace rand() with a function
that always returns a consistent sequence of values:

>>> class NotVeryRand(SimProcedure):
... def run(self, return_values=None):
... rand_idx = self.state.globals.get('rand_idx', 0) % len(return_values)
... out = return_values[rand_idx]
... self.state.globals['rand_idx'] = rand_idx + 1
... return out

>>> project.hook_symbol('rand', NotVeryRand(return_values=[413, 612, 1025, 1111]))

Now, whenever the program tries to call rand(), it’ll return the integers from the return_values array in a loop.

6.2 State Plugins

If you want to store some data on a state and have that information propagated from successor to successor, the easiest
way to do this is with state.globals. However, this can become obnoxious with large amounts of interesting data,
doesn’t work at all for merging states, and isn’t very object-oriented.

The solution to these problems is to write a State Plugin - an appendix to the state that holds data and implements an
interface for dealing with the lifecycle of a state.

6.2. State Plugins 103

angr

6.2.1 My First Plugin

Let’s get started! All state plugins are implemented as subclasses of SimStatePlugin. Once you’ve read this doc-
ument, you can use the API reference for this class angr.state_plugins.plugin.SimStatePlugin to quickly
review the semantics of all the interfaces you should implement.

The most important method you need to implement is copy: it should be annotated with the memo staticmethod and
take a dict called the “memo”—these’ll be important later—and returns a copy of the plugin. Short of that, you can do
whatever you want. Just make sure to call the superclass initializer!

>>> import angr
>>> class MyFirstPlugin(angr.SimStatePlugin):
... def __init__(self, foo):
... super(MyFirstPlugin, self).__init__()
... self.foo = foo
...
... @angr.SimStatePlugin.memo
... def copy(self, memo):
... return MyFirstPlugin(self.foo)

>>> state = angr.SimState(arch='AMD64')
>>> state.register_plugin('my_plugin', MyFirstPlugin('bar'))
>>> assert state.my_plugin.foo == 'bar'

>>> state2 = state.copy()
>>> state.my_plugin.foo = 'baz'
>>> state3 = state.copy()
>>> assert state2.my_plugin.foo == 'bar'
>>> assert state3.my_plugin.foo == 'baz'

It works! Note that plugins automatically become available as attributes on the state. state.get_plugin(name) is
also available as a more programmatic interface.

6.2.2 Where’s the state?

State plugins have access to the state, right? So why isn’t it part of the initializer? It turns out, there are a plethora
of issues related to initialization order and dependency issues, so to simplify things as much as possible, the state is
not part of the initializer but is rather set onto the state in a separate phase, by using the set_state method. You can
override this state if you need to do things like propagate the state to subcomponents or extract architectural information.

>>> def set_state(self, state):
... super(SimStatePlugin, self).set_state(state)
... self.symbolic_word = claripy.BVS('my_variable', self.state.arch.bits)

Note the self.state! That’s what the super set_state sets up.

However, there’s no guarantee on what order the states will be set onto the plugins in, so if you need to interact with
other plugins for initialization, you need to override the init_state method.

Once again, there’s no guarantee on what order these will be called in, so the rule is to make sure you set yourself up
good enough during set_state so that if someone else tries to interact with you, no type errors will happen. Here’s
an example of a good use of init_state, to map a memory region in the state. The use of an instance variable
(presumably copied as part of copy()) ensures this only happens the first time the plugin is added to a state.

104 Chapter 6. Extending angr

angr

>>> def init_state(self):
... if self.region is None:
... self.region = self.state.memory.map_region(SOMEWHERE, 0x1000, 7)

Note: weak references

self.state is not the state itself, but rather a weak proxy to the state. You can still use this object as a normal state,
but attempts to store it persistently will not work.

6.2.3 Merging

The other element besides copying in the state lifecycle is merging. As input you get the plugins to merge and a list
of “merge conditions” - symbolic booleans that are the “guard conditions” describing when the values from each state
should actually apply.

The important properties of the merge conditions are:

• They are mutually exclusive and span an entire domain - exactly one may be satisfied at once, and there will be
additional constraints to ensure that at least one must be satisfied.

• len(merge_conditions) == len(others) + 1, since self counts too.

• zip(merge_conditions, [self] + others) will correctly pair merge conditions with plugins.

During the merge function, you should mutate self to become the merged version of itself and all the others, with
respect to the merge conditions. This involves using the if-then-else structure that claripy provides. Here is an example
of constructing this merged structure by merging a bitvector instance variable called myvar, producing a binary tree of
if-then-else expressions searching for the correct condition:

for other_plugin, condition in zip(others, merge_conditions[1:]): # chop off self's␣
→˓condition

self.myvar = claripy.If(condition, other_plugin.myvar, self.myvar)

This is such a common construction that we provide a utility to perform it automatically: claripy.ite_cases. The
following code snippet is identical to the previous one:

self.myvar = claripy.ite_cases(zip(merge_conditions[1:], [o.myvar for o in others]),␣
→˓self.myvar)

Keep in mind that like the rest of the top-level claripy functions, ite_cases and If are also available from state.
solver, and these versions will perform SimActionObject unwrapping if applicable.

Common Ancestor

The full prototype of the merge interface is def merge(self, others, merge_conditions,
common_ancestor=None). others and merge_conditions have been discussed in depth already.

The common ancestor is the instance of the plugin from the most recent common ancestor of the states being merged.
It may not be available for all merges, in which case it will be None. There are no rules for how exactly you should use
this to improve the quality of your merges, but you may find it useful in more complex setups.

6.2. State Plugins 105

https://docs.python.org/2/library/weakref.html

angr

6.2.4 Widening

There is another kind of merging called widening which takes several states and produces a more general state. It is
used during static analysis.

Todo: Explain what this means

6.2.5 Serialization

In order to support serialization of states which contain your plugin, you should implement the
__getstate__/__setstate__ magic method pair. Keep in mind the following guidelines:

• Your serialization result should not include the state.

• After deserialization, set_state() will be called again.

This means that plugins are “detached” from the state and serialized in an isolated environment, and then reattached to
the state on deserialization.

6.2.6 Plugins all the way down

You may have components within your state plugins which are large and complicated and start breaking object-
orientation in order to make copy/merge work well with the state lifecycle. You’re in luck! Things can be state plugins
even if they aren’t directly attached to a state. A great example of this is SimFile, which is a state plugin but is stored
in the filesystem plugin, and is never used with SimState.register_plugin. When you’re doing this, there are a
handful of rules to remember which will keep your plugins safe and happy:

• Annotate your copy function with @SimStatePlugin.memo.

• In order to prevent divergence while copying multiple references to the same plugin, make sure you’re passing
the memo (the argument to copy) to the .copy of any subplugins. This with the previous point will preserve
object identity.

• In order to prevent duplicate merging while merging multiple references to the same plugin, there should be a
concept of the “owner” of each instance, and only the owner should run the merge routine.

• While passing arguments down into sub-plugins merge() routines, make sure you unwrap others and
common_ancestor into the appropriate types. For example, if PluginA contains a PluginB, the former should
do the following:

>>> def merge(self, others, merge_conditions, common_ancestor=None):
... # ... merge self
... self.plugin_b.merge([o.plugin_b for o in others], merge_conditions,
... common_ancestor=None if common_ancestor is None else common_ancestor.plugin_
→˓b)

106 Chapter 6. Extending angr

angr

6.2.7 Setting Defaults

To make it so that a plugin will automatically become available on a state when requested, without having to register
it with the state first, you can register it as a default. The following code example will make it so that whenever you
access state.my_plugin, a new instance of MyPlugin will be instanciated and registered with the state.

MyPlugin.register_default('my_plugin')

6.3 Extending the Environment Model

One of the biggest issues you may encounter while using angr to analyze programs is an incomplete model of the
environment, or the APIs, surrounding your program. This usually takes the form of syscalls or dynamic library calls,
or in rare cases, loader artifacts. angr provides a convenient interface to do most of these things!

Everything discussed here involves writing SimProcedures, so make sure you know how to do that!.

Note that this page should be treated as a narrative document, not a reference document, so you should read it at least
once start to end.

6.3.1 Setup

You probably want to have a development install of angr, i.e. set up with the script in the angr-dev repository. It is
remarkably easy to add new API models by just implementing them in certain folders of the angr repository. This is
also desirable because any work you do in this field will almost always be useful to other people, and this makes it
extremely easy to submit a pull request.

However, if you want to do your development out-of-tree, you want to work against a production version of angr, or you
want to make customized versions of already-implemented API functions, there are ways to incorporate your extensions
programmatically. Both these techniques, in-tree and out-of-tree, will be documented at each step.

6.3.2 Dynamic library functions - import dependencies

This is the easiest case, and the case that SimProcedures were originally designed for.

First, you need to write a SimProcedure representing the function. Then you need to let angr know about it.

Case 1, in-tree development: SimLibraries and catalogues

angr has a magical folder in its repository, angr/procedures. Within it are all the SimProcedure implementations that
come bundled with angr as well as information about what libraries implement what functions.

Each folder in the procedures directory corresponds to some sort of standard, or a body that specifies the interface part
of an API and its semantics. We call each folder a catalog of procedures. For example, we have libc which contains
the functions defined by the C standard library, and a separate folder posix which contains the functions defined by
the posix standard. There is some magic which automatically scrapes these folders in the procedures directory and
organizes them into the angr.SIM_PROCEDURES dict. For example, angr/procedures/libc/printf.py contains
both class printf and class __printf_chk, so there exists both angr.SIM_PROCEDURES['libc']['printf']
and angr.SIM_PROCEDURES['libc']['__printf_chk'].

The purpose of this categorization is to enable easy sharing of procedures among different libraries. For example.
libc.so.6 contains all the C standard library functions, but so does msvcrt.dll! These relationships are represented with
objects called SimLibraries which represent an actual shared library file, its functions, and their metadata. Take a
look at the API reference for SimLibrary along with the code for setting up glibc to learn how to use it.

6.3. Extending the Environment Model 107

https://github.com/angr/angr-dev
https://github.com/angr/angr/tree/master/angr/procedures
https://github.com/angr/angr/blob/master/angr/procedures/definitions/glibc.py

angr

SimLibraries are defined in a special folder in the procedures directory, procedures/definitions. Files in
here should contain an instance, not a subclass, of SimLibrary. The same magic that scrapes up SimProcedures
will also scrape up SimLibraries and put them in angr.SIM_LIBRARIES, keyed on each of their common names.
For example, angr/procedures/definitions/linux_loader.py contains lib = SimLibrary(); lib.
set_library_names('ld.so', 'ld-linux.so', 'ld.so.2', 'ld-linux.so.2', 'ld-linux-x86_64.
so.2'), so you can access it via angr.SIM_LIBRARIES['ld.so'] or angr.SIM_LIBRARIES['ld-linux.so']
or any of the other names.

At load time, all the dynamic library dependencies are looked up in SIM_LIBRARIES and their procedures (or stubs!)
are hooked into the project’s address space to summarize any functions it can. The code for this process is found here.

SO, the bottom line is that you can just write your own SimProcedure and SimLibrary definitions, drop them into the
directory structure, and they’ll automatically be applied. If you’re adding a procedure to an existing library, you can
just drop it into the appropriate catalog and it’ll be picked up by all the libraries using that catalog, since most libraries
construct their list of function implementation by batch-adding entire catalogs.

Case 2, out-of-tree development, tight integration

If you’d like to implement your procedures outside the angr repository, you can do that. You effectively do this by
just manually adding your procedures to the appropriate SimLibrary. Just call angr.SIM_LIBRARIES[libname].
add(name, proc_cls) to do the registration.

Note that this will only work if you do this before the project is loaded with angr.Project. Note also that adding the
procedure to angr.SIM_PROCEDURES, i.e. adding it directly to a catalog, will not work, since these catalogs are used
to construct the SimLibraries only at import and are used by value, not by reference.

Case 3, out-of-tree development, loose integration

Finally, if you don’t want to mess with SimLibraries at all, you can do things purely on the project level with
hook_symbol().

6.3.3 Syscalls

Unlike dynamic library methods, syscall procedures aren’t incorporated into the project via hooks. Instead, whenever
a syscall instruction is encountered, the basic block should end with a jumpkind of Ijk_Sys. This will cause the next
step to be handled by the SimOS associated with the project, which will extract the syscall number from the state and
query a specialized SimLibrary with that.

This deserves some explanation.

There is a subclass of SimLibrary called SimSyscallLibrary which is used for collecting all the functions that are part
of an operating system’s syscall interface. SimSyscallLibrary uses the same system for managing implementations and
metadata as SimLibrary, but adds on top of it a system for managing syscall numbers for multiple ABIs (application
binary interfaces, like an API but lower level). The best example for an implementation of a SimSyscallLibrary is
the linux syscalls. It keeps its procedures in a normal SimProcedure catalog called linux_kernel and adds them to
the library, then adds several syscall number mappings, including separate mappings for mips-o32, mips-n32, and
mips-n64.

In order for syscalls to be supported in the first place, the project’s SimOS must inherit from SimUserland , itself
a SimOS subclass. This requires the class to call SimUserland’s constructor with a super() call that includes the
syscall_library keyword argument, specifying the specific SimSyscallLibrary that contains the appropriate proce-
dures and mappings for the operating system. Additionally, the class’s configure_project must perform a super()
call including the abi_list keyword argument, which contains the list of ABIs that are valid for the current architec-
ture. If the ABI for the syscall can’t be determined by just the syscall number, for example, that amd64 linux programs
can use either int 0x80 or syscall to invoke a syscall and these two ABIs use overlapping numbers, the SimOS cal

108 Chapter 6. Extending angr

https://github.com/angr/angr/blob/master/angr/project.py#L244
https://github.com/angr/angr/blob/master/angr/procedures/definitions/linux_kernel.py

angr

override syscall_abi(), which takes a SimState and returns the name of the current syscall ABI. This is determined
for int80/syscall by examining the most recent jumpkind, since libVEX will produce different syscall jumpkinds for the
different instructions.

Calling conventions for syscalls are a little weird right now and they ought to be refactored. The current situa-
tion requires that angr.SYSCALL_CC be a map of maps {arch_name: {os_name: cc_cls}}, where os_name
is the value of project.simos.name, and each of the calling convention classes must include an extra method
called syscall_number which takes a state and return the current syscall number. Look at the bottom of call-
ing_conventions.py to learn more about it. Not very object-oriented at all. . .

As a side note, each syscall is given a unique address in a special object in CLE called the “kernel object”. Upon a
syscall, the address for the specific syscall is set into the state’s instruction pointer, so it will show up in the logs. These
addresses are not hooked, they are just used to identify syscalls during analysis given only an address trace. The test
for determining if an address corresponds to a syscall is project.simos.is_syscall_addr(addr) and the syscall
corresponding to the address can be retrieved with project.simos.syscall_from_addr(addr).

Case 1, in-tree development

SimSyscallLibraries are stored in the same place as the normal SimLibraries, angr/procedures/definitions.
These libraries don’t have to specify any common name, but they can if they’d like to show up in SIM_LIBRARIES
for easy access.

The same thing about adding procedures to existing catalogs of dynamic library functions also applies to syscalls -
implementing a linux syscall is as easy as writing the SimProcedure and dropping the implemementation into angr/
procedures/linux_kernel. As long as the class name matches one of the names in the number-to-name mapping
of the SimLibrary (all the linux syscall numbers are included with recent releases of angr), it will be used.

To add a new operating system entirely, you need to implement the SimOS as well, as a subclass of SimUserland. To
integrate it into the tree, you should add it to the simos directory, but this is not a magic directory like procedures.
Instead, you should add a line to angr/simos/__init__.py calling register_simos() with the OS name as it
appears in project.loader.main_object.os and the SimOS class. Your class should do everything described
above.

Case 2, out-of-tree development, tight integration

You can add syscalls to a SimSyscallLibrary the same way you can add functions to a normal SimLibrary, by tweaking
the entries in angr.SIM_LIBRARIES. If you’re this for linux you want angr.SIM_LIBRARIES['linux'].add(name,
proc_cls).

You can register a SimOS with angr from out-of-tree as well - the same register_simos method is just sitting there
waiting for you as angr.simos.register_simos(name, simos_cls).

Case 3, out-of-tree development, loose integration

The SimSyscallLibrary the SimOS uses is copied from the original during setup, so it is safe to mutate. You can directly
fiddle with project.simos.syscall_library to manipulate an individual project’s syscalls.

You can provide a SimOS class (not an instance) directly to the Project constructor via the simos keyword argument,
so you can specify the SimOS for a project explicitly if you like.

6.3. Extending the Environment Model 109

https://github.com/angr/angr/blob/master/angr/calling_conventions.py
https://github.com/angr/angr/blob/master/angr/calling_conventions.py

angr

6.3.4 SimData

What about when there is an import dependency on a data object? This is easily resolved when the given library is
actually loaded into memory - the relocation can just be resolved as normal. However, when the library is not loaded
(for example, auto_load_libs=False, or perhaps some dependency is simply missing), things get tricky. It is not
possible to guess in most cases what the value should be, or even what its size should be, so if the guest program ever
dereferences a pointer to such a symbol, emulation will go off the rails.

CLE will warn you when this might happen:

[22:26:58] [cle.backends.externs] | WARNING: Symbol was allocated without a known size;␣
→˓emulation will fail if it is used non-opaquely: _rtld_global
[22:26:58] [cle.backends.externs] | WARNING: Symbol was allocated without a known size;␣
→˓emulation will fail if it is used non-opaquely: __libc_enable_secure
[22:26:58] [cle.backends.externs] | WARNING: Symbol was allocated without a known size;␣
→˓emulation will fail if it is used non-opaquely: _rtld_global_ro
[22:26:58] [cle.backends.externs] | WARNING: Symbol was allocated without a known size;␣
→˓emulation will fail if it is used non-opaquely: _dl_argv

If you see this message and suspect it is causing issues (i.e. the program is actually introspecting the value of these
symbols), you can resolve it by implementing and registering a SimData class, which is like a SimProcedure but for
data. Simulated data. Very cool.

A SimData can effectively specify some data that must be used to provide an unresolved import symbol. It has a number
of mechanisms to make this more useful, including the ability to specify relocations and subdependencies.

Look at the SimData cle.backends.externs.simdata.SimData class reference and the existing SimData sub-
classes for guidelines on how to do this.

6.4 Writing Analyses

An analysis can be created by subclassing the angr.Analysis class. In this section, we’ll create a mock analysis to
show off the various features. Let’s start with something simple:

>>> import angr

>>> class MockAnalysis(angr.Analysis):
... def __init__(self, option):
... self.option = option

>>> angr.AnalysesHub.register_default('MockAnalysis', MockAnalysis) # register the class␣
→˓with angr's global analysis list

This is a very simple analysis – it takes an option, and stores it. Of course, it’s not useful, but this is just a demonstration.

Let’s see how to run our new analysis:

>>> proj = angr.Project("/bin/true")
>>> mock = proj.analyses.MockAnalysis('this is my option')
>>> assert mock.option == 'this is my option'

110 Chapter 6. Extending angr

https://docs.angr.io/projects/cle/en/latest/api/backend.html#cle.backends.externs.simdata.SimData
https://github.com/angr/cle/tree/master/cle/backends/externs/simdata
https://github.com/angr/cle/tree/master/cle/backends/externs/simdata

angr

6.4.1 Working with projects

Via some Python magic, your analysis will automatically have the project upon which you are running it under the
self.project property. Use this to interact with your project and analyze it!

>>> class ProjectSummary(angr.Analysis):
... def __init__(self):
... self.result = 'This project is a %s binary with an entry point at %#x.' %␣
→˓(self.project.arch.name, self.project.entry)

>>> angr.AnalysesHub.register_default('ProjectSummary', ProjectSummary)
>>> proj = angr.Project("/bin/true")

>>> summary = proj.analyses.ProjectSummary()
>>> print(summary.result)
This project is a AMD64 binary with an entry point at 0x401410.

6.4.2 Analysis Resilience

Sometimes, your (or our) code might suck and analyses might throw exceptions. We understand, and we also understand
that oftentimes a partial result is better than nothing. This is specifically true when, for example, running an analysis on
all of the functions in a program. Even if some of the functions fails, we still want to know the results of the functions
that do not.

To facilitate this, the Analysis base class provides a resilience context manager under self._resilience. Here’s
an example:

>>> class ComplexFunctionAnalysis(angr.Analysis):
... def __init__(self):
... self._cfg = self.project.analyses.CFG()
... self.results = { }
... for addr, func in self._cfg.function_manager.functions.items():
... with self._resilience():
... if addr % 2 == 0:
... raise ValueError("can't handle functions at even addresses")
... else:
... self.results[addr] = "GOOD"

The context manager catches any exceptions thrown and logs them (as a tuple of the exception type, message, and
traceback) to self.errors. These are also saved and loaded when the analysis is saved and loaded (although the
traceback is discarded, as it is not picklable).

You can tune the effects of the resilience with two optional keyword parameters to self._resilience().

The first is name, which affects where the error is logged. By default, errors are placed in self.errors, but if name
is provided, then instead the error is logged to self.named_errors, which is a dict mapping name to a list of all the
errors that were caught under that name. This allows you to easily tell where thrown without examining its traceback.

The second argument is exception, which should be the type of the exception that resilience should catch. This
defaults to Exception, which handles (and logs) almost anything that could go wrong. You can also pass a tuple of
exception types to this option, in which case all of them will be caught.

Using resilience has a few advantages:

1. Your exceptions are gracefully logged and easily accessible afterwards. This is really nice for writing testcases.

6.4. Writing Analyses 111

angr

2. When creating your analysis, the user can pass fail_fast=True, which transparently disable the resilience,
which is really nice for manual testing.

3. It’s prettier than having try except everywhere.

Have fun with analyses! Once you master the rest of angr, you can use analyses to understand anything computable!

6.5 Scripting angr management

Warning: Please note that the documentation and the API for angr management are highly in-flux. You will need
to spend time reading the source code. Grep is your friend. If you have questions, please ask in the angr slack.

If you build something which uses an API and you want to make sure it doesn’t break, you can contribute a testcase
for the API!

This codebase is absolutely filled to the brim with one-off hacks. If you see some code and think, “hm, that doesn’t
seem like an extensible or best-practices way to code that”, you’re probably right. Cleaning up angr management’s
code is a top priority for us, so if you have some ideas to fix these sorts of issues, please let us know, either in an
issue or a pull request!

6.5.1 The console, and the basic objects

angr management opens with an IPython console ready for input. This console has in its namespace several objects
which are important for manipulating angr management and its data.

• First, the main_window. This is the QMainWindow instance for the application. It contains basic functions that
correspond to top-level buttons, such as loading a binary.

• Next, the workspace. This is a light object which coordinates the UI elements and manages the tabbed environ-
ment. You can use it to access any analysis-related GUI element, such as the disassembly view.

• Finally, the instance. This is angr management’s data model. It contains mechanisms for synchronizing com-
ponents on shared data sources, as well as logic for creating long-running jobs.

workspace is also available as an attribute on main_window and instance is available as an attribute on workspace.
If you are programming in a namespace where none of these objects are available, you can import the angrmanagment.
logic.GlobalInfo object, which contains a reference to main_window.

6.5.2 The ObjectContainer

angr management uses a class called ObjectContainer to implement a pub-sub model and synchronize changing object
references. Let’s use instance.project as an example. This is an ObjectContainer that contains the current project.
You can use it in every way that you would normally use a project - you can access project.factory, project.kb,
etc. However, it also has two very important features that are helpful for building UIs.

First, the pub-sub model. You can subscribe to changes to this object by calling instance.project.
am_subscribe(callback). Then, you can notify listeners of changes by calling instance.project.am_event().
Note that events are NEVER automatically triggered - you must call am_event in order to trigger the callbacks. One
useful feature of this model is that you can provide arbitrary keyword arguments to am_event, and they will be passed
on to each callback. This means that you should always have your callbacks take **kwargs in order to account for un-
known parameters. This feature is particularly useful to prevent feedback loops - if you ever find yourself in a situation
where you need to broadcast an event from your callback, you can add an argument that you can use as a flag not to
recurse any further.

112 Chapter 6. Extending angr

angr

Next, object reference mutability. Let’s say you have a widget that displays information about the project. Following the
principle of least access, you should only provide as much information as is necessary to do the job - in this case, just
the project object. If you provide the basic project object, this will cause issues when a new project is loaded. Notably,
there will be a dangling reference held to the original project, preventing it from being garbage collected, and the widget
will not update, continuing to show the old project’s information. Now, if you provide the project’s ObjectContainer, a
new project can be created and inserted into the container and the reference will instantly be available to your widget.
If you ever wanted to load a new project yourself, all you have to do is assign to instance.project.am_obj and then
send off an event. Combined with the event publication model, this provides an efficient way to build responsive UIs
that follow the principle of least access.

One important way that you can’t use the object container the same way that you would a normal object is that is
None will obviously not work. To resolve this, you can use instance.project.am_none - this will be True when no
project is loaded.

One interesting feature of the ObjectContainer is that they can nest. If you have a container which contains a container
which contains an object, any events sent to the inner container will also be sent to subscribers to the outer container.
This allows patterns such as the list of SimStates actually containing a list of ObjectContainers which contain states,
and the “current state” container actually contains one of these containers. The result of this is that UI elements can
either subscribe to the current state, no matter

A full list of standard ObjectContainers that can be found in the instance __init__ method. There are more containers
floating around for synchronizing on non-global elements - for example, the current state of the disassembly view is
synchronized through its InfoDock object. Given a disassembly view instance, you can subscribe to, for example, its
current selected instructions through view.infodock.selected_insns.

6.5.3 Manipulating UI elements

The workspace contains methods to manipulate UI elements. Notably, you can manipulate all open tabs with the
workspace.view_manager reference. Additionally, you can pass any sort of object you like to workspace.viz() and
it will attempt to visualize the object in the current window.

6.5.4 Writing plugins

angr management has a very flexible plugin framework. A plugin is a Python file containing a subclass of
angrmanagement.plugins.BasePlugin. Plugin files will be automatically loaded from the plugins module of
angr management, and also from ~/.local/share/angr-management/plugins. These paths are configurable
through the program configuration, but at the time of writing, this is not exposed in the UI.

The best way to see the tools you can use while building a plugin is to read the plugin base class source code. Any
method or attribute can be overridden from a base class and will be automatically called on relevant events.

6.5.5 Writing tests

Look at the existing tests for examples. Generally, you can test UI components by creating the component and driving
input to it via QTest. You can create a headless MainWindow instance by passing show=False to its constructor - this
will also get you access to a workspace and an instance.

6.5. Scripting angr management 113

https://github.com/angr/angr-management/blob/master/angrmanagement/data/instance.py
https://github.com/angr/angr-management/blob/master/angrmanagement/ui/view_manager.py
https://github.com/angr/angr-management/blob/master/angrmanagement/ui/view_manager.py
https://github.com/angr/angr-management/blob/master/angrmanagement/plugins/base_plugin.py
https://github.com/angr/angr-management/tree/master/tests

angr

114 Chapter 6. Extending angr

CHAPTER

SEVEN

ANGR EXAMPLES

To help you get started with angr, we’ve created several examples. We’ve tried to organize them into major categories,
and briefly summarize that each example will expose you to. Enjoy!

If you want a high-level cheatsheet of the “techniques” used in the examples, see the angr strategies cheatsheet by
Florent Bordignon.

To jump to a specific category:

• Introduction - examples showing off the very basics of angr’s functionality

• Reversing - examples showing angr being used in reverse engineering tasks

• Vulnerability Discovery - examples of angr being used to search for vulnerabilities

• Exploitation - examples of angr being used as an exploitation assistance tool

7.1 Introduction

These are some introductory examples to give an idea of how to use angr’s API.

7.1.1 Fauxware

This is a basic script that explains how to use angr to symbolically execute a program and produce concrete input
satisfying certain conditions.

Binary, source, and script are found here.

7.2 Reversing

These are examples that use angr to solve reverse engineering challenges. There are a lot of these. We’ve chosen the
most unique ones, and relegated the rest to the CTF Challenges section below.

115

https://github.com/angr/angr
https://github.com/bordig-f/angr-strategies/blob/master/angr_strategies.md
https://github.com/bordig-f
https://github.com/angr/angr-examples/tree/master/examples/fauxware

angr

7.2.1 Beginner reversing example: little_engine

Script author: Michael Reeves (github: @mastermjr)
Script runtime: 3 min 26 seconds (206 seconds)
Concepts presented:
stdin constraining, concrete optimization with Unicorn

This challenge is similar to the csaw challenge below, however the reversing is much more simple. The original code,
solution, and writeup for the challenge can be found at the b01lers github here.

The angr solution script is here and the binary is here.

7.2.2 Whitehat CTF 2015 - Crypto 400

Script author: Yan Shoshitaishvili (github: @Zardus)
Script runtime: 30 seconds
Concepts presented: statically linked binary (manually hooking with function summaries),␣
→˓commandline argument, partial solutions

We solved this crackme with angr’s help. The resulting script will help you understand how angr can be used for
crackme assistance, not a full-out solve. Since angr cannot solve the actual crypto part of the challenge, we use it just
to reduce the keyspace, and brute-force the rest.

You can find this script here and the binary here.

7.2.3 CSAW CTF 2015 Quals - Reversing 500, “wyvern”

Script author: Audrey Dutcher (github: @rhelmot)
Script runtime: 15 mins
Concepts presented: stdin constraining, concrete optimization with Unicorn

angr can outright solve this challenge with very little assistance from the user. The script to do so is here
<https://github.com/angr/angr-examples/tree/master/examples/csaw_wyvern/solve.py>_ and the binary is here.

7.2.4 TUMCTF 2016 - zwiebel

Script author: Fish
Script runtime: 2 hours 31 minutes with pypy and Unicorn - expect much longer with␣
→˓CPython only
Concepts presented: self-modifying code support, concrete optimization with Unicorn

This example is of a self-unpacking reversing challenge. This example shows how to enable Unicorn support and self-
modification support in angr. Unicorn support is essential to solve this challenge within a reasonable amount of time
- simulating the unpacking code symbolically is very slow. Thus, we execute it concretely in unicorn/qemu and only
switch into symbolic execution when needed.

You may refer to other writeup about the internals of this binary. I didn’t reverse too much since I was pretty confident
that angr is able to solve it :-)

The long-term goal of optimizing angr is to execute this script within 10 minutes. Pretty ambitious :P

Here is the binary and the script.

116 Chapter 7. angr examples

https://github.com/b01lers/b01lers-ctf-2020/tree/master/rev/100_little_engine
https://github.com/angr/angr-examples/tree/master/examples/b01lersctf2020_little_engine/solve.py
https://github.com/angr/angr-examples/tree/master/examples/b01lersctf2020_little_engine/engine
https://github.com/angr/angr-examples/tree/master/examples/whitehat_crypto400/solve.py
https://github.com/angr/angr-examples/tree/master/examples/whitehat_crypto400/whitehat_crypto400
https://github.com/angr/angr-examples/tree/master/examples/csaw_wyvern/wyvern
https://github.com/angr/angr-examples/tree/master/examples/tumctf2016_zwiebel/zwiebel
https://github.com/angr/angr-examples/tree/master/examples/tumctf2016_zwiebel/solve.py

angr

7.2.5 FlareOn 2015 - Challenge 5

Script author: Adrian Tang (github: @tangabc)
Script runtime: 2 mins 10 secs
Concepts presented: Windows support

This is another reversing challenge from the FlareOn challenges.

“The challenge is designed to teach you about PCAP file parsing and traffic decryption by reverse engineering an
executable used to generate it. This is a typical scenario in our malware analysis practice where we need to figure out
precisely what the malware was doing on the network”

For this challenge, the author used angr to represent the desired encoded output as a series of constraints for the SAT
solver to solve for the input.

For a detailed write-up please visit the author’s post here and you can also find the solution from the FireEye here

7.2.6 0ctf quals 2016 - trace

Script author: WGH (wgh@bushwhackers.ru)
Script runtime: 1 min 50 secs (CPython 2.7.10), 1 min 12 secs (PyPy 4.0.1)
Concepts presented: guided symbolic tracing

In this challenge we’re given a text file with trace of a program execution. The file has two columns, address and
instruction executed. So we know all the instructions being executed, and which branches were taken. But the initial
data is not known.

Reversing reveals that a buffer on the stack is initialized with known constant string first, then an unknown string is
appended to it (the flag), and finally it’s sorted with some variant of quicksort. And we need to find the flag somehow.

angr easily solves this problem. We only have to direct it to the right direction at every branch, and the solver finds the
flag at a glance.

Files are here.

7.2.7 ASIS CTF Finals 2015 - license

Script author: Fish Wang (github: @ltfish)
Script runtime: 3.6 sec
Concepts presented: using the filesystem, manual symbolic summary execution

This is a crackme challenge that reads a license file. Rather than hooking the read operations of the flag file, we actually
pass in a filesystem with the correct file created.

Here is the binary and the script.

7.2. Reversing 117

https://github.com/angr/angr-examples/tree/master/examples/flareon2015_5/sender
http://0x0atang.github.io/reversing/2015/09/18/flareon5-concolic.html
https://www.fireeye.com/content/dam/fireeye-www/global/en/blog/threat-research/flareon/2015solution5.pdf
https://github.com/angr/angr-examples/tree/master/examples/0ctf_trace
https://github.com/angr/angr-examples/tree/master/examples/asisctffinals2015_license/license
https://github.com/angr/angr-examples/tree/master/examples/asisctffinals2015_license/solve.py

angr

7.2.8 DEFCON Quals 2017 - Crackme2000

Script author: Shellphish
Script runtime: varies, but on the order of seconds
Concepts presented: automated reverse engineering

DEFCON Quals had a whole category for automatic reversing in 2017. Our scripts are here.

7.3 Vulnerability Discovery

These are examples of angr being used to identify vulnerabilities in binaries.

7.3.1 Beginner vulnerability discovery example: strcpy_find

Script author: Kyle Ossinger (github: @k0ss)
Concepts presented: exploration to vulnerability, programmatic find condition

This is the first in a series of “tutorial scripts” I’ll be making which use angr to find exploitable conditions in binaries.
The first example is a very simple program. The script finds a path from the main entry point to strcpy, but only when
we control the source buffer of the strcpy operation. To hit the right path, angr has to solve for a password argument,
but angr solved this in less than 2 seconds on my machine using the standard Python interpreter. The script might look
large, but that’s only because I’ve heavily commented it to be more helpful to beginners. The challenge binary is here
and the script is here.

7.3.2 CGC crash identification

Script author: Antonio Bianchi, Jacopo Corbetta
Concepts presented: exploration to vulnerability

This is a very easy binary containing a stack buffer overflow and an easter egg. CADET_00001 is one of the challenge
released by DARPA for the Cyber Grand Challenge: link The binary can run in the DECREE VM: link A copy of
the original challenge and the angr solution is provided here CADET_00001.adapted (by Jacopo Corbetta) is the same
program, modified to be runnable in an Intel x86 Linux machine.

7.3.3 Grub “back to 28” bug

Script author: Audrey Dutcher (github: @rhelmot)
Concepts presented: unusal target (custom function hooking required), use of exploration␣
→˓techniques to categorize and prune the program's state space

This is the demonstration presented at 32c3. The script uses angr to discover the input to crash grub’s password entry
prompt.

script - vulnerable module

118 Chapter 7. angr examples

https:////github.com/angr/angr-examples/tree/master/examples/defcon2017quals_crackme2000
https://github.com/angr/angr-examples/tree/master/examples/strcpy_find/strcpy_test
https://github.com/angr/angr-examples/tree/master/examples/strcpy_find/solve.py
https://github.com/CyberGrandChallenge/samples/tree/master/examples/CADET_00001
http://repo.cybergrandchallenge.com/boxes/
https://github.com/angr/angr-examples/tree/master/examples/CADET_00001
https://github.com/angr/angr-examples/tree/master/examples/grub/solve.py
https://github.com/angr/angr-examples/tree/master/examples/grub/crypto.mod

angr

7.4 Exploitation

These are examples of angr’s use as an exploitation assistance engine.

7.4.1 Insomnihack Simple AEG

Script author: Nick Stephens (github: @NickStephens)
Concepts presented: automatic exploit generation, global symbolic data tracking

Demonstration for Insomni’hack 2016. The script is a very simple implementation of AEG.

script

7.4.2 SecuInside 2016 Quals - mbrainfuzz - symbolic exploration for exploitability
conditions

Script author: nsr (nsr@tasteless.eu)
Script runtime: ~15 seconds per binary
Concepts presented: symbolic exploration guided by static analysis, using the CFG

Originally, a binary was given to the ctf-player by the challenge-service, and an exploit had to be crafted automatically.
Four sample binaries, obtained during the ctf, are included in the example. All binaries follow the same format; the
command-line argument is validated in a bunch of functions, and when every check succeeds, a memcpy() resulting
into a stack-based buffer overflow is executed. angr is used to find the way through the binary to the memcpy() and to
generate valid inputs to every checking function individually.

The sample binaries and the script are located here and additional information be found at the author’s Write-Up.

7.4.3 SECCON 2016 Quals - ropsynth

Script author: Yan Shoshitaishvili (github @zardus) and Nilo Redini
Script runtime: 2 minutes
Concepts presented: automatic ROP chain generation, binary modification, reasoning over␣
→˓constraints, reasoning over action history

This challenge required the automatic generation of ropchains, with the twist that every ropchain was succeeded by an
input check that, if not passed, would terminate the application. We used symbolic execution to recover those checks,
removed the checks from the binary, used angrop to build the ropchains, and instrumented them with the inputs to pass
the checks.

The various challenge files are located here, with the actual solve script here.

7.4. Exploitation 119

https://github.com/angr/angr-examples/tree/master/examples/insomnihack_aeg/solve.py
https://github.com/angr/angr-examples/tree/master/examples/secuinside2016mbrainfuzz
https://tasteless.eu/post/2016/07/secuinside-mbrainfuzz/
https://github.com/angr/angr-examples/tree/master/examples/secconquals2016_ropsynth
https://github.com/angr/angr-examples/tree/master/examples/secconquals2016_ropsynth/solve.py

angr

120 Chapter 7. angr examples

CHAPTER

EIGHT

FREQUENTLY ASKED QUESTIONS

This is a collection of commonly-asked “how do I do X?” questions and other general questions about angr, for those
too lazy to read this whole document.

If your question is of the form “how do I fix X issue after installing”, see also the Troubleshooting section of the
:ref:`install instructions <Installing angr>`_.

8.1 Why is it named angr?

The core of angr’s analysis is on VEX IR, and when something is vexing, it makes you angry.

8.2 How should “angr” be stylized?

All lowercase, even at the beginning of sentences. It’s an anti-proper noun.

8.3 Why isn’t symbolic execution doing the thing I want?

The universal debugging technique for symbolic execution is as follows:

• Check your simulation manager for errored states. print(simgr) is a good place to start, and if you see anything
to do with “errored”, go for print(simgr.errored).

• If you have any errored states and it’s not immediately obvious what you did wrong, you can get a pdb shell at
the crash site by going simgr.errored[n].debug().

• If no state has reached an address you care about, you should check the path each state has gone down: import
pprint; pprint.pprint(state.history.descriptions.hardcopy). This will show you a high-level
summary of what the symbolic execution engine did at each step along the state’s history. You will be able to see
from this a basic block trace and also a list of executed simprocedures. If you’re using unicorn engine, you can
check state.history.bbl_addrs.hardcopy to see what blocks were executed in each invocation of unicorn.

• If a state is going down the wrong path, you can check what constraints caused it to go that way: print(state.
solver.constraints). If a state has just gone past a branch, you can check the most recent branch condition
with state.history.events[-1].

121

https://docs.python.org/3/library/pdb.html

angr

8.4 How can I get diagnostic information about what angr is doing?

angr uses the standard logging module for logging, with every package and submodule creating a new logger.

The simplest way to get debug output is the following:

import logging
logging.getLogger('angr').setLevel('DEBUG')

You may want to use INFO or whatever else instead. By default, angr will enable logging at the WARNING level.

Each angr module has its own logger string, usually all the Python modules above it in the hierarchy, plus itself, joined
with dots. For example, angr.analyses.cfg. Because of the way the Python logging module works, you can set the
verbosity for all submodules in a module by setting a verbosity level for the parent module. For example, logging.
getLogger('angr.analyses').setLevel('INFO') will make the CFG, as well as all other analyses, log at the
INFO level.

8.5 Why is angr so slow?

It’s complicated! Optimization considerations

8.6 How do I find bugs using angr?

It’s complicated! The easiest way to do this is to define a “bug condition”, for example, “the instruction pointer has
become a symbolic variable”, and run symbolic exploration until you find a state matching that condition, then dump
the input as a testcase. However, you will quickly run into the state explosion problem. How you address this is up
to you. Your solution may be as simple as adding an avoid condition or as complicated as implementing CMU’s
MAYHEM system as an Exploration Technique.

8.7 Why did you choose VEX instead of another IR (such as LLVM,
REIL, BAP, etc)?

We had two design goals in angr that influenced this choice:

1. angr needed to be able to analyze binaries from multiple architectures. This mandated the use of an IR to preserve
our sanity, and required the IR to support many architectures.

2. We wanted to implement a binary analysis engine, not a binary lifter. Many projects start and end with the
implementation of a lifter, which is a time consuming process. We needed to take something that existed and
already supported the lifting of multiple architectures.

Searching around the internet, the major choices were:

• LLVM is an obvious first candidate, but lifting binary code to LLVM cleanly is a pain. The two solutions are
either lifting to LLVM through QEMU, which is hackish (and the only implementation of it seems very tightly
integrated into S2E), or McSema, which only supported x86 at the time but has since gone through a rewrite and
gotten support for x86-64 and aarch64.

• TCG is QEMU’s IR, but extracting it seems very daunting as well and documentation is very scarce.

122 Chapter 8. Frequently Asked Questions

angr

• REIL seems promising, but there is no standard reference implementation that supports all the architectures that
we wanted. It seems like a nice academic work, but to use it, we would have to implement our own lifters, which
we wanted to avoid.

• BAP was another possibility. When we started work on angr, BAP only supported lifting x86 code, and up-
to-date versions of BAP were only available to academic collaborators of the BAP authors. These were two
deal-breakers. BAP has since become open, but it still only supports x86_64, x86, and ARM.

• VEX was the only choice that offered an open library and support for many architectures. As a bonus, it is very
well documented and designed specifically for program analysis, making it very easy to use in angr.

While angr uses VEX now, there’s no fundamental reason that multiple IRs cannot be used. There are two parts of
angr, outside of the angr.engines.vex package, that are VEX-specific:

• the jump labels (i.e., the Ijk_Ret for returns, Ijk_Call for calls, and so forth) are VEX enums.

• VEX treats registers as a memory space, and so does angr. While we provide accesses to state.regs.rax and
friends, on the backend, this does state.registers.load(8, 8), where the first 8 is a VEX-defined offset
for rax to the register file.

To support multiple IRs, we’ll either want to abstract these things or translate their labels to VEX analogues.

8.8 Why are some ARM addresses off-by-one?

In order to encode THUMB-ness of an ARM code address, we set the lowest bit to one. This convention comes from
LibVEX, and is not entirely our choice! If you see an odd ARM address, that just means the code at address - 1 is
in THUMB mode.

8.9 How do I serialize angr objects?

Pickle will work. However, Python will default to using an extremely old pickle protocol that does not support more
complex Python data structures, so you must specify a more advanced data stream format. The easiest way to do this
is pickle.dumps(obj, -1).

8.10 What does UnsupportedIROpError("floating point support
disabled") mean?

This might crop up if you’re using a CGC analysis such as driller or rex. Floating point support in angr has been
disabled in the CGC analyses for a tight-knit nebula of reasons:

• Libvex’s representation of floating point numbers is imprecise - it converts the 80-bit extended precision format
used by the x87 for computation to 64-bit doubles, making it impossible to get precise results

• There is very limited implementation support in angr for the actual primitive operations themselves as reported
by libvex, so you will often get a less friendly “unsupported operation” error if you go too much further

• For what operations are implemented, the basic optimizations that allow tractability during symbolic computation
(AST deduplication, operation collapsing) are not implemented for floating point ops, leading to gigantic ASTs

• There are memory corruption bugs in z3 that get triggered frighteningly easily when you’re using huge workloads
of mixed floating point and bitvector ops. We haven’t been able to get a testcase that doesn’t involve “just run
angr” for the z3 guys to investigate.

8.8. Why are some ARM addresses off-by-one? 123

https://docs.python.org/2/library/pickle.html
https://docs.python.org/2/library/pickle.html#data-stream-format

angr

Instead of trying to cope with all of these, we have simply disabled floating point support in the symbolic execution
engine. To allow for execution in the presence of floating point ops, we have enabled an exploration technique called the
https://github.com/angr/angr/blob/master/angr/exploration_techniques/oppologist.py <oppologist> that is supposed
to catch these issues, concretize their inputs, and run the problematic instructions through qemu via unicorn engine,
allowing execution to continue. The intuition is that the specific values of floating point operations don’t typically affect
the exploitation process.

If you’re seeing this error and it’s terminating the analysis, it’s probably because you don’t have unicorn installed or
configured correctly. If you’re seeing this issue just in a log somewhere, it’s just the oppologist kicking in and you have
nothing to worry about.

8.11 Why is angr’s CFG different from IDA’s?

Two main reasons:

• IDA does not split basic blocks at function calls. angr will, because they are a form of control flow and basic
blocks end at control flow instructions. You generally do not need the supergraph for performing automated
analyses.

• IDA will split basic blocks if another block jumps into the middle of it. This is called basic block normalization,
and angr does not do it by default since it is unnecessary for most static analyses. You may enable it by passing
normalize=True to the CFG analysis.

8.12 Why do I get incorrect register values when reading from a state
during a SimInspect breakpoint?

libVEX will eliminate duplicate register writes within a single basic block when optimizations are enabled. Turn off
IR optimization to make everything look right at all times.

In the case of the instruction pointer, libVEX will frequently omit mid-block writes even when optimizations are
disabled. In this case, you should use state.scratch.ins_addr to get the current instruction pointer.

124 Chapter 8. Frequently Asked Questions

CHAPTER

NINE

APPENDIX

9.1 Cheatsheet

The following cheatsheet aims to give an overview of various things you can do with angr and act as a quick reference
to check the syntax for something without having to dig through the deeper docs.

9.1.1 General getting started

Some useful imports

import angr #the main framework
import claripy #the solver engine

Loading the binary

proj = angr.Project("/path/to/binary", auto_load_libs=False) # auto_load_libs False for␣
→˓improved performance

9.1.2 States

Create a SimState object

state = proj.factory.entry_state()

9.1.3 Simulation Managers

Generate a simulation manager object

simgr = proj.factory.simulation_manager(state)

125

angr

9.1.4 Exploring and analysing states

Choosing a different Exploring strategy

simgr.use_technique(angr.exploration_techniques.DFS())

Symbolically execute until we find a state satisfying our find= and avoid= parameters

avoid_addr = [0x400c06, 0x400bc7]
find_addr = 0x400c10d
simgr.explore(find=find_addr, avoid=avoid_addr)

found = simgr.found[0] # A state that reached the find condition from explore
found.solver.eval(sym_arg, cast_to=bytes) # Return a concrete string value for the sym␣
→˓arg to reach this state

Symbolically execute until lambda expression is True

simgr.step(until=lambda sm: sm.active[0].addr >= first_jmp)

This is especially useful with the ability to access the current STDOUT or STDERR (1 here is the File Descriptor for
STDOUT)

simgr.explore(find=lambda s: "correct" in s.posix.dumps(1))

Memory Managment on big searches (Auto Drop Stashes):

simgr.explore(find=find_addr, avoid=avoid_addr, step_func=lambda lsm: lsm.drop(stash=
→˓'avoid'))

Manually Exploring

simgr.step(step_func=step_func, until=lambda lsm: len(sm.found) > 0)

def step_func(lsm):
lsm.stash(filter_func=lambda state: state.addr == 0x400c06, from_stash='active', to_

→˓stash='avoid')
lsm.stash(filter_func=lambda state: state.addr == 0x400bc7, from_stash='active', to_

→˓stash='avoid')
lsm.stash(filter_func=lambda state: state.addr == 0x400c10, from_stash='active', to_

→˓stash='found')
return lsm

Enable Logging output from Simulation Manager:

import logging
logging.getLogger('angr.sim_manager').setLevel(logging.DEBUG)

126 Chapter 9. Appendix

angr

Stashes

Move Stash:

simgr.stash(from_stash="found", to_stash="active")

Drop Stashes:

simgr.drop(stash="avoid")

9.1.5 Constraint Solver (claripy)

Create symbolic object

sym_arg_size = 15 #Length in Bytes because we will multiply with 8 later
sym_arg = claripy.BVS('sym_arg', 8*sym_arg_size)

Restrict sym_arg to typical char range

for byte in sym_arg.chop(8):
initial_state.add_constraints(byte >= '\x20') # ' '
initial_state.add_constraints(byte <= '\x7e') # '~'

Create a state with a symbolic argument

argv = [proj.filename]
argv.append(sym_arg)
state = proj.factory.entry_state(args=argv)

Use argument for solving:

sym_arg = angr.claripy.BVS("sym_arg", flag_size * 8)
argv = [proj.filename]
argv.append(sym_arg)
initial_state = proj.factory.full_init_state(args=argv, add_options=angr.options.unicorn,
→˓ remove_options={angr.options.LAZY_SOLVES})

9.1.6 FFI and Hooking

Calling a function from ipython

f = proj.factory.callable(address)
f(10)
x=claripy.BVS('x', 64)
f(x) #TODO: Find out how to make that result readable

If what you are interested in is not directly returned because for example the function returns the pointer to a buffer you
can access the state after the function returns with

>>> f.result_state
<SimState @ 0x1000550>

9.1. Cheatsheet 127

angr

Hooking

There are already predefined hooks for libc functions (useful for statically compiled libraries)

proj = angr.Project('/path/to/binary', use_sim_procedures=True)
proj.hook(addr, angr.SIM_PROCEDURES['libc']['atoi']())

Hooking with Simprocedure:

class fixpid(angr.SimProcedure):
def run(self):

return 0x30

proj.hook(0x4008cd, fixpid())

9.1.7 Other useful tricks

Drop into an ipython if a ctr+c is recieved (useful for debugging scripts that are running forever)

import signal
def killmyself():

os.system('kill %d' % os.getpid())
def sigint_handler(signum, frame):

print 'Stopping Execution for Debug. If you want to kill the programm issue:␣
→˓killmyself()'
if not "IPython" in sys.modules:

import IPython
IPython.embed()

signal.signal(signal.SIGINT, sigint_handler)

Get the calltrace of a state to find out where we got stuck

state = simgr.active[0]
print state.callstack

Get a basic block

block = proj.factory.block(address)
block.capstone.pp() # Capstone object has pretty print and other data about the␣
→˓dissassembly
block.vex.pp() # Print vex representation

9.1.8 State manipulation

Write to state:

aaaa = claripy.BVV(0x41414141, 32) # 32 = Bits
state.memory.store(0x6021f2, aaaa)

Read Pointer to Pointer from Frame:

128 Chapter 9. Appendix

angr

poi1 = new_state.solver.eval(new_state.regs.rbp)-0x10
poi1 = new_state.mem[poi1].long.concrete
poi1 += 0x8
ptr1 = new_state.mem[poi1].long.concrete

Read from State:

key = []
for i in range(38):

key.append(extractkey.mem[0x602140 + i*4].int.concrete)

Alternatively, the below expression is equivalent

key = extractkey.mem[0x602140].int.array(38).concrete

9.1.9 Debugging angr

Set Breakpoint at every Memory read/write:

new_state.inspect.b('mem_read', when=angr.BP_AFTER, action=debug_funcRead)
def debug_funcRead(state):

print 'Read', state.inspect.mem_read_expr, 'from', state.inspect.mem_read_address

Set Breakpoint at specific Memory location:

new_state.inspect.b('mem_write', mem_write_address=0x6021f1, when=angr.BP_AFTER,␣
→˓action=debug_funcWrite)

9.1. Cheatsheet 129

angr

9.2 List of Claripy Operations

9.2.1 Arithmetic and Logic

Name Description Example
LShR Logically shifts an expression to the right. (the de-

fault shifts are arithmetic)
x.LShR(10)

Ro-
tateLeft

Rotates an expression left x.RotateLeft(8)

Rota-
teRight

Rotates an expression right x.RotateRight(8)

And Logical And (on boolean expressions) solver.And(x == y, x > 0)
Or Logical Or (on boolean expressions) solver.Or(x == y, y < 10)
Not Logical Not (on a boolean expression) solver.Not(x == y) is the same as x != y
If An If-then-else Choose the maximum of two expressions:

solver.If(x > y, x, y)
ULE Unsigned less than or equal to Check if x is less than or equal to y: x.ULE(y)
ULT Unsigned less than Check if x is less than y: x.ULT(y)
UGE Unsigned greater than or equal to Check if x is greater than or equal to y: x.UGE(y)
UGT Unsigned greater than Check if x is greater than y: x.UGT(y)
SLE Signed less than or equal to Check if x is less than or equal to y: x.SLE(y)
SLT Signed less than Check if x is less than y: x.SLT(y)
SGE Signed greater than or equal to Check if x is greater than or equal to y: x.SGE(y)
SGT Signed greater than Check if x is greater than y: x.SGT(y)

Todo: Add the floating point ops

9.2.2 Bitvector Manipulation

Name Description Example
SignExt Pad a bitvector on the left with n sign bits x.sign_extend(n)
Ze-
roExt

Pad a bitvector on the left with n zero bits x.zero_extend(n)

Ex-
tract

Extracts the given bits (zero-indexed from the right, inclusive)
from an expression.

Extract the least significant byte of x:
x[7:0]

Con-
cat

Concatenates any number of expressions together into a new ex-
pression.

x.concat(y, ...)

130 Chapter 9. Appendix

angr

9.2.3 Extra Functionality

There’s a bunch of prepackaged behavior that you could implement by analyzing the ASTs and composing sets of
operations, but here’s an easier way to do it:

• You can chop a bitvector into a list of chunks of n bits with val.chop(n)

• You can endian-reverse a bitvector with x.reversed

• You can get the width of a bitvector in bits with val.length

• You can test if an AST has any symbolic components with val.symbolic

• You can get a set of the names of all the symbolic variables implicated in the construction of an AST with
val.variables

9.3 List of State Options

9.3.1 State Modes

These may be enabled by passing mode=xxx to a state constructor.

Mode name Description
symbolic The default mode. Useful for most emulation and analysis tasks.
symbolic_approximatingSymbolic mode, but enables approximations for constraint solving.
static A preset useful for static analysis. The memory model becomes an abstract region-mapping sys-

tem, “fake return” successors skipping calls are added, and more.
fastpath A preset for extremely lightweight static analysis. Executing will skip all intensive processing to

give a quick view of the behavior of code.
tracing A preset for attempting to execute concretely through a program with a given input. Enables

unicorn, enables resilience options, and will attempt to emulate access violations correctly.

9.3.2 Option Sets

These are sets of options, found as angr.options.xxx.

Set
name

Description

common_optionsOptions necessary for basic execution
symbolic Options necessary for basic symbolic execution
resilienceOptions that harden angr’s emulation against unsupported operations, attempting to carry on by treating

the result as an unconstrained symbolic value and logging the occasion to state.history.events.
refs Options that cause angr to keep a log of all the memory, register, and temporary references complete

with dependency information in history.actions. This option consumes a lot of memory, so be
careful!

approximationOptions that enable approximations of constraint solves via value-set analysis instead of calling into z3
simplificationOptions that cause data to be run through z3’s simplifiers before it reaches memory or register storage
unicorn Options that enable the unicorn engine for executing on concrete data

9.3. List of State Options 131

angr

9.3.3 Options

These are individual option objects, found as angr.options.XXX.

Option name Description Sets Modes Implicit adds
ABSTRACT_MEMORY Use SimAbstractMemory to model memory as discrete regions static
ABSTRACT_SOLVER Allow splitting constraint sets during simplification static
ACTION_DEPS Track dependencies in SimActions
APPROXIMATE_GUARDS Use VSA when evaluating guard conditions
APPROXIMATE_MEMORY_INDICES Use VSA when evaluating memory indices approximation symbolic_approximating
APPROXIMATE_MEMORY_SIZES Use VSA when evaluating memory load/store sizes approximation symbolic_approximating
APPROXIMATE_SATISFIABILITY Use VSA when evaluating state satisfiability approximation symbolic_approximating
AST_DEPS Enables dependency tracking for all claripy ASTs During execution
AUTO_REFS An internal option used to track dependencies in SimProcedures During execution
AVOID_MULTIVALUED_READS Return a symbolic value without touching memory for any read that has a symbolic address fastpath
AVOID_MULTIVALUED_WRITES Do not perfrom any write that has a symbolic address fastpath
BEST_EFFORT_MEMORY_STORING Handle huge writes of symbolic size by pretending they are actually smaller static, fastpath
BREAK_SIRSB_END Debug: trigger a breakpoint at the end of each block
BREAK_SIRSB_START Debug: trigger a breakpoint at the start of each block
BREAK_SIRSTMT_END Debug: trigger a breakpoint at the end of each IR statement
BREAK_SIRSTMT_START Debug: trigger a breakpoint at the start of each IR statement
BYPASS_ERRORED_IRCCALL Treat clean helpers that fail with errors as returning unconstrained symbolic values resilience fastpath, tracing
BYPASS_ERRORED_IROP Treat operations that fail with errors as returning unconstrained symbolic values resilience fastpath, tracing
BYPASS_UNSUPPORTED_IRCCALL Treat unsupported clean helpers as returning unconstrained symbolic values resilience fastpath, tracing
BYPASS_UNSUPPORTED_IRDIRTY Treat unsupported dirty helpers as returning unconstrained symbolic values resilience fastpath, tracing
BYPASS_UNSUPPORTED_IREXPR Treat unsupported IR expressions as returning unconstrained symbolic values resilience fastpath, tracing
BYPASS_UNSUPPORTED_IROP Treat unsupported operations as returning unconstrained symbolic values resilience fastpath, tracing
BYPASS_UNSUPPORTED_IRSTMT Treat unsupported IR statements as returning unconstrained symbolic values resilience fastpath, tracing
BYPASS_UNSUPPORTED_SYSCALL Treat unsupported syscalls as returning unconstrained symbolic values resilience fastpath, tracing
BYPASS_VERITESTING_EXCEPTIONS Discard emulation errors during veritesting resilience fastpath, tracing
CACHELESS_SOLVER enable SolverCacheless
CALLLESS Emulate call instructions as an unconstraining of the return value register
CGC_ENFORCE_FD CGC: make sure all reads and writes go to stdin and stdout, respectively
CGC_NON_BLOCKING_FDS CGC: always report “data available” in fdwait
CGC_NO_SYMBOLIC_RECEIVE_LENGTH CGC: always read the maximum amount of data requested in the receive syscall
COMPOSITE_SOLVER Enable SolverComposite for independent constraint set optimization symbolic all except static
CONCRETIZE Concretize all symbolic expressions encountered during emulation
CONCRETIZE_SYMBOLIC_FILE_READ_SIZES Concreteize the sizes of file reads
CONCRETIZE_SYMBOLIC_WRITE_SIZES Concretize the sizes of symbolic writes to memory
CONSERVATIVE_READ_STRATEGY Do not use SimConcretizationStrategyAny for reads; in case of read address concretization failures, return an unconstrained symbolic value
CONSERVATIVE_WRITE_STRATEGY Do not use SimConcretizationStrategyAny for writes; in case of write address concretization failures, treat the store as a no-op
CONSTRAINT_TRACKING_IN_SOLVER Set track=True for making claripy Solvers; enable use of unsat_core
COW_STATES Copy states instead of mutating the initial state directly common_options all
DOWNSIZE_Z3 Downsize the claripy solver whenever possible to save memory
DO_CCALLS Perform IR clean calls symbolic all except fastpath
DO_GETS Perform IR register reads common_options all
DO_LOADS Perform IR memory loads common_options all
DO_OPS Perform IR computation operations common_options all
DO_PUTS Perform IR register writes common_options all
DO_RET_EMULATION For each Ijk_Call successor, add a corresponding Ijk_FakeRet successor static, fastpath
DO_STORES Perform IR memory stores common_options all
EFFICIENT_STATE_MERGING Keep in memory any state that might be a common ancestor in a merge Veritesting

continues on next page

132 Chapter 9. Appendix

angr

Table 1 – continued from previous page
Option name Description Sets Modes Implicit adds
ENABLE_NX When in conjunction with STRICT_PAGE_ACCESS, raise a SimSegfaultException on executing non-executable memory Automatically if supported
EXCEPTION_HANDLING Ask all SimExceptions raised during execution to be handled by the SimOS tracing
FAST_MEMORY Use SimFastMemory for memory storage
FAST_REGISTERS Use SimFastMemory for register storage fastpath
INITIALIZE_ZERO_REGISTERS Treat the initial value of registers as zero instead of unconstrained symbolic unicorn tracing
KEEP_IP_SYMBOLIC Don’t try to concretize successor states with symbolic instruction pointers
KEEP_MEMORY_READS_DISCRETE In abstract memory, handle failed loads by returning a DCIS?
LAZY_SOLVES Don’t check satisfiability until absolutely necessary
MEMORY_SYMBOLIC_BYTES_MAP Maintain a mapping of symbolic variable to which memory address it “really” corresponds to, at the paged memory level?
NO_SYMBOLIC_JUMP_RESOLUTION Do not attempt to flatten symbolic-ip successors into discrete targets fastpath
NO_SYMBOLIC_SYSCALL_RESOLUTION Do not attempt to flatten symbolic-syscall-number successors into discrete targets fastpath
OPTIMIZE_IR Use LibVEX’s optimization common_options all
REGION_MAPPING Maintain a mapping of symbolic variable to which memory region it corresponds to, at the abstract memory level static
REPLACEMENT_SOLVER Enable SolverReplacement
REVERSE_MEMORY_HASH_MAP Maintain a mapping from AST hash to which addresses it is present in
REVERSE_MEMORY_NAME_MAP Maintain a mapping from symbolic variable name to which addresses it is present in, required for memory.replace_all static
SIMPLIFY_CONSTRAINTS Run added constraints through z3’s simplifcation
SIMPLIFY_EXIT_GUARD Run branch guards through z3’s simplification
SIMPLIFY_EXIT_STATE Perform simplification on all successor states generated
SIMPLIFY_EXIT_TARGET Run jump/call/branch targets through z3’s simplification
SIMPLIFY_EXPRS Run the results of IR expressions through z3’s simplification
SIMPLIFY_MEMORY_READS Run the results of memory reads through z3’s simplification
SIMPLIFY_MEMORY_WRITES Run values stored to memory through z3’s simplification simplification, common_options symbolic, symbolic_approximating, tracing
SIMPLIFY_REGISTER_READS Run values read from registers through z3’s simplification
SIMPLIFY_REGISTER_WRITES Run values written to registers through z3’s simplification simplification, common_options symbolic, symbolic_approximating, tracing
SIMPLIFY_RETS Run values returned from SimProcedures through z3’s simplification
STRICT_PAGE_ACCESS Raise a SimSegfaultException when attempting to interact with memory in a way not permitted by the current permissions tracing
SUPER_FASTPATH Only execute the last four instructions of each block
SUPPORT_FLOATING_POINT When disabled, throw an UnsupportedIROpError when encountering floating point operations common_options all
SYMBOLIC Enable constraint solving? symbolic symbolic, symbolic_approximating, fastpath
SYMBOLIC_INITIAL_VALUES make state.solver.Unconstrained return a symbolic value instead of zero symbolic all
SYMBOLIC_TEMPS Treat each IR temporary as a symbolic variable; treat stores to them as constraint addition
SYMBOLIC_WRITE_ADDRESSES Allow writes with symbolic addresses to be processed by concretization strategies; when disabled, only allow for variables annotated with the “multiwrite” annotation
TRACK_CONSTRAINTS When disabled, don’t keep any constraints added to the state symbolic all
TRACK_CONSTRAINT_ACTIONS Keep a SimAction for each constraint added refs
TRACK_JMP_ACTIONS Keep a SimAction for each jump or branch refs
TRACK_MEMORY_ACTIONS Keep a SimAction for each memory read and write refs
TRACK_MEMORY_MAPPING Keep track of which pages are mapped into memory and which are not common_options all
TRACK_OP_ACTIONS Keep a SimAction for each IR operation fastpath
TRACK_REGISTER_ACTIONS Keep a SimAction for each register read and write refs
TRACK_SOLVER_VARIABLES Maintain a listing of all the variables in all the constraints in the solver
TRACK_TMP_ACTIONS Keep a SimAction for each temporary variable read and write refs
TRUE_RET_EMULATION_GUARD With DO_RET_EMULATION, add fake returns with guard condition true instead of false static
UNDER_CONSTRAINED_SYMEXEC Enable under-constrained symbolic execution
UNICORN Use unicorn engine to execute symbolically when data is concrete unicorn tracing Oppologist
UNICORN_AGGRESSIVE_CONCRETIZATION Concretize any register variable unicorn tries to access Oppologist
UNICORN_HANDLE_TRANSMIT_SYSCALL CGC: handle the transmit syscall without leaving unicorn unicorn tracing
UNICORN_SYM_REGS_SUPPORT Attempt to stay in unicorn even in the presence of symbolic registers by checking that the tainted registers are unused at every step unicorn tracing
UNICORN_THRESHOLD_CONCRETIZATION Concretize variables if they prevent unicorn from executing too often
UNICORN_TRACK_BBL_ADDRS Keep state.history.bbl_addrs up to date when using unicorn unicorn tracing

continues on next page

9.3. List of State Options 133

angr

Table 1 – continued from previous page
Option name Description Sets Modes Implicit adds
UNICORN_TRACK_STACK_POINTERS Track a list of the stack pointer’s value at each block in state.scratch.stack_pointer_list unicorn
UNICORN_ZEROPAGE_GUARD Prevent unicorn from mapping the zero page into memory
UNINITIALIZED_ACCESS_AWARENESS Broken/unused?
UNSUPPORTED_BYPASS_ZERO_DEFAULT When using the resilience options, return zero instead of an unconstrained symbol
USE_SIMPLIFIED_CCALLS Use a “simplified” set of ccalls optimized for specific cases static
USE_SYSTEM_TIMES In library functions and syscalls and hardware instructions accessing clock data, retrieve the real value from the host system. tracing
VALIDATE_APPROXIMATIONS Debug: When performing approximations, ensure that the approximation is sound by calling into z3
ZERO_FILL_UNCONSTRAINED_MEMORY Make the value of memory read from an uninitialized address zero instead of an unconstrained symbol tracing

9.4 CTF Challenge Examples

angr is very often used in CTFs. These are example scripts resulting from that use, mostly from Shellphish but also
from many others.

9.4.1 ReverseMe example: HackCon 2016 - angry-reverser

Script author: Stanislas Lejay (github: @P1kachu)

Script runtime: ~31 minutes

Here is the binary and the script

9.4.2 ReverseMe example: SecurityFest 2016 - fairlight

Script author: chuckleberryfinn (github: @chuckleberryfinn)

Script runtime: ~20 seconds

A simple reverse me that takes a key as a command line argument and checks it against 14 checks. Possible to solve
the challenge using angr without reversing any of the checks.

Here is the binary and the script

9.4.3 ReverseMe example: DEFCON Quals 2016 - baby-re

Authors David Manouchehri (github: @Manouchehri), Stanislas Lejay (github: @P1kachu) and Audrey Dutcher
(github: @rhelmot).

Script runtime: 10 sec

Here is the binary and the script

134 Chapter 9. Appendix

https://github.com/P1kachu
https://github.com/angr/angr-examples/tree/master/examples/hackcon2016_angry-reverser/yolomolo
https://github.com/angr/angr-examples/tree/master/examples/hackcon2016_angry-reverser/solve.py
https://github.com/chuckleberryfinn
https://github.com/angr/angr-examples/tree/master/examples/securityfest_fairlight/fairlight
https://github.com/angr/angr-examples/tree/master/examples/securityfest_fairlight/solve.py
https://github.com/Manouchehri
https://github.com/P1kachu
https://github.com/angr/angr-examples/tree/master/examples/defcon2016quals_baby-re/baby-re
https://github.com/angr/angr-examples/tree/master/examples/defcon2016quals_baby-re/solve.py

angr

9.4.4 ReverseMe example: Google CTF - Unbreakable Enterprise Product Activa-
tion (150 points)

Script 0 author: David Manouchehri (github: @Manouchehri)

Script runtime: 4.5 sec

Script 1 author: Adam Van Prooyen (github: @docileninja)

Script runtime: 6.7 sec

A Linux binary that takes a key as a command line argument and checks it against a series of constraints.

Challenge Description:

We need help activating this product – we’ve lost our license key :(

You’re our only hope!

Here are the binary and scripts: script 0, script_1

9.4.5 ReverseMe example: EKOPARTY CTF - Fuckzing reverse (250 points)

Author: Adam Van Prooyen (github: @docileninja)

Script runtime: 29 sec

A Linux binary that takes a team name as input and checks it against a series of constraints.

Challenge Description:

Hundreds of conditions to be meet, will you be able to surpass them?

Both sample binaries and the script are located here and additional information be found at the author’s write-up.

9.4.6 ReverseMe example: WhiteHat Grant Prix Global Challenge 2015 - Re400

Author: Fish Wang (github: @ltfish)

Script runtime: 5.5 sec

A Windows binary that takes a flag as argument, and tells you if the flag is correct or not.

“I have to patch out some checks that are difficult for angr to solve (e.g., it uses some bytes of the flag to decrypt some
data, and see if those data are legit Windows APIs). Other than that, angr works really well for solving this challenge.”

The binary and the script.

9.4.7 ReverseMe example: EKOPARTY CTF 2015 - rev 100

Author: Fish Wang (github: @ltfish)

Script runtime: 5.5 sec

This is a painful challenge to solve with angr. I should have done things in a smarter way.

Here is the binary and the script.

9.4. CTF Challenge Examples 135

https://github.com/Manouchehri
https://github.com/docileninja
https://github.com/angr/angr-examples/tree/master/examples/google2016_unbreakable_0
https://github.com/angr/angr-examples/tree/master/examples/google2016_unbreakable_1
https://github.com/docileninja
https://github.com/angr/angr-examples/tree/master/examples/ekopartyctf2016_rev250
http://van.prooyen.com/reversing/2016/10/30/Fuckzing-reverse-Writeup.html
https://github.com/angr/angr-examples/tree/master/examples/whitehatvn2015_re400/re400.exe
https://github.com/angr/angr-examples/tree/master/examples/whitehatvn2015_re400/solve.py
https://github.com/angr/angr-examples/tree/master/examples/ekopartyctf2015_rev100/counter
https://github.com/angr/angr-examples/tree/master/examples/ekopartyctf2015_rev100/solve.py

angr

9.4.8 ReverseMe example: ASIS CTF Finals 2015 - fake

Author: Fish Wang (github: @ltfish)

Script runtime: 1 min 57 sec

The solution is pretty straight-forward.

The binary and the script.

9.4.9 ReverseMe example: Defcamp CTF Qualification 2015 - Reversing 100

Author: Fish Wang (github: @ltfish)

angr solves this challenge with almost zero user-interference.

See the script and the binary.

9.4.10 ReverseMe example: Defcamp CTF Qualification 2015 - Reversing 200

Author: Fish Wang (github: @ltfish)

angr solves this challenge with almost zero user-interference. Veritesting is required to retrieve the flag promptly.

The script and the binary. It takes a few minutes to run on my laptop.

9.4.11 ReverseMe example: MMA CTF 2015 - HowToUse

Author: Audrey Dutcher (github: @rhelmot)

We solved this simple reversing challenge with angr, since we were too lazy to reverse it or run it in Windows. The
resulting script shows how we grabbed the flag out of the DLL.

9.4.12 CrackMe example: MMA CTF 2015 - SimpleHash

Author: Chris Salls (github: @salls)

This crackme is 95% solvable with angr, but we did have to overcome some difficulties. The script describes the
difficulties that were encountered and how we worked around them. The binary can be found here.

9.4.13 ReverseMe example: FlareOn 2015 - Challenge 10

Author: Fish Wang (github: @ltfish)

angr acts as a binary loader and an emulator in solving this challenge. I didn’t have to load the driver onto my Windows
box.

The script demonstrates how to hook at arbitrary program points without affecting the intended bytes to be executed (a
zero-length hook). It also shows how to read bytes out of memory and decode as a string.

By the way, here is the link to the intended solution from FireEye.

136 Chapter 9. Appendix

https://github.com/angr/angr-examples/tree/master/examples/asisctffinals2015_fake/fake
https://github.com/angr/angr-examples/tree/master/examples/asisctffinals2015_fake/solve.py
https://github.com/angr/angr-examples/tree/master/examples/defcamp_r100/solve.py
https://github.com/angr/angr-examples/tree/master/examples/defcamp_r100/r100
https://github.com/angr/angr-examples/tree/master/examples/defcamp_r200/solve.py
https://github.com/angr/angr-examples/tree/master/examples/defcamp_r200/r200
https://github.com/angr/angr-examples/tree/master/examples/mma_howtouse/solve.py
https://github.com/angr/angr-examples/tree/master/examples/mma_howtouse/howtouse.dll
https://github.com/angr/angr-examples/tree/master/examples/mma_simplehash/solve.py
https://github.com/angr/angr-examples/tree/master/examples/mma_simplehash/simple_hash
https://github.com/angr/angr-examples/tree/master/examples/flareon2015_10/solve.py
https://www.fireeye.com/content/dam/fireeye-www/global/en/blog/threat-research/flareon/2015solution10.pdf

angr

9.4.14 ReverseMe example: FlareOn 2015 - Challenge 2

Author: Chris Salls (github: @salls)

This reversing challenge is simple to solve almost entirely with angr, and a lot faster than trying to reverse the password
checking function. The script is here

9.4.15 ReverseMe example: 0ctf 2016 - momo

Author: Fish Wang (github: @ltfish), ocean (github: @ocean1)

This challenge is a movfuscated binary. To find the correct password after exploring the binary with Qira it is possible
to understand how to find the places in the binary where every character is checked using capstone and using angr to
load the binary and brute-force the single characters of the flag. Be aware that the script is really slow. Runtime: > 1
hour.

9.4.16 CrackMe example: 9447 CTF 2015 - Reversing 330, “nobranch”

Author: Audrey Dutcher (github: @rhelmot)

angr cannot currently solve this problem natively, as the problem is too complex for z3 to solve. Formatting the con-
straints to z3 a little differently allows z3 to come up with an answer relatively quickly. (I was asleep while it was
solving, so I don’t know exactly how long!) The script for this is here and the binary is here.

9.4.17 CrackMe example: ais3_crackme

Author: Antonio Bianchi, Tyler Nighswander

ais3_crackme has been developed by Tyler Nighswander (tylerni7) for ais3 summer school. It is an easy crackme
challenge, checking its command line argument.

9.4.18 ReverseMe: Modern Binary Exploitation - CSCI 4968

Author: David Manouchehri (GitHub @Manouchehri)

This folder contains scripts used to solve some of the challenges with angr. At the moment it only contains the examples
from the IOLI crackme suite, but eventually other solutions will be added.

9.4.19 CrackMe example: Android License Check

Author: Bernhard Mueller (GitHub @b-mueller)

A native binary for Android/ARM that validates a license key passed as a command line argument. It was created for
the symbolic execution tutorial in the OWASP Mobile Testing Guide.

9.4. CTF Challenge Examples 137

https://github.com/angr/angr-examples/tree/master/examples/flareon2015_2/very_success
https://github.com/angr/angr-examples/tree/master/examples/flareon2015_2/solve.py
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/angr/angr-examples/tree/master/examples/0ctf_momo_3/solve.py
https://github.com/angr/angr-examples/tree/master/examples/0ctf_momo_3/solve.py
https://github.com/angr/angr-examples/tree/master/examples/9447_nobranch/solve.py
https://github.com/angr/angr-examples/tree/master/examples/9447_nobranch/nobranch
https://github.com/Manouchehri
https://github.com/angr/angr-examples/tree/master/examples/CSCI-4968-MBE/challenges
https://github.com/angr/angr-examples/tree/master/examples/
https://github.com/angr/angr-examples/tree/master/examples/android_arm_license_validation
https://github.com/OWASP/owasp-mstg/

angr

9.5 Changelog

This lists the major changes in angr. Tracking minor changes are left as an exercise for the reader :-)

9.5.1 angr 9.1

• (#2961) Refactored SimCC to support passing and returning structs and arrays by value

• (#2964) Functions from the knowledge base may now be pretty-printed, showing colors and reference arrows

• Improved import angr speed substantially

• (#2948) RDA’s dep_graph can now be used to track dependencies between temporaries, constants, guard con-
ditions, and function calls - if you want it!

• (#2929) Basic support for structs with bitfields in SimType

• There’s a decompiler now

9.5.2 angr 9.0

• Switched to a new versioning scheme: major.minor.build_id

9.5.3 angr 8.19.7.25

• (#1503) Implement necessary helpers and information storage for call pretty printing

• (#1546) Add a new state option MEMORY_FIND_STRICT_SIZE_LIMIT

• (#1548) SimProcedure.static_exits: Allow providing name hints

• (cle#177) Use Enums for Symbol Types

• (cle#193) Add support for “named regions”

• (claripy#151) Implement operator precedence in claripy op rendering

• Added support for interaction recording in angr-management

• Several new simprocedure implementations

• Substantial imporvments to our CFG

9.5.4 angr 8.19.4.5

• (#1234) Massive improvements to CFG recovery for ARM and ARM cortex-m binaries.

• (#1416) Added support for analyzing Java programs via the Soot IR, including the ability to analyze interplay
between Java code and JNI libraries. This branch was two years old!

• (#1427) Added a MemoryWatcher exploration technique to take action when the system is running out of RAM.
Thanks @bannsec.

• (#1432) Added a state.heap plugin which manages the heap (with pluggable heap schemes!) and provides
malloc functionality. Thanks @tgduckworth.

• Speed improvements for using the VEX engine and working with concrete data.

138 Chapter 9. Appendix

angr

• Added SimLightRegisters, an alternate registers plugin that eliminates the abstraction of the register file for
performance improvements at the cost of removing all instrumentability.

• version__ variable has been added to all modules.

• The stack_base kwarg for call_state is not broken for the first time ever

• https://github.com/python/cpython/pull/11384

9.5.5 angr 8.19.2.4

• (#1279) Support C++ function name demangling via itanium-demangler. Thanks @fmagin.

• (#1283) security_cookie is initialized for SimWindows. Thanks @zeroSteiner.

• (#1298) Introduce SimData. It’s a cleaner interface to deal with data imports in CLE – especially for those data
entries that are not imported because of missing or unloaded libraries. This commit fixes long-standing issues
#151 and #693.

• (#1299, #1300, #1301, #1313, #1314, #1315, #1336, #1337, #1343, . . .) Multiple CFGFast-related improve-
ments and bug fixes.

• (#1332) UnresolvableTarget is now split into two classes: UnresolvableJumpTarget and
UnresolvableCallTarget. Thanks @Kyle-Kyle.

• (#1382) Add a preliminary implementation of angr decompiler. Give it a try! p = angr.
Project("cfg_loop_unrolling", auto_load_libs=False); p.analyses.CFG(); print(p.
analyses.Decompiler(p.kb.functions['test_func']).codegen.text).

• (#1421) SimActions now have incrementing IDs. Thanks @bannsec.

• (#1408) ANA, angr’s old identity-aware serialization backend, has been removed. Instead of non-obvious serial-
ization behavior, all angr objects should now be pickleable. If one is not, please file an issue. For use-cases that
require identity-awareness (i.e., deduplicating ASTs across states serialized at different times), an angr.vaults
module has been introduced.

• Added a facility to synchronize state between angr and a running target a la avatar2

• Changed unconstrained registers/memory warning to be less obnoxious and contain useful information. Also
added SYMBOL_FILL_UNCONSTRAINED_REGISTERS and SYMBOL_FILL_UNCONSTRAINED_MEMORY state op-
tions to silence them.

9.5.6 angr 8.18.10.25

• The IDA backend for CLE has been removed. It has been broken for quite some time, but now it has been disabled
for your own safety.

• Surveyors have been removed! Finally! This is thanks to @danse-macabre who contributed an Exploration
Technique for the Slicecutor. Backwards slicing has now been brought out of the angr dark ages.

• SimCC can now be initialized with a string containing C function prototype in its func_ty argument

• Similarly, Callable can now be run with its arguments instanciated from a string containing C expressions

• Tracer has been substantially refactored - it will now handle more kinds of desyncs, ASLR slides, and is much
more friendly for hacking. We will be continuing to improve it!

• The Oppologist and Driller have been refactored to play nice with other exploration techniques

9.5. Changelog 139

https://github.com/python/cpython/pull/11384
http://angr.io/blog/angr_symbion/

angr

• SimProcedure continuations now have symbols in the externs object, so describe_addr will work on them.
Additionally, the representation for SimProcedure (appearing in history.descriptions and project.
_sim_procedures among other places) has been improved to show this information.

9.5.7 angr 8.18.10.5

Largely a bugfix release, but with a few bonus treats:

• API documentation has been rewritten for Exploration Technique. It should be much easier to use now.

• Simulation Manager will throw an error if you pass incorrect keyword arguments (??? why was it like this)

• The save_unconstrained flag of Simulation Manager is now on by default

• If a step produces only unsatisfiable states, they will appear in the 'unsat' stash regardless of the save_unsat
setting, since this usually indicates a bug. Add unsat to the auto_drop parameter to restore the old behavior.

9.5.8 angr 8.18.10.1

Welcome to angr 8! The biggest change for this major version bump is the transition to Python 3. You can read about
this, as well as a few other breaking changes, in the Migrating to angr 8.

• Switch to Python 3

• Refactor to Clemory to clean up the API and speed things up drastically

• Remove object.symbols_by_addr (dict) and add object.symbols (sorted list); add fuzzy parameter to
loader.find_symbol

• CFGFast is much, much faster now. CFGAccurate has been renamed to CFGEmulated.

• Support for avx2 unpack instructions, courtesy of D. J. Bernstein

• Removed support for immutable simulation managers

• angr will now show you a warning when using uninitialized memory or registers

• angr will now NOT show you a warning if you have a capstone 3.x install unless you’re actually interacting with
the relevant missing parts

• Many, many, many bug fixes

9.5.9 angr 7.8.7.1

• Remove LoopLimiter and DFG.

• (#1063) CFGAccurate can now leverage indirect jump resolvers to resolve indirect jumps.

140 Chapter 9. Appendix

angr

9.5.10 angr 7.8.6.23

• (PyVEX!#134) We now recognize LDMDB r11, {xxx, pc} as a ret instruction for ARM.

• (#1053) CFGFast spends less time running next_pos_with_sort_not_in(), thus it runs faster on large binaries.

• (#1080) Jump table resolvers now support resolving ARM jump tables.

• (#1081, together with the PyVEX commit 61efbdcf6303a936aa3de35011d2d1e3fe5fdea5) The memory foot-
print of CFGFast is noticeably smaller, especially on large binaries (over 10 MB in size).

• (#1034) Concretizing a SimFile with unconstrained size can no longer run you out of memory.

• Other minor changes and bug fixes.

9.5.11 angr 7.8.6.16

• The modeling of file system is refactored.

• (#808) Add a new class Control flow blanket (CFBlanket) to support generating a linear view of a control flow
graph.

• (#863) Add support to AIL, the new angr intermediate language (still pretty WIP though). Merged in several
static analyses (reaching definition analysis, VEX-to-AIL translation, redundant assignment elimination, code
region identification, conrol flow structuring, etc.) that support the development of decompilation in the near
future.

• (#888) SimulationManager is extensively refactored and cleaned up.

• (#892) Keystone is integrated. You can assemble instructions inside angr now.

• (#897) A new class PluginHub is added. Plugins (analyses, engines) are refactored to be based on PluginHub.

• (#899) Support of bidirectional mapping between syscall numbers and syscalls.

• (#925, #941, #942) A bunch of library function prototypes (including glibc) are added to angr.

• (#953) Fix the issue where evaluating the jump target of a jump table that contains many entries (e.g., > 512) is
extremely slow.

• (#964) State options are now stored in insances of SimStateOptions. state.options is no longer a set of strings.

• (#973) Add two new exploration techniques: Stochastic and unique.

• (#996) SimType structs are now much easier to use.

• (#998) Add a new state option PRODUCE_ZERODIV_SUCCESSORS to generate divide-by-zero successors.

• Speed improvements and bug fixes in CFG generation (CFGFast and CFGAccurate).

9.5.12 angr 7.8.2.21

• Refactor of how syscall handling and SimSyscallLibrary work - it is now possible to handle syscalls using multiple
ABIs in the same process

• Added syscall name-number mappings from all linux ABIs, parsed from gdb

• Add ManualMergepoint exploration technique for when veritesting is too mysterious for your tastes

• Add LoopSeer exploration technique for managing loops during symbolic exploration (credit @tyb0807)

• Add ProxyTechnique exploration technique for easily composing simple lambda-based instrumentations (credit
@danse-macabre)

9.5. Changelog 141

angr

9.5.13 angr 7.7.12.16

• You can now tell where the variables implicitly created by angr come from! state.solver.BVS now can take a
key parameter, which describes its meaning in relation to the emulated environment. You can then use state.
solver.get_variables(...) and state.solver.describe_variables(...) to map tags and ASTs to
and from each other. Check out the API docs!

• The SimOS for a project is now a public property - project.simos instead of project._simos. Additionally,
the SimOS code structure has been shuffled around a bit - it’s now a subpackage instead of a submodule.

• The core components of Tracer and Driller have been refactored into Exploration Techniques and integrated into
angr proper, so you can now follow instrution traces without installing another repostory! (credit @tyb0807)

• Archinfo now contains a byte_width parameter and angr supports emulation of platforms with non-octet bytes,
lord help us

• Upgraded to networkx 2 (credit @tyb0807)

• Hopefully installation issues with capstone should be fixed FOREVER

• Minor fixes to gender

9.5.14 angr 7.7.9.8

Welcome to angr 7! We worked long and hard all summer to make this release the best ever. It introduces several
breaking changes, so for a quick guide on the most common ways you’ll need to update your scripts, take a look at the
Migrating to angr 7.

• SimuVEX has been removed and its components have been integrated into angr

• Path has been removed and its components have been integrated into SimState, notably the new history state
plugin

• PathGroup has been renamed to SimulationManager

• SimState and SimProcedure now have a reference to their parent Project, though it is verboten to use it in anything
other than an append-only fashion

• A new class SimLibrary is used to track SimProcedure and metadata corresponding to an individual shared
library

• Several CLE interfaces have been refactored up for consistency

• Hook has been removed. Hooking is now done with individual SimProcedure instances, which are shallow-
copied at execution time for thread-safety.

• The state.solver interface has been cleaned up drastically

These are the major refactor-y points. As for the improvements:

• Greatly improved support for analyzing 32 bit windows binaries (partial credit @schieb)

• Unicorn will now stop for stop points and breakpoints in the middle of blocks (credit @bennofs)

• The processor flags for a state can now be accessed through state.regs.eflags on x86 and state.regs.
flags on ARM (partial credit @tyb0807)

• Fledgling support for emulating exception handling. Currently the only implementation of this is support for
Structured Exception Handling on Windows, see angr.SimOS.handle_exception for details

• Fledgling support for runtime library loading by treating the CLE loader as an append-only interface,
though only implemented for windows. See cle.Loader.dynamic_load and angr.procedures.win32.
dynamic_loading for details.

142 Chapter 9. Appendix

http://angr.io/api-doc/angr.html#angr.state_plugins.solver.SimSolver

angr

• The knowledge base has been refactored into a series of plugins similar to SimState (credit @danse-macabre)

• The testcase-based function identifier we wrote for CGC has been integrated into angr as the Identifier analysis

• Improved support for writing custom VEX lifters

9.5.15 angr 6.7.6.9

• angr: A static data-flow analysis framework has been introduced, and implemented as part of the
ForwardAnalysis class. Additionally, a few exemplary data-flow analyses, like VariableRecovery and
VariableRecoveryFast, have been implemented in angr.

• angr: We introduced the notion of variable to the angr world. Now a VariableManager is available in the knowl-
edge base. Variable information can be recovered by running a variable recovery analysis. Currently the variable
information recovered for each function is still pretty coarse. More updates to it will arrive soon.

• angr: Fix a bug in the topological sorting in CFGUtils, which resulted in suboptimal graph node ordering after
sorting.

• SimuVEX: LAZY_SOLVES is no longer enabled by default during symbolic execution. It’s still there if it’s wanted,
but it just caused confusion when on by default.

• SimuVEX: Thanks to @ekilmer, a few new libc SimProcedures are added.

• SimuVEX: The default memory model has been refactored for expandability. Custom pages can now be created
(derive the simuvex.storage.ListPage class) and used instead of the default page classes to implement custom
memory behavior for specific pages. The user-friendly API for this is pending the next release.

• angr-management: Implemented our own graph layout and edge routing algorithm. We do not rely on grandalf
anymore.

• angr-management: Added support for displaying variable information for operands.

• angr-management: Added support for highlighting dependent operands when an operand is highlighted.

9.5.16 angr 6.7.3.26

Building off of the engine changes from the last release, we have begun to extend angr to other architectures. AVR and
MSP430 are in progress. In the meantime, subwire has created a reference implementation of BrainFuck support in
angr, done two different ways! Check out angr-platforms for more info!

• We have rebased our fork of VEX on the latest master branch from Valgrind (as of 2 months ago, at least. . .).
We have also submitted our patches to VEX to upstream, so we should be able to stop maintaining a fork pretty
soon.

• The way we interact with VEX has changed substancially, and should speed things up a bit.

• Loading sets of binaries with many import symbols has been sped up

• Many, many improvements to angr-management, including the switch away from enaml to using pyside directly.

9.5. Changelog 143

https://github.com/angr/angr-platforms

angr

9.5.17 angr 6.7.1.13

For the last month, we have been working on a major refactor of the angr to change the way that angr reasons about
the code that it analyzes. Until now, angr has been bound to the VEX intermediate representation to lift native code,
supporting a wide range of architectures but not being very expandable past them. This release represents the ground
work for what we call translation and execution engines. These engines are independent backends, pluggable into
the angr framework, that will allow angr to reason about a wide range of targets. For now, we have restructured the
existing VEX and Unicorn Engine support into this engine paradigm, but as we discuss in our blog post, the plan is
to create engines to enable angr’s reasoning of Java bytecode and source code, and to augment angr’s environment
support through the use of external dynamic sandboxes.

For now, these changes are mostly internal. We have attempted to maintain compatibility for end-users, but those
building systems atop angr will have to adapt to the modern codebase. The following are the major changes:

• simuvex: we have introduced SimEngine. SimEngine is a base class for abstractions over native code. For
example, angr’s VEX-specific functionality is now concentrated in SimEngineVEX, and new engines (such as
SimEngineLLVM) can be implemented (even outside of simuvex itself) to support the analysis of new types of
code.

• simuvex: as part of the engines refactor, the SimRun class has been eliminated. Instead of different subclasses
of SimRun that would be instantiated from an input state, engines each have a process function that, from
an input state, produces a SimSuccessors instance containing lists of different successor states (normal, unsat,
unconstrained, etc) and any engine-specific artifacts (such as the VEX statements. Take a look at successors.
artifacts).

• simuvex: state.mem[x:] = y now requires a type for storage (for example state.mem[x:].dword = y).

• simuvex: the way of calling inline SimProcedures has been changed. Now you have to create a SimProcedure,
and then call execute() on it and pass in a program state as well as the arguments.

• simuvex: accessing registers through SimRegNameView (like state.regs.eax) always triggers SimInspect
breakpoints and creates new actions. Now you can access a register by prefixing its name with an underscore
(e.g. state.regs._eax or state._ip) to avoid triggering breakpoints or creating actions.

• angr: the way hooks work has slightly changed, though is backwards-compatible. The new angr.Hook
class acts as a wrapper for hooks (SimProcedures and functions), keeping things cleaner in the project.
_sim_procedures dict.

• angr: we have deprecated the keyword argument max_size and changed it to to size in the angr.
Block constructor (i.e., the argument to project.factory.block and more upstream methods (path.step,
path_group.step, etc).

• angr: we have deprecated project.factory.sim_run and changed it to to project.factory.successors,
and it now generates a SimSuccessors object.

• angr: project.factory.sim_block has been deprecated and replaced with project.factory.
successors(default_engine=True).

• angr: angr syscalls are no longer hooks. Instead, the syscall table is now in project._simos.syscall_table.
This will be made “public” after a usability refactor. If you were using project.is_hooked(addr) to see if an
address has a related SimProcedure, now you probably want to check if there is a related syscall as well (using
project._simos.syscall_table.get_by_addr(addr) is not None).

• pyvex: to support custom lifters to VEX, pyvex has introduced the concept of backend lifters. Lifters can be
written in pure Python to produce VEX IR, allowing for extendability of angr’s VEX-based analyses to other
hardware architectures.

As usual, there are many other improvements and minor bugfixes.

144 Chapter 9. Appendix

http://angr.io/blog/2017_01_10.html

angr

• claripy: support unsat_core() to get the core of unsatness of constraints. It is in fact a thin wrapper of the
unsat_core() function provided by Z3. Also a new state option CONSTRAINT_TRACKING_IN_SOLVER is added
to SimuVEX. That state option must be enabled if you want to use unsat_core() on any state.

• simuvex: SimMemory.load() and SimMemory.store() now takes a new parameter disable_actions. Set-
ting it to True will prevent any SimAction creation.

• angr: CFGFast has a better support for ARM binaries, especially for code in THUMB mode.

• angr: thanks to an improvement in SimuVEX, CFGAccurate now uses slightly less memory than before.

• angr: len() on path trace or addr_trace is made much faster.

• angr: Fix a crash during CFG generation or symbolic execution on platforms/architectures with no syscall de-
fined.

• angr: as part of the refactor, BackwardSlicing is temporarily disabled. It will be re-enabled once all DDG-
related refactor are merged to master.

Additionally, packaging and build-system improvements coordinated between the angr and Unicorn Engine projects
have allowed angr’s Unicorn support to be built on Windows. Because of this, unicorn is now a dependency for
simuvex.

Looking forward, angr is poised to become a program analysis engine for binaries and more!

9.5.18 angr 5.6.12.3

It has been over a month since the last release 5.6.10.12. Again, we’ve made some significant changes and improvements
on the code base.

• angr: Labels are now stored in KnowledgeBase.

• angr: Add a new analysis: Disassembly. The new Disassembly analysis provides an easy-to-use interface to
render assembly of functions.

• angr: Fix the issue that ForwardAnalysis may prematurely terminate while there are still un-processed jobs.

• angr: Many small improvements and bug fixes on CFGFast.

• angr: Many small improvements and bug fixes on VFG. Bring back widening support. Fix the issue that VFG may
not terminate under certain cases. Implement a new graph traversal algorithm to have an optimal traversal order.
Allow state merging at non-merge-points, which allows faster convergence.

• angr-management: Display a progress during initial CFG recovery.

• angr-management: Display a “Load binary” window upon binary loading. Some analysis options can be adjusted
there.

• angr-management: Disassembly view: Edge routing on the graph is improved.

• angr-management: Disassembly view: Support starting a new symbolic execution task from an arbitrary address
in the program.

• angr-management: Disassembly view: Support renaming of function names and labels.

• angr-management: Disassembly view: Support “Jump to address”.

• angr-management: Disassembly view: Display resolved and unresolved jump targets. All jump targets are
double-clickable.

• SimuVEX: Move region mapping from SimAbstractMemory to SimMemory. This will allow an easier conver-
sion between SimAbstractMemory and SimSymbolicMemory, which is to say, conversion between symbolic
states and static states is now possible.

9.5. Changelog 145

angr

• SimuVEX & claripy: Provide support for unsat_core in Z3. It returns a set of constraints that led to unsatness
of the constraint set on the current state.

• archinfo: Add a new Boolean variable branch_delay_slot for each architecture. It is set to True on MIPS32.

9.5.19 angr 5.6.8.22

Major point release! An incredible number of things have changed in the month run-up to the Cyber Grand Challenge.

• Integration with Unicorn Engine supported for concrete execution. A new SimRun type, SimUnicorn, may step
through many basic blocks at once, so long as there is no operation on symbolic data. Please use our fork of
unicorn engine, which has many patches applied. All these patches are pending merge into upstream.

• Lots of improvements and bug fixes to CFGFast. Rumors are angr’s CFG was only “optimized” for x86-64
binaries (which is really because most of our test cases are compiled as 64-bit ELFs). Now it is also “optimized”
for x86 binaries :) (editor’s note: angr is built with cross-architecture analysis in mind. CFG construction is
pretty much the only component which has architecture-specific behavior.)

• Lots of improvements to the VFG analysis, including speed and accuracy. However, there is still a lot to be done.

• Lots of speed optimizations in general - CFGFast should be 3-6x faster under CPython with much less memory
usage.

• Now data dependence graph gives you a real dependence graph between variable definitions. Try data_graph
and simplified_data_graph on a DDG object!

• New state option simuvex.o.STRICT_PAGE_ACCESS will cause a SimSegfaultError to be raised whenever
the guest reads/writes/executes memory that is either unmapped or doesn’t have the appropriate permissions.

• Merging of paths (as opposed to states) is performed in a much smarter way.

• The behavior of the support_selfmodifying_code project option is changed: Before, this would allow the
state to be used as a fallback source of instruction bytes when no backer from CLE is available. Now, this option
makes instruction lifting use the state as the source of bytes always. When the option is disabled and execution
jumps outside the normal binary, the state will be used automatically.

• Actually support self-modifying code - if a basic block of code modifies itself, the block will be re-lifted before
the next instruction starts.

• Syscalls are handled differently now - Before you would see a SimRun for a syscall helper, now you’ll just see a
SimProcedure for the given syscall. Additionally, each syscall has its own address in a “syscalls segment”, and
syscalls are treated as jumps to this segment. This simplifies a lot of things analysis-wise.

• CFGAccurate accepts a base_graph keyword to its constructor, e.g. CFGFast().graph, or even .graph of a
function, to use as a base for analysis.

• New fast memory model for cases where symbolic-addressed reads and writes are unlikely.

• Conflicts between the find and avoid parameters to the Explorer otiegnqwvk are resolved correctly. (credit
clslgrnc)

• New analysis StaticHooker which hooks library functions in unstripped statically linked binaries.

• Lifter can be used without creating an angr Project. You must manually specify the architecture and bytestring
in calls to .lift() and .fresh_block(). If you like, you can also specify the architecture as a parameter to
the constructor and omit it from the lifting calls.

• Add two new analyses developed for the CGC (mostly as examples of doing static analysis with angr): Reassem-
bler and BinaryOptimizer.

146 Chapter 9. Appendix

https://github.com/unicorn-engine/unicorn
https://github.com/angr/unicorn
https://github.com/angr/unicorn

angr

9.5.20 angr 4.6.6.28

In general, there have been enormous amounts of speed improvements in this release. Depending on the workload,
angr should run about twice as fast. Aside from this, there have also been many submodule-specific changes:

angr

Quite a few changes and improvements are made to CFGFast and CFGAccurate in order to have better and faster CFG
recovery. The two biggest changes in CFGFast are jump table resolution and data references collection, respectively.
Now CFGFast resolves indirect jumps by default. You may get a list of indirect jumps recovered in CFGFast by
accessing the indirect_jumps attribute. For many cases, it resolves the jump table accurately. Data references
collection is still in alpha mode. To test data references collection, just pass collect_data_references=True when
creating a fast CFG, and access the memory_data attribute after the CFG is constructed.

CFG recovery on ARM binaries is also improved.

A new paradigm called an “otiegnqwvk”, or an “exploration technique”, allows the packaging of special logic related
to path group stepping.

SimuVEX

Reads/writes to the x87 fpu registers now work correctly - there is special logic that rotates a pointer into part of the
register file to simulate the x87 stack.

With the recent changes to Claripy, we have configured SimuVEX to use the composite solver by default. This should
be transparent, but should be considered if strange issues (or differences in behavior) arise during symbolic execution.

Claripy

Fixed a bug in claripy where div__ was not always doing unsigned division, and added new methods SDiv and SMod
for signed division and signed remainder, respectively.

Claripy frontends have been completely rewritten into a mixin-centric solver design. Basic frontend functionality
(i.e., calling into the solver or dealing with backends) is handled by frontends (in claripy.frontends), and addi-
tional functionality (such as caching, deciding when to simplify, etc) is handled by frontend mixins (in claripy.
frontend_mixins). This makes it considerably easier to customize solvers to your specific needE. For examples,
look at claripy/solver.py.

Alongside the solver rewrite, the composite solver (which splits constraints into independent constraint sets for faster
solving) has been immensely improved and is now functional and fast.

9.5.21 angr 4.6.6.4

Syscalls are no longer handled by simuvex.procedures.syscalls.handler. Instead, syscalls are now handled
by angr.SimOS.handle_syscall(). Previously, the address of a syscall SimProcedure is the address right after
the syscall instruction (e.g. int 80h), which collides with the real basic block starting at that address, and is very
confusing. Now each syscall SimProcedure has its own address, just as a normal SimProcedure. To support this, there
is another region mapped for the syscall addresses, Project._syscall_obj.

Some refactoring and bug fixes in CFGFast.

Claripy has been given the ability to handle annotations on ASTs. An annotation can be used to customize the behavior
of some backends without impacting others. For more information, check the docstrings of claripy.Annotation
and claripy.Backend.apply_annotation.

9.5. Changelog 147

angr

9.5.22 angr 4.6.5.25

New state constructor - call_state. Comes with a refactor to SimCC, a refactor to callable, and the re-
moval of PathGroup.call. All these changes are thoroughly documented, in angr/docs/advanced-topics/
structured_data.md

Refactor of SimType to make it easier to use types - they can be instanciated without a SimState and one can be added
later. Comes with some usability improvements to SimMemView. Also, there’s a better wrapper around PyCParser for
generating SimType instances from c declarations and definitions. Again, thoroughly documented, still in the structured
data doc.

CFG is now an alias to CFGFast instead of CFGAccurate. In general, CFGFast should work under most cases, and it’s
way faster than CFGAccurate. We believe such a change is necessary, and will make angr more approachable to new
users. You will have to change your code from CFG to CFGAccurate if you are relying on specific functionalities that
only exist in CFGAccurate, for example, context-sensitivity and state-preserving. An exception will be raised by angr
if any parameter passed to CFG is only supported by CFGAccurate. For more detailed explanation, please take a look
at the documentation of angr.analyses.CFG.

9.5.23 angr 4.6.3.28

PyVEX has a structural overhaul. The IRExpr, IRStmt, and IRConst modules no longer exist as submodules, and
those module names are deprecated. Use pyvex.expr, pyvex.stmt, and pyvex.const if you need to access the
members of those modules.

The names of the first three parameters to pyvex.IRSB (the required ones) have been changed. If you were passing the
positional args to IRSB as keyword args, consider switching to positional args. The order is data, mem_addr, arch.

The optional parameter sargc to the entry_state and full_init_state constructors has been removed and re-
placed with an argc parameter. sargc predates being able to have claripy ASTs independent from a solver. The new
system is to pass in the exact value, ast or integer, that you’d like to have as the guest program’s arg count.

CLE and angr can now accept file-like streams, that is, objects that support stream.read() and stream.seek() can
be passed in wherever a filepath is expected.

Documentation is much more complete, especially for PyVEX and angr’s symbolic execution control components.

9.5.24 angr 4.6.3.15

There have been several improvements to claripy that should be transparent to users:

• There’s been a refactoring of the VSA StridedInterval classes to fix cases where operations were not sound.
Precision might suffer as a result, however.

• Some general speed improvements.

• We’ve introduced a new backend into claripy: the ReplacementBackend. This frontend generates replacement
sets from constraints added to it, and uses these replacement sets to increase the precision of VSA. Additionally,
we have introduced the HybridBackend, which combines this functionality with a constraint solver, allowing for
memory index resolution using VSA.

angr itself has undergone some improvements, with API changes as a result:

• We are moving toward a new way to store information that angr has recovered about a program: the knowledge
base. When an analysis recovers some truth about a program (i.e., “there’s a basic block at 0x400400”, or “the
block at 0x400400 has a jump to 0x400500”), it gets stored in a knowledge-base. Analysis that used to store data
(currently, the CFG) now store them in a knowledge base and can share the global knowledge base of the project,
now accessible via project.kb. Over time, this knowledge base will be expanded in the course of any analysis
or symbolic execution, so angr is constantly learning more information about the program it is analyzing.

148 Chapter 9. Appendix

angr

• A forward data-flow analysis framework (called ForwardAnalysis) has been introduced, and the CFG was rewrit-
ten on top of it. The framework is still in alpha stage - expect more changes to be made. Documentation and
more details will arrive shortly. The goal is to refactor other data-flow analysis, like CFGFast, VFG, DDG, etc.
to use ForwardAnalysis.

• We refactored the CFG to a) improve code readability, and b) eliminate some bad designs that linger due to
historical reasons.

9.5.25 angr 4.5.12.?

Claripy has a new manager for backends, allowing external backends (i.e., those implemented by other modules)
to be used. The result is that claripy.backend_concrete is now claripy.backends.concrete, claripy.
backend_vsa is now claripy.backends.vsa, and so on.

9.5.26 angr 4.5.12.12

Improved the ability to recover from failures in instruction decoding. You can now hook specific addresses at which
VEX fails to decode with project.hook, even if those addresses are not the beginning of a basic block.

9.5.27 angr 4.5.11.23

This is a pretty beefy release, with over half of claripy having been rewritten and major changes to other analyses.
Internally, Claripy has been unified – the VSA mode and symbolic mode now work on the same structures instead of
requiring structures to be created differently. This opens the door for awesome capabilities in the future, but could also
result in unexpected behavior if we failed to account for something.

Claripy has had some major interface changes:

• claripy.BV has been renamed to claripy.BVS (bit-vector symbol). It can now create bitvectors out of strings (i.e.,
claripy.BVS(0x41, 8) and claripy.BVS(“A”) are identical).

• state.BV and state.BVV are deprecated. Please use state.se.BVS and state.se.BVV.

• BV.model is deprecated. If you’re using it, you’re doing something wrong, anyways. If you really need a specific
model, convert it with the appropriate backend (i.e., claripy.backend_concrete.convert(bv)).

There have also been some changes to analyses:

• Interface: CFG argument keep_input_state has been renamed to keep_state. With this option enabled,
both input and final states are kept.

• Interface: Two arguments cfg_node and stmt_id of BackwardSlicing have been deprecated. Instead,
BackwardSlicing takes a single argument, targets. This means that we now support slicing from multi-
ple sources.

• Performance: The speed of CFG recovery has been slightly improved. There is a noticeable speed improvement
on MIPS binaries.

• Several bugs have been fixed in DDG, and some sanity checks were added to make it more usable.

And some general changes to angr itself:

• StringSpec is deprecated! You can now pass claripy bitvectors directly as arguments.

9.5. Changelog 149

angr

9.6 Migrating to angr 9.1

angr 9.1 is here!

9.6.1 Calling Conventions and Prototypes

The main change motivating angr 9.1 is this large refactor of SimCC. Here are the breaking changes:

SimCCs can no longer be customized

If you were using the sp_delta, args, or ret_val parameters to SimCC, you should use the new class
SimCCUsercall, which lets (requires) you to be explicit about the locations of each argument.

Passing SimTypes is now mandatory

Every method call on SimCC which interacts with typed data now requires a SimType to be passed in. Previously,
the use of is_fp and size was optional, but now these parameters will no longer be accepted and a SimType will be
required.

This has some fairly non-intuitive consequences - in order to accommodate more esoteric calling conventions (think:
passing large structs by value via an “invisible reference”) you have to specify a function’s return type before you can
extract any of its arguments.

Additionally, some non-cc interfaces, such as call_state and callable and SimProcedure.call(), now require
a prototype to be passed to them. You’d be surprised how many bugs we found in our own code from enforcing this
requirement!

PointerWrapper has a new parameter

Imagine you’re passing something into a function which has a parameter of type char*. Is this a pointer to a single
char or a pointer to an array of chars? The answer changes how we typecheck the values you pass in. If you’re passing
a PointerWrapper wrapping a large value which should be treated as an array of chars, you should construct your
pointerwrapper as PointerWrapper(foo, buffer=True). The buffer argument to PointerWrapper now instructs
SimCC to treat the data to be serialized as an array of the child type instead of as a scalar.

func_ty -> prototype

Every usage of the name func_ty has been replaced with the name prototype. This was done for consistency between
the static analysis code and the dynamic FFI.

9.7 Migrating to angr 8

angr has moved from Python 2 to Python 3! We took this opportunity of a major version bump to make a few breaking
API changes that improve quality-of-life.

150 Chapter 9. Appendix

https://github.com/angr/angr/pull/2961

angr

9.7.1 What do I need to know for migrating my scripts to Python 3?

To begin, just the standard py3k changes, the relevant parts of which we’ll rehash here as a reference guide:

• Strings and bytestrings

– Strings are now unicode by default, a new bytes type holds bytestrings

– Bytestring literals can be constructued with the b prefix, like b'ABCD'

– Conversion between strings and bytestrings happens with .encode() and .decode(), which use utf-8 as
a default. The latin-1 codec will map byte values to their equivilant unicode codepoints

– The ord() and chr() functions operate on strings, not bytestrings

– Enumerating over or indexing into bytestrings produces an unsigned 8 bit integer, not a 1-byte bytestring

– Bytestrings have all the string manipulation functions present on strings, including join, upper/lower,
translate, etc

– hex and base64 are no longer string encoding codecs. For hex, use bytes.fromhex() and bytes.hex().
For base64 use the base64 module.

• Builtin functions

– print and exec are now builtin functions instead of statements

– Many builtin functions previously returning lists now return iterators, such as map, filter, and zip.
reduce is no longer a builtin; you have to import it from functools.

• Numbers

– The / operator is explicitly floating-point division, the // operator is expliclty integer division. The magic
functions for overriding these ops are truediv__ and floordiv__

– The int and long types have been merged, there is only int now

• Dictionary objects have had their .iterkeys, .itervalues, and .iteritems methods removed, and then
non-iter versions have been made to return efficient iterators

• Comparisons between objects of very different types (such as between strings and ints) will raise an exception

In terms of how this has affected angr, any string that represents data from the emulated program will be a
bytestring. This means that where you previously said state.solver.eval(x, cast_to=str) you should now
say cast_to=bytes. When creating concrete bitvectors from strings (including implicitly by just making a compar-
ison against a string) these should be bytestrings. If they are not they will be utf-8 converted and a warning will be
printed. Symbol names should be unicode strings.

For division, however, ASTs are strongly typed so they will treat both division operators as the kind of division that
makes sense for their type.

9.7.2 Clemory API changes

The memory object in CLE (project.loader.memory, not state.memory) has had a few breaking API changes since the
bytes type is much nicer to work with than the py2 string for this specific case, and the old API was an inconsistent
mess.

9.7. Migrating to angr 8 151

angr

Before After
memory.read_bytes(addr, n) -> list[str] memory.load(addr, n) -> bytes
memory.write_bytes(addr, list[str]) memory.store(addr, bytes)
memory.get_byte(addr) -> str memory[addr] -> int
memory.read_addr_at(addr) -> int memory.unpack_word(addr) -> int
memory.write_addr_at(addr, value) -> int memory.pack_word(addr, value)
memory.stride_repr -> list[(start, end,
str)]

memory.backers() -> iter[(start,
bytearray)]

Additionally, pack_word and unpack_word now take optional size, endness, and signed parameters. We have
also added memory.pack(addr, fmt, *data) and memory.unpack(addr, fmt), which take format strings for
use with the struct module.

If you were using the cbackers or read_bytes_c functions, the conversion is a little more complicated - we were
able to remove the split notion of “backers” and “updates” and replaced all backers with bytearrays that we mutate, so
we can work directly with the backer objects. The backers() function iterates through all bottom-level backer objects
and their start addresses. You can provide an optional address to the function, and it will skip over all backers that end
before that address.

Here is some sample code for producing a C-pointer to a given address:

import cffi, cle
ffi = cffi.FFI()
ld = cle.Loader('/bin/true')

addr = ld.main_object.entry
try:

backer_start, backer = next(ld.memory.backers(addr))
except StopIteration:

raise Exception("not mapped")

if backer_start > addr:
raise Exception("not mapped")

cbacker = ffi.from_buffer(backer)
addr_pointer = cbacker + (addr - backer_start)

You should not have to use this if you aren’t passing the data to a native library - the normal load methods should now
be more than fast enough for intensive use.

9.7.3 CLE symbols changes

Previously, your mechanisms for looking up symbols by their address were loader.find_symbol() and object.
symbols_by_addr, where there was clearly some overlap. However, symbols_by_addr stayed because it was the
only way to enumerate symbols in an object. This has changed! symbols_by_addr is deprecated and here is now
object.symbols, a sorted list of Symbol objects, to enumerate symbols in a binary.

Additionally, you can now enumerate all symbols in the entire project with loader.symbols. This change has also
enabled us to add a fuzzy parameter to find_symbol (returns the first symbol before the given address) and make the
output of loader.describe_addr much nicer (shows offset from closest symbol).

152 Chapter 9. Appendix

angr

9.7.4 Deprecations and name changes

• All parameters in cle that started with custom_ - so, custom_base_addr, custom_entry_point,
custom_offset, custom_arch, and custom_ld_path - have had the custom_ removed from the beginning
of their names.

• All the functions that were deprecated more than a year ago (at or before the angr 7 release) have been removed.

• state.se has been deprecated. You should have been using state.solver for the past few years.

• Support for immutable simulation managers has been removed. So far as we’re aware, nobody was actually using
this, and it was making debugging a pain.

9.8 Migrating to angr 7

The release of angr 7 introduces several departures from long-standing angr-isms. While the community has created a
compatibility layer to give external code written for angr 6 a good chance of working on angr 7, the best thing to do is
to port it to the new version. This document serves as a guide for this.

9.8.1 SimuVEX is gone

angr versions up through angr 6 split the program analysis into two modules: simuvex, which was responsible for
analyzing the effects of a single piece of code (whether a basic block or a SimProcedure) on a program state, and angr,
which aggregated analyses of these basic blocks into program-level analysis such as control-flow recovery, symbolic
execution, and so forth. In theory, this would encourage for the encapsulation of block-level analyses, and allow other
program analysis frameworks to build upon simuvex for their needs. In practice, no one (to our knowledge) used
simuvex without angr, and the separation introduced frustrating limitations (such as not being able to reference the
history of a state from a SimInspect breakpoint) and duplication of code (such as the need to synchronize data from
state.scratch into path.history).

Realizing that SimuVEX wasn’t a usable independent package, we brainstormed about merging it into angr and further
noticed that this would allow us to address the frustrations resulting from their separation.

All of the SimuVEX concepts (SimStates, SimProcedures, calling conventions, types, etc) have been migrated into
angr. The migration guide for common classes is bellow:

Before After
simuvex.SimState angr.SimState
simuvex.SimProcedure angr.SimProcedure
simuvex.SimEngine angr.SimEngine
simuvex.SimCC angr.SimCC

And for common modules:

Before After
simuvex.s_cc angr.calling_conventions
simuvex.s_state angr.sim_state
simuvex.s_procedure angr.sim_procedure
simuvex.plugins angr.state_plugins
simuvex.engines angr.engines
simuvex.concretization_strategies angr.concretization_strategies

9.8. Migrating to angr 7 153

angr

Additionally, simuvex.SimProcedures has been renamed to angr.SIM_PROCEDURES, since it is a global variable
and not a class. There have been some other changes to its semantics, see the section on SimProcedures for details.

9.8.2 Removal of angr.Path

In angr, a Path object maintained references to a SimState and its history. The fact that the history was separated
from the state caused a lot of headaches when trying to analyze states inside a breakpoint, and caused overhead in
synchronizing data from the state to its history.

In the new model, a state’s history is maintained in a SimState plugin: state.history. Since the path would now
simply point to the state, we got rid of it. The mapping of concepts is roughly as follows:

Before After
path state
path.state state
path.history state.history
path.callstack state.callstack
path.trace state.history.descriptions
path.addr_trace state.history.bbl_addrs
path.jumpkinds state.history.jumpkinds
path.guards state.history.jump_guards
path.targets state.history.jump_targets
path.actions state.history.actions
path.events state.history.events
path.recent_actions state.history.recent_actions
path.reachable state.history.reachable()

An important behavior change about path.actions and path.recent_actions - actions are no longer tracked by
default. If you would like them to be tracked again, please add angr.options.refs to your state.

Path Group -> Simulation Manager

Since there are no paths, there cannot be a path group. Instead, we have a Simulation Manager now (we recommend
using the abbreviation “simgr” in places you were previously using “pg”), which is exactly the same as a path group
except it holds states instead of paths. You can make one with project.factory.simulation_manager(...).

Errored Paths

Before, error resilience was handled at the path level, where stepping a path that caused an error would return a subclass
of Path called ErroredPath, and these paths would be put in the errored stash of a path group. Now, error resilience
is handled at the simulation manager level, and any state that throws an error during stepping will be wrapped in an
ErrorRecord object, which is not a subclass of SimState, and put into the errored list attribute of the simulation
manager, which is not a stash.

An ErrorRecord object has attributes for .state (the initial state that caused the error), .error (the error that was
thrown), and .traceback (the traceback from the error). To debug these errors you can call .debug().

These changes are because we were uncomfortable making a subclass of SimState, and the ErrorRecord class then has
sufficiently different semantics from a normal state that it cannot be placed in a stash.

154 Chapter 9. Appendix

angr

9.8.3 Changes to SimProcedures

The most noticeable difference from the old version to the new version is that the catalog of built-in simpro-
cedures are no longer organized strictly according to which library they live in. Now, they are organized ac-
cording to which standards they conform to, which helps with re-using procedures between different libraries.
For instance, the old SimProcedures['libc.so.6'] has been split up between SIM_PROCEDURES['libc'],
SIM_PROCEDURES['posix'], and SIM_PROCEDURES['glibc'], depending on what specifications each function
conforms to. This allows us to reuse the libc catalog in msvcrt.dll and the MUSL libc, for example.

In order to group SimProcedures together by libraries, we have introduced a new abstraction called the SimLibrary,
the definitions for which are stored in angr.procedures.definitions. Each SimLibrary object stores information
about a single shared library, and can contain SimProcedure implementations, calling convention information, and
type information. SimLibraries are scraped from the filesystem at import time, just like SimProcedures, and placed
into angr.SIM_LIBRARIES.

Syscalls are now categorized through a subclass of SimLibrary called SimSyscallLibrary. The API for managing
syscalls through SimOS has been changed - check the API docs for the SimUserspace class.

One important implication of this change is that if you previously used a trick where you changed one of the Sim-
Procedures present in the SimProcedures dict in order to change which SimProcedures would be used to hook over
library functions by default, this will no longer work. Instead of SimProcedures[lib][func_name] = proc, you
now need to say SIM_LIBRARIES[lib].add(func_name, proc). But really you should just be using hook_symbol
anyway.

9.8.4 Changes to hooking

The Hook class is gone. Instead, we now can hook with individual instances of SimProcedure objects, as opposed to
just the classes. A shallow copy of the SimProcedure will be made at runtime to preserve thread safety.

So, previously, where you would have done project.hook(addr, Hook(proc, ...)) or project.hook(addr,
proc), you can now do project.hook(addr, proc(...)). In order to use simple functions as hooks, you can
either say project.hook(addr, func) or decorate the declaration of your function with @project.hook(addr).

Having simprocedures as instances and letting them have access to the project cleans up a lot of other hacks that were
present in the codebase, mostly related to the self.call(...) SimProcedure continuation system. It is no longer
required to set IS_FUNCTION = True if you intend to use self.call() while writing a SimProcedure, and each
call-return target you use will have a unique address associated with it. These addresses will be allocated lazily, which
does have the side effect of making address allocation nondeterministic, sometimes based on dictionary-iteration order.

9.8.5 Changes to loading

The hook_symbolmethod will no longer attempt to redo relocations for the given symbol, instead just hooking directly
over the address of the symbol in whatever library it comes from. This speeds up loading substancially and ensures
more consistent behavior for when mixing and matching native library code and SimProcedure summaries.

The angr externs object has been moved into CLE, which will ALWAYS make sure that every dependency is resolved
to something, never left unrelocated. Similarly, CLE provides the “kernel object” used to provide addresses for syscalls
now.

Before After
project._extern_obj loader.extern_object
project._syscall_obj loader.kernel_object

9.8. Migrating to angr 7 155

angr

Several properties and methods have been renamed in CLE in order to maintain a more consistent and explicit API.
The most common changes are listed below:

Before After
loader.whats_at() loader.describe_addr
loader.addr_belongs_to_object() loader.find_object_containing()
loader.find_symbol_name() loader.find_symbol().name
whatever the hell you were doing before to look up a symbol loader.find_symbol(name or addr)
loader.find_module_name() loader.find_object_containing().

provides
loader.find_symbol_got_entry() loader.find_relevant_relocations()
loader.main_bin loader.main_object
anything.get_min_addr() anything.min_addr
symbol.addr symbol.linked_addr

9.8.6 Changes to the solver interface

We cleaned up the menagerie of functions present on state.solver (if you’re still referring to it as state.se you
should stop) and simplified it into a cleaner interface:

• solver.eval(expression) will give you one possible solution to the given expression.

• solver.eval_one(expression) will give you the solution to the given expression, or throw an error if more
than one solution is possible.

• solver.eval_upto(expression, n) will give you up to n solutions to the given expression, returning fewer
than n if fewer than n are possible.

• solver.eval_atleast(expression, n) will give you n solutions to the given expression, throwing an error
if fewer than n are possible.

• solver.eval_exact(expression, n) will give you n solutions to the given expression, throwing an error if
fewer or more than are possible.

• solver.min(expression) will give you the minimum possible solution to the given expression.

• solver.max(expression) will give you the maximum possible solution to the given expression.

Additionally, all of these methods can take the following keyword arguments:

• extra_constraints can be passed as a tuple of constraints. These constraints will be taken into account for
this evaluation, but will not be added to the state.

• cast_to can be passed a data type to cast the result to. Currently, this can only be str, which will cause the
method to return the byte representation of the underlying data. For example, state.solver.eval(state.
solver.BVV(0x41424344, 32, cast_to=str) will return "ABCD".

156 Chapter 9. Appendix

CHAPTER

TEN

API REFERENCE

class angr.SimProcedure(project=None, cc=None, prototype=None, symbolic_return=None, returns=None,
is_syscall=False, is_stub=False, num_args=None, display_name=None,
library_name=None, is_function=None, **kwargs)

Bases: object

A SimProcedure is a wonderful object which describes a procedure to run on a state.

You may subclass SimProcedure and override run(), replacing it with mutating self.state however you like,
and then either returning a value or jumping away somehow.

A detailed discussion of programming SimProcedures may be found at https://docs.angr.io/extending-angr/
simprocedures

Parameters
arch – The architecture to use for this procedure

The following parameters are optional:

Parameters
• symbolic_return – Whether the procedure’s return value should be stubbed into a single

symbolic variable constratined to the real return value

• returns – Whether the procedure should return to its caller afterwards

• is_syscall – Whether this procedure is a syscall

• num_args – The number of arguments this procedure should extract

• display_name – The name to use when displaying this procedure

• library_name – The name of the library from which the function we’re emulating comes

• cc – The SimCC to use for this procedure

• sim_kwargs – Additional keyword arguments to be passed to run()

• is_function – Whether this procedure emulates a function

The following class variables should be set if necessary when implementing a new SimProcedure:

Variables
• NO_RET – Set this to true if control flow will never return from this function

• DYNAMIC_RET – Set this to true if whether the control flow returns from this function or not
depends on the context (e.g., libc’s error() call). Must implement dynamic_returns() method.

• ADDS_EXITS – Set this to true if you do any control flow other than returning

• IS_FUNCTION – Does this procedure simulate a function? True by default

157

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/extending-angr/simprocedures
https://docs.angr.io/extending-angr/simprocedures

angr

• ARGS_MISMATCH – Does this procedure have a different list of arguments than what is pro-
vided in the function specification? This may happen when we manually extract arguments
in the run() method of a SimProcedure. False by default.

• local_vars – If you use self.call(), set this to a list of all the local variable names in
your class. They will be restored on return.

The following instance variables are available when working with simprocedures from the inside or the outside:

Variables
• project – The associated angr project

• arch – The associated architecture

• addr – The linear address at which the procedure is executing

• cc – The calling convention in use for engaging with the ABI

• canonical – The canonical version of this SimProcedure. Procedures are deepcopied for
many reasons, including to be able to store state related to a specific run and to be able to
hook continuations.

• kwargs – Any extra keyword arguments used to construct the procedure; will be passed to
run

• display_name – See the eponymous parameter

• library_name – See the eponymous parameter

• abi – If this is a syscall simprocedure, which ABI are we using to map the syscall numbers?

• symbolic_return – See the eponymous parameter

• syscall_number – If this procedure is a syscall, the number will be populated here.

• returns – See eponymous parameter and NO_RET cvar

• is_syscall – See eponymous parameter

• is_function – See eponymous parameter and cvar

• is_stub – See eponymous parameter

• is_continuation – Whether this procedure is the original or a continuation resulting from
self.call()

• continuations – A mapping from name to each known continuation

• run_func – The name of the function implementing the procedure. “run” by default, but
different in continuations.

• num_args – The number of arguments to the procedure. If not provided in the parameter,
extracted from the definition of self.run

The following instance variables are only used in a copy of the procedure that is actually executing on a state:

Variables
• state – The SimState we should be mutating to perform the procedure

• successors – The SimSuccessors associated with the current step

• arguments – The function arguments, deserialized from the state

• arg_session – The ArgSession that was used to parse arguments out of the state, in case
you need it for varargs

158 Chapter 10. API Reference

angr

• use_state_arguments – Whether we’re using arguments extracted from the state or man-
ually provided

• ret_to – The current return address

• ret_expr – The computed return value

• call_ret_expr – The return value from having used self.call()

• inhibit_autoret – Whether we should avoid automatically adding an exit for returning
once the run function ends

• arg_session – The ArgSession object that was used to extract the runtime argument values.
Useful for if you want to extract variadic args.

__init__(project=None, cc=None, prototype=None, symbolic_return=None, returns=None,
is_syscall=False, is_stub=False, num_args=None, display_name=None, library_name=None,
is_function=None, **kwargs)

state: SimState

execute(state, successors=None, arguments=None, ret_to=None)
Call this method with a SimState and a SimSuccessors to execute the procedure.

Alternately, successors may be none if this is an inline call. In that case, you should provide arguments to
the function.

make_continuation(name)

NO_RET = False

DYNAMIC_RET = False

ADDS_EXITS = False

IS_FUNCTION = True

ARGS_MISMATCH = False

ALT_NAMES = None

local_vars: Tuple[str, ...] = ()

run(*args, **kwargs)
Implement the actual procedure here!

static_exits(blocks, **kwargs)
Get new exits by performing static analysis and heuristics. This is a fast and best-effort approach to get new
exits for scenarios where states are not available (e.g. when building a fast CFG).

Parameters
blocks (list) – Blocks that are executed before reaching this SimProcedure.

Returns
A list of dicts. Each dict should contain the following entries: ‘address’, ‘jumpkind’, and
‘namehint’.

Return type
list

159

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

angr

dynamic_returns(blocks, **kwargs)
Determines if a call to this function returns or not by performing static analysis and heuristics.

Parameters
blocks – Blocks that are executed before reaching this SimProcedure.

Return type
bool

Returns
True if the call returns, False otherwise.

property should_add_successors

set_args(args)

va_arg(ty, index=None)

inline_call(procedure, *arguments, **kwargs)
Call another SimProcedure in-line to retrieve its return value. Returns an instance of the procedure with
the ret_expr property set.

Parameters
• procedure – The class of the procedure to execute

• arguments – Any additional positional args will be used as arguments to the procedure
call

• sim_kwargs – Any additional keyword args will be passed as sim_kwargs to the procedure
construtor

fix_prototype_returnty(ret_size)

ret(expr=None)
Add an exit representing a return from this function. If this is not an inline call, grab a return address from
the state and jump to it. If this is not an inline call, set a return expression with the calling convention.

call(addr, args, continue_at, cc=None, prototype=None, jumpkind='Ijk_Call')
Add an exit representing calling another function via pointer.

Parameters
• addr – The address of the function to call

• args – The list of arguments to call the function with

• continue_at – Later, when the called function returns, execution of the current procedure
will continue in the named method.

• cc – Optional: use this calling convention for calling the new function. Default is to use
the current convention.

• prototype – Optional: The prototype to use for the call. Will default to all-ints.

jump(addr, jumpkind='Ijk_Boring')
Add an exit representing jumping to an address.

exit(exit_code)
Add an exit representing terminating the program.

ty_ptr(ty)

160 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

property is_java

property argument_types

property return_type

class angr.BP(when='before', enabled=None, condition=None, action=None, **kwargs)
Bases: object

A breakpoint.

__init__(when='before', enabled=None, condition=None, action=None, **kwargs)

check(state, when)
Checks state state to see if the breakpoint should fire.

Parameters
• state – The state.

• when – Whether the check is happening before or after the event.

Returns
A boolean representing whether the checkpoint should fire.

fire(state)
Trigger the breakpoint.

Parameters
state – The state.

class angr.SimStatePlugin

Bases: object

This is a base class for SimState plugins. A SimState plugin will be copied along with the state when the state is
branched. They are intended to be used for things such as tracking open files, tracking heap details, and providing
storage and persistence for SimProcedures.

STRONGREF_STATE = False

__init__()

set_state(state)
Sets a new state (for example, if the state has been branched)

set_strongref_state(state)

copy(_memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

161

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

static memo(f)
A decorator function you should apply to copy

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

162 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

classmethod register_default(name, xtr=None)

init_state()

Use this function to perform any initialization on the state at plugin-add time

class angr.Project(thing, default_analysis_mode=None, ignore_functions=None, use_sim_procedures=True,
exclude_sim_procedures_func=None, exclude_sim_procedures_list=(), arch=None,
simos=None, engine=None, load_options=None, translation_cache=True,
selfmodifying_code=False, support_selfmodifying_code=None, store_function=None,
load_function=None, analyses_preset=None, concrete_target=None,
eager_ifunc_resolution=None, **kwargs)

Bases: object

This is the main class of the angr module. It is meant to contain a set of binaries and the relationships between
them, and perform analyses on them.

Parameters
• thing – The path to the main executable object to analyze, or a CLE Loader object.

• arch (Arch) –

• load_options (Dict[str, Any] | None) –

• selfmodifying_code (bool) –

• support_selfmodifying_code (bool | None) –

The following parameters are optional.

Parameters
• default_analysis_mode – The mode of analysis to use by default. Defaults to ‘symbolic’.

• ignore_functions – A list of function names that, when imported from shared libraries,
should never be stepped into in analysis (calls will return an unconstrained value).

• use_sim_procedures – Whether to replace resolved dependencies for which simproce-
dures are available with said simprocedures.

• exclude_sim_procedures_func – A function that, when passed a function name, returns
whether or not to wrap it with a simprocedure.

• exclude_sim_procedures_list – A list of functions to not wrap with simprocedures.

• arch – The target architecture (auto-detected otherwise).

• simos – a SimOS class to use for this project.

• engine – The SimEngine class to use for this project.

• translation_cache (bool) – If True, cache translated basic blocks rather than re-
translating them.

• selfmodifying_code (bool) – Whether we aggressively support self-modifying code.
When enabled, emulation will try to read code from the current state instead of the origi-
nal memory, regardless of the current memory protections.

• store_function – A function that defines how the Project should be stored. Default to
pickling.

• load_function – A function that defines how the Project should be loaded. Default to
unpickling.

163

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• analyses_preset (angr.misc.PluginPreset) – The plugin preset for the analyses
provider (i.e. Analyses instance).

• load_options (Dict[str, Any] | None) –

• support_selfmodifying_code (bool | None) –

Any additional keyword arguments passed will be passed onto cle.Loader.

Variables
• analyses – The available analyses.

• entry – The program entrypoint.

• factory – Provides access to important analysis elements such as path groups and symbolic
execution results.

• filename – The filename of the executable.

• loader – The program loader.

• storage – Dictionary of things that should be loaded/stored with the Project.

Parameters
• arch (Arch) –

• load_options (Dict[str, Any] | None) –

• selfmodifying_code (bool) –

• support_selfmodifying_code (bool | None) –

__init__(thing, default_analysis_mode=None, ignore_functions=None, use_sim_procedures=True,
exclude_sim_procedures_func=None, exclude_sim_procedures_list=(), arch=None, simos=None,
engine=None, load_options=None, translation_cache=True, selfmodifying_code=False,
support_selfmodifying_code=None, store_function=None, load_function=None,
analyses_preset=None, concrete_target=None, eager_ifunc_resolution=None, **kwargs)

Parameters
• load_options (Dict[str, Any] | None) –

• selfmodifying_code (bool) –

• support_selfmodifying_code (bool | None) –

arch: Arch

property analyses: AnalysesHubWithDefault

hook(addr, hook=None, length=0, kwargs=None, replace=False)
Hook a section of code with a custom function. This is used internally to provide symbolic summaries of
library functions, and can be used to instrument execution or to modify control flow.

When hook is not specified, it returns a function decorator that allows easy hooking. Usage:

Assuming proj is an instance of angr.Project, we will add a custom hook at␣
→˓the entry
point of the project.
@proj.hook(proj.entry)
def my_hook(state):

print("Welcome to execution!")

164 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch

angr

Parameters
• addr – The address to hook.

• hook – A angr.project.Hook describing a procedure to run at the given address. You
may also pass in a SimProcedure class or a function directly and it will be wrapped in a
Hook object for you.

• length – If you provide a function for the hook, this is the number of bytes that will be
skipped by executing the hook by default.

• kwargs – If you provide a SimProcedure for the hook, these are the keyword arguments
that will be passed to the procedure’s run method eventually.

• replace (Optional[bool]) – Control the behavior on finding that the address is already
hooked. If true, silently replace the hook. If false (default), warn and do not replace the
hook. If none, warn and replace the hook.

is_hooked(addr)
Returns True if addr is hooked.

Parameters
addr – An address.

Return type
bool

Returns
True if addr is hooked, False otherwise.

hooked_by(addr)
Returns the current hook for addr.

Parameters
addr – An address.

Return type
Optional[SimProcedure]

Returns
None if the address is not hooked.

unhook(addr)
Remove a hook.

Parameters
addr – The address of the hook.

hook_symbol(symbol_name, simproc, kwargs=None, replace=None)
Resolve a dependency in a binary. Looks up the address of the given symbol, and then hooks that address.
If the symbol was not available in the loaded libraries, this address may be provided by the CLE externs
object.

Additionally, if instead of a symbol name you provide an address, some secret functionality will kick in
and you will probably just hook that address, UNLESS you’re on powerpc64 ABIv1 or some yet-unknown
scary ABI that has its function pointers point to something other than the actual functions, in which case
it’ll do the right thing.

Parameters
• symbol_name – The name of the dependency to resolve.

165

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional

angr

• simproc – The SimProcedure instance (or function) with which to hook the symbol

• kwargs – If you provide a SimProcedure for the hook, these are the keyword arguments
that will be passed to the procedure’s run method eventually.

• replace (Optional[bool]) – Control the behavior on finding that the address is already
hooked. If true, silently replace the hook. If false, warn and do not replace the hook. If
none (default), warn and replace the hook.

Returns
The address of the new symbol.

Return type
int

symbol_hooked_by(symbol_name)
Return the SimProcedure, if it exists, for the given symbol name.

Parameters
symbol_name (str) – Name of the symbol.

Return type
Optional[SimProcedure]

Returns
None if the address is not hooked.

is_symbol_hooked(symbol_name)
Check if a symbol is already hooked.

Parameters
symbol_name (str) – Name of the symbol.

Returns
True if the symbol can be resolved and is hooked, False otherwise.

Return type
bool

unhook_symbol(symbol_name)
Remove the hook on a symbol. This function will fail if the symbol is provided by the extern object, as that
would result in a state where analysis would be unable to cope with a call to this symbol.

rehook_symbol(new_address, symbol_name, stubs_on_sync)
Move the hook for a symbol to a specific address :type new_address: :param new_address: the new address
that will trigger the SimProc execution :type symbol_name: :param symbol_name: the name of the symbol
(f.i. strcmp) :return: None

execute(*args, **kwargs)
This function is a symbolic execution helper in the simple style supported by triton and manticore. It
designed to be run after setting up hooks (see Project.hook), in which the symbolic state can be checked.

This function can be run in three different ways:

• When run with no parameters, this function begins symbolic execution from the entrypoint.

• It can also be run with a “state” parameter specifying a SimState to begin symbolic execution from.

• Finally, it can accept any arbitrary keyword arguments, which are all passed to
project.factory.full_init_state.

If symbolic execution finishes, this function returns the resulting simulation manager.

166 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

angr

terminate_execution()

Terminates a symbolic execution that was started with Project.execute().

angr.load_shellcode(shellcode, arch, start_offset=0, load_address=0, thumb=False, **kwargs)
Load a new project based on a snippet of assembly or bytecode.

Parameters
• shellcode (Union[bytes, str]) – The data to load, as either a bytestring of instructions

or a string of assembly text

• arch – The name of the arch to use, or an archinfo class

• start_offset – The offset into the data to start analysis (default 0)

• load_address – The address to place the data in memory (default 0)

• thumb – Whether this is ARM Thumb shellcode

class angr.Blade(graph, dst_run, dst_stmt_idx, direction='backward', project=None, cfg=None,
ignore_sp=False, ignore_bp=False, ignored_regs=None, max_level=3, base_state=None,
stop_at_calls=False, cross_insn_opt=False, max_predecessors=10, include_imarks=True)

Bases: object

Blade is a light-weight program slicer that works with networkx DiGraph containing CFGNodes. It is meant to
be used in angr for small or on-the-fly analyses.

Parameters
• graph (DiGraph) –

• dst_run (int) –

• dst_stmt_idx (int) –

• direction (str) –

• ignore_sp (bool) –

• ignore_bp (bool) –

• max_level (int) –

• stop_at_calls (bool) –

• max_predecessors (int) –

• include_imarks (bool) –

__init__(graph, dst_run, dst_stmt_idx, direction='backward', project=None, cfg=None, ignore_sp=False,
ignore_bp=False, ignored_regs=None, max_level=3, base_state=None, stop_at_calls=False,
cross_insn_opt=False, max_predecessors=10, include_imarks=True)

Parameters
• graph (DiGraph) – A graph representing the control flow graph. Note that it does not take

angr.analyses.CFGEmulated or angr.analyses.CFGFast.

• dst_run (int) – An address specifying the target SimRun.

• dst_stmt_idx (int) – The target statement index. -1 means executing until the last state-
ment.

• direction (str) – ‘backward’ or ‘forward’ slicing. Forward slicing is not yet supported.

• project (angr.Project) – The project instance.

167

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

• cfg (angr.analyses.CFGBase) – the CFG instance. It will be made mandatory later.

• ignore_sp (bool) – Whether the stack pointer should be ignored in dependency tracking.
Any dependency from/to stack pointers will be ignored if this options is True.

• ignore_bp (bool) – Whether the base pointer should be ignored or not.

• max_level (int) – The maximum number of blocks that we trace back for.

• stop_at_calls (bool) – Limit slicing within a single function. Do not proceed when
encounters a call edge.

• include_imarks (bool) – Should IMarks (instruction boundaries) be included in the
slice.

• max_predecessors (int) –

Returns
None

property slice

dbg_repr(arch=None)

class angr.SimOS(project, name=None)
Bases: object

A class describing OS/arch-level configuration.

Parameters
project (angr.Project) –

__init__(project, name=None)

Parameters
project (Project) –

configure_project()

Configure the project to set up global settings (like SimProcedures).

state_blank(addr=None, initial_prefix=None, brk=None, stack_end=None, stack_size=8388608,
stdin=None, thread_idx=None, permissions_backer=None, **kwargs)

Initialize a blank state.

All parameters are optional.

Parameters
• addr – The execution start address.

• initial_prefix –

• stack_end – The end of the stack (i.e., the byte after the last valid stack address).

• stack_size – The number of bytes to allocate for stack space

• brk – The address of the process’ break.

Returns
The initialized SimState.

Any additional arguments will be passed to the SimState constructor

state_entry(**kwargs)

168 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

state_full_init(**kwargs)

state_call(addr, *args, **kwargs)

prepare_call_state(calling_state, initial_state=None, preserve_registers=(), preserve_memory=())
This function prepares a state that is executing a call instruction. If given an initial_state, it copies over all
of the critical registers to it from the calling_state. Otherwise, it prepares the calling_state for action.

This is mostly used to create minimalistic for CFG generation. Some ABIs, such as MIPS PIE and x86 PIE,
require certain information to be maintained in certain registers. For example, for PIE MIPS, this function
transfer t9, gp, and ra to the new state.

prepare_function_symbol(symbol_name, basic_addr=None)
Prepare the address space with the data necessary to perform relocations pointing to the given symbol

Returns a 2-tuple. The first item is the address of the function code, the second is the address of the
relocation target.

handle_exception(successors, engine, exception)
Perform exception handling. This method will be called when, during execution, a SimException is thrown.
Currently, this can only indicate a segfault, but in the future it could indicate any unexpected exceptional
behavior that can’t be handled by ordinary control flow.

The method may mutate the provided SimSuccessors object in any way it likes, or re-raise the exception.

Parameters
• successors – The SimSuccessors object currently being executed on

• engine – The engine that was processing this step

• exception – The actual exception object

syscall(state, allow_unsupported=True)

syscall_abi(state)

Return type
str

syscall_cc(state)

Return type
Optional[SimCCSyscall]

is_syscall_addr(addr)

syscall_from_addr(addr, allow_unsupported=True)

syscall_from_number(number, allow_unsupported=True, abi=None)

setup_gdt(state, gdt)
Write the GlobalDescriptorTable object in the current state memory

Parameters
• state – state in which to write the GDT

• gdt – GlobalDescriptorTable object

Returns

169

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

angr

generate_gdt(fs, gs, fs_size=4294967295, gs_size=4294967295)
Generate a GlobalDescriptorTable object and populate it using the value of the gs and fs register

Parameters
• fs – value of the fs segment register

• gs – value of the gs segment register

• fs_size – size of the fs segment register

• gs_size – size of the gs segment register

Returns
gdt a GlobalDescriptorTable object

class angr.Block(addr, project=None, arch=None, size=None, byte_string=None, vex=None, thumb=False,
backup_state=None, extra_stop_points=None, opt_level=None, num_inst=None, traceflags=0,
strict_block_end=None, collect_data_refs=False, cross_insn_opt=True,
load_from_ro_regions=False, initial_regs=None)

Bases: Serializable

Represents a basic block in a binary or a program.

BLOCK_MAX_SIZE = 4096

__init__(addr, project=None, arch=None, size=None, byte_string=None, vex=None, thumb=False,
backup_state=None, extra_stop_points=None, opt_level=None, num_inst=None, traceflags=0,
strict_block_end=None, collect_data_refs=False, cross_insn_opt=True,
load_from_ro_regions=False, initial_regs=None)

arch

thumb

addr

size

pp(**kwargs)

set_initial_regs()

static reset_initial_regs()

property vex: IRSB

property vex_nostmt

property disassembly: DisassemblerBlock

Provide a disassembly object using whatever disassembler is available

property capstone

property codenode

property bytes

property instructions

property instruction_addrs

170 Chapter 10. API Reference

https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.block.IRSB

angr

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

class angr.SimulationManager(project, active_states=None, stashes=None, hierarchy=None,
resilience=None, save_unsat=False, auto_drop=None, errored=None,
completion_mode=<built-in function any>, techniques=None,
suggestions=True, **kwargs)

Bases: object

The Simulation Manager is the future future.

Simulation managers allow you to wrangle multiple states in a slick way. States are organized into “stashes”,
which you can step forward, filter, merge, and move around as you wish. This allows you to, for example, step
two different stashes of states at different rates, then merge them together.

Stashes can be accessed as attributes (i.e. .active). A mulpyplexed stash can be retrieved by prepending the name
with mp_, e.g. .mp_active. A single state from the stash can be retrieved by prepending the name with one_, e.g.
.one_active.

Note that you shouldn’t usually be constructing SimulationManagers directly - there is a convenient shortcut for
creating them in Project.factory: see angr.factory.AngrObjectFactory.

The most important methods you should look at are step, explore, and use_technique.

Parameters
• project (angr.project.Project) – A Project instance.

• stashes – A dictionary to use as the stash store.

• active_states – Active states to seed the “active” stash with.

• hierarchy – A StateHierarchy object to use to track the relationships between states.

• resilience – A set of errors to catch during stepping to put a state in the errore list. You
may also provide the values False, None (default), or True to catch, respectively, no errors,
all angr-specific errors, and a set of many common errors.

• save_unsat – Set to True in order to introduce unsatisfiable states into the unsat stash
instead of discarding them immediately.

• auto_drop – A set of stash names which should be treated as garbage chutes.

• completion_mode – A function describing how multiple exploration techniques with the
complete hook set will interact. By default, the builtin function any.

171

https://docs.python.org/3/library/functions.html#object

angr

• techniques – A list of techniques that should be pre-set to use with this manager.

• suggestions – Whether to automatically install the Suggestions exploration technique. De-
fault True.

Variables
• errored – Not a stash, but a list of ErrorRecords. Whenever a step raises an exception that

we catch, the state and some information about the error are placed in this list. You can adjust
the list of caught exceptions with the resilience parameter.

• stashes – All the stashes on this instance, as a dictionary.

• completion_mode – A function describing how multiple exploration techniques with the
complete hook set will interact. By default, the builtin function any.

ALL = '_ALL'

DROP = '_DROP'

__init__(project, active_states=None, stashes=None, hierarchy=None, resilience=None, save_unsat=False,
auto_drop=None, errored=None, completion_mode=<built-in function any>, techniques=None,
suggestions=True, **kwargs)

active: List[SimState]

stashed: List[SimState]

pruned: List[SimState]

unsat: List[SimState]

deadended: List[SimState]

unconstrained: List[SimState]

found: List[SimState]

one_active: SimState

one_stashed: SimState

one_pruned: SimState

one_unsat: SimState

one_deadended: SimState

one_unconstrained: SimState

one_found: SimState

property errored

property stashes: DefaultDict[str, List[SimState]]

mulpyplex(*stashes)
Mulpyplex across several stashes.

Parameters
stashes – the stashes to mulpyplex

172 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.DefaultDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List

angr

Returns
a mulpyplexed list of states from the stashes in question, in the specified order

copy(deep=False)
Make a copy of this simulation manager. Pass deep=True to copy all the states in it as well.

If the current callstack includes hooked methods, the already-called methods will not be included in the
copy.

use_technique(tech)
Use an exploration technique with this SimulationManager.

Techniques can be found in angr.exploration_techniques.

Parameters
tech (ExplorationTechnique) – An ExplorationTechnique object that contains code to
modify this SimulationManager’s behavior.

Returns
The technique that was added, for convenience

remove_technique(tech)
Remove an exploration technique from a list of active techniques.

Parameters
tech (ExplorationTechnique) – An ExplorationTechnique object.

explore(stash='active', n=None, find=None, avoid=None, find_stash='found', avoid_stash='avoid',
cfg=None, num_find=1, avoid_priority=False, **kwargs)

Tick stash “stash” forward (up to “n” times or until “num_find” states are found), looking for condi-
tion “find”, avoiding condition “avoid”. Stores found states into “find_stash’ and avoided states into
“avoid_stash”.

The “find” and “avoid” parameters may be any of:

• An address to find

• A set or list of addresses to find

• A function that takes a state and returns whether or not it matches.

If an angr CFG is passed in as the “cfg” parameter and “find” is either a number or a list or a set, then any
states which cannot possibly reach a success state without going through a failure state will be preemptively
avoided.

run(stash='active', n=None, until=None, **kwargs)
Run until the SimulationManager has reached a completed state, according to the current exploration tech-
niques. If no exploration techniques that define a completion state are being used, run until there is nothing
left to run.

Parameters
• stash – Operate on this stash

• n – Step at most this many times

• until – If provided, should be a function that takes a SimulationManager and returns True
or False. Stepping will terminate when it is True.

Returns
The simulation manager, for chaining.

173

angr

Return type
SimulationManager

complete()

Returns whether or not this manager has reached a “completed” state.

step(stash='active', target_stash=None, n=None, selector_func=None, step_func=None, error_list=None,
successor_func=None, until=None, filter_func=None, **run_args)

Step a stash of states forward and categorize the successors appropriately.

The parameters to this function allow you to control everything about the stepping and categorization pro-
cess.

Parameters
• stash – The name of the stash to step (default: ‘active’)

• target_stash – The name of the stash to put the results in (default: same as stash)

• error_list – The list to put ErroredState objects in (default: self.errored)

• selector_func – If provided, should be a function that takes a state and returns a boolean.
If True, the state will be stepped. Otherwise, it will be kept as-is.

• step_func – If provided, should be a function that takes a SimulationManager and returns
a SimulationManager. Will be called with the SimulationManager at every step. Note that
this function should not actually perform any stepping - it is meant to be a maintenance
function called after each step.

• successor_func – If provided, should be a function that takes a state and return its suc-
cessors. Otherwise, project.factory.successors will be used.

• filter_func – If provided, should be a function that takes a state and return the name of
the stash, to which the state should be moved.

• until – (DEPRECATED) If provided, should be a function that takes a SimulationMan-
ager and returns True or False. Stepping will terminate when it is True.

• n – (DEPRECATED) The number of times to step (default: 1 if “until” is not provided)

Additionally, you can pass in any of the following keyword args for project.factory.successors:

Parameters
• jumpkind – The jumpkind of the previous exit

• addr – An address to execute at instead of the state’s ip.

• stmt_whitelist – A list of stmt indexes to which to confine execution.

• last_stmt – A statement index at which to stop execution.

• thumb – Whether the block should be lifted in ARM’s THUMB mode.

• backup_state – A state to read bytes from instead of using project memory.

• opt_level – The VEX optimization level to use.

• insn_bytes – A string of bytes to use for the block instead of the project.

• size – The maximum size of the block, in bytes.

• num_inst – The maximum number of instructions.

• traceflags – traceflags to be passed to VEX. Default: 0

174 Chapter 10. API Reference

angr

Returns
The simulation manager, for chaining.

Return type
SimulationManager

step_state(state, successor_func=None, error_list=None, **run_args)
Don’t use this function manually - it is meant to interface with exploration techniques.

filter(state, filter_func=None)
Don’t use this function manually - it is meant to interface with exploration techniques.

selector(state, selector_func=None)
Don’t use this function manually - it is meant to interface with exploration techniques.

successors(state, successor_func=None, **run_args)
Don’t use this function manually - it is meant to interface with exploration techniques.

prune(filter_func=None, from_stash='active', to_stash='pruned')
Prune unsatisfiable states from a stash.

This function will move all unsatisfiable states in the given stash into a different stash.

Parameters
• filter_func – Only prune states that match this filter.

• from_stash – Prune states from this stash. (default: ‘active’)

• to_stash – Put pruned states in this stash. (default: ‘pruned’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

populate(stash, states)
Populate a stash with a collection of states.

Parameters
• stash – A stash to populate.

• states – A list of states with which to populate the stash.

absorb(simgr)
Collect all the states from simgr and put them in their corresponding stashes in this manager. This will not
modify simgr.

move(from_stash, to_stash, filter_func=None)
Move states from one stash to another.

Parameters
• from_stash – Take matching states from this stash.

• to_stash – Put matching states into this stash.

• filter_func – Stash states that match this filter. Should be a function that takes a state
and returns True or False. (default: stash all states)

Returns
The simulation manager, for chaining.

175

angr

Return type
SimulationManager

stash(filter_func=None, from_stash='active', to_stash='stashed')
Stash some states. This is an alias for move(), with defaults for the stashes.

Parameters
• filter_func – Stash states that match this filter. Should be a function that takes a state

and returns True or False. (default: stash all states)

• from_stash – Take matching states from this stash. (default: ‘active’)

• to_stash – Put matching states into this stash. (default: ‘stashed’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

unstash(filter_func=None, to_stash='active', from_stash='stashed')
Unstash some states. This is an alias for move(), with defaults for the stashes.

Parameters
• filter_func – Unstash states that match this filter. Should be a function that takes a state

and returns True or False. (default: unstash all states)

• from_stash – take matching states from this stash. (default: ‘stashed’)

• to_stash – put matching states into this stash. (default: ‘active’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

drop(filter_func=None, stash='active')
Drops states from a stash. This is an alias for move(), with defaults for the stashes.

Parameters
• filter_func – Drop states that match this filter. Should be a function that takes a state

and returns True or False. (default: drop all states)

• stash – Drop matching states from this stash. (default: ‘active’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

apply(state_func=None, stash_func=None, stash='active', to_stash=None)
Applies a given function to a given stash.

Parameters
• state_func – A function to apply to every state. Should take a state and return a state.

The returned state will take the place of the old state. If the function doesn’t return a state,
the old state will be used. If the function returns a list of states, they will replace the original
states.

176 Chapter 10. API Reference

angr

• stash_func – A function to apply to the whole stash. Should take a list of states and return
a list of states. The resulting list will replace the stash. If both state_func and stash_func
are provided state_func is applied first, then stash_func is applied on the results.

• stash – A stash to work with.

• to_stash – If specified, this stash will be used to store the resulting states instead.

Returns
The simulation manager, for chaining.

Return type
SimulationManager

split(stash_splitter=None, stash_ranker=None, state_ranker=None, limit=8, from_stash='active',
to_stash='stashed')

Split a stash of states into two stashes depending on the specified options.

The stash from_stash will be split into two stashes depending on the other options passed in. If to_stash is
provided, the second stash will be written there.

stash_splitter overrides stash_ranker, which in turn overrides state_ranker. If no functions are provided, the
states are simply split according to the limit.

The sort done with state_ranker is ascending.

Parameters
• stash_splitter – A function that should take a list of states and return a tuple of two

lists (the two resulting stashes).

• stash_ranker – A function that should take a list of states and return a sorted list of states.
This list will then be split according to “limit”.

• state_ranker – An alternative to stash_splitter. States will be sorted with outputs of this
function, which are to be used as a key. The first “limit” of them will be kept, the rest split
off.

• limit – For use with state_ranker. The number of states to keep. Default: 8

• from_stash – The stash to split (default: ‘active’)

• to_stash – The stash to write to (default: ‘stashed’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

merge(merge_func=None, merge_key=None, stash='active', prune=True)
Merge the states in a given stash.

Parameters
• stash – The stash (default: ‘active’)

• merge_func – If provided, instead of using state.merge, call this function with the states
as the argument. Should return the merged state.

• merge_key – If provided, should be a function that takes a state and returns a key that will
compare equal for all states that are allowed to be merged together, as a first aproximation.
By default: uses PC, callstack, and open file descriptors.

• prune – Whether to prune the stash prior to merging it

177

angr

Returns
The simulation manager, for chaining.

Return type
SimulationManager

class angr.Analysis

Bases: object

This class represents an analysis on the program.

Variables
• project – The project for this analysis.

• kb (KnowledgeBase) – The knowledgebase object.

• _progress_callback – A callback function for receiving the progress of this analysis. It
only takes one argument, which is a float number from 0.0 to 100.0 indicating the current
progress.

• _show_progressbar (bool) – If a progressbar should be shown during the analysis. It’s
independent from _progress_callback.

• _progressbar (progress.Progress) – The progress bar object.

project: Project

kb: KnowledgeBase

errors = []

named_errors = {}

angr.register_analysis(cls, name)

class angr.ExplorationTechnique

Bases: object

An otiegnqwvk is a set of hooks for a simulation manager that assists in the implementation of new techniques
in symbolic exploration.

TODO: choose actual name for the functionality (techniques? strategies?)

Any number of these methods may be overridden by a subclass. To use an exploration technique, call simgr.
use_technique with an instance of the technique.

__init__()

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

178 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

• stash (str) –

filter(simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

selector(simgr, state, **kwargs)
Determine if a state should participate in the current round of stepping. Return True if the state should be
stepped, and False if the state should not be stepped. To defer to the original selection procedure, return
the result of simgr.selector(state, **kwargs).

If the user provided a selector_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

step_state(simgr, state, **kwargs)
Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to
look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

successors(simgr, state, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

179

https://docs.python.org/3/library/stdtypes.html#str

angr

complete(simgr)
Return whether or not this manager has reached a “completed” state, i.e. SimulationManager.run()
should halt.

This is the one hook which is not subject to the nesting rules of hooks. You should not call simgr.
complete, you should make your own decision and return True or False. Each of the techniques’ comple-
tion checkers will be called and the final result will be compted with simgr.completion_mode.

Parameters
simgr (angr.SimulationManager) –

class angr.StateHierarchy

Bases: object

The state hierarchy holds weak references to SimStateHistory objects in a directed acyclic graph. It is useful
for queries about a state’s ancestry, notably “what is the best ancestor state for a merge among these states” and
“what is the most recent unsatisfiable state while using LAZY_SOLVES”

__init__()

get_ref(obj)

dead_ref(ref)

defer_cleanup()

add_state(s)

add_history(h)

simplify()

full_simplify()

lineage(h)
Returns the lineage of histories leading up to h.

all_successors(h)

history_successors(h)

history_predecessors(h)

history_contains(h)

unreachable_state(state)

unreachable_history(h)

most_mergeable(states)
Find the “most mergeable” set of states from those provided.

Parameters
states – a list of states

Returns
a tuple of: (list of states to merge, those states’ common history, list of states to not merge
yet)

180 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

class angr.SimState(project=None, arch=None, plugins=None, mode=None, options=None,
add_options=None, remove_options=None, special_memory_filler=None, os_name=None,
plugin_preset='default', cle_memory_backer=None, dict_memory_backer=None,
permissions_map=None, default_permissions=3, stack_perms=None, stack_end=None,
stack_size=None, regioned_memory_cls=None, **kwargs)

Bases: PluginHub

The SimState represents the state of a program, including its memory, registers, and so forth.

Parameters
• project (angr.Project) – The project instance.

• arch (archinfo.Arch|str) – The architecture of the state.

Variables
• regs – A convenient view of the state’s registers, where each register is a property

• mem – A convenient view of the state’s memory, a angr.state_plugins.view.
SimMemView

• registers – The state’s register file as a flat memory region

• memory – The state’s memory as a flat memory region

• solver – The symbolic solver and variable manager for this state

• inspect – The breakpoint manager, a angr.state_plugins.inspect.SimInspector

• log – Information about the state’s history

• scratch – Information about the current execution step

• posix – MISNOMER: information about the operating system or environment model

• fs – The current state of the simulated filesystem

• libc – Information about the standard library we are emulating

• cgc – Information about the cgc environment

• uc_manager – Control of under-constrained symbolic execution

• unicorn – Control of the Unicorn Engine

solver: SimSolver

posix: SimSystemPosix

registers: DefaultMemory

regs: SimRegNameView

memory: DefaultMemory

callstack: CallStack

mem: SimMemView

history: SimStateHistory

inspect: SimInspector

jni_references: SimStateJNIReferences

181

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.Arch
https://docs.python.org/3/library/stdtypes.html#str

angr

scratch: SimStateScratch

__init__(project=None, arch=None, plugins=None, mode=None, options=None, add_options=None,
remove_options=None, special_memory_filler=None, os_name=None, plugin_preset='default',
cle_memory_backer=None, dict_memory_backer=None, permissions_map=None,
default_permissions=3, stack_perms=None, stack_end=None, stack_size=None,
regioned_memory_cls=None, **kwargs)

property plugins

property se

Deprecated alias for solver

property ip

Get the instruction pointer expression, trigger SimInspect breakpoints, and generate SimActions. Use _ip
to not trigger breakpoints or generate actions.

Returns
an expression

property addr

Get the concrete address of the instruction pointer, without triggering SimInspect breakpoints or generating
SimActions. An integer is returned, or an exception is raised if the instruction pointer is symbolic.

Returns
an int

property arch: Arch

T = ~T

get_plugin(name)
Get the plugin named name. If no such plugin is currently active, try to activate a new one using the current
preset.

has_plugin(name)
Return whether or not a plugin with the name name is currently active.

register_plugin(name, plugin, inhibit_init=False)
Add a new plugin plugin with name name to the active plugins.

property javavm_memory

In case of an JavaVM with JNI support, a state can store the memory plugin twice; one for the native and
one for the java view of the state.

Returns
The JavaVM view of the memory plugin.

property javavm_registers

In case of an JavaVM with JNI support, a state can store the registers plugin twice; one for the native and
one for the java view of the state.

Returns
The JavaVM view of the registers plugin.

simplify(*args)
Simplify this state’s constraints.

182 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch

angr

add_constraints(*args, **kwargs)
Add some constraints to the state.

You may pass in any number of symbolic booleans as variadic positional arguments.

satisfiable(**kwargs)
Whether the state’s constraints are satisfiable

downsize()

Clean up after the solver engine. Calling this when a state no longer needs to be solved on will reduce
memory usage.

step(**kwargs)
Perform a step of symbolic execution using this state. Any arguments to AngrObjectFactory.successors
can be passed to this.

Returns
A SimSuccessors object categorizing the results of the step.

block(*args, **kwargs)
Represent the basic block at this state’s instruction pointer. Any arguments to AngrObjectFactory.block
can ba passed to this.

Returns
A Block object describing the basic block of code at this point.

copy()

Returns a copy of the state.

merge(*others, **kwargs)
Merges this state with the other states. Returns the merging result, merged state, and the merge flag.

Parameters
• states – the states to merge

• merge_conditions – a tuple of the conditions under which each state holds

• common_ancestor – a state that represents the common history between the states being
merged. Usually it is only available when EFFICIENT_STATE_MERGING is enabled,
otherwise weak-refed states might be dropped from state history instances.

• plugin_whitelist – a list of plugin names that will be merged. If this option is given
and is not None, any plugin that is not inside this list will not be merged, and will be created
as a fresh instance in the new state.

• common_ancestor_history – a SimStateHistory instance that represents the common
history between the states being merged. This is to allow optimal state merging when
EFFICIENT_STATE_MERGING is disabled.

Returns
(merged state, merge flag, a bool indicating if any merging occurred)

widen(*others)
Perform a widening between self and other states :type others: :param others: :return:

reg_concrete(*args, **kwargs)
Returns the contents of a register but, if that register is symbolic, raises a SimValueError.

mem_concrete(*args, **kwargs)
Returns the contents of a memory but, if the contents are symbolic, raises a SimValueError.

183

angr

stack_push(thing)
Push ‘thing’ to the stack, writing the thing to memory and adjusting the stack pointer.

stack_pop()

Pops from the stack and returns the popped thing. The length will be the architecture word size.

stack_read(offset, length, bp=False)
Reads length bytes, at an offset into the stack.

Parameters
• offset – The offset from the stack pointer.

• length – The number of bytes to read.

• bp – If True, offset from the BP instead of the SP. Default: False.

make_concrete_int(expr)

prepare_callsite(retval, args, cc='wtf')

dbg_print_stack(depth=None, sp=None)
Only used for debugging purposes. Return the current stack info in formatted string. If depth is None, the
current stack frame (from sp to bp) will be printed out.

set_mode(mode)

property thumb

property with_condition

angr.default_cc(arch, platform='Linux', language=None, syscall=False, **kwargs)
Return the default calling convention for a given architecture, platform, and language combination.

Parameters
• arch (str) – The architecture name.

• platform (Optional[str]) – The platform name (e.g., “Linux” or “Win32”).

• language (Optional[str]) – The programming language name (e.g., “go”).

• syscall (bool) – Return syscall convention (True), or normal calling convention (False,
default).

Return type
Optional[Type[SimCC]]

Returns
A default calling convention class if we can find one for the architecture, platform, and language
combination, or None if nothing fits.

class angr.PointerWrapper(value, buffer=False)
Bases: object

__init__(value, buffer=False)

class angr.SimCC(arch)
Bases: object

A calling convention allows you to extract from a state the data passed from function to function by calls and
returns. Most of the methods provided by SimCC that operate on a state assume that the program is just after a

184 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

call but just before stack frame allocation, though this may be overridden with the stack_base parameter to each
individual method.

This is the base class for all calling conventions.

Parameters
arch (Arch) –

__init__(arch)

Parameters
arch (Arch) – The Archinfo arch for this CC

ARG_REGS: List[str] = []

FP_ARG_REGS: List[str] = []

STACKARG_SP_BUFF = 0

STACKARG_SP_DIFF = 0

CALLER_SAVED_REGS: List[str] = []

RETURN_ADDR: SimFunctionArgument = None

RETURN_VAL: SimFunctionArgument = None

OVERFLOW_RETURN_VAL: Optional[SimFunctionArgument] = None

FP_RETURN_VAL: Optional[SimFunctionArgument] = None

ARCH = None

CALLEE_CLEANUP = False

STACK_ALIGNMENT = 1

property int_args

Iterate through all the possible arg positions that can only be used to store integer or pointer values.

Returns an iterator of SimFunctionArguments

property memory_args

Iterate through all the possible arg positions that can be used to store any kind of argument.

Returns an iterator of SimFunctionArguments

property fp_args

Iterate through all the possible arg positions that can only be used to store floating point values.

Returns an iterator of SimFunctionArguments

is_fp_arg(arg)
This should take a SimFunctionArgument instance and return whether or not that argument is a floating-
point argument.

Returns True for MUST be a floating point arg,
False for MUST NOT be a floating point arg, None for when it can be either.

class ArgSession(cc)
Bases: object

A class to keep track of the state accumulated in laying parameters out into memory

185

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object

angr

cc

fp_iter

int_iter

both_iter

__init__(cc)

getstate()

setstate(state)

arg_session(ret_ty)
Return an arg session.

A session provides the control interface necessary to describe how integral and floating-point arguments
are laid out into memory. The default behavior is that there are a finite list of int-only and fp-only argument
slots, and an infinite number of generic slots, and when an argument of a given type is requested, the most
slot available is used. If you need different behavior, subclass ArgSession.

You need to provide the return type of the function in order to kick off an arg layout session.

Parameters
ret_ty (SimType | None) –

return_in_implicit_outparam(ty)

stack_space(args)

Parameters
args – A list of SimFunctionArguments

Returns
The number of bytes that should be allocated on the stack to store all these args, NOT IN-
CLUDING the return address.

return_val(ty, perspective_returned=False)
The location the return value is stored, based on its type.

property return_addr

The location the return address is stored.

next_arg(session, arg_type)

Parameters
• session (ArgSession) –

• arg_type (SimType) –

static is_fp_value(val)

static guess_prototype(args, prototype=None)
Come up with a plausible SimTypeFunction for the given args (as would be passed to e.g. setup_callsite).

You can pass a variadic function prototype in the base_type parameter and all its arguments will be used,
only guessing types for the variadic arguments.

186 Chapter 10. API Reference

angr

arg_locs(prototype)

Return type
List[SimFunctionArgument]

get_args(state, prototype, stack_base=None)

set_return_val(state, val, ty, stack_base=None, perspective_returned=False)

setup_callsite(state, ret_addr, args, prototype, stack_base=None, alloc_base=None,
grow_like_stack=True)

This function performs the actions of the caller getting ready to jump into a function.

Parameters
• state – The SimState to operate on

• ret_addr – The address to return to when the called function finishes

• args – The list of arguments that that the called function will see

• prototype – The signature of the call you’re making. Should include variadic args con-
cretely.

• stack_base – An optional pointer to use as the top of the stack, circa the function entry
point

• alloc_base – An optional pointer to use as the place to put excess argument data

• grow_like_stack – When allocating data at alloc_base, whether to allocate at decreasing
addresses

The idea here is that you can provide almost any kind of python type in args and it’ll be translated to a
binary format to be placed into simulated memory. Lists (representing arrays) must be entirely elements of
the same type and size, while tuples (representing structs) can be elements of any type and size. If you’d
like there to be a pointer to a given value, wrap the value in a PointerWrapper.

If stack_base is not provided, the current stack pointer will be used, and it will be updated. If alloc_base is
not provided, the stack base will be used and grow_like_stack will implicitly be True.

grow_like_stack controls the behavior of allocating data at alloc_base. When data from args needs to
be wrapped in a pointer, the pointer needs to point somewhere, so that data is dumped into memory at
alloc_base. If you set alloc_base to point to somewhere other than the stack, set grow_like_stack to False
so that sequential allocations happen at increasing addresses.

teardown_callsite(state, return_val=None, prototype=None, force_callee_cleanup=False)
This function performs the actions of the callee as it’s getting ready to return. It returns the address to return
to.

Parameters
• state – The state to mutate

• return_val – The value to return

• prototype – The prototype of the given function

• force_callee_cleanup – If we should clean up the stack allocation for the arguments
even if it’s not the callee’s job to do so

TODO: support the stack_base parameter from setup_callsite. . . ? Does that make sense in this context?
Maybe it could make sense by saying that you pass it in as something like the “saved base pointer” value?

187

https://docs.python.org/3/library/typing.html#typing.List

angr

static find_cc(arch, args, sp_delta, platform='Linux')
Pinpoint the best-fit calling convention and return the corresponding SimCC instance, or None if no fit is
found.

Parameters
• arch (Arch) – An ArchX instance. Can be obtained from archinfo.

• args (List[SimFunctionArgument]) – A list of arguments. It may be updated by the
first matched calling convention to remove non-argument arguments.

• sp_delta (int) – The change of stack pointer before and after the call is made.

• platform (str) –

Return type
Optional[SimCC]

Returns
A calling convention instance, or None if none of the SimCC subclasses seems to fit the
arguments provided.

get_arg_info(state, prototype)
This is just a simple wrapper that collects the information from various locations prototype is as passed to
self.arg_locs and self.get_args :param angr.SimState state: The state to evaluate and extract the values from
:return: A list of tuples, where the nth tuple is (type, name, location, value) of the nth argument

class angr.SimFileBase(name=None, writable=True, ident=None, concrete=False, file_exists=True, **kwargs)
Bases: SimStatePlugin

SimFiles are the storage mechanisms used by SimFileDescriptors.

Different types of SimFiles can have drastically different interfaces, and as a result there’s not much that can
be specified on this base class. All the read and write methods take a pos argument, which may have different
semantics per-class. 0 will always be a valid position to use, though, and the next position you should use is part
of the return tuple.

Some simfiles are “streams”, meaning that the position that reads come from is determined not by the position
you pass in (it will in fact be ignored), but by an internal variable. This is stored as .pos if you care to read it.
Don’t write to it. The same lack-of-semantics applies to this field as well.

Variables
• name – The name of the file. Purely for cosmetic purposes

• ident – The identifier of the file, typically autogenerated from the name and a nonce. Purely
for cosmetic purposes, but does appear in symbolic values autogenerated in the file.

• seekable – Bool indicating whether seek operations on this file should succeed. If this is
True, then pos must be a number of bytes from the start of the file.

• writable – Bool indicating whether writing to this file is allowed.

• pos – If the file is a stream, this will be the current position. Otherwise, None.

• concrete – Whether or not this file contains mostly concrete data. Will be used by some
SimProcedures to choose how to handle variable-length operations like fgets.

• file_exists – Set to False, if file does not exists, set to a claripy Bool if unknown, default
True.

seekable = False

188 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

angr

pos = None

__init__(name=None, writable=True, ident=None, concrete=False, file_exists=True, **kwargs)

static make_ident(name)

concretize(**kwargs)
Return a concretization of the contents of the file. The type of the return value of this method will vary
depending on which kind of SimFile you’re using.

read(pos, size, **kwargs)
Read some data from the file.

Parameters
• pos – The offset in the file to read from.

• size – The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.

write(pos, data, size=None, **kwargs)
Write some data to the file.

Parameters
• pos – The offset in the file to write to. May be ignored if the file is a stream or device.

• data – The data to write as a bitvector

• size – The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.

property size

The number of data bytes stored by the file at present. May be a symbolic value.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.SimFile(name=None, content=None, size=None, has_end=None, seekable=True, writable=True,
ident=None, concrete=None, **kwargs)

Bases: SimFileBase, DefaultMemory

The normal SimFile is meant to model files on disk. It subclasses SimSymbolicMemory so loads and stores
to/from it are very simple.

189

angr

Parameters
• name – The name of the file

• content – Optional initial content for the file as a string or bitvector

• size – Optional size of the file. If content is not specified, it defaults to zero

• has_end – Whether the size boundary is treated as the end of the file or a frontier at
which new content will be generated. If unspecified, will pick its value based on op-
tions.FILES_HAVE_EOF. Another caveat is that if the size is also unspecified this value
will default to False.

• seekable – Optional bool indicating whether seek operations on this file should succeed,
default True.

• writable – Whether writing to this file is allowed

• concrete – Whether or not this file contains mostly concrete data. Will be used by some
SimProcedures to choose how to handle variable-length operations like fgets.

Variables
has_end – Whether this file has an EOF

__init__(name=None, content=None, size=None, has_end=None, seekable=True, writable=True,
ident=None, concrete=None, **kwargs)

property category

reg, mem, or file.

Type
Return the category of this SimMemory instance. It can be one of the three following cate-
gories

set_state(state)
Sets a new state (for example, if the state has been branched)

property size

The number of data bytes stored by the file at present. May be a symbolic value.

concretize(**kwargs)
Return a concretization of the contents of the file, as a flat bytestring.

read(pos, size, **kwargs)
Read some data from the file.

Parameters
• pos – The offset in the file to read from.

• size – The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.

write(pos, data, size=None, events=True, **kwargs)
Write some data to the file.

Parameters
• pos – The offset in the file to write to. May be ignored if the file is a stream or device.

• data – The data to write as a bitvector

190 Chapter 10. API Reference

angr

• size – The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

191

https://docs.python.org/3/library/functions.html#bool

angr

widen(_)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.SimPackets(name, write_mode=None, content=None, writable=True, ident=None, **kwargs)
Bases: SimFileBase

The SimPackets is meant to model inputs whose content is delivered a series of asynchronous chunks. The data
is stored as a list of read or write results. For symbolic sizes, state.libc.max_packet_size will be respected. If the
SHORT_READS option is enabled, reads will return a symbolic size constrained to be less than or equal to the
requested size.

A SimPackets cannot be used for both reading and writing - for socket objects that can be both read and writ-
ten to you should use a file descriptor to multiplex the read and write operations into two separate file storage
mechanisms.

Parameters
• name – The name of the file, for cosmetic purposes

• write_mode – Whether this file is opened in read or write mode. If this is unspecified it will
be autodetected.

• content – Some initial content to use for the file. Can be a list of bytestrings or a list of
tuples of content ASTs and size ASTs.

Variables
• write_mode – See the eponymous parameter

• content – A list of packets, as tuples of content ASTs and size ASTs.

__init__(name, write_mode=None, content=None, writable=True, ident=None, **kwargs)

set_state(state)
Sets a new state (for example, if the state has been branched)

property size

The number of data bytes stored by the file at present. May be a symbolic value.

concretize(**kwargs)
Returns a list of the packets read or written as bytestrings.

read(pos, size, **kwargs)
Read a packet from the stream.

Parameters
• pos (int) – The packet number to read from the sequence of the stream. May be None to

append to the stream.

192 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

• size – The size to read. May be symbolic.

• short_reads – Whether to replace the size with a symbolic value constrained to less than
or equal to the original size. If unspecified, will be chosen based on the state option.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read) and
the actual size of the read.

write(pos, data, size=None, events=True, **kwargs)
Write a packet to the stream.

Parameters
• pos (int) – The packet number to write in the sequence of the stream. May be None to

append to the stream.

• data – The data to write, as a string or bitvector.

• size – The optional size to write. May be symbolic; must be constrained to at most the
size of data.

Returns
The next packet to use after this

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

193

https://docs.python.org/3/library/functions.html#int

angr

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(_)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.SimFileStream(name=None, content=None, pos=0, **kwargs)
Bases: SimFile

A specialized SimFile that uses a flat memory backing, but functions as a stream, tracking its position internally.

The pos argument to the read and write methods will be ignored, and will return None. Instead, there is an
attribute pos on the file itself, which will give you what you want.

Parameters
• name – The name of the file, for cosmetic purposes

• pos – The initial position of the file, default zero

• kwargs – Any other keyword arguments will go on to the SimFile constructor.

Variables
pos – The current position in the file.

__init__(name=None, content=None, pos=0, **kwargs)

set_state(state)
Sets a new state (for example, if the state has been branched)

read(pos, size, **kwargs)
Read some data from the file.

Parameters

194 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• pos – The offset in the file to read from.

• size – The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.

write(_, data, size=None, **kwargs)
Write some data to the file.

Parameters
• pos – The offset in the file to write to. May be ignored if the file is a stream or device.

• data – The data to write as a bitvector

• size – The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

195

angr

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

state: angr.SimState

class angr.SimPacketsStream(name, pos=0, **kwargs)
Bases: SimPackets

A specialized SimPackets that tracks its position internally.

The pos argument to the read and write methods will be ignored, and will return None. Instead, there is an
attribute pos on the file itself, which will give you what you want.

Parameters
• name – The name of the file, for cosmetic purposes

• pos – The initial position of the file, default zero

• kwargs – Any other keyword arguments will go on to the SimPackets constructor.

Variables
pos – The current position in the file.

__init__(name, pos=0, **kwargs)

read(pos, size, **kwargs)
Read a packet from the stream.

Parameters
• pos (int) – The packet number to read from the sequence of the stream. May be None to

append to the stream.

• size – The size to read. May be symbolic.

• short_reads – Whether to replace the size with a symbolic value constrained to less than
or equal to the original size. If unspecified, will be chosen based on the state option.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read) and
the actual size of the read.

write(_, data, size=None, **kwargs)
Write a packet to the stream.

Parameters
• pos (int) – The packet number to write in the sequence of the stream. May be None to

append to the stream.

196 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

• data – The data to write, as a string or bitvector.

• size – The optional size to write. May be symbolic; must be constrained to at most the
size of data.

Returns
The next packet to use after this

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

197

angr

Return type
bool

state: angr.SimState

class angr.SimFileDescriptor(simfile, flags=0)
Bases: SimFileDescriptorBase

A simple file descriptor forwarding reads and writes to a SimFile. Contains information about the current opened
state of the file, such as the flags or (if relevant) the current position.

Variables
• file – The SimFile described to by this descriptor

• flags – The mode that the file descriptor was opened with, a bitfield of flags

__init__(simfile, flags=0)

read_data(size, **kwargs)
Reads some data from the file, returning the data.

Parameters
size – The requested length of the read

Returns
A tuple of the data read and the real length of the read

write_data(data, size=None, **kwargs)
Write some data, provided as an argument into the file.

Parameters
• data – A bitvector to write into the file

• size – The requested size of the write (may be symbolic)

Returns
The real length of the write

seek(offset, whence='start')
Seek the file descriptor to a different position in the file.

Parameters
• offset – The offset to seek to, interpreted according to whence

• whence – What the offset is relative to; one of the strings “start”, “current”, or “end”

Returns
A symbolic boolean describing whether the seek succeeded or not

eof()

Return the EOF status. May be a symbolic boolean.

tell()

Return the current position, or None if the concept doesn’t make sense for the given file.

size()

Return the size of the data stored in the file in bytes, or None if the concept doesn’t make sense for the given
file.

198 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

concretize(**kwargs)
Return a concretization of the underlying file. Returns whatever format is preferred by the file.

property file_exists

This should be True in most cases. Only if we opened an fd of unknown existence, ALL_FILES_EXIST is
False and ANY_FILE_MIGHT_EXIST is True, this is a symbolic boolean.

property read_storage

Return the SimFile backing reads from this fd

property write_storage

Return the SimFile backing writes to this fd

property read_pos

Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

property write_pos

Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

set_state(state)
Sets a new state (for example, if the state has been branched)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

199

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(_)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.SimFileDescriptorDuplex(read_file, write_file)
Bases: SimFileDescriptorBase

A file descriptor that refers to two file storage mechanisms, one to read from and one to write to. As a result,
operations like seek, eof, etc no longer make sense.

Parameters
• read_file – The SimFile to read from

• write_file – The SimFile to write to

__init__(read_file, write_file)

read_data(size, **kwargs)
Reads some data from the file, returning the data.

Parameters
size – The requested length of the read

200 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Returns
A tuple of the data read and the real length of the read

write_data(data, size=None, **kwargs)
Write some data, provided as an argument into the file.

Parameters
• data – A bitvector to write into the file

• size – The requested size of the write (may be symbolic)

Returns
The real length of the write

set_state(state)
Sets a new state (for example, if the state has been branched)

eof()

Return the EOF status. May be a symbolic boolean.

tell()

Return the current position, or None if the concept doesn’t make sense for the given file.

seek(offset, whence='start')
Seek the file descriptor to a different position in the file.

Parameters
• offset – The offset to seek to, interpreted according to whence

• whence – What the offset is relative to; one of the strings “start”, “current”, or “end”

Returns
A symbolic boolean describing whether the seek succeeded or not

size()

Return the size of the data stored in the file in bytes, or None if the concept doesn’t make sense for the given
file.

concretize(**kwargs)
Return a concretization of the underlying files, as a tuple of (read file, write file).

property read_storage

Return the SimFile backing reads from this fd

property write_storage

Return the SimFile backing writes to this fd

property read_pos

Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

property write_pos

Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

201

angr

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(_)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

202 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.SimMount

Bases: SimStatePlugin

This is the base class for “mount points” in angr’s simulated filesystem. Subclass this class and give it to the
filesystem to intercept all file creations and opens below the mountpoint. Since this a SimStatePlugin you may
also want to implement set_state, copy, merge, etc.

get(path_elements)
Implement this function to instrument file lookups.

Parameters
path_elements – A list of path elements traversing from the mountpoint to the file

Returns
A SimFile, or None

insert(path_elements, simfile)
Implement this function to instrument file creation.

Parameters
• path_elements – A list of path elements traversing from the mountpoint to the file

• simfile – The file to insert

Returns
A bool indicating whether the insert occurred

delete(path_elements)
Implement this function to instrument file deletion.

Parameters
path_elements – A list of path elements traversing from the mountpoint to the file

Returns
A bool indicating whether the delete occurred

lookup(sim_file)
Look up the path of a SimFile in the mountpoint

Parameters
sim_file – A SimFile object needs to be looked up

Returns
A string representing the path of the file in the mountpoint Or None if the SimFile does not
exist in the mountpoint

state: angr.SimState

203

https://docs.python.org/3/library/functions.html#bool

angr

class angr.SimHostFilesystem(host_path=None, **kwargs)
Bases: SimConcreteFilesystem

Simulated mount that makes some piece from the host filesystem available to the guest.

Parameters
• host_path (str) – The path on the host to mount

• pathsep (str) – The host path separator character, default os.path.sep

__init__(host_path=None, **kwargs)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.SimHeapBrk(heap_base=None, heap_size=None)
Bases: SimHeapBase

SimHeapBrk represents a trivial heap implementation based on the Unix brk system call. This type of heap stores
virtually no metadata, so it is up to the user to determine when it is safe to release memory. This also means that
it does not properly support standard heap operations like realloc.

This heap implementation is a holdover from before any more proper implementations were modelled. At the
time, various libc (or win32) SimProcedures handled the heap in the same way that this plugin does now. To
make future heap implementations plug-and-playable, they should implement the necessary logic themselves, and
dependent SimProcedures should invoke a method by the same name as theirs (prepended with an underscore)
upon the heap plugin. Depending on the heap implementation, if the method is not supported, an error should
be raised.

Out of consideration for the original way the heap was handled, this plugin implements functionality for all rele-
vant SimProcedures (even those that would not normally be supported together in a single heap implementation).

Variables
heap_location – the address of the top of the heap, bounding the allocations made starting
from heap_base

__init__(heap_base=None, heap_size=None)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

204 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

allocate(sim_size)
The actual allocation primitive for this heap implementation. Increases the position of the break to allocate
space. Has no guards against the heap growing too large.

Parameters
sim_size – a size specifying how much to increase the break pointer by

Returns
a pointer to the previous break position, above which there is now allocated space

release(sim_size)
The memory release primitive for this heap implementation. Decreases the position of the break to deallo-
cate space. Guards against releasing beyond the initial heap base.

Parameters
sim_size – a size specifying how much to decrease the break pointer by (may be symbolic
or not)

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

205

angr

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.SimHeapPTMalloc(heap_base=None, heap_size=None)
Bases: SimHeapFreelist

A freelist-style heap implementation inspired by ptmalloc. The chunks used by this heap contain heap metadata
in addition to user data. While the real-world ptmalloc is implemented using multiple lists of free chunks (corre-
sponding to their different sizes), this more basic model uses a single list of chunks and searches for free chunks
using a first-fit algorithm.

NOTE: The plugin must be registered using register_plugin with name heap in order to function properly.

Variables
• heap_base – the address of the base of the heap in memory

• heap_size – the total size of the main memory region managed by the heap in memory

• mmap_base – the address of the region from which large mmap allocations will be made

• free_head_chunk – the head of the linked list of free chunks in the heap

__init__(heap_base=None, heap_size=None)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

chunks()

Returns an iterator over all the chunks in the heap.

allocated_chunks()

Returns an iterator over all the allocated chunks in the heap.

206 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

free_chunks()

Returns an iterator over all the free chunks in the heap.

chunk_from_mem(ptr)
Given a pointer to a user payload, return the base of the chunk associated with that payload (i.e. the chunk
pointer). Returns None if ptr is null.

Parameters
ptr – a pointer to the base of a user payload in the heap

Returns
a pointer to the base of the associated heap chunk, or None if ptr is null

malloc(sim_size)
A somewhat faithful implementation of libc malloc.

Parameters
sim_size – the amount of memory (in bytes) to be allocated

Returns
the address of the allocation, or a NULL pointer if the allocation failed

free(ptr)
A somewhat faithful implementation of libc free.

Parameters
ptr – the location in memory to be freed

calloc(sim_nmemb, sim_size)
A somewhat faithful implementation of libc calloc.

Parameters
• sim_nmemb – the number of elements to allocated

• sim_size – the size of each element (in bytes)

Returns
the address of the allocation, or a NULL pointer if the allocation failed

realloc(ptr, size)
A somewhat faithful implementation of libc realloc.

Parameters
• ptr – the location in memory to be reallocated

• size – the new size desired for the allocation

Returns
the address of the allocation, or a NULL pointer if the allocation was freed or if no new
allocation was made

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

207

angr

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

init_state()

Use this function to perform any initialization on the state at plugin-add time

state: angr.SimState

class angr.PTChunk(base, sim_state, heap=None)
Bases: Chunk

A chunk, inspired by the implementation of chunks in ptmalloc. Provides a representation of a chunk
via a view into the memory plugin. For the chunk definitions and docs that this was loosely based
off of, see glibc malloc/malloc.c, line 1033, as of commit 5a580643111ef6081be7b4c7bd1997a5447c903f.
Alternatively, take the following link. https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=
67cdfd0ad2f003964cd0f7dfe3bcd85ca98528a7;hb=5a580643111ef6081be7b4c7bd1997a5447c903f#l1033

Variables

208 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=67cdfd0ad2f003964cd0f7dfe3bcd85ca98528a7;hb=5a580643111ef6081be7b4c7bd1997a5447c903f#l1033
https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=67cdfd0ad2f003964cd0f7dfe3bcd85ca98528a7;hb=5a580643111ef6081be7b4c7bd1997a5447c903f#l1033

angr

• base – the location of the base of the chunk in memory

• state – the program state that the chunk is resident in

• heap – the heap plugin that the chunk is managed by

__init__(base, sim_state, heap=None)

get_size()

Returns the actual size of a chunk (as opposed to the entire size field, which may include some flags).

get_data_size()

Returns the size of the data portion of a chunk.

set_size(size, is_free=None)
Use this to set the size on a chunk. When the chunk is new (such as when a free chunk is shrunk to form an
allocated chunk and a remainder free chunk) it is recommended that the is_free hint be used since setting
the size depends on the chunk’s freeness, and vice versa.

Parameters
• size – size of the chunk

• is_free – boolean indicating the chunk’s freeness

set_prev_freeness(is_free)
Sets (or unsets) the flag controlling whether the previous chunk is free.

Parameters
is_free – if True, sets the previous chunk to be free; if False, sets it to be allocated

is_prev_free()

Returns a concrete state of the flag indicating whether the previous chunk is free or not. Issues a warning
if that flag is symbolic and has multiple solutions, and then assumes that the previous chunk is free.

Returns
True if the previous chunk is free; False otherwise

prev_size()

Returns the size of the previous chunk, masking off what would be the flag bits if it were in the actual size
field. Performs NO CHECKING to determine whether the previous chunk size is valid (for example, when
the previous chunk is not free, its size cannot be determined).

is_free()

Returns a concrete determination as to whether the chunk is free.

data_ptr()

Returns the address of the payload of the chunk.

next_chunk()

Returns the chunk immediately following (and adjacent to) this one, if it exists.

Returns
The following chunk, or None if applicable

prev_chunk()

Returns the chunk immediately prior (and adjacent) to this one, if that chunk is free. If the prior chunk is
not free, then its base cannot be located and this method raises an error.

Returns
If possible, the previous chunk; otherwise, raises an error

209

angr

fwd_chunk()

Returns the chunk following this chunk in the list of free chunks. If this chunk is not free, then it resides in
no such list and this method raises an error.

Returns
If possible, the forward chunk; otherwise, raises an error

set_fwd_chunk(fwd)
Sets the chunk following this chunk in the list of free chunks.

Parameters
fwd – the chunk to follow this chunk in the list of free chunks

bck_chunk()

Returns the chunk backward from this chunk in the list of free chunks. If this chunk is not free, then it
resides in no such list and this method raises an error.

Returns
If possible, the backward chunk; otherwise, raises an error

set_bck_chunk(bck)
Sets the chunk backward from this chunk in the list of free chunks.

Parameters
bck – the chunk to precede this chunk in the list of free chunks

class angr.Server(project, spill_yard=None, db=None, max_workers=None, max_states=10, staging_max=10,
bucketizer=True, recursion_limit=1000, worker_exit_callback=None, techniques=None,
add_options=None, remove_options=None)

Bases: object

Server implements the analysis server with a series of control interfaces exposed.

Variables
• project – An instance of angr.Project.

• spill_yard (str) – A directory to store spilled states.

• db (str) – Path of the database that stores information about spilled states.

• max_workers (int) – Maximum number of workers. Each worker starts a new process.

• max_states (int) – Maximum number of active states for each worker.

• staging_max (int) – Maximum number of inactive states that are kept into memory before
spilled onto the disk and potentially be picked up by another worker.

• bucketizer (bool) – Use the Bucketizer exploration strategy.

• _worker_exit_callback – A method that will be called upon the exit of each worker.

__init__(project, spill_yard=None, db=None, max_workers=None, max_states=10, staging_max=10,
bucketizer=True, recursion_limit=1000, worker_exit_callback=None, techniques=None,
add_options=None, remove_options=None)

inc_active_workers()

dec_active_workers()

stop()

210 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

property active_workers

property stopped

on_worker_exit(worker_id, stashes)

run()

class angr.KnowledgeBase(project, obj=None, name=None)
Bases: object

Represents a “model” of knowledge about an artifact.

Contains things like a CFG, data references, etc.

functions: FunctionManager

variables: VariableManager

structured_code: StructuredCodeManager

defs: KeyDefinitionManager

cfgs: CFGManager

types: TypesStore

propagations: PropagationManager

xrefs: XRefManager

__init__(project, obj=None, name=None)

property callgraph

property unresolved_indirect_jumps

property resolved_indirect_jumps

has_plugin(name)

get_plugin(name)

register_plugin(name, plugin)

release_plugin(name)

K = ~K

get_knowledge(requested_plugin_cls)
Type inference safe method to request a knowledge base plugin Explicitly passing the type of the requested
plugin achieves two things: 1. Every location using this plugin can be easily found with an IDE by searching
explicit references to the type 2. Basic type inference can deduce the result type and properly type check
usages of it

If there isn’t already an instance of this class None will be returned to make it clear to the caller that there
is no existing knowledge of this type yet. The code that initially creates this knowledge should use the reg-
ister_plugin method to register the initial knowledge state :type requested_plugin_cls: Type[TypeVar(K,
bound= KnowledgeBasePlugin)] :param requested_plugin_cls: :rtype: Optional[TypeVar(K, bound=
KnowledgeBasePlugin)] :return: Instance of the requested plugin class or null if it is not a known plugin

211

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.TypeVar

angr

Parameters
requested_plugin_cls (Type[K]) –

Return type
K | None

request_knowledge(requested_plugin_cls)

Return type
TypeVar(K, bound= KnowledgeBasePlugin)

Parameters
requested_plugin_cls (Type[K]) –

10.1 Project

angr.project.load_shellcode(shellcode, arch, start_offset=0, load_address=0, thumb=False, **kwargs)
Load a new project based on a snippet of assembly or bytecode.

Parameters
• shellcode (Union[bytes, str]) – The data to load, as either a bytestring of instructions

or a string of assembly text

• arch – The name of the arch to use, or an archinfo class

• start_offset – The offset into the data to start analysis (default 0)

• load_address – The address to place the data in memory (default 0)

• thumb – Whether this is ARM Thumb shellcode

class angr.project.Project(thing, default_analysis_mode=None, ignore_functions=None,
use_sim_procedures=True, exclude_sim_procedures_func=None,
exclude_sim_procedures_list=(), arch=None, simos=None, engine=None,
load_options=None, translation_cache=True, selfmodifying_code=False,
support_selfmodifying_code=None, store_function=None, load_function=None,
analyses_preset=None, concrete_target=None, eager_ifunc_resolution=None,
**kwargs)

Bases: object

This is the main class of the angr module. It is meant to contain a set of binaries and the relationships between
them, and perform analyses on them.

Parameters
• thing – The path to the main executable object to analyze, or a CLE Loader object.

• arch (Arch) –

• load_options (Dict[str, Any] | None) –

• selfmodifying_code (bool) –

• support_selfmodifying_code (bool | None) –

The following parameters are optional.

Parameters
• default_analysis_mode – The mode of analysis to use by default. Defaults to ‘symbolic’.

212 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• ignore_functions – A list of function names that, when imported from shared libraries,
should never be stepped into in analysis (calls will return an unconstrained value).

• use_sim_procedures – Whether to replace resolved dependencies for which simproce-
dures are available with said simprocedures.

• exclude_sim_procedures_func – A function that, when passed a function name, returns
whether or not to wrap it with a simprocedure.

• exclude_sim_procedures_list – A list of functions to not wrap with simprocedures.

• arch – The target architecture (auto-detected otherwise).

• simos – a SimOS class to use for this project.

• engine – The SimEngine class to use for this project.

• translation_cache (bool) – If True, cache translated basic blocks rather than re-
translating them.

• selfmodifying_code (bool) – Whether we aggressively support self-modifying code.
When enabled, emulation will try to read code from the current state instead of the origi-
nal memory, regardless of the current memory protections.

• store_function – A function that defines how the Project should be stored. Default to
pickling.

• load_function – A function that defines how the Project should be loaded. Default to
unpickling.

• analyses_preset (angr.misc.PluginPreset) – The plugin preset for the analyses
provider (i.e. Analyses instance).

• load_options (Dict[str, Any] | None) –

• support_selfmodifying_code (bool | None) –

Any additional keyword arguments passed will be passed onto cle.Loader.

Variables
• analyses – The available analyses.

• entry – The program entrypoint.

• factory – Provides access to important analysis elements such as path groups and symbolic
execution results.

• filename – The filename of the executable.

• loader – The program loader.

• storage – Dictionary of things that should be loaded/stored with the Project.

Parameters
• arch (Arch) –

• load_options (Dict[str, Any] | None) –

• selfmodifying_code (bool) –

• support_selfmodifying_code (bool | None) –

10.1. Project 213

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

__init__(thing, default_analysis_mode=None, ignore_functions=None, use_sim_procedures=True,
exclude_sim_procedures_func=None, exclude_sim_procedures_list=(), arch=None, simos=None,
engine=None, load_options=None, translation_cache=True, selfmodifying_code=False,
support_selfmodifying_code=None, store_function=None, load_function=None,
analyses_preset=None, concrete_target=None, eager_ifunc_resolution=None, **kwargs)

Parameters
• load_options (Dict[str, Any] | None) –

• selfmodifying_code (bool) –

• support_selfmodifying_code (bool | None) –

arch: Arch

property analyses: AnalysesHubWithDefault

hook(addr, hook=None, length=0, kwargs=None, replace=False)
Hook a section of code with a custom function. This is used internally to provide symbolic summaries of
library functions, and can be used to instrument execution or to modify control flow.

When hook is not specified, it returns a function decorator that allows easy hooking. Usage:

Assuming proj is an instance of angr.Project, we will add a custom hook at␣
→˓the entry
point of the project.
@proj.hook(proj.entry)
def my_hook(state):

print("Welcome to execution!")

Parameters
• addr – The address to hook.

• hook – A angr.project.Hook describing a procedure to run at the given address. You
may also pass in a SimProcedure class or a function directly and it will be wrapped in a
Hook object for you.

• length – If you provide a function for the hook, this is the number of bytes that will be
skipped by executing the hook by default.

• kwargs – If you provide a SimProcedure for the hook, these are the keyword arguments
that will be passed to the procedure’s run method eventually.

• replace (Optional[bool]) – Control the behavior on finding that the address is already
hooked. If true, silently replace the hook. If false (default), warn and do not replace the
hook. If none, warn and replace the hook.

is_hooked(addr)
Returns True if addr is hooked.

Parameters
addr – An address.

Return type
bool

Returns
True if addr is hooked, False otherwise.

214 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

hooked_by(addr)
Returns the current hook for addr.

Parameters
addr – An address.

Return type
Optional[SimProcedure]

Returns
None if the address is not hooked.

unhook(addr)
Remove a hook.

Parameters
addr – The address of the hook.

hook_symbol(symbol_name, simproc, kwargs=None, replace=None)
Resolve a dependency in a binary. Looks up the address of the given symbol, and then hooks that address.
If the symbol was not available in the loaded libraries, this address may be provided by the CLE externs
object.

Additionally, if instead of a symbol name you provide an address, some secret functionality will kick in
and you will probably just hook that address, UNLESS you’re on powerpc64 ABIv1 or some yet-unknown
scary ABI that has its function pointers point to something other than the actual functions, in which case
it’ll do the right thing.

Parameters
• symbol_name – The name of the dependency to resolve.

• simproc – The SimProcedure instance (or function) with which to hook the symbol

• kwargs – If you provide a SimProcedure for the hook, these are the keyword arguments
that will be passed to the procedure’s run method eventually.

• replace (Optional[bool]) – Control the behavior on finding that the address is already
hooked. If true, silently replace the hook. If false, warn and do not replace the hook. If
none (default), warn and replace the hook.

Returns
The address of the new symbol.

Return type
int

symbol_hooked_by(symbol_name)
Return the SimProcedure, if it exists, for the given symbol name.

Parameters
symbol_name (str) – Name of the symbol.

Return type
Optional[SimProcedure]

Returns
None if the address is not hooked.

is_symbol_hooked(symbol_name)
Check if a symbol is already hooked.

10.1. Project 215

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

angr

Parameters
symbol_name (str) – Name of the symbol.

Returns
True if the symbol can be resolved and is hooked, False otherwise.

Return type
bool

unhook_symbol(symbol_name)
Remove the hook on a symbol. This function will fail if the symbol is provided by the extern object, as that
would result in a state where analysis would be unable to cope with a call to this symbol.

rehook_symbol(new_address, symbol_name, stubs_on_sync)
Move the hook for a symbol to a specific address :type new_address: :param new_address: the new address
that will trigger the SimProc execution :type symbol_name: :param symbol_name: the name of the symbol
(f.i. strcmp) :return: None

execute(*args, **kwargs)
This function is a symbolic execution helper in the simple style supported by triton and manticore. It
designed to be run after setting up hooks (see Project.hook), in which the symbolic state can be checked.

This function can be run in three different ways:

• When run with no parameters, this function begins symbolic execution from the entrypoint.

• It can also be run with a “state” parameter specifying a SimState to begin symbolic execution from.

• Finally, it can accept any arbitrary keyword arguments, which are all passed to
project.factory.full_init_state.

If symbolic execution finishes, this function returns the resulting simulation manager.

terminate_execution()

Terminates a symbolic execution that was started with Project.execute().

class angr.factory.AngrObjectFactory(project, default_engine=None)
Bases: object

This factory provides access to important analysis elements.

Parameters
default_engine (Type[SimEngine] | None) –

__init__(project, default_engine=None)

Parameters
default_engine (Type[SimEngine] | None) –

snippet(addr, jumpkind=None, **block_opts)

successors(*args, engine=None, **kwargs)
Perform execution using an engine. Generally, return a SimSuccessors object classifying the results of the
run.

Parameters
• state – The state to analyze

• engine – The engine to use. If not provided, will use the project default.

• addr – optional, an address to execute at instead of the state’s ip

• jumpkind – optional, the jumpkind of the previous exit

216 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type

angr

• inline – This is an inline execution. Do not bother copying the state.

Additional keyword arguments will be passed directly into each engine’s process method.

blank_state(**kwargs)
Returns a mostly-uninitialized state object. All parameters are optional.

Parameters
• addr – The address the state should start at instead of the entry point.

• initial_prefix – If this is provided, all symbolic registers will hold symbolic values
with names prefixed by this string.

• fs – A dictionary of file names with associated preset SimFile objects.

• concrete_fs – bool describing whether the host filesystem should be consulted when
opening files.

• chroot – A path to use as a fake root directory, Behaves similarly to a real chroot. Used
only when concrete_fs is set to True.

• kwargs – Any additional keyword args will be passed to the SimState constructor.

Returns
The blank state.

Return type
SimState

entry_state(**kwargs)
Returns a state object representing the program at its entry point. All parameters are optional.

Parameters
• addr – The address the state should start at instead of the entry point.

• initial_prefix – If this is provided, all symbolic registers will hold symbolic values
with names prefixed by this string.

• fs – a dictionary of file names with associated preset SimFile objects.

• concrete_fs – boolean describing whether the host filesystem should be consulted when
opening files.

• chroot – a path to use as a fake root directory, behaves similar to a real chroot. used only
when concrete_fs is set to True.

• argc – a custom value to use for the program’s argc. May be either an int or a bitvector. If
not provided, defaults to the length of args.

• args – a list of values to use as the program’s argv. May be mixed strings and bitvectors.

• env – a dictionary to use as the environment for the program. Both keys and values may
be mixed strings and bitvectors.

Returns
The entry state.

Return type
SimState

10.1. Project 217

angr

full_init_state(**kwargs)
Very much like entry_state(), except that instead of starting execution at the program entry point, ex-
ecution begins at a special SimProcedure that plays the role of the dynamic loader, calling each of the
initializer functions that should be called before execution reaches the entry point.

It can take any of the arguments that can be provided to entry_state, except for addr.

call_state(addr, *args, **kwargs)
Returns a state object initialized to the start of a given function, as if it were called with given parameters.

Parameters
• addr – The address the state should start at instead of the entry point.

• args – Any additional positional arguments will be used as arguments to the function call.

The following parameters are optional.

Parameters
• base_state – Use this SimState as the base for the new state instead of a blank state.

• cc – Optionally provide a SimCC object to use a specific calling convention.

• ret_addr – Use this address as the function’s return target.

• stack_base – An optional pointer to use as the top of the stack, circa the function entry
point

• alloc_base – An optional pointer to use as the place to put excess argument data

• grow_like_stack – When allocating data at alloc_base, whether to allocate at decreasing
addresses

• toc – The address of the table of contents for ppc64

• initial_prefix – If this is provided, all symbolic registers will hold symbolic values
with names prefixed by this string.

• fs – A dictionary of file names with associated preset SimFile objects.

• concrete_fs – bool describing whether the host filesystem should be consulted when
opening files.

• chroot – A path to use as a fake root directory, Behaves similarly to a real chroot. Used
only when concrete_fs is set to True.

• kwargs – Any additional keyword args will be passed to the SimState constructor.

Returns
The state at the beginning of the function.

Return type
SimState

The idea here is that you can provide almost any kind of python type in args and it’ll be translated to a
binary format to be placed into simulated memory. Lists (representing arrays) must be entirely elements of
the same type and size, while tuples (representing structs) can be elements of any type and size. If you’d
like there to be a pointer to a given value, wrap the value in a SimCC.PointerWrapper. Any value that can’t
fit in a register will be automatically put in a PointerWrapper.

If stack_base is not provided, the current stack pointer will be used, and it will be updated. If alloc_base is
not provided, the current stack pointer will be used, and it will be updated. You might not like the results
if you provide stack_base but not alloc_base.

218 Chapter 10. API Reference

angr

grow_like_stack controls the behavior of allocating data at alloc_base. When data from args needs to
be wrapped in a pointer, the pointer needs to point somewhere, so that data is dumped into memory at
alloc_base. If you set alloc_base to point to somewhere other than the stack, set grow_like_stack to False
so that sequencial allocations happen at increasing addresses.

simulation_manager(thing=None, **kwargs)
Constructs a new simulation manager.

Parameters
• thing (Union[List[SimState], SimState, None]) – What to put in the new Simulation-

Manager’s active stash (either a SimState or a list of SimStates).

• kwargs – Any additional keyword arguments will be passed to the SimulationManager
constructor

Returns
The new SimulationManager

Return type
angr.sim_manager.SimulationManager

Many different types can be passed to this method:

• If nothing is passed in, the SimulationManager is seeded with a state initialized for the program entry
point, i.e. entry_state().

• If a SimState is passed in, the SimulationManager is seeded with that state.

• If a list is passed in, the list must contain only SimStates and the whole list will be used to seed the
SimulationManager.

simgr(*args, **kwargs)
Alias for simulation_manager to save our poor fingers

callable(addr, prototype=None, concrete_only=False, perform_merge=True, base_state=None, toc=None,
cc=None, add_options=None, remove_options=None)

A Callable is a representation of a function in the binary that can be interacted with like a native python
function.

Parameters
• addr – The address of the function to use

• prototype – The prototype of the call to use, as a string or a SimTypeFunction

• concrete_only – Throw an exception if the execution splits into multiple states

• perform_merge – Merge all result states into one at the end (only relevant if con-
crete_only=False)

• base_state – The state from which to do these runs

• toc – The address of the table of contents for ppc64

• cc – The SimCC to use for a calling convention

Returns
A Callable object that can be used as a interface for executing guest code like a python func-
tion.

Return type
angr.callable.Callable

10.1. Project 219

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None

angr

cc()

Return a SimCC (calling convention) parameterized for this project.

Relevant subclasses of SimFunctionArgument are SimRegArg and SimStackArg, and shortcuts to them can
be found on this cc object.

For stack arguments, offsets are relative to the stack pointer on function entry.

function_prototype()

Return a default function prototype parameterized for this project and SimOS.

block(addr, size=None, max_size=None, byte_string=None, vex=None, thumb=False, backup_state=None,
extra_stop_points=None, opt_level=None, num_inst=None, traceflags=0, insn_bytes=None,
insn_text=None, strict_block_end=None, collect_data_refs=False, cross_insn_opt=True,
load_from_ro_regions=False, initial_regs=None)

fresh_block(addr, size, backup_state=None)

class angr.block.DisassemblerBlock(addr, insns, thumb, arch)
Bases: object

Helper class to represent a block of dissassembled target architecture instructions

__init__(addr, insns, thumb, arch)

addr

insns

thumb

arch

pp()

class angr.block.DisassemblerInsn

Bases: object

Helper class to represent a disassembled target architecture instruction

property size: int

property address: int

property mnemonic: str

property op_str: str

class angr.block.CapstoneBlock(addr, insns, thumb, arch)
Bases: DisassemblerBlock

Deep copy of the capstone blocks, which have serious issues with having extended lifespans outside of capstone
itself

class angr.block.CapstoneInsn(capstone_insn)
Bases: DisassemblerInsn

Represents a capstone instruction.

__init__(capstone_insn)

220 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

insn

property size: int

property address: int

property mnemonic: str

property op_str: str

class angr.block.Block(addr, project=None, arch=None, size=None, byte_string=None, vex=None,
thumb=False, backup_state=None, extra_stop_points=None, opt_level=None,
num_inst=None, traceflags=0, strict_block_end=None, collect_data_refs=False,
cross_insn_opt=True, load_from_ro_regions=False, initial_regs=None)

Bases: Serializable

Represents a basic block in a binary or a program.

BLOCK_MAX_SIZE = 4096

__init__(addr, project=None, arch=None, size=None, byte_string=None, vex=None, thumb=False,
backup_state=None, extra_stop_points=None, opt_level=None, num_inst=None, traceflags=0,
strict_block_end=None, collect_data_refs=False, cross_insn_opt=True,
load_from_ro_regions=False, initial_regs=None)

arch

thumb

addr

size

pp(**kwargs)

set_initial_regs()

static reset_initial_regs()

property vex: IRSB

property vex_nostmt

property disassembly: DisassemblerBlock

Provide a disassembly object using whatever disassembler is available

property capstone

property codenode

property bytes

property instructions

property instruction_addrs

10.1. Project 221

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.block.IRSB

angr

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

class angr.block.SootBlock(addr, project=None, arch=None)
Bases: object

Represents a Soot IR basic block.

__init__(addr, project=None, arch=None)

property soot

property size

property codenode

10.2 Plugin Ecosystem

class angr.misc.plugins.PluginHub

Bases: Generic[P]

A plugin hub is an object which contains many plugins, as well as the notion of a “preset”, or a backer that can
provide default implementations of plugins which cater to a certain circumstance.

Objects in angr like the SimState, the Analyses hub, the SimEngine selector, etc all use this model to unify their
mechanisms for automatically collecting and selecting components to use. If you’re familiar with design patterns
this is a configurable Strategy Pattern.

Each PluginHub subclass should have a corresponding Plugin subclass, and perhaps a PluginPreset subclass if it
wants its presets to be able to specify anything more interesting than a list of defaults.

__init__()

classmethod register_default(name, plugin_cls, preset='default')

classmethod register_preset(name, preset)
Register a preset instance with the class of the hub it corresponds to. This allows individual plugin objects
to automatically register themselves with a preset by using a classmethod of their own with only the name
of the preset to register with.

222 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Generic

angr

property plugin_preset

Get the current active plugin preset

property has_plugin_preset: bool

Check whether or not there is a plugin preset in use on this hub right now

use_plugin_preset(preset)
Apply a preset to the hub. If there was a previously active preset, discard it.

Preset can be either the string name of a preset or a PluginPreset instance.

discard_plugin_preset()

Discard the current active preset. Will release any active plugins that could have come from the old preset.

get_plugin(name)
Get the plugin named name. If no such plugin is currently active, try to activate a new one using the current
preset.

Return type
TypeVar(P)

Parameters
name (str) –

has_plugin(name)
Return whether or not a plugin with the name name is currently active.

register_plugin(name, plugin)
Add a new plugin plugin with name name to the active plugins.

Parameters
name (str) –

release_plugin(name)
Deactivate and remove the plugin with name name.

class angr.misc.plugins.PluginPreset

Bases: object

A plugin preset object contains a mapping from name to a plugin class. A preset can be active on a hub, which
will cause it to handle requests for plugins which are not already present on the hub.

Unlike Plugins and PluginHubs, instances of PluginPresets are defined on the module level for individual presets.
You should register the preset instance with a hub to allow plugins to easily add themselves to the preset without
an explicit reference to the preset itself.

__init__()

activate(hub)
This method is called when the preset becomes active on a hub.

deactivate(hub)
This method is called when the preset is discarded from the hub.

add_default_plugin(name, plugin_cls)
Add a plugin to the preset.

list_default_plugins()

Return a list of the names of available default plugins.

10.2. Plugin Ecosystem 223

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

angr

request_plugin(name)
Return the plugin class which is registered under the name name, or raise NoPlugin if the name isn’t avail-
able.

Return type
Type[TypeVar(P)]

Parameters
name (str) –

copy()

Return a copy of self.

class angr.misc.plugins.PluginVendor

Bases: Generic[P], PluginHub[P]

A specialized hub which serves only as a plugin vendor, never having any “active” plugins. It will directly return
the plugins provided by the preset instead of instanciating them.

release_plugin(name)
Deactivate and remove the plugin with name name.

register_plugin(name, plugin)
Add a new plugin plugin with name name to the active plugins.

class angr.misc.plugins.VendorPreset

Bases: PluginPreset

A specialized preset class for use with the PluginVendor.

10.3 Program State

angr.sim_state.arch_overrideable(f)

class angr.sim_state.SimState(project=None, arch=None, plugins=None, mode=None, options=None,
add_options=None, remove_options=None, special_memory_filler=None,
os_name=None, plugin_preset='default', cle_memory_backer=None,
dict_memory_backer=None, permissions_map=None,
default_permissions=3, stack_perms=None, stack_end=None,
stack_size=None, regioned_memory_cls=None, **kwargs)

Bases: PluginHub

The SimState represents the state of a program, including its memory, registers, and so forth.

Parameters
• project (angr.Project) – The project instance.

• arch (archinfo.Arch|str) – The architecture of the state.

Variables
• regs – A convenient view of the state’s registers, where each register is a property

• mem – A convenient view of the state’s memory, a angr.state_plugins.view.
SimMemView

• registers – The state’s register file as a flat memory region

• memory – The state’s memory as a flat memory region

224 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.Arch
https://docs.python.org/3/library/stdtypes.html#str

angr

• solver – The symbolic solver and variable manager for this state

• inspect – The breakpoint manager, a angr.state_plugins.inspect.SimInspector

• log – Information about the state’s history

• scratch – Information about the current execution step

• posix – MISNOMER: information about the operating system or environment model

• fs – The current state of the simulated filesystem

• libc – Information about the standard library we are emulating

• cgc – Information about the cgc environment

• uc_manager – Control of under-constrained symbolic execution

• unicorn – Control of the Unicorn Engine

solver: SimSolver

posix: SimSystemPosix

registers: DefaultMemory

regs: SimRegNameView

memory: DefaultMemory

callstack: CallStack

mem: SimMemView

history: SimStateHistory

inspect: SimInspector

jni_references: SimStateJNIReferences

scratch: SimStateScratch

__init__(project=None, arch=None, plugins=None, mode=None, options=None, add_options=None,
remove_options=None, special_memory_filler=None, os_name=None, plugin_preset='default',
cle_memory_backer=None, dict_memory_backer=None, permissions_map=None,
default_permissions=3, stack_perms=None, stack_end=None, stack_size=None,
regioned_memory_cls=None, **kwargs)

property plugins

property se

Deprecated alias for solver

property ip

Get the instruction pointer expression, trigger SimInspect breakpoints, and generate SimActions. Use _ip
to not trigger breakpoints or generate actions.

Returns
an expression

10.3. Program State 225

angr

property addr

Get the concrete address of the instruction pointer, without triggering SimInspect breakpoints or generating
SimActions. An integer is returned, or an exception is raised if the instruction pointer is symbolic.

Returns
an int

property arch: Arch

T = ~T

get_plugin(name)
Get the plugin named name. If no such plugin is currently active, try to activate a new one using the current
preset.

has_plugin(name)
Return whether or not a plugin with the name name is currently active.

register_plugin(name, plugin, inhibit_init=False)
Add a new plugin plugin with name name to the active plugins.

property javavm_memory

In case of an JavaVM with JNI support, a state can store the memory plugin twice; one for the native and
one for the java view of the state.

Returns
The JavaVM view of the memory plugin.

property javavm_registers

In case of an JavaVM with JNI support, a state can store the registers plugin twice; one for the native and
one for the java view of the state.

Returns
The JavaVM view of the registers plugin.

simplify(*args)
Simplify this state’s constraints.

add_constraints(*args, **kwargs)
Add some constraints to the state.

You may pass in any number of symbolic booleans as variadic positional arguments.

satisfiable(**kwargs)
Whether the state’s constraints are satisfiable

downsize()

Clean up after the solver engine. Calling this when a state no longer needs to be solved on will reduce
memory usage.

step(**kwargs)
Perform a step of symbolic execution using this state. Any arguments to AngrObjectFactory.successors
can be passed to this.

Returns
A SimSuccessors object categorizing the results of the step.

226 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch

angr

block(*args, **kwargs)
Represent the basic block at this state’s instruction pointer. Any arguments to AngrObjectFactory.block
can ba passed to this.

Returns
A Block object describing the basic block of code at this point.

copy()

Returns a copy of the state.

merge(*others, **kwargs)
Merges this state with the other states. Returns the merging result, merged state, and the merge flag.

Parameters
• states – the states to merge

• merge_conditions – a tuple of the conditions under which each state holds

• common_ancestor – a state that represents the common history between the states being
merged. Usually it is only available when EFFICIENT_STATE_MERGING is enabled,
otherwise weak-refed states might be dropped from state history instances.

• plugin_whitelist – a list of plugin names that will be merged. If this option is given
and is not None, any plugin that is not inside this list will not be merged, and will be created
as a fresh instance in the new state.

• common_ancestor_history – a SimStateHistory instance that represents the common
history between the states being merged. This is to allow optimal state merging when
EFFICIENT_STATE_MERGING is disabled.

Returns
(merged state, merge flag, a bool indicating if any merging occurred)

widen(*others)
Perform a widening between self and other states :type others: :param others: :return:

reg_concrete(*args, **kwargs)
Returns the contents of a register but, if that register is symbolic, raises a SimValueError.

mem_concrete(*args, **kwargs)
Returns the contents of a memory but, if the contents are symbolic, raises a SimValueError.

stack_push(thing)
Push ‘thing’ to the stack, writing the thing to memory and adjusting the stack pointer.

stack_pop()

Pops from the stack and returns the popped thing. The length will be the architecture word size.

stack_read(offset, length, bp=False)
Reads length bytes, at an offset into the stack.

Parameters
• offset – The offset from the stack pointer.

• length – The number of bytes to read.

• bp – If True, offset from the BP instead of the SP. Default: False.

make_concrete_int(expr)

10.3. Program State 227

angr

prepare_callsite(retval, args, cc='wtf')

dbg_print_stack(depth=None, sp=None)
Only used for debugging purposes. Return the current stack info in formatted string. If depth is None, the
current stack frame (from sp to bp) will be printed out.

set_mode(mode)

property thumb

property with_condition

class angr.sim_state_options.StateOption(name, types, default='_NO_DEFAULT_VALUE',
description=None)

Bases: object

Describes a state option.

__init__(name, types, default='_NO_DEFAULT_VALUE', description=None)

name

types

default

description

property has_default_value

one_type()

class angr.sim_state_options.SimStateOptions(thing)
Bases: object

A per-state manager of state options. An option can be either a key-valued entry or a Boolean switch (which can
be seen as a key-valued entry whose value can only be either True or False).

228 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

OPTIONS = {'ABSTRACT_MEMORY': <O ABSTRACT_MEMORY[bool]>, 'ABSTRACT_SOLVER': <O
ABSTRACT_SOLVER[bool]>, 'ACTION_DEPS': <O ACTION_DEPS[bool]>, 'ADD_AUTO_REFS': <O
ADD_AUTO_REFS[bool]>, 'ALLOW_SEND_FAILURES': <O ALLOW_SEND_FAILURES[bool]>,
'ALL_FILES_EXIST': <O ALL_FILES_EXIST[bool]>, 'ANY_FILE_MIGHT_EXIST': <O
ANY_FILE_MIGHT_EXIST[bool]>, 'APPROXIMATE_FIRST': <O APPROXIMATE_FIRST[bool]>,
'APPROXIMATE_GUARDS': <O APPROXIMATE_GUARDS[bool]>, 'APPROXIMATE_MEMORY_INDICES': <O
APPROXIMATE_MEMORY_INDICES[bool]>, 'APPROXIMATE_MEMORY_SIZES': <O
APPROXIMATE_MEMORY_SIZES[bool]>, 'APPROXIMATE_SATISFIABILITY': <O
APPROXIMATE_SATISFIABILITY[bool]>, 'AST_DEPS': <O AST_DEPS[bool]>, 'AUTO_REFS': <O
AUTO_REFS[bool]>, 'AVOID_MULTIVALUED_READS': <O AVOID_MULTIVALUED_READS[bool]>,
'AVOID_MULTIVALUED_WRITES': <O AVOID_MULTIVALUED_WRITES[bool]>,
'BEST_EFFORT_MEMORY_STORING': <O BEST_EFFORT_MEMORY_STORING[bool]>,
'BYPASS_ERRORED_IRCCALL': <O BYPASS_ERRORED_IRCCALL[bool]>, 'BYPASS_ERRORED_IROP':
<O BYPASS_ERRORED_IROP[bool]>, 'BYPASS_ERRORED_IRSTMT': <O
BYPASS_ERRORED_IRSTMT[bool]>, 'BYPASS_UNSUPPORTED_IRCCALL': <O
BYPASS_UNSUPPORTED_IRCCALL[bool]>, 'BYPASS_UNSUPPORTED_IRDIRTY': <O
BYPASS_UNSUPPORTED_IRDIRTY[bool]>, 'BYPASS_UNSUPPORTED_IREXPR': <O
BYPASS_UNSUPPORTED_IREXPR[bool]>, 'BYPASS_UNSUPPORTED_IROP': <O
BYPASS_UNSUPPORTED_IROP[bool]>, 'BYPASS_UNSUPPORTED_IRSTMT': <O
BYPASS_UNSUPPORTED_IRSTMT[bool]>, 'BYPASS_UNSUPPORTED_SYSCALL': <O
BYPASS_UNSUPPORTED_SYSCALL[bool]>, 'BYPASS_VERITESTING_EXCEPTIONS': <O
BYPASS_VERITESTING_EXCEPTIONS[bool]>, 'CACHELESS_SOLVER': <O
CACHELESS_SOLVER[bool]>, 'CALLLESS': <O CALLLESS[bool]>, 'CGC_ENFORCE_FD': <O
CGC_ENFORCE_FD[bool]>, 'CGC_NON_BLOCKING_FDS': <O CGC_NON_BLOCKING_FDS[bool]>,
'CGC_NO_SYMBOLIC_RECEIVE_LENGTH': <O CGC_NO_SYMBOLIC_RECEIVE_LENGTH[bool]>,
'COMPOSITE_SOLVER': <O COMPOSITE_SOLVER[bool]>, 'CONCRETIZE': <O CONCRETIZE[bool]>,
'CONCRETIZE_SYMBOLIC_FILE_READ_SIZES': <O
CONCRETIZE_SYMBOLIC_FILE_READ_SIZES[bool]>, 'CONCRETIZE_SYMBOLIC_WRITE_SIZES': <O
CONCRETIZE_SYMBOLIC_WRITE_SIZES[bool]>, 'CONSERVATIVE_READ_STRATEGY': <O
CONSERVATIVE_READ_STRATEGY[bool]>, 'CONSERVATIVE_WRITE_STRATEGY': <O
CONSERVATIVE_WRITE_STRATEGY[bool]>, 'CONSTRAINT_TRACKING_IN_SOLVER': <O
CONSTRAINT_TRACKING_IN_SOLVER[bool]>, 'COPY_STATES': <O COPY_STATES[bool]>,
'CPUID_SYMBOLIC': <O CPUID_SYMBOLIC[bool]>, 'DOWNSIZE_Z3': <O DOWNSIZE_Z3[bool]>,
'DO_CCALLS': <O DO_CCALLS[bool]>, 'DO_RET_EMULATION': <O DO_RET_EMULATION[bool]>,
'EFFICIENT_STATE_MERGING': <O EFFICIENT_STATE_MERGING[bool]>, 'ENABLE_NX': <O
ENABLE_NX[bool]>, 'EXCEPTION_HANDLING': <O EXCEPTION_HANDLING[bool]>,
'EXTENDED_IROP_SUPPORT': <O EXTENDED_IROP_SUPPORT[bool]>, 'FAST_MEMORY': <O
FAST_MEMORY[bool]>, 'FAST_REGISTERS': <O FAST_REGISTERS[bool]>, 'FILES_HAVE_EOF': <O
FILES_HAVE_EOF[bool]>, 'HYBRID_SOLVER': <O HYBRID_SOLVER[bool]>,
'JAVA_IDENTIFY_GETTER_SETTER': <O JAVA_IDENTIFY_GETTER_SETTER[bool]>,
'JAVA_TRACK_ATTRIBUTES': <O JAVA_TRACK_ATTRIBUTES[bool]>, 'KEEP_IP_SYMBOLIC': <O
KEEP_IP_SYMBOLIC[bool]>, 'KEEP_MEMORY_READS_DISCRETE': <O
KEEP_MEMORY_READS_DISCRETE[bool]>, 'LAZY_SOLVES': <O LAZY_SOLVES[bool]>,
'MEMORY_CHUNK_INDIVIDUAL_READS': <O MEMORY_CHUNK_INDIVIDUAL_READS[bool]>,
'MEMORY_FIND_STRICT_SIZE_LIMIT': <O MEMORY_FIND_STRICT_SIZE_LIMIT[bool]>,
'MEMORY_SYMBOLIC_BYTES_MAP': <O MEMORY_SYMBOLIC_BYTES_MAP[bool]>,
'NO_CROSS_INSN_OPT': <O NO_CROSS_INSN_OPT[bool]>, 'NO_IP_CONCRETIZATION': <O
NO_IP_CONCRETIZATION[bool]>, 'NO_SYMBOLIC_JUMP_RESOLUTION': <O
NO_SYMBOLIC_JUMP_RESOLUTION[bool]>, 'NO_SYMBOLIC_SYSCALL_RESOLUTION': <O
NO_SYMBOLIC_SYSCALL_RESOLUTION[bool]>, 'OPTIMIZE_IR': <O OPTIMIZE_IR[bool]>,
'PRODUCE_ZERODIV_SUCCESSORS': <O PRODUCE_ZERODIV_SUCCESSORS[bool]>,
'REGION_MAPPING': <O REGION_MAPPING[bool]>, 'REPLACEMENT_SOLVER': <O
REPLACEMENT_SOLVER[bool]>, 'REVERSE_MEMORY_HASH_MAP': <O
REVERSE_MEMORY_HASH_MAP[bool]>, 'REVERSE_MEMORY_NAME_MAP': <O
REVERSE_MEMORY_NAME_MAP[bool]>, 'SHORT_READS': <O SHORT_READS[bool]>,
'SIMPLIFY_CONSTRAINTS': <O SIMPLIFY_CONSTRAINTS[bool]>, 'SIMPLIFY_EXIT_GUARD': <O
SIMPLIFY_EXIT_GUARD[bool]>, 'SIMPLIFY_EXIT_STATE': <O SIMPLIFY_EXIT_STATE[bool]>,
'SIMPLIFY_EXIT_TARGET': <O SIMPLIFY_EXIT_TARGET[bool]>, 'SIMPLIFY_EXPRS': <O
SIMPLIFY_EXPRS[bool]>, 'SIMPLIFY_MEMORY_READS': <O SIMPLIFY_MEMORY_READS[bool]>,
'SIMPLIFY_MEMORY_WRITES': <O SIMPLIFY_MEMORY_WRITES[bool]>,
'SIMPLIFY_MERGED_CONSTRAINTS': <O SIMPLIFY_MERGED_CONSTRAINTS[bool]>,
'SIMPLIFY_REGISTER_READS': <O SIMPLIFY_REGISTER_READS[bool]>,
'SIMPLIFY_REGISTER_WRITES': <O SIMPLIFY_REGISTER_WRITES[bool]>, 'SIMPLIFY_RETS': <O
SIMPLIFY_RETS[bool]>, 'SPECIAL_MEMORY_FILL': <O SPECIAL_MEMORY_FILL[bool]>,
'STRICT_PAGE_ACCESS': <O STRICT_PAGE_ACCESS[bool]>, 'STRINGS_ANALYSIS': <O
STRINGS_ANALYSIS[bool]>, 'SUPER_FASTPATH': <O SUPER_FASTPATH[bool]>,
'SUPPORT_FLOATING_POINT': <O SUPPORT_FLOATING_POINT[bool]>,
'SYMBION_KEEP_STUBS_ON_SYNC': <O SYMBION_KEEP_STUBS_ON_SYNC[bool]>,
'SYMBION_SYNC_CLE': <O SYMBION_SYNC_CLE[bool]>, 'SYMBOLIC': <O SYMBOLIC[bool]>,
'SYMBOLIC_INITIAL_VALUES': <O SYMBOLIC_INITIAL_VALUES[bool]>,
'SYMBOLIC_MEMORY_NO_SINGLEVALUE_OPTIMIZATIONS': <O
SYMBOLIC_MEMORY_NO_SINGLEVALUE_OPTIMIZATIONS[bool]>, 'SYMBOLIC_TEMPS': <O
SYMBOLIC_TEMPS[bool]>, 'SYMBOLIC_WRITE_ADDRESSES': <O
SYMBOLIC_WRITE_ADDRESSES[bool]>, 'SYMBOL_FILL_UNCONSTRAINED_MEMORY': <O
SYMBOL_FILL_UNCONSTRAINED_MEMORY[bool]>, 'SYMBOL_FILL_UNCONSTRAINED_REGISTERS': <O
SYMBOL_FILL_UNCONSTRAINED_REGISTERS[bool]>, 'SYNC_CLE_BACKEND_CONCRETE': <O
SYNC_CLE_BACKEND_CONCRETE[bool]>, 'TRACK_ACTION_HISTORY': <O
TRACK_ACTION_HISTORY[bool]>, 'TRACK_CONSTRAINTS': <O TRACK_CONSTRAINTS[bool]>,
'TRACK_CONSTRAINT_ACTIONS': <O TRACK_CONSTRAINT_ACTIONS[bool]>, 'TRACK_JMP_ACTIONS':
<O TRACK_JMP_ACTIONS[bool]>, 'TRACK_MEMORY_ACTIONS': <O TRACK_MEMORY_ACTIONS[bool]>,
'TRACK_MEMORY_MAPPING': <O TRACK_MEMORY_MAPPING[bool]>, 'TRACK_OP_ACTIONS': <O
TRACK_OP_ACTIONS[bool]>, 'TRACK_REGISTER_ACTIONS': <O TRACK_REGISTER_ACTIONS[bool]>,
'TRACK_SOLVER_VARIABLES': <O TRACK_SOLVER_VARIABLES[bool]>, 'TRACK_TMP_ACTIONS': <O
TRACK_TMP_ACTIONS[bool]>, 'TRUE_RET_EMULATION_GUARD': <O
TRUE_RET_EMULATION_GUARD[bool]>, 'UNDER_CONSTRAINED_SYMEXEC': <O
UNDER_CONSTRAINED_SYMEXEC[bool]>, 'UNICORN': <O UNICORN[bool]>,
'UNICORN_AGGRESSIVE_CONCRETIZATION': <O UNICORN_AGGRESSIVE_CONCRETIZATION[bool]>,
'UNICORN_HANDLE_CGC_RANDOM_SYSCALL': <O UNICORN_HANDLE_CGC_RANDOM_SYSCALL[bool]>,
'UNICORN_HANDLE_CGC_RECEIVE_SYSCALL': <O UNICORN_HANDLE_CGC_RECEIVE_SYSCALL[bool]>,
'UNICORN_HANDLE_CGC_TRANSMIT_SYSCALL': <O
UNICORN_HANDLE_CGC_TRANSMIT_SYSCALL[bool]>, 'UNICORN_HANDLE_SYMBOLIC_ADDRESSES': <O
UNICORN_HANDLE_SYMBOLIC_ADDRESSES[bool]>, 'UNICORN_HANDLE_SYMBOLIC_CONDITIONS': <O
UNICORN_HANDLE_SYMBOLIC_CONDITIONS[bool]>, 'UNICORN_HANDLE_SYMBOLIC_SYSCALLS': <O
UNICORN_HANDLE_SYMBOLIC_SYSCALLS[bool]>, 'UNICORN_SYM_REGS_SUPPORT': <O
UNICORN_SYM_REGS_SUPPORT[bool]>, 'UNICORN_THRESHOLD_CONCRETIZATION': <O
UNICORN_THRESHOLD_CONCRETIZATION[bool]>, 'UNICORN_TRACK_BBL_ADDRS': <O
UNICORN_TRACK_BBL_ADDRS[bool]>, 'UNICORN_TRACK_STACK_POINTERS': <O
UNICORN_TRACK_STACK_POINTERS[bool]>, 'UNICORN_ZEROPAGE_GUARD': <O
UNICORN_ZEROPAGE_GUARD[bool]>, 'UNINITIALIZED_ACCESS_AWARENESS': <O
UNINITIALIZED_ACCESS_AWARENESS[bool]>, 'UNSUPPORTED_BYPASS_ZERO_DEFAULT': <O
UNSUPPORTED_BYPASS_ZERO_DEFAULT[bool]>, 'UNSUPPORTED_FORCE_CONCRETIZE': <O
UNSUPPORTED_FORCE_CONCRETIZE[bool]>, 'USE_SIMPLIFIED_CCALLS': <O
USE_SIMPLIFIED_CCALLS[bool]>, 'USE_SYSTEM_TIMES': <O USE_SYSTEM_TIMES[bool]>,
'VALIDATE_APPROXIMATIONS': <O VALIDATE_APPROXIMATIONS[bool]>,
'ZERO_FILL_UNCONSTRAINED_MEMORY': <O ZERO_FILL_UNCONSTRAINED_MEMORY[bool]>,
'ZERO_FILL_UNCONSTRAINED_REGISTERS': <O ZERO_FILL_UNCONSTRAINED_REGISTERS[bool]>,
'jumptable_symbolic_ip_max_targets': <O jumptable_symbolic_ip_max_targets[int]:
The maximum number of concrete addresses a symbolic instruction pointer can be
concretized to if it is part of a jump table.>, 'symbolic_ip_max_targets': <O
symbolic_ip_max_targets[int]: The maximum number of concrete addresses a symbolic
instruction pointer can be concretized to.>}

10.3. Program State 229

angr

__init__(thing)

Parameters
thing – Either a set of Boolean switches to enable, or an existing SimStateOptions instance.

add(boolean_switch)
[COMPATIBILITY] Enable a Boolean switch.

Parameters
boolean_switch (str) – Name of the Boolean switch.

Returns
None

update(boolean_switches)
[COMPATIBILITY] In order to be compatible with the old interface, you can enable a collection of Boolean
switches at the same time by doing the following:

>>> state.options.update({sim_options.SYMBOLIC, sim_options.ABSTRACT_MEMORY})

or

>>> state.options.update(sim_options.unicorn)

Parameters
boolean_switches (set) – A collection of Boolean switches to enable.

Returns
None

remove(name)
Drop a state option if it exists, or raise a KeyError if the state option is not set.

[COMPATIBILITY] Remove a Boolean switch.

Parameters
name (str) – Name of the state option.

Returns
NNone

discard(name)
Drop a state option if it exists, or silently return if the state option is not set.

[COMPATIBILITY] Disable a Boolean switch.

Parameters
name (str) – Name of the Boolean switch.

Returns
None

difference(boolean_switches)
[COMPATIBILITY] Make a copy of the current instance, and then discard all options that are in
boolean_switches.

Parameters
boolean_switches (set) – A collection of Boolean switches to disable.

230 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set

angr

Returns
A new SimStateOptions instance.

copy()

Get a copy of the current SimStateOptions instance.

Returns
A new SimStateOptions instance.

Return type
SimStateOptions

tally(exclude_false=True, description=False)
Return a string representation of all state options.

Parameters
• exclude_false (bool) – Whether to exclude Boolean switches that are disabled.

• description (bool) – Whether to display the description of each option.

Returns
A string representation.

Return type
str

classmethod register_option(name, types, default=None, description=None)
Register a state option.

Parameters
• name (str) – Name of the state option.

• types – A collection of allowed types of this state option.

• default – The default value of this state option.

• description (str) – The description of this state option.

Returns
None

classmethod register_bool_option(name, description=None)
Register a Boolean switch as state option. This is equivalent to cls.register_option(name, set([bool]), de-
scription=description)

Parameters
• name (str) – Name of the state option.

• description (str) – The description of this state option.

Returns
None

class angr.state_plugins.plugin.SimStatePlugin

Bases: object

This is a base class for SimState plugins. A SimState plugin will be copied along with the state when the state is
branched. They are intended to be used for things such as tracking open files, tracking heap details, and providing
storage and persistence for SimProcedures.

STRONGREF_STATE = False

10.3. Program State 231

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

angr

__init__()

state: SimState

set_state(state)
Sets a new state (for example, if the state has been branched)

set_strongref_state(state)

copy(_memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

static memo(f)
A decorator function you should apply to copy

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

232 Chapter 10. API Reference

angr

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

classmethod register_default(name, xtr=None)

init_state()

Use this function to perform any initialization on the state at plugin-add time

class angr.state_plugins.inspect.BP(when='before', enabled=None, condition=None, action=None,
**kwargs)

Bases: object

A breakpoint.

__init__(when='before', enabled=None, condition=None, action=None, **kwargs)

check(state, when)
Checks state state to see if the breakpoint should fire.

Parameters
• state – The state.

• when – Whether the check is happening before or after the event.

Returns
A boolean representing whether the checkpoint should fire.

fire(state)
Trigger the breakpoint.

Parameters
state – The state.

class angr.state_plugins.inspect.SimInspector

Bases: SimStatePlugin

The breakpoint interface, used to instrument execution. For usage information, look here: https://docs.angr.io/
core-concepts/simulation#breakpoints

BP_AFTER = 'after'

BP_BEFORE = 'before'

10.3. Program State 233

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/core-concepts/simulation#breakpoints
https://docs.angr.io/core-concepts/simulation#breakpoints

angr

BP_BOTH = 'both'

__init__()

action(event_type, when, **kwargs)
Called from within the engine when events happens. This function checks all breakpoints registered for
that event and fires the ones whose conditions match.

make_breakpoint(event_type, *args, **kwargs)
Creates and adds a breakpoint which would trigger on event_type. Additional arguments are passed to the
BP constructor.

Returns
The created breakpoint, so that it can be removed later.

b(event_type, *args, **kwargs)
Creates and adds a breakpoint which would trigger on event_type. Additional arguments are passed to the
BP constructor.

Returns
The created breakpoint, so that it can be removed later.

add_breakpoint(event_type, bp)
Adds a breakpoint which would trigger on event_type.

Parameters
• event_type – The event type to trigger on

• bp – The breakpoint

Returns
The created breakpoint.

remove_breakpoint(event_type, bp=None, filter_func=None)
Removes a breakpoint.

Parameters
• bp – The breakpoint to remove.

• filter_func – A filter function to specify whether each breakpoint should be removed
or not.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

downsize()

Remove previously stored attributes from this plugin instance to save memory. This method is supposed to
be called by breakpoint implementors. A typical workflow looks like the following :

234 Chapter 10. API Reference

angr

>>> # Add `attr0` and `attr1` to `self.state.inspect`
>>> self.state.inspect(xxxxxx, attr0=yyyy, attr1=zzzz)
>>> # Get new attributes out of SimInspect in case they are modified by the user
>>> new_attr0 = self.state._inspect.attr0
>>> new_attr1 = self.state._inspect.attr1
>>> # Remove them from SimInspect
>>> self.state._inspect.downsize()

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

10.3. Program State 235

https://docs.python.org/3/library/functions.html#bool

angr

Returns
True if the state plugin is actually widened.

Return type
bool

set_state(state)
Sets a new state (for example, if the state has been branched)

state: angr.SimState

class angr.state_plugins.libc.SimStateLibc

Bases: SimStatePlugin

This state plugin keeps track of various libc stuff:

236 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

LOCALE_ARRAY = [b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x02\x00', b'\x02\x00', b'\x02\x00',
b'\x02\x00', b'\x02\x00', b'\x02\x00', b'\x02\x00', b'\x02\x00', b'\x02\x00', b'\x03
', b'\x02 ', b'\x02 ', b'\x02 ', b'\x02 ', b'\x02\x00', b'\x02\x00', b'\x02\x00',
b'\x02\x00', b'\x02\x00', b'\x02\x00', b'\x02\x00', b'\x02\x00', b'\x02\x00',
b'\x02\x00', b'\x02\x00', b'\x02\x00', b'\x02\x00', b'\x02\x00', b'\x02\x00',
b'\x02\x00', b'\x02\x00', b'\x02\x00', b'\x01`', b'\x04\xc0', b'\x04\xc0',
b'\x04\xc0', b'\x04\xc0', b'\x04\xc0', b'\x04\xc0', b'\x04\xc0', b'\x04\xc0',
b'\x04\xc0', b'\x04\xc0', b'\x04\xc0', b'\x04\xc0', b'\x04\xc0', b'\x04\xc0',
b'\x04\xc0', b'\x08\xd8', b'\x08\xd8', b'\x08\xd8', b'\x08\xd8', b'\x08\xd8',
b'\x08\xd8', b'\x08\xd8', b'\x08\xd8', b'\x08\xd8', b'\x08\xd8', b'\x04\xc0',
b'\x04\xc0', b'\x04\xc0', b'\x04\xc0', b'\x04\xc0', b'\x04\xc0', b'\x04\xc0',
b'\x08\xd5', b'\x08\xd5', b'\x08\xd5', b'\x08\xd5', b'\x08\xd5', b'\x08\xd5',
b'\x08\xc5', b'\x08\xc5', b'\x08\xc5', b'\x08\xc5', b'\x08\xc5', b'\x08\xc5',
b'\x08\xc5', b'\x08\xc5', b'\x08\xc5', b'\x08\xc5', b'\x08\xc5', b'\x08\xc5',
b'\x08\xc5', b'\x08\xc5', b'\x08\xc5', b'\x08\xc5', b'\x08\xc5', b'\x08\xc5',
b'\x08\xc5', b'\x08\xc5', b'\x04\xc0', b'\x04\xc0', b'\x04\xc0', b'\x04\xc0',
b'\x04\xc0', b'\x04\xc0', b'\x08\xd6', b'\x08\xd6', b'\x08\xd6', b'\x08\xd6',
b'\x08\xd6', b'\x08\xd6', b'\x08\xc6', b'\x08\xc6', b'\x08\xc6', b'\x08\xc6',
b'\x08\xc6', b'\x08\xc6', b'\x08\xc6', b'\x08\xc6', b'\x08\xc6', b'\x08\xc6',
b'\x08\xc6', b'\x08\xc6', b'\x08\xc6', b'\x08\xc6', b'\x08\xc6', b'\x08\xc6',
b'\x08\xc6', b'\x08\xc6', b'\x08\xc6', b'\x08\xc6', b'\x04\xc0', b'\x04\xc0',
b'\x04\xc0', b'\x04\xc0', b'\x02\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00', b'\x00\x00']

10.3. Program State 237

angr

TOLOWER_LOC_ARRAY = [128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,
208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224,
225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,
242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 4294967295, 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98,
99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,
119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,
187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203,
204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,
221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237,
238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254,
255]

TOUPPER_LOC_ARRAY = [128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,
208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224,
225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,
242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 4294967295, 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,
145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161,
162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229,
230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246,
247, 248, 249, 250, 251, 252, 253, 254, 255]

__init__()

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

238 Chapter 10. API Reference

angr

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

10.3. Program State 239

https://docs.python.org/3/library/functions.html#bool

angr

Returns
True if the state plugin is actually widened.

Return type
bool

property errno

ret_errno(val)

state: angr.SimState

class angr.state_plugins.posix.PosixDevFS

Bases: SimMount

get(path)
Implement this function to instrument file lookups.

Parameters
path_elements – A list of path elements traversing from the mountpoint to the file

Returns
A SimFile, or None

insert(path, simfile)
Implement this function to instrument file creation.

Parameters
• path_elements – A list of path elements traversing from the mountpoint to the file

• simfile – The file to insert

Returns
A bool indicating whether the insert occurred

delete(path)
Implement this function to instrument file deletion.

Parameters
path_elements – A list of path elements traversing from the mountpoint to the file

Returns
A bool indicating whether the delete occurred

lookup(_)
Look up the path of a SimFile in the mountpoint

Parameters
sim_file – A SimFile object needs to be looked up

Returns
A string representing the path of the file in the mountpoint Or None if the SimFile does not
exist in the mountpoint

merge(others, conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to

240 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

copy(_)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

10.3. Program State 241

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.state_plugins.posix.PosixProcFS

Bases: SimMount

The virtual file system mounted at /proc (as of now, on Linux).

get(path)
Implement this function to instrument file lookups.

Parameters
path_elements – A list of path elements traversing from the mountpoint to the file

Returns
A SimFile, or None

insert(path, simfile)
Implement this function to instrument file creation.

Parameters
• path_elements – A list of path elements traversing from the mountpoint to the file

• simfile – The file to insert

Returns
A bool indicating whether the insert occurred

delete(path)
Implement this function to instrument file deletion.

Parameters
path_elements – A list of path elements traversing from the mountpoint to the file

Returns
A bool indicating whether the delete occurred

lookup(_)
Look up the path of a SimFile in the mountpoint

Parameters
sim_file – A SimFile object needs to be looked up

Returns
A string representing the path of the file in the mountpoint Or None if the SimFile does not
exist in the mountpoint

merge(others, conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

242 Chapter 10. API Reference

angr

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

copy(_)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

10.3. Program State 243

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

state: angr.SimState

class angr.state_plugins.posix.SimSystemPosix(stdin=None, stdout=None, stderr=None, fd=None,
sockets=None, socket_queue=None, argv=None,
argc=None, environ=None, auxv=None,
tls_modules=None, sigmask=None, pid=None,
ppid=None, uid=None, gid=None, brk=None)

Bases: SimStatePlugin

Data storage and interaction mechanisms for states with an environment conforming to posix. Available as
state.posix.

SIG_BLOCK = 0

SIG_UNBLOCK = 1

SIG_SETMASK = 2

EPERM = 1

ENOENT = 2

ESRCH = 3

EINTR = 4

EIO = 5

ENXIO = 6

E2BIG = 7

ENOEXEC = 8

EBADF = 9

ECHILD = 10

EAGAIN = 11

ENOMEM = 12

EACCES = 13

EFAULT = 14

ENOTBLK = 15

EBUSY = 16

EEXIST = 17

EXDEV = 18

ENODEV = 19

ENOTDIR = 20

EISDIR = 21

244 Chapter 10. API Reference

angr

EINVAL = 22

ENFILE = 23

EMFILE = 24

ENOTTY = 25

ETXTBSY = 26

EFBIG = 27

ENOSPC = 28

ESPIPE = 29

EROFS = 30

EMLINK = 31

EPIPE = 32

EDOM = 33

ERANGE = 34

__init__(stdin=None, stdout=None, stderr=None, fd=None, sockets=None, socket_queue=None,
argv=None, argc=None, environ=None, auxv=None, tls_modules=None, sigmask=None,
pid=None, ppid=None, uid=None, gid=None, brk=None)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

property closed_fds

init_state()

Use this function to perform any initialization on the state at plugin-add time

set_brk(new_brk)

set_state(state)
Sets a new state (for example, if the state has been branched)

open(name, flags, preferred_fd=None)
Open a symbolic file. Basically open(2).

Parameters
• name (string or bytes) – Path of the symbolic file, as a string or bytes.

• flags – File operation flags, a bitfield of constants from open(2), as an AST

10.3. Program State 245

https://docs.python.org/3/library/stdtypes.html#bytes

angr

• preferred_fd – Assign this fd if it’s not already claimed.

Returns
The file descriptor number allocated (maps through posix.get_fd to a SimFileDescriptor) or
-1 if the open fails.

mode from open(2) is unsupported at present.

open_socket(ident)

get_fd(fd, create_file=True)
Looks up the SimFileDescriptor associated with the given number (an AST). If the number is concrete and
does not map to anything, return None. If the number is symbolic, constrain it to an open fd and create a
new file for it. Set create_file to False if no write-access is planned (i.e. fd is read-only).

get_concrete_fd(fd, create_file=True)
Same behavior as get_fd(fd), only the result is a concrete integer fd (or -1) instead of a SimFileDescriptor.

close(fd)
Closes the given file descriptor (an AST). Returns whether the operation succeeded (a concrete boolean)

fstat(fd)

fstat_with_result(sim_fd)

sigmask(sigsetsize=None)
Gets the current sigmask. If it’s blank, a new one is created (of sigsetsize).

Parameters
sigsetsize – the size (in bytes of the sigmask set)

Returns
the sigmask

sigprocmask(how, new_mask, sigsetsize, valid_ptr=True)
Updates the signal mask.

Parameters
• how – the “how” argument of sigprocmask (see manpage)

• new_mask – the mask modification to apply

• sigsetsize – the size (in bytes of the sigmask set)

• valid_ptr – is set if the new_mask was not NULL

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

246 Chapter 10. API Reference

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(_)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

dump_file_by_path(path, **kwargs)
Returns the concrete content for a file by path.

Parameters
• path – file path as string

• kwargs – passed to state.solver.eval

Returns
file contents as string

dumps(fd, **kwargs)
Returns the concrete content for a file descriptor.

BACKWARD COMPATIBILITY: if you ask for file descriptors 0 1 or 2, it will return the data from stdin,
stdout, or stderr as a flat string.

Parameters
fd – A file descriptor.

10.3. Program State 247

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Returns
The concrete content.

Return type
str

state: angr.SimState

class angr.state_plugins.filesystem.Stat(st_dev, st_ino, st_nlink, st_mode, st_uid, st_gid, st_rdev,
st_size, st_blksize, st_blocks, st_atime, st_atimensec, st_mtime,
st_mtimensec, st_ctime, st_ctimensec)

Bases: tuple

st_atime

Alias for field number 10

st_atimensec

Alias for field number 11

st_blksize

Alias for field number 8

st_blocks

Alias for field number 9

st_ctime

Alias for field number 14

st_ctimensec

Alias for field number 15

st_dev

Alias for field number 0

st_gid

Alias for field number 5

st_ino

Alias for field number 1

st_mode

Alias for field number 3

st_mtime

Alias for field number 12

st_mtimensec

Alias for field number 13

st_nlink

Alias for field number 2

st_rdev

Alias for field number 6

st_size

Alias for field number 7

248 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

angr

st_uid

Alias for field number 4

class angr.state_plugins.filesystem.SimFilesystem(files=None, pathsep=None, cwd=None,
mountpoints=None)

Bases: SimStatePlugin

angr’s emulated filesystem. Available as state.fs. When constructing, all parameters are optional.

Parameters
• files – A mapping from filepath to SimFile

• pathsep – The character used to separate path elements, default forward slash.

• cwd – The path of the current working directory to use

• mountpoints – A mapping from filepath to SimMountpoint

Variables
• pathsep – The current pathsep

• cwd – The current working directory

• unlinks – A list of unlink operations, tuples of filename and simfile. Be careful, this list is
shallow-copied from successor to successor, so don’t mutate anything in it without copying.

__init__(files=None, pathsep=None, cwd=None, mountpoints=None)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

property unlinks

set_state(state)
Sets a new state (for example, if the state has been branched)

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

10.3. Program State 249

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

chdir(path)
Changes the current directory to the given path

get(path)
Get a file from the filesystem. Returns a SimFile or None.

insert(path, simfile)
Insert a file into the filesystem. Returns whether the operation was successful.

delete(path)
Remove a file from the filesystem. Returns whether the operation was successful.

This will add a fs_unlink event with the path of the file and also the index into the unlinks list.

mount(path, mount)
Add a mountpoint to the filesystem.

unmount(path)
Remove a mountpoint from the filesystem.

250 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

get_mountpoint(path)
Look up the mountpoint servicing the given path.

Returns
A tuple of the mount and a list of path elements traversing from the mountpoint to the specified
file.

state: angr.SimState

class angr.state_plugins.filesystem.SimMount

Bases: SimStatePlugin

This is the base class for “mount points” in angr’s simulated filesystem. Subclass this class and give it to the
filesystem to intercept all file creations and opens below the mountpoint. Since this a SimStatePlugin you may
also want to implement set_state, copy, merge, etc.

get(path_elements)
Implement this function to instrument file lookups.

Parameters
path_elements – A list of path elements traversing from the mountpoint to the file

Returns
A SimFile, or None

insert(path_elements, simfile)
Implement this function to instrument file creation.

Parameters
• path_elements – A list of path elements traversing from the mountpoint to the file

• simfile – The file to insert

Returns
A bool indicating whether the insert occurred

delete(path_elements)
Implement this function to instrument file deletion.

Parameters
path_elements – A list of path elements traversing from the mountpoint to the file

Returns
A bool indicating whether the delete occurred

lookup(sim_file)
Look up the path of a SimFile in the mountpoint

Parameters
sim_file – A SimFile object needs to be looked up

Returns
A string representing the path of the file in the mountpoint Or None if the SimFile does not
exist in the mountpoint

state: angr.SimState

class angr.state_plugins.filesystem.SimConcreteFilesystem(pathsep='/')
Bases: SimMount

Abstract SimMount allowing the user to import files from some external source into the guest

10.3. Program State 251

angr

Parameters
pathsep (str) – The host path separator character, default os.path.sep

__init__(pathsep='/')

get(path_elements)
Implement this function to instrument file lookups.

Parameters
path_elements – A list of path elements traversing from the mountpoint to the file

Returns
A SimFile, or None

insert(path_elements, simfile)
Implement this function to instrument file creation.

Parameters
• path_elements – A list of path elements traversing from the mountpoint to the file

• simfile – The file to insert

Returns
A bool indicating whether the insert occurred

delete(path_elements)
Implement this function to instrument file deletion.

Parameters
path_elements – A list of path elements traversing from the mountpoint to the file

Returns
A bool indicating whether the delete occurred

lookup(sim_file)
Look up the path of a SimFile in the mountpoint

Parameters
sim_file – A SimFile object needs to be looked up

Returns
A string representing the path of the file in the mountpoint Or None if the SimFile does not
exist in the mountpoint

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

set_state(state)
Sets a new state (for example, if the state has been branched)

252 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str

angr

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

10.3. Program State 253

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.state_plugins.filesystem.SimHostFilesystem(host_path=None, **kwargs)
Bases: SimConcreteFilesystem

Simulated mount that makes some piece from the host filesystem available to the guest.

Parameters
• host_path (str) – The path on the host to mount

• pathsep (str) – The host path separator character, default os.path.sep

__init__(host_path=None, **kwargs)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

angr.state_plugins.solver.timed_function(f)

angr.state_plugins.solver.enable_timing()

angr.state_plugins.solver.disable_timing()

angr.state_plugins.solver.error_converter(f)

angr.state_plugins.solver.concrete_path_bool(f)

angr.state_plugins.solver.concrete_path_not_bool(f)

angr.state_plugins.solver.concrete_path_scalar(f)

angr.state_plugins.solver.concrete_path_tuple(f)

angr.state_plugins.solver.concrete_path_list(f)

class angr.state_plugins.solver.SimSolver(solver=None, all_variables=None,
temporal_tracked_variables=None,
eternal_tracked_variables=None)

Bases: SimStatePlugin

This is the plugin you’ll use to interact with symbolic variables, creating them and evaluating them. It should be
available on a state as state.solver.

Any top-level variable of the claripy module can be accessed as a property of this object.

__init__(solver=None, all_variables=None, temporal_tracked_variables=None,
eternal_tracked_variables=None)

254 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

reload_solver(constraints=None)
Reloads the solver. Useful when changing solver options.

Parameters
constraints (list) – A new list of constraints to use in the reloaded solver instead of the
current one

get_variables(*keys)
Iterate over all variables for which their tracking key is a prefix of the values provided.

Elements are a tuple, the first element is the full tracking key, the second is the symbol.

>>> list(s.solver.get_variables('mem'))
[(('mem', 0x1000), <BV64 mem_1000_4_64>), (('mem', 0x1008), <BV64 mem_1008_5_64>
→˓)]

>>> list(s.solver.get_variables('file'))
[(('file', 1, 0), <BV8 file_1_0_6_8>), (('file', 1, 1), <BV8 file_1_1_7_8>), ((
→˓'file', 2, 0), <BV8 file_2_0_8_8>)]

>>> list(s.solver.get_variables('file', 2))
[(('file', 2, 0), <BV8 file_2_0_8_8>)]

>>> list(s.solver.get_variables())
[(('mem', 0x1000), <BV64 mem_1000_4_64>), (('mem', 0x1008), <BV64 mem_1008_5_64>
→˓), (('file', 1, 0), <BV8 file_1_0_6_8>), (('file', 1, 1), <BV8 file_1_1_7_8>),
→˓ (('file', 2, 0), <BV8 file_2_0_8_8>)]

register_variable(v, key, eternal=True)
Register a value with the variable tracking system

Parameters
• v – The BVS to register

• key – A tuple to register the variable under

Parma eternal
Whether this is an eternal variable, default True. If False, an incrementing counter will be
appended to the key.

describe_variables(v)
Given an AST, iterate over all the keys of all the BVS leaves in the tree which are registered.

Unconstrained(name, bits, uninitialized=True, inspect=True, events=True, key=None, eternal=False,
**kwargs)

Creates an unconstrained symbol or a default concrete value (0), based on the state options.

Parameters
• name – The name of the symbol.

• bits – The size (in bits) of the symbol.

• uninitialized – Whether this value should be counted as an “uninitialized” value in the
course of an analysis.

• inspect – Set to False to avoid firing SimInspect breakpoints

• events – Set to False to avoid generating a SimEvent for the occasion

10.3. Program State 255

https://docs.python.org/3/library/stdtypes.html#list

angr

• key – Set this to a tuple of increasingly specific identifiers (for example, ('mem',
0xffbeff00) or ('file', 4, 0x20) to cause it to be tracked, i.e. accessable through
solver.get_variables.

• eternal – Set to True in conjunction with setting a key to cause all states with the same
ancestry to retrieve the same symbol when trying to create the value. If False, a counter
will be appended to the key.

Returns
an unconstrained symbol (or a concrete value of 0).

BVS(name, size, min=None, max=None, stride=None, uninitialized=False, explicit_name=None, key=None,
eternal=False, inspect=True, events=True, **kwargs)
Creates a bit-vector symbol (i.e., a variable). Other keyword parameters are passed directly on to the
constructor of claripy.ast.BV.

Parameters
• name – The name of the symbol.

• size – The size (in bits) of the bit-vector.

• min – The minimum value of the symbol. Note that this only work when using VSA.

• max – The maximum value of the symbol. Note that this only work when using VSA.

• stride – The stride of the symbol. Note that this only work when using VSA.

• uninitialized – Whether this value should be counted as an “uninitialized” value in the
course of an analysis.

• explicit_name – Set to True to prevent an identifier from appended to the name to ensure
uniqueness.

• key – Set this to a tuple of increasingly specific identifiers (for example, ('mem',
0xffbeff00) or ('file', 4, 0x20) to cause it to be tracked, i.e. accessable through
solver.get_variables.

• eternal – Set to True in conjunction with setting a key to cause all states with the same
ancestry to retrieve the same symbol when trying to create the value. If False, a counter
will be appended to the key.

• inspect – Set to False to avoid firing SimInspect breakpoints

• events – Set to False to avoid generating a SimEvent for the occasion

Returns
A BV object representing this symbol.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

256 Chapter 10. API Reference

angr

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

downsize()

Frees memory associated with the constraint solver by clearing all of its internal caches.

10.3. Program State 257

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

property constraints

Returns the constraints of the state stored by the solver.

eval_to_ast(e, n, extra_constraints=(), exact=None)
Evaluate an expression, using the solver if necessary. Returns AST objects.

Parameters
• e – the expression

• n – the number of desired solutions

• extra_constraints – extra constraints to apply to the solver

• exact – if False, returns approximate solutions

Returns
a tuple of the solutions, in the form of claripy AST nodes

Return type
tuple

max(e, extra_constraints=(), exact=None, signed=False)
Return the maximum value of expression e.

:param e : expression (an AST) to evaluate :type extra_constraints: :param extra_constraints: extra con-
straints (as ASTs) to add to the solver for this solve :param exact : if False, return approximate solutions.
:param signed : Whether the expression should be treated as a signed value. :return: the maximum possible
value of e (backend object)

min(e, extra_constraints=(), exact=None, signed=False)
Return the minimum value of expression e.

:param e : expression (an AST) to evaluate :type extra_constraints: :param extra_constraints: extra con-
straints (as ASTs) to add to the solver for this solve :param exact : if False, return approximate solutions.
:param signed : Whether the expression should be treated as a signed value. :return: the minimum possible
value of e (backend object)

solution(e, v, extra_constraints=(), exact=None)
Return True if v is a solution of expr with the extra constraints, False otherwise.

Parameters
• e – An expression (an AST) to evaluate

• v – The proposed solution (an AST)

• extra_constraints – Extra constraints (as ASTs) to add to the solver for this solve.

• exact – If False, return approximate solutions.

Returns
True if v is a solution of expr, False otherwise

is_true(e, extra_constraints=(), exact=None)
If the expression provided is absolutely, definitely a true boolean, return True. Note that returning False
doesn’t necessarily mean that the expression can be false, just that we couldn’t figure that out easily.

Parameters
• e – An expression (an AST) to evaluate

• extra_constraints – Extra constraints (as ASTs) to add to the solver for this solve.

• exact – If False, return approximate solutions.

258 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple

angr

Returns
True if v is definitely true, False otherwise

is_false(e, extra_constraints=(), exact=None)
If the expression provided is absolutely, definitely a false boolean, return True. Note that returning False
doesn’t necessarily mean that the expression can be true, just that we couldn’t figure that out easily.

Parameters
• e – An expression (an AST) to evaluate

• extra_constraints – Extra constraints (as ASTs) to add to the solver for this solve.

• exact – If False, return approximate solutions.

Returns
True if v is definitely false, False otherwise

unsat_core(extra_constraints=())
This function returns the unsat core from the backend solver.

Parameters
extra_constraints – Extra constraints (as ASTs) to add to the solver for this solve.

Returns
The unsat core.

satisfiable(extra_constraints=(), exact=None)
This function does a constraint check and checks if the solver is in a sat state.

Parameters
• extra_constraints – Extra constraints (as ASTs) to add to s for this solve

• exact – If False, return approximate solutions.

Returns
True if sat, otherwise false

add(*constraints)
Add some constraints to the solver.

Parameters
constraints – Pass any constraints that you want to add (ASTs) as varargs.

CastType = ~CastType

eval_upto(e, n, cast_to=None, **kwargs)
Evaluate an expression, using the solver if necessary. Returns primitives as specified by the cast_to param-
eter. Only certain primitives are supported, check the implementation of _cast_to to see which ones.

Parameters
• e – the expression

• n – the number of desired solutions

• extra_constraints – extra constraints to apply to the solver

• exact – if False, returns approximate solutions

• cast_to – desired type of resulting values

Returns
a tuple of the solutions, in the form of Python primitives

10.3. Program State 259

angr

Return type
tuple

eval(e, cast_to=None, **kwargs)
Evaluate an expression to get any possible solution. The desired output types can be specified using the
cast_to parameter. extra_constraints can be used to specify additional constraints the returned values must
satisfy.

Parameters
• e – the expression to get a solution for

• kwargs – Any additional kwargs will be passed down to eval_upto

• cast_to – desired type of resulting values

Raises
SimUnsatError – if no solution could be found satisfying the given constraints

Returns
eval_one(e, cast_to=None, **kwargs)

Evaluate an expression to get the only possible solution. Errors if either no or more than one solution is
returned. A kwarg parameter default can be specified to be returned instead of failure!

Parameters
• e – the expression to get a solution for

• cast_to – desired type of resulting values

• default – A value can be passed as a kwarg here. It will be returned in case of failure.

• kwargs – Any additional kwargs will be passed down to eval_upto

Raises
• SimUnsatError – if no solution could be found satisfying the given constraints

• SimValueError – if more than one solution was found to satisfy the given constraints

Returns
The value for e

state: angr.SimState

eval_atmost(e, n, cast_to=None, **kwargs)
Evaluate an expression to get at most n possible solutions. Errors if either none or more than n solutions
are returned.

Parameters
• e – the expression to get a solution for

• n – the inclusive upper limit on the number of solutions

• cast_to – desired type of resulting values

• kwargs – Any additional kwargs will be passed down to eval_upto

Raises
• SimUnsatError – if no solution could be found satisfying the given constraints

• SimValueError – if more than n solutions were found to satisfy the given constraints

260 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple

angr

Returns
The solutions for e

eval_atleast(e, n, cast_to=None, **kwargs)
Evaluate an expression to get at least n possible solutions. Errors if less than n solutions were found.

Parameters
• e – the expression to get a solution for

• n – the inclusive lower limit on the number of solutions

• cast_to – desired type of resulting values

• kwargs – Any additional kwargs will be passed down to eval_upto

Raises
• SimUnsatError – if no solution could be found satisfying the given constraints

• SimValueError – if less than n solutions were found to satisfy the given constraints

Returns
The solutions for e

eval_exact(e, n, cast_to=None, **kwargs)
Evaluate an expression to get exactly the n possible solutions. Errors if any number of solutions other than
n was found to exist.

Parameters
• e – the expression to get a solution for

• n – the inclusive lower limit on the number of solutions

• cast_to – desired type of resulting values

• kwargs – Any additional kwargs will be passed down to eval_upto

Raises
• SimUnsatError – if no solution could be found satisfying the given constraints

• SimValueError – if any number of solutions other than n were found to satisfy the given
constraints

Returns
The solutions for e

min_int(e, extra_constraints=(), exact=None, signed=False)
Return the minimum value of expression e.

:param e : expression (an AST) to evaluate :type extra_constraints: :param extra_constraints: extra con-
straints (as ASTs) to add to the solver for this solve :param exact : if False, return approximate solutions.
:param signed : Whether the expression should be treated as a signed value. :return: the minimum possible
value of e (backend object)

max_int(e, extra_constraints=(), exact=None, signed=False)
Return the maximum value of expression e.

:param e : expression (an AST) to evaluate :type extra_constraints: :param extra_constraints: extra con-
straints (as ASTs) to add to the solver for this solve :param exact : if False, return approximate solutions.
:param signed : Whether the expression should be treated as a signed value. :return: the maximum possible
value of e (backend object)

10.3. Program State 261

angr

unique(e, **kwargs)
Returns True if the expression e has only one solution by querying the constraint solver. It does also add
that unique solution to the solver’s constraints.

symbolic(e)
Returns True if the expression e is symbolic.

single_valued(e)
Returns True whether e is a concrete value or is a value set with only 1 possible value. This differs from
unique in that this does not query the constraint solver.

simplify(e=None)
Simplifies e. If e is None, simplifies the constraints of this state.

variables(e)
Returns the symbolic variables present in the AST of e.

class angr.state_plugins.log.SimStateLog(log=None)
Bases: SimStatePlugin

__init__(log=None)

property actions

add_event(event_type, **kwargs)

add_action(action)

extend_actions(new_actions)

events_of_type(event_type)

actions_of_type(action_type)

property fresh_constraints

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

262 Chapter 10. API Reference

angr

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

clear()

state: angr.SimState

class angr.state_plugins.callstack.CallStack(call_site_addr=0, func_addr=0, stack_ptr=0,
ret_addr=0, jumpkind='Ijk_Call', next_frame=None,
invoke_return_variable=None)

Bases: SimStatePlugin

Stores the address of the function you’re in and the value of SP at the VERY BOTTOM of the stack, i.e. points
to the return address.

Parameters
next_frame (CallStack | None) –

10.3. Program State 263

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

__init__(call_site_addr=0, func_addr=0, stack_ptr=0, ret_addr=0, jumpkind='Ijk_Call',
next_frame=None, invoke_return_variable=None)

Parameters
next_frame (CallStack | None) –

state: angr.SimState

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

set_state(state)
Sets a new state (for example, if the state has been branched)

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

264 Chapter 10. API Reference

angr

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

property current_function_address

Address of the current function.

Returns
the address of the function

Return type
int

property current_stack_pointer

Get the value of the stack pointer.

Returns
Value of the stack pointer

Return type
int

property current_return_target

Get the return target.

Returns
The address of return target.

Return type
int

static stack_suffix_to_string(stack_suffix)
Convert a stack suffix to a human-readable string representation. :param tuple stack_suffix: The stack suffix.
:return: A string representation :rtype: str

property top

Returns the element at the top of the callstack without removing it.

Returns
A CallStack.

push(cf)
Push the frame cf onto the stack. Return the new stack.

10.3. Program State 265

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

pop()

Pop the top frame from the stack. Return the new stack.

call(callsite_addr, addr, retn_target=None, stack_pointer=None)
Push a stack frame into the call stack. This method is called when calling a function in CFG recovery.

Parameters
• callsite_addr (int) – Address of the call site

• addr (int) – Address of the call target

• retn_target (int or None) – Address of the return target

• stack_pointer (int) – Value of the stack pointer

Returns
None

ret(retn_target=None)
Pop one or many call frames from the stack. This method is called when returning from a function in CFG
recovery.

Parameters
retn_target (int) – The target to return to.

Returns
None

dbg_repr()

Debugging representation of this CallStack object.

Returns
Details of this CalLStack

Return type
str

stack_suffix(context_sensitivity_level)
Generate the stack suffix. A stack suffix can be used as the key to a SimRun in CFG recovery.

Parameters
context_sensitivity_level (int) – Level of context sensitivity.

Returns
A tuple of stack suffix.

Return type
tuple

class angr.state_plugins.callstack.CallStackAction(callstack_hash, callstack_depth, action,
callframe=None, ret_site_addr=None)

Bases: object

Used in callstack backtrace, which is a history of callstacks along a path, to record individual actions occurred
each time the callstack is changed.

__init__(callstack_hash, callstack_depth, action, callframe=None, ret_site_addr=None)

class angr.state_plugins.light_registers.SimLightRegisters(reg_map=None, registers=None)
Bases: SimStatePlugin

266 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

angr

__init__(reg_map=None, registers=None)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

set_state(state)
Sets a new state (for example, if the state has been branched)

resolve_register(offset, size)

load(offset, size=None, **kwargs)

store(offset, value, size=None, endness=None, **kwargs)

state: angr.SimState

class angr.state_plugins.history.SimStateHistory(parent=None, clone=None)
Bases: SimStatePlugin

This class keeps track of historically-relevant information for paths.

STRONGREF_STATE = True

__init__(parent=None, clone=None)

init_state()

Use this function to perform any initialization on the state at plugin-add time

set_strongref_state(state)

property addr

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

10.3. Program State 267

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

trim()

Discard the ancestry of this state.

filter_actions(start_block_addr=None, end_block_addr=None, block_stmt=None, insn_addr=None,
read_from=None, write_to=None)

268 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Filter self.actions based on some common parameters.

[start_block_addr, end_block_addr]

Parameters
• start_block_addr – Only return actions generated in blocks starting at this address.

• end_block_addr – Only return actions generated in blocks ending at this address.

• block_stmt – Only return actions generated in the nth statement of each block.

• insn_addr – Only return actions generated in the assembly instruction at this address.

• read_from – Only return actions that perform a read from the specified location.

• write_to – Only return actions that perform a write to the specified location.

Notes: If IR optimization is turned on, reads and writes may not occur in the instruction they originally
came from. Most commonly, If a register is read from twice in the same block, the second read will not
happen, instead reusing the temp the value is already stored in.

Valid values for read_from and write_to are the string literals ‘reg’ or ‘mem’ (matching any read or write
to registers or memory, respectively), any string (representing a read or write to the named register), and
any integer (representing a read or write to the memory at this address).

demote()

Demotes this history node, causing it to drop the strong state reference.

reachable()

add_event(event_type, **kwargs)

add_action(action)

extend_actions(new_actions)

subscribe_actions()

property recent_constraints

property recent_actions

property block_count

property lineage

property parents

property events

property actions

property jumpkinds

property jump_guards

property jump_targets

property jump_sources

property descriptions

10.3. Program State 269

angr

property bbl_addrs

property ins_addrs

property stack_actions

closest_common_ancestor(other)
Find the common ancestor between this history node and ‘other’.

Parameters
other – the PathHistory to find a common ancestor with.

Returns
the common ancestor SimStateHistory, or None if there isn’t one

constraints_since(other)
Returns the constraints that have been accumulated since other.

Parameters
other – a prior PathHistory object

Returns
a list of constraints

make_child()

state: angr.SimState

class angr.state_plugins.history.TreeIter(start, end=None)
Bases: object

__init__(start, end=None)

property hardcopy

count(v)
Count occurrences of value v in the entire history. Note that the subclass must implement the __reversed__
method, otherwise an exception will be thrown. :param object v: The value to look for :return: The number
of occurrences :rtype: int

class angr.state_plugins.history.HistoryIter(start, end=None)
Bases: TreeIter

class angr.state_plugins.history.LambdaAttrIter(start, f , **kwargs)
Bases: TreeIter

__init__(start, f , **kwargs)

class angr.state_plugins.history.LambdaIterIter(start, f , reverse=True, **kwargs)
Bases: LambdaAttrIter

__init__(start, f , reverse=True, **kwargs)

class angr.state_plugins.gdb.GDB(omit_fp=False, adjust_stack=False)
Bases: SimStatePlugin

Initialize or update a state from gdb dumps of the stack, heap, registers and data (or arbitrary) segments.

270 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

__init__(omit_fp=False, adjust_stack=False)

Parameters
• omit_fp – The frame pointer register is used for something else. (i.e.

–omit_frame_pointer)

• adjust_stack – Use different stack addresses than the gdb session (not recommended).

set_stack(stack_dump, stack_top)
Stack dump is a dump of the stack from gdb, i.e. the result of the following gdb command :

dump binary memory [stack_dump] [begin_addr] [end_addr]

We set the stack to the same addresses as the gdb session to avoid pointers corruption.

Parameters
• stack_dump – The dump file.

• stack_top – The address of the top of the stack in the gdb session.

set_heap(heap_dump, heap_base)
Heap dump is a dump of the heap from gdb, i.e. the result of the following gdb command:

dump binary memory [stack_dump] [begin] [end]

Parameters
• heap_dump – The dump file.

• heap_base – The start address of the heap in the gdb session.

set_data(addr, data_dump)
Update any data range (most likely use is the data segments of loaded objects)

set_regs(regs_dump)
Initialize register values within the state

Parameters
regs_dump – The output of info registers in gdb.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.state_plugins.cgc.SimStateCGC

Bases: SimStatePlugin

This state plugin keeps track of CGC state.

EBADF = 1

10.3. Program State 271

angr

EFAULT = 2

EINVAL = 3

ENOMEM = 4

ENOSYS = 5

EPIPE = 6

FD_SETSIZE = 1024

max_allocation = 268435456

__init__()

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

peek_input()

discard_input(num_bytes)

peek_output()

discard_output(num_bytes)

addr_invalid(a)

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

272 Chapter 10. API Reference

angr

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

get_max_sinkhole(length)
Find a sinkhole which is large enough to support length bytes.

This uses first-fit. The first sinkhole (ordered in descending order by their address) which can hold length
bytes is chosen. If there are more than length bytes in the sinkhole, a new sinkhole is created representing
the remaining bytes while the old sinkhole is removed.

add_sinkhole(address, length)
Add a sinkhole.

Allow the possibility for the program to reuse the memory represented by the address length pair.

state: angr.SimState

This file contains objects to track additional information during a trace or modify symbolic variables during a trace.

The ChallRespInfo plugin tracks variables in stdin and stdout to enable handling of challenge response It handles
atoi/int2str in a special manner since path constraints will usually prevent their values from being modified

The Zen plugin simplifies expressions created from variables in the flag page (losing some accuracy) to avoid situations
where they become to complex for z3, but the actual equation doesn’t matter much. This can happen in challenge
response if all of the values in the flag page are multiplied together before being printed.

class angr.state_plugins.trace_additions.FormatInfo

Bases: object

copy()

10.3. Program State 273

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

compute(state)

get_type()

class angr.state_plugins.trace_additions.FormatInfoStrToInt(addr, func_name, str_arg_num, base,
base_arg, allows_negative)

Bases: FormatInfo

__init__(addr, func_name, str_arg_num, base, base_arg, allows_negative)

copy()

compute(state)

get_type()

class angr.state_plugins.trace_additions.FormatInfoIntToStr(addr, func_name, int_arg_num,
str_dst_num, base, base_arg)

Bases: FormatInfo

__init__(addr, func_name, int_arg_num, str_dst_num, base, base_arg)

copy()

compute(state)

get_type()

class angr.state_plugins.trace_additions.FormatInfoDontConstrain(addr, func_name,
check_symbolic_arg)

Bases: FormatInfo

__init__(addr, func_name, check_symbolic_arg)

copy()

compute(state)

get_type()

angr.state_plugins.trace_additions.int2base(x, base)

angr.state_plugins.trace_additions.generic_info_hook(state)

angr.state_plugins.trace_additions.end_info_hook(state)

angr.state_plugins.trace_additions.exit_hook(state)

angr.state_plugins.trace_additions.syscall_hook(state)

angr.state_plugins.trace_additions.constraint_hook(state)

class angr.state_plugins.trace_additions.ChallRespInfo

Bases: SimStatePlugin

This state plugin keeps track of the reads and writes to symbolic addresses

__init__()

274 Chapter 10. API Reference

angr

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

10.3. Program State 275

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

static get_byte(var_name)

lookup_original(replacement)

pop_from_backup()

get_stdin_indices(variable)

get_stdout_indices(variable)

get_real_len(input_val, base, result_bv, allows_negative)

get_possible_len(input_val, base, allows_negative)

get_same_length_constraints()

static atoi_dumps(state, require_same_length=True)

static prep_tracer(state, format_infos=None)

state: SimState

angr.state_plugins.trace_additions.zen_hook(state, expr)

angr.state_plugins.trace_additions.zen_memory_write(state)

angr.state_plugins.trace_additions.zen_register_write(state)

class angr.state_plugins.trace_additions.ZenPlugin(max_depth=13)
Bases: SimStatePlugin

__init__(max_depth=13)

static get_flag_rand_args(expr)

get_expr_depth(expr)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

276 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

get_flag_bytes(ast)

filter_constraints(constraints)

10.3. Program State 277

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

analyze_transmit(state, buf)

static prep_tracer(state)

state: SimState

class angr.state_plugins.globals.SimStateGlobals(backer=None)
Bases: SimStatePlugin

__init__(backer=None)

set_state(state)
Sets a new state (for example, if the state has been branched)

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

278 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

keys()

values()

items()

get(k, alt=None)

pop(k, alt=None)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.state_plugins.uc_manager.SimUCManager(man=None)
Bases: SimStatePlugin

__init__(man=None)

assign(dst_addr_ast)
Assign a new region for under-constrained symbolic execution.

Parameters
dst_addr_ast – the symbolic AST which address of the new allocated region will be as-
signed to.

Returns
as ast of memory address that points to a new region

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

10.3. Program State 279

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

get_alloc_depth(addr)

is_bounded(ast)
Test whether an AST is bounded by any existing constraint in the related solver.

Parameters
ast – an claripy.AST object

Returns
True if there is at least one related constraint, False otherwise

state: angr.SimState

set_state(state)
Sets a new state (for example, if the state has been branched)

class angr.state_plugins.scratch.SimStateScratch(scratch=None)
Bases: SimStatePlugin

Implements the scratch state plugin.

__init__(scratch=None)

state: angr.SimState

property priv

push_priv(priv)

pop_priv()

set_tyenv(tyenv)

tmp_expr(tmp)
Returns the Claripy expression of a VEX temp value.

Parameters
• tmp – the number of the tmp

• simplify – simplify the tmp before returning it

Returns
a Claripy expression of the tmp

store_tmp(tmp, content, reg_deps=None, tmp_deps=None, deps=None, **kwargs)
Stores a Claripy expression in a VEX temp value. If in symbolic mode, this involves adding a constraint
for the tmp’s symbolic variable.

Parameters
• tmp – the number of the tmp

• content – a Claripy expression of the content

• reg_deps – the register dependencies of the content

• tmp_deps – the temporary value dependencies of the content

280 Chapter 10. API Reference

angr

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

10.3. Program State 281

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

clear()

class angr.state_plugins.preconstrainer.SimStatePreconstrainer(constrained_addrs=None)
Bases: SimStatePlugin

This state plugin manages the concept of preconstraining - adding constraints which you would like to remove
later.

Parameters
constrained_addrs – SimActions for memory operations whose addresses should be con-
strained during crash analysis

__init__(constrained_addrs=None)

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

282 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

preconstrain(value, variable)
Add a preconstraint that variable == value to the state.

Parameters
• value – The concrete value. Can be a bitvector or a bytestring or an integer.

• variable – The BVS to preconstrain.

preconstrain_file(content, simfile, set_length=False)
Preconstrain the contents of a file.

Parameters
• content – The content to preconstrain the file to. Can be a bytestring or a list thereof.

• simfile – The actual simfile to preconstrain

preconstrain_flag_page(magic_content)
Preconstrain the data in the flag page.

Parameters
magic_content – The content of the magic page as a bytestring.

remove_preconstraints(to_composite_solver=True, simplify=True)
Remove the preconstraints from the state.

If you are using the zen plugin, this will also use that to filter the constraints.

Parameters
• to_composite_solver – Whether to convert the replacement solver to a composite

solver. You probably want this if you’re switching from tracing to symbolic analysis.

10.3. Program State 283

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• simplify – Whether to simplify the resulting set of constraints.

reconstrain()

Split the solver. If any of the subsolvers time out after a short timeout (10 seconds), re-add the preconstraints
associated with each of its variables. Hopefully these constraints still allow us to do meaningful things to
the state.

state: angr.SimState

class angr.state_plugins.unicorn_engine.MEM_PATCH

Bases: Structure

struct mem_update_t

address

Structure/Union member

length

Structure/Union member

next

Structure/Union member

class angr.state_plugins.unicorn_engine.TRANSMIT_RECORD

Bases: Structure

struct transmit_record_t

count

Structure/Union member

data

Structure/Union member

fd

Structure/Union member

class angr.state_plugins.unicorn_engine.TaintEntityEnum

Bases: object

taint_entity_enum_t

TAINT_ENTITY_REG = 0

TAINT_ENTITY_TMP = 1

TAINT_ENTITY_MEM = 2

TAINT_ENTITY_NONE = 3

class angr.state_plugins.unicorn_engine.MemoryValue

Bases: Structure

struct memory_value_t

address

Structure/Union member

is_value_set

Structure/Union member

284 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

is_value_symbolic

Structure/Union member

value

Structure/Union member

class angr.state_plugins.unicorn_engine.RegisterValue

Bases: Structure

struct register_value_t

offset

Structure/Union member

size

Structure/Union member

value

Structure/Union member

class angr.state_plugins.unicorn_engine.VEXStmtDetails

Bases: Structure

struct sym_vex_stmt_details_t

has_memory_dep

Structure/Union member

memory_values

Structure/Union member

memory_values_count

Structure/Union member

stmt_idx

Structure/Union member

class angr.state_plugins.unicorn_engine.BlockDetails

Bases: Structure

struct sym_block_details_ret_t

block_addr

Structure/Union member

block_size

Structure/Union member

block_trace_ind

Structure/Union member

has_symbolic_exit

Structure/Union member

register_values

Structure/Union member

register_values_count

Structure/Union member

10.3. Program State 285

angr

symbolic_vex_stmts

Structure/Union member

symbolic_vex_stmts_count

Structure/Union member

class angr.state_plugins.unicorn_engine.STOP

Bases: object

enum stop_t

STOP_NORMAL = 0

STOP_STOPPOINT = 1

STOP_ERROR = 2

STOP_SYSCALL = 3

STOP_EXECNONE = 4

STOP_ZEROPAGE = 5

STOP_NOSTART = 6

STOP_SEGFAULT = 7

STOP_ZERO_DIV = 8

STOP_NODECODE = 9

STOP_HLT = 10

STOP_VEX_LIFT_FAILED = 11

STOP_SYMBOLIC_PC = 12

STOP_SYMBOLIC_READ_ADDR = 13

STOP_SYMBOLIC_READ_SYMBOLIC_TRACKING_DISABLED = 14

STOP_SYMBOLIC_WRITE_ADDR = 15

STOP_SYMBOLIC_BLOCK_EXIT_CONDITION = 16

STOP_SYMBOLIC_BLOCK_EXIT_TARGET = 17

STOP_UNSUPPORTED_STMT_PUTI = 18

STOP_UNSUPPORTED_STMT_STOREG = 19

STOP_UNSUPPORTED_STMT_LOADG = 20

STOP_UNSUPPORTED_STMT_CAS = 21

STOP_UNSUPPORTED_STMT_LLSC = 22

STOP_UNSUPPORTED_STMT_DIRTY = 23

STOP_UNSUPPORTED_EXPR_GETI = 24

286 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

STOP_UNSUPPORTED_STMT_UNKNOWN = 25

STOP_UNSUPPORTED_EXPR_UNKNOWN = 26

STOP_UNKNOWN_MEMORY_WRITE_SIZE = 27

STOP_SYSCALL_ARM = 28

STOP_X86_CPUID = 29

stop_message = {0: 'Reached maximum steps', 1: 'Hit a stop point', 2: 'Something
wrong', 3: 'Unable to handle syscall', 4: 'Fetching empty page', 5: 'Accessing
zero page', 6: 'Failed to start', 7: 'Permissions or mapping error', 8: 'Divide
by zero', 9: 'Instruction decoding error', 10: 'hlt instruction encountered', 11:
'Failed to lift block to VEX', 12: 'Instruction pointer became symbolic', 13:
'Attempted to read from symbolic address', 14: 'Attempted to read symbolic data
from memory but symbolic tracking is disabled', 15: 'Attempted to write to symbolic
address', 16: "Guard condition of block's exit statement is symbolic", 17: 'Target
of default exit of block is symbolic', 18: 'Symbolic taint propagation for PutI
statement not yet supported', 19: 'Symbolic taint propagation for StoreG statement
not yet supported', 20: 'Symbolic taint propagation for LoadG statement not yet
supported', 21: 'Symbolic taint propagation for CAS statement not yet supported',
22: 'Symbolic taint propagation for LLSC statement not yet supported', 23:
'Symbolic taint propagation for Dirty statement not yet supported', 24: 'Symbolic
taint propagation for GetI expression not yet supported', 25: 'Canoo propagate
symbolic taint for unsupported VEX statement type', 26: 'Cannot propagate symbolic
taint for unsupported VEX expression', 27: 'Unicorn failed to determine size of
memory write', 28: 'ARM syscalls are currently not supported by SimEngineUnicorn',
29: 'Block executes cpuid which should be handled in VEX engine'}

symbolic_stop_reasons = {12, 13, 14, 15, 16, 17, 28, 29}

unsupported_reasons = {11, 18, 19, 20, 21, 22, 23, 25, 26}

static name_stop(num)

static get_stop_msg(stop_reason)

class angr.state_plugins.unicorn_engine.StopDetails

Bases: Structure

struct stop_details_t

block_addr

Structure/Union member

block_size

Structure/Union member

stop_reason

Structure/Union member

class angr.state_plugins.unicorn_engine.SimOSEnum

Bases: object

enum simos_t

SIMOS_CGC = 0

10.3. Program State 287

https://docs.python.org/3/library/functions.html#object

angr

SIMOS_LINUX = 1

SIMOS_OTHER = 2

exception angr.state_plugins.unicorn_engine.MemoryMappingError

Bases: Exception

exception angr.state_plugins.unicorn_engine.AccessingZeroPageError

Bases: MemoryMappingError

exception angr.state_plugins.unicorn_engine.FetchingZeroPageError

Bases: MemoryMappingError

exception angr.state_plugins.unicorn_engine.SegfaultError

Bases: MemoryMappingError

exception angr.state_plugins.unicorn_engine.MixedPermissonsError

Bases: MemoryMappingError

class angr.state_plugins.unicorn_engine.AggressiveConcretizationAnnotation(addr)
Bases: SimplificationAvoidanceAnnotation

__init__(addr)

class angr.state_plugins.unicorn_engine.Uniwrapper(arch, cache_key, thumb=False)
Bases: Uc

__init__(arch, cache_key, thumb=False)

hook_add(htype, callback, user_data=None, begin=1, end=0, arg1=0)

hook_del(h)

mem_map(addr, size, perms=7)

mem_map_ptr(addr, size, perms, ptr)

mem_unmap(addr, size)

mem_reset()

hook_reset()

reset()

class angr.state_plugins.unicorn_engine.Unicorn(syscall_hooks=None, cache_key=None,
unicount=None, symbolic_var_counts=None,
symbolic_inst_counts=None, concretized_asts=None,
always_concretize=None, never_concretize=None,
concretize_at=None,
concretization_threshold_memory=None,
concretization_threshold_registers=None,
concretization_threshold_instruction=None,
cooldown_symbolic_stop=2,
cooldown_unsupported_stop=2,
cooldown_nonunicorn_blocks=100,
cooldown_stop_point=1, max_steps=1000000)

Bases: SimStatePlugin

setup the unicorn engine for a state

288 Chapter 10. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.SimplificationAvoidanceAnnotation

angr

UC_CONFIG = {}

__init__(syscall_hooks=None, cache_key=None, unicount=None, symbolic_var_counts=None,
symbolic_inst_counts=None, concretized_asts=None, always_concretize=None,
never_concretize=None, concretize_at=None, concretization_threshold_memory=None,
concretization_threshold_registers=None, concretization_threshold_instruction=None,
cooldown_symbolic_stop=2, cooldown_unsupported_stop=2, cooldown_nonunicorn_blocks=100,
cooldown_stop_point=1, max_steps=1000000)

Initializes the Unicorn plugin for angr. This plugin handles communication with UnicornEngine.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

10.3. Program State 289

angr

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

set_state(state)
Sets a new state (for example, if the state has been branched)

property uc

static delete_uc()

set_last_block_details(details)

set_stops(stop_points)

set_tracking(track_bbls, track_stack)

hook()

uncache_region(addr, length)

clear_page_cache()

setup(syscall_data=None, fd_bytes=None)

start(step=None)

get_recent_bbl_addrs()

get_stop_details()

finish(succ_state)

destroy(succ_state)

set_regs()

setting unicorn registers

setup_flags()

setup_gdt(fs, gs)

read_msr(msr=3221225728)

write_msr(val, msr=3221225728)

290 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

get_regs(succ_state)
loading registers from unicorn. If succ_state is not None, update it instead of self.state. Needed when
handling symbolic exits in native interface

state: angr.SimState

class angr.state_plugins.loop_data.SimStateLoopData(back_edge_trip_counts=None,
header_trip_counts=None, current_loop=None)

Bases: SimStatePlugin

This class keeps track of loop-related information for states. Note that we have 2 counters for loop iterations
(trip counts): the first recording the number of times one of the back edges (or continue edges) of a loop is
taken, whereas the second recording the number of times the loop header (or loop entry) is executed. These 2
counters may differ since compilers usually optimize loops hence completely change the loop structure at the
binary level. This is supposed to be used with LoopSeer exploration technique, which monitors loop execution.
For the moment, the only thing we want to analyze is loop trip counts, but nothing prevents us from extending
this plugin for other loop analyses.

__init__(back_edge_trip_counts=None, header_trip_counts=None, current_loop=None)

Parameters
• back_edge_trip_counts – Dictionary that stores back edge based trip counts for each

loop. Keys are address of loop headers.

• header_trip_counts – Dictionary that stores header based trip counts for each loop.
Keys are address of loop headers.

• current_loop – List of currently running loops. Each element is a tuple (loop object, list
of loop exits).

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

10.3. Program State 291

angr

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.state_plugins.concrete.Concrete(segment_registers_initialized=False,
segment_registers_callback_initialized=False,
whitelist=None, fs_register_bp=None,
already_sync_objects_addresses=None)

Bases: SimStatePlugin

__init__(segment_registers_initialized=False, segment_registers_callback_initialized=False,
whitelist=None, fs_register_bp=None, already_sync_objects_addresses=None)

copy(_memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

292 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(_others, _merge_conditions, _common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(_others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

10.3. Program State 293

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

set_state(state)
Sets a new state (for example, if the state has been branched)

sync()

Handle the switch between the concrete execution and angr. This method takes care of: 1- Synchronize
registers. 2- Set a concrete target to the memory backer so the memory reads are redirected in the concrete
process memory. 3- If possible restore the SimProcedures with the real addresses inside the concrete pro-
cess. 4- Set an inspect point to sync the segments register as soon as they are read during the symbolic
execution. 5- Flush all the pages loaded until now.

Returns
state: angr.SimState

class angr.state_plugins.javavm_classloader.SimJavaVmClassloader(initialized_classes=None)
Bases: SimStatePlugin

JavaVM Classloader is used as an interface for resolving and initializing Java classes.

__init__(initialized_classes=None)

get_class(class_name, init_class=False, step_func=None)
Get a class descriptor for the class.

Parameters
• class_name (str) – Name of class.

• init_class (bool) – Whether the class initializer <clinit> should be executed.

• step_func (func) – Callback function executed at every step of the simulation manager
during the execution of the main <clinit> method

get_superclass(class_)
Get the superclass of the class.

get_class_hierarchy(base_class)
Walks up the class hierarchy and returns a list of all classes between base class (inclusive) and
java.lang.Object (exclusive).

is_class_initialized(class_)
Indicates whether the classes initializing method <clinit> was already executed on the state.

init_class(class_, step_func=None)
This method simulates the loading of a class by the JVM, during which parts of the class (e.g. static fields)
are initialized. For this, we run the class initializer method <clinit> (if available) and update the state
accordingly.

Note: Initialization is skipped, if the class has already been
initialized (or if it’s not loaded in CLE).

property initialized_classes

List of all initialized classes.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

294 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

angr

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

10.3. Program State 295

https://docs.python.org/3/library/functions.html#bool

angr

Return type
bool

state: angr.SimState

class angr.state_plugins.jni_references.SimStateJNIReferences(local_refs=None,
global_refs=None)

Bases: SimStatePlugin

Management of the mapping between opaque JNI references and the corresponding Java objects.

__init__(local_refs=None, global_refs=None)

lookup(opaque_ref)
Lookups the object that was used for creating the reference.

create_new_reference(obj, global_ref=False)
Create a new reference thats maps to the given object.

Parameters
• obj – Object which gets referenced.

• global_ref (bool) – Whether a local or global reference is created.

clear_local_references()

Clear all local references.

delete_reference(opaque_ref , global_ref=False)
Delete the stored mapping of a reference.

Parameters
• opaque_ref – Reference which should be removed.

• global_ref (bool) – Whether opaque_ref is a local or global reference.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

296 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.state_plugins.heap.heap_base.SimHeapBase(heap_base=None, heap_size=None)
Bases: SimStatePlugin

This is the base heap class that all heap implementations should subclass. It defines a few handlers for common
heap functions (the libc memory management functions). Heap implementations are expected to override these
functions regardless of whether they implement the SimHeapLibc interface. For an example, see the SimHeapBrk
implementation, which is based on the original libc SimProcedure implementations.

Variables
• heap_base – the address of the base of the heap in memory

• heap_size – the total size of the main memory region managed by the heap in memory

10.3. Program State 297

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• mmap_base – the address of the region from which large mmap allocations will be made

__init__(heap_base=None, heap_size=None)

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

init_state()

Use this function to perform any initialization on the state at plugin-add time

state: angr.SimState

class angr.state_plugins.heap.heap_brk.SimHeapBrk(heap_base=None, heap_size=None)
Bases: SimHeapBase

SimHeapBrk represents a trivial heap implementation based on the Unix brk system call. This type of heap stores
virtually no metadata, so it is up to the user to determine when it is safe to release memory. This also means that
it does not properly support standard heap operations like realloc.

This heap implementation is a holdover from before any more proper implementations were modelled. At the
time, various libc (or win32) SimProcedures handled the heap in the same way that this plugin does now. To
make future heap implementations plug-and-playable, they should implement the necessary logic themselves, and
dependent SimProcedures should invoke a method by the same name as theirs (prepended with an underscore)
upon the heap plugin. Depending on the heap implementation, if the method is not supported, an error should
be raised.

Out of consideration for the original way the heap was handled, this plugin implements functionality for all rele-
vant SimProcedures (even those that would not normally be supported together in a single heap implementation).

Variables
heap_location – the address of the top of the heap, bounding the allocations made starting
from heap_base

__init__(heap_base=None, heap_size=None)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

298 Chapter 10. API Reference

angr

allocate(sim_size)
The actual allocation primitive for this heap implementation. Increases the position of the break to allocate
space. Has no guards against the heap growing too large.

Parameters
sim_size – a size specifying how much to increase the break pointer by

Returns
a pointer to the previous break position, above which there is now allocated space

release(sim_size)
The memory release primitive for this heap implementation. Decreases the position of the break to deallo-
cate space. Guards against releasing beyond the initial heap base.

Parameters
sim_size – a size specifying how much to decrease the break pointer by (may be symbolic
or not)

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

10.3. Program State 299

https://docs.python.org/3/library/functions.html#bool

angr

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.state_plugins.heap.heap_freelist.Chunk(base, sim_state)
Bases: object

The sort of chunk as would typically be found in a freelist-style heap implementation. Provides a representation
of a chunk via a view into the memory plugin. Chunks may be adjacent, in different senses, to as many as four
other chunks. For any given chunk, two of these chunks are adjacent to it in memory, and are referred to as the
“previous” and “next” chunks throughout this implementation. For any given free chunk, there may also be two
significant chunks that are adjacent to it in some linked list of free chunks. These chunks are referred to the
“backward” and “foward” chunks relative to the chunk in question.

Variables
• base – the location of the base of the chunk in memory

• state – the program state that the chunk is resident in

__init__(base, sim_state)

get_size()

Returns the actual size of a chunk (as opposed to the entire size field, which may include some flags).

get_data_size()

Returns the size of the data portion of a chunk.

set_size(size)
Sets the size of the chunk, preserving any flags.

data_ptr()

Returns the address of the payload of the chunk.

is_free()

Returns a concrete determination as to whether the chunk is free.

next_chunk()

Returns the chunk immediately following (and adjacent to) this one.

prev_chunk()

Returns the chunk immediately prior (and adjacent) to this one.

fwd_chunk()

Returns the chunk following this chunk in the list of free chunks.

300 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

set_fwd_chunk(fwd)
Sets the chunk following this chunk in the list of free chunks.

Parameters
fwd – the chunk to follow this chunk in the list of free chunks

bck_chunk()

Returns the chunk backward from this chunk in the list of free chunks.

set_bck_chunk(bck)
Sets the chunk backward from this chunk in the list of free chunks.

Parameters
bck – the chunk to precede this chunk in the list of free chunks

class angr.state_plugins.heap.heap_freelist.SimHeapFreelist(heap_base=None, heap_size=None)
Bases: SimHeapLibc

A freelist-style heap implementation. Distinguishing features of such heaps include chunks containing heap
metadata in addition to user data and at least (but often more than) one linked list of free chunks.

chunks()

Returns an iterator over all the chunks in the heap.

allocated_chunks()

Returns an iterator over all the allocated chunks in the heap.

free_chunks()

Returns an iterator over all the free chunks in the heap.

chunk_from_mem(ptr)
Given a pointer to a user payload, return the chunk associated with that payload.

Parameters
ptr – a pointer to the base of a user payload in the heap

Returns
the associated heap chunk

print_heap_state()

print_all_chunks()

state: angr.SimState

class angr.state_plugins.heap.heap_libc.SimHeapLibc(heap_base=None, heap_size=None)
Bases: SimHeapBase

A class of heap that implements the major libc heap management functions.

malloc(sim_size)
A somewhat faithful implementation of libc malloc.

Parameters
sim_size – the amount of memory (in bytes) to be allocated

Returns
the address of the allocation, or a NULL pointer if the allocation failed

10.3. Program State 301

angr

free(ptr)
A somewhat faithful implementation of libc free.

Parameters
ptr – the location in memory to be freed

calloc(sim_nmemb, sim_size)
A somewhat faithful implementation of libc calloc.

Parameters
• sim_nmemb – the number of elements to allocated

• sim_size – the size of each element (in bytes)

Returns
the address of the allocation, or a NULL pointer if the allocation failed

realloc(ptr, size)
A somewhat faithful implementation of libc realloc.

Parameters
• ptr – the location in memory to be reallocated

• size – the new size desired for the allocation

Returns
the address of the allocation, or a NULL pointer if the allocation was freed or if no new
allocation was made

state: angr.SimState

angr.state_plugins.heap.heap_ptmalloc.silence_logger()

angr.state_plugins.heap.heap_ptmalloc.unsilence_logger(level)

class angr.state_plugins.heap.heap_ptmalloc.PTChunk(base, sim_state, heap=None)
Bases: Chunk

A chunk, inspired by the implementation of chunks in ptmalloc. Provides a representation of a chunk
via a view into the memory plugin. For the chunk definitions and docs that this was loosely based
off of, see glibc malloc/malloc.c, line 1033, as of commit 5a580643111ef6081be7b4c7bd1997a5447c903f.
Alternatively, take the following link. https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=
67cdfd0ad2f003964cd0f7dfe3bcd85ca98528a7;hb=5a580643111ef6081be7b4c7bd1997a5447c903f#l1033

Variables
• base – the location of the base of the chunk in memory

• state – the program state that the chunk is resident in

• heap – the heap plugin that the chunk is managed by

__init__(base, sim_state, heap=None)

get_size()

Returns the actual size of a chunk (as opposed to the entire size field, which may include some flags).

get_data_size()

Returns the size of the data portion of a chunk.

302 Chapter 10. API Reference

https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=67cdfd0ad2f003964cd0f7dfe3bcd85ca98528a7;hb=5a580643111ef6081be7b4c7bd1997a5447c903f#l1033
https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=67cdfd0ad2f003964cd0f7dfe3bcd85ca98528a7;hb=5a580643111ef6081be7b4c7bd1997a5447c903f#l1033

angr

set_size(size, is_free=None)
Use this to set the size on a chunk. When the chunk is new (such as when a free chunk is shrunk to form an
allocated chunk and a remainder free chunk) it is recommended that the is_free hint be used since setting
the size depends on the chunk’s freeness, and vice versa.

Parameters
• size – size of the chunk

• is_free – boolean indicating the chunk’s freeness

set_prev_freeness(is_free)
Sets (or unsets) the flag controlling whether the previous chunk is free.

Parameters
is_free – if True, sets the previous chunk to be free; if False, sets it to be allocated

is_prev_free()

Returns a concrete state of the flag indicating whether the previous chunk is free or not. Issues a warning
if that flag is symbolic and has multiple solutions, and then assumes that the previous chunk is free.

Returns
True if the previous chunk is free; False otherwise

prev_size()

Returns the size of the previous chunk, masking off what would be the flag bits if it were in the actual size
field. Performs NO CHECKING to determine whether the previous chunk size is valid (for example, when
the previous chunk is not free, its size cannot be determined).

is_free()

Returns a concrete determination as to whether the chunk is free.

data_ptr()

Returns the address of the payload of the chunk.

next_chunk()

Returns the chunk immediately following (and adjacent to) this one, if it exists.

Returns
The following chunk, or None if applicable

prev_chunk()

Returns the chunk immediately prior (and adjacent) to this one, if that chunk is free. If the prior chunk is
not free, then its base cannot be located and this method raises an error.

Returns
If possible, the previous chunk; otherwise, raises an error

fwd_chunk()

Returns the chunk following this chunk in the list of free chunks. If this chunk is not free, then it resides in
no such list and this method raises an error.

Returns
If possible, the forward chunk; otherwise, raises an error

set_fwd_chunk(fwd)
Sets the chunk following this chunk in the list of free chunks.

Parameters
fwd – the chunk to follow this chunk in the list of free chunks

10.3. Program State 303

angr

bck_chunk()

Returns the chunk backward from this chunk in the list of free chunks. If this chunk is not free, then it
resides in no such list and this method raises an error.

Returns
If possible, the backward chunk; otherwise, raises an error

set_bck_chunk(bck)
Sets the chunk backward from this chunk in the list of free chunks.

Parameters
bck – the chunk to precede this chunk in the list of free chunks

class angr.state_plugins.heap.heap_ptmalloc.PTChunkIterator(chunk, cond=<function
PTChunkIterator.<lambda>>)

Bases: object

__init__(chunk, cond=<function PTChunkIterator.<lambda>>)

class angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc(heap_base=None, heap_size=None)
Bases: SimHeapFreelist

A freelist-style heap implementation inspired by ptmalloc. The chunks used by this heap contain heap metadata
in addition to user data. While the real-world ptmalloc is implemented using multiple lists of free chunks (corre-
sponding to their different sizes), this more basic model uses a single list of chunks and searches for free chunks
using a first-fit algorithm.

NOTE: The plugin must be registered using register_plugin with name heap in order to function properly.

Variables
• heap_base – the address of the base of the heap in memory

• heap_size – the total size of the main memory region managed by the heap in memory

• mmap_base – the address of the region from which large mmap allocations will be made

• free_head_chunk – the head of the linked list of free chunks in the heap

__init__(heap_base=None, heap_size=None)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

chunks()

Returns an iterator over all the chunks in the heap.

allocated_chunks()

Returns an iterator over all the allocated chunks in the heap.

304 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

free_chunks()

Returns an iterator over all the free chunks in the heap.

chunk_from_mem(ptr)
Given a pointer to a user payload, return the base of the chunk associated with that payload (i.e. the chunk
pointer). Returns None if ptr is null.

Parameters
ptr – a pointer to the base of a user payload in the heap

Returns
a pointer to the base of the associated heap chunk, or None if ptr is null

malloc(sim_size)
A somewhat faithful implementation of libc malloc.

Parameters
sim_size – the amount of memory (in bytes) to be allocated

Returns
the address of the allocation, or a NULL pointer if the allocation failed

free(ptr)
A somewhat faithful implementation of libc free.

Parameters
ptr – the location in memory to be freed

calloc(sim_nmemb, sim_size)
A somewhat faithful implementation of libc calloc.

Parameters
• sim_nmemb – the number of elements to allocated

• sim_size – the size of each element (in bytes)

Returns
the address of the allocation, or a NULL pointer if the allocation failed

realloc(ptr, size)
A somewhat faithful implementation of libc realloc.

Parameters
• ptr – the location in memory to be reallocated

• size – the new size desired for the allocation

Returns
the address of the allocation, or a NULL pointer if the allocation was freed or if no new
allocation was made

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

10.3. Program State 305

angr

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

init_state()

Use this function to perform any initialization on the state at plugin-add time

state: angr.SimState

angr.state_plugins.heap.utils.concretize(x, solver, sym_handler)
For now a lot of naive concretization is done when handling heap metadata to keep things manageable. This
idiom showed up a lot as a result, so to reduce code repetition this function uses a callback to handle the one or
two operations that varied across invocations.

Parameters
• x – the item to be concretized

• solver – the solver to evaluate the item with

306 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• sym_handler – the handler to be used when the item may take on more than one value

Returns
a concrete value for the item

class angr.state_plugins.symbolizer.SimSymbolizer

Bases: SimStatePlugin

The symbolizer state plugin ensures that pointers that are stored in memory are symbolic. This allows for the
tracking of and reasoning over these pointers (for example, to reason about memory disclosure).

__init__()

init_state()

Use this function to perform any initialization on the state at plugin-add time

set_symbolization_for_all_pages()

Sets the symbolizer to symbolize pointers to all pages as they are written to memory..

set_symbolized_target_range(base, length)
All pointers to the target range will be symbolized as they are written to memory.

Due to optimizations, the _pages_ containing this range will be set as symbolization targets, not just the
range itself.

resymbolize()

Re-symbolizes all pointers in memory. This can be called to symbolize any pointers to target regions that
were written (and not mangled beyond recognition) before symbolization was set.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.state_plugins.debug_variables.SimDebugVariable(state, addr, var_type)
Bases: object

A SimDebugVariable will get dynamically created when queriyng for variable in a state with the SimDebugVari-
ablePlugin. It features a link to the state, an address and a type.

Parameters
• state (SimState) –

• var_type (VariableType) –

__init__(state, addr, var_type)

Parameters
• state (SimState) –

10.3. Program State 307

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable_type.VariableType

angr

• var_type (VariableType) –

static from_cle_variable(state, cle_variable, dwarf_cfa)

Return type
SimDebugVariable

Parameters
• state (SimState) –

• cle_variable (Variable) –

property mem_untyped: SimMemView

property mem: SimMemView

property string: SimMemView

with_type(sim_type)

Return type
SimMemView

Parameters
sim_type (SimType) –

property resolvable

property resolved

property concrete

store(value)

property deref: SimDebugVariable

array(i)

Return type
SimDebugVariable

member(member_name)

Return type
SimDebugVariable

Parameters
member_name (str) –

class angr.state_plugins.debug_variables.SimDebugVariablePlugin

Bases: SimStatePlugin

This is the plugin you’ll use to interact with (global/local) program variables. These variables have a name and a
visibility scope which depends on the pc address of the state. With this plugin, you can access/modify the value
of such variable or find its memory address. For creating program varibles, or for importing them from cle, see
the knowledge plugin debug_variables. Run p.kb.dvars.load_from_dwarf() before using this plugin.

308 Chapter 10. API Reference

https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable_type.VariableType
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable.Variable
https://docs.python.org/3/library/stdtypes.html#str

angr

Example

>>> p = angr.Project("various_variables", load_debug_info=True)
>>> p.kb.dvars.load_from_dwarf()
>>> state = # navigate to the state you want
>>> state.dvars.get_variable("pointer2").deref.mem
<int (32 bits) <BV32 0x1> at 0x404020>

get_variable(var_name)
Returns the visible variable (if any) with name var_name based on the current state.ip.

Return type
SimDebugVariable

Parameters
var_name (str) –

property dwarf_cfa

Returns the current cfa computation. Set this property to the correct value if needed.

property dwarf_cfa_approx

state: angr.SimState

10.4 Storage

class angr.state_plugins.view.SimRegNameView

Bases: SimStatePlugin

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

10.4. Storage 309

https://docs.python.org/3/library/stdtypes.html#str

angr

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

get(reg_name)

state: angr.SimState

class angr.state_plugins.view.SimMemView(ty=None, addr=None, state=None)
Bases: SimStatePlugin

This is a convenient interface with which you can access a program’s memory.

The interface works like this:

• You first use [array index notation] to specify the address you’d like to load from

• If at that address is a pointer, you may access the deref property to return a SimMemView at the address
present in memory.

• You then specify a type for the data by simply accesing a property of that name. For a list of supported
types, look at state.mem.types.

310 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• You can then refine the type. Any type may support any refinement it likes. Right now the only refinements
supported are that you may access any member of a struct by its member name, and you may index into a
string or array to access that element.

• If the address you specified initially points to an array of that type, you can say .array(n) to view the data
as an array of n elements.

• Finally, extract the structured data with .resolved or .concrete. .resolvedwill return bitvector values,
while .concrete will return integer, string, array, etc values, whatever best represents the data.

• Alternately, you may store a value to memory, by assigning to the chain of properties that you’ve con-
structed. Note that because of the way python works, x = s.mem[...].prop; x = val will NOT work,
you must say s.mem[...].prop = val.

For example:

>>> s.mem[0x601048].long
<long (64 bits) <BV64 0x4008d0> at 0x601048>
>>> s.mem[0x601048].long.resolved
<BV64 0x4008d0>
>>> s.mem[0x601048].deref
<<untyped> <unresolvable> at 0x4008d0>
>>> s.mem[0x601048].deref.string.concrete
'SOSNEAKY'

Parameters
state (SimState) –

__init__(ty=None, addr=None, state=None)

set_state(state)
Sets a new state (for example, if the state has been branched)

10.4. Storage 311

angr

types = {'CharT': char, 'FILE_t': struct FILE_t, '_Bool': bool, '_ENTRY': struct
_ENTRY, '_IO_codecvt': struct _IO_codecvt, '_IO_iconv_t': struct _IO_iconv_t,
'_IO_lock_t': struct pthread_mutex_t, '_IO_marker': struct _IO_marker,
'_IO_wide_data': struct _IO_wide_data, '__clock_t': uint32_t, '__dev_t':
uint64_t, '__gid_t': unsigned int, '__ino64_t': unsigned long long, '__ino_t':
unsigned long, '__int128': int128_t, '__int256': int256_t, '__mbstate_t': struct
__mbstate_t, '__mode_t': unsigned int, '__nlink_t': unsigned int, '__off64_t':
long long, '__off_t': long, '__pid_t': int, '__suseconds_t': int64_t, '__time_t':
long, '__uid_t': unsigned int, '_obstack_chunk': struct _obstack_chunk, 'aiocb':
struct aiocb, 'aiocb64': struct aiocb64, 'aioinit': struct aioinit, 'argp':
struct argp, 'argp_child': struct argp_child, 'argp_option': struct argp_option,
'argp_parser_t': (int, char*, struct argp_state*) -> int, 'argp_state': struct
argp_state, 'basic_string': string_t, 'bool': bool, 'byte': uint8_t, 'cc_t':
char, 'char': char, 'clock_t': uint32_t, 'crypt_data': struct crypt_data,
'dirent': struct dirent, 'dirent64': struct dirent64, 'double': double,
'drand48_data': struct <anon>, 'dword': uint32_t, 'error_t': int, 'exit_status':
struct exit_status, 'float': float, 'fstab': struct fstab, 'group': struct group,
'hostent': struct hostent, 'hsearch_data': struct hsearch_data, 'if_nameindex':
struct if_nameindex, 'in_addr': struct in_addr, 'in_port_t': uint16_t, 'ino64_t':
unsigned long long, 'ino_t': unsigned long, 'int': int, 'int16_t': int16_t,
'int32_t': int32_t, 'int64_t': int64_t, 'int8_t': int8_t, 'iovec': struct
<anon>, 'itimerval': struct itimerval, 'lconv': struct lconv, 'long': long, 'long
double': double, 'long int': long, 'long long': long long, 'long long int': long
long, 'long signed': long, 'long unsigned int': unsigned long, 'mallinfo': struct
mallinfo, 'mallinfo2': struct mallinfo2, 'mntent': struct mntent, 'netent':
struct netent, 'ntptimeval': struct ntptimeval, 'obstack': struct obstack,
'off64_t': long long, 'off_t': long, 'option': struct option, 'passwd': struct
passwd, 'pid_t': int, 'printf_info': struct printf_info, 'protoent': struct
protoent, 'ptrdiff_t': long, 'qword': uint64_t, 'random_data': struct <anon>,
'rlim64_t': uint64_t, 'rlim_t': unsigned long, 'rlimit': struct rlimit,
'rlimit64': struct rlimit64, 'rusage': struct rusage, 'sa_family_t': unsigned
short, 'sched_param': struct sched_param, 'sembuf': struct sembuf, 'servent':
struct servent, 'sgttyb': struct sgttyb, 'short': short, 'short int': short,
'sigevent': struct sigevent, 'signed': int, 'signed char': char, 'signed int':
int, 'signed long': long, 'signed long int': long, 'signed long long': long long,
'signed long long int': long long, 'signed short': short, 'signed short int':
short, 'sigstack': struct sigstack, 'sigval': union sigval { sival_int int;
sival_ptr void*; }, 'size_t': size_t, 'sockaddr': struct sockaddr, 'sockaddr_in':
struct sockaddr_in, 'speed_t': long, 'ssize': size_t, 'ssize_t': size_t, 'stat':
struct stat, 'stat64': struct stat64, 'string': string_t, 'struct iovec': struct
iovec, 'struct timespec': struct timespec, 'struct timeval': struct timeval,
'tcflag_t': unsigned long, 'termios': struct termios, 'time_t': long, 'timespec':
struct timeval, 'timeval': struct timeval, 'timex': struct timex, 'timezone':
struct timezone, 'tm': struct tm, 'tms': struct tms, 'uint16_t': uint16_t,
'uint32_t': uint32_t, 'uint64_t': uint64_t, 'uint8_t': uint8_t, 'uintptr_t':
unsigned long, 'unsigned': unsigned int, 'unsigned __int128': uint128_t, 'unsigned
__int256': uint256_t, 'unsigned char': char, 'unsigned int': unsigned int,
'unsigned long': unsigned long, 'unsigned long int': unsigned long, 'unsigned long
long': unsigned long long, 'unsigned long long int': unsigned long long, 'unsigned
short': unsigned short, 'unsigned short int': unsigned short, 'utimbuf': struct
utimbuf, 'utmp': struct utmp, 'utmpx': struct utmx, 'utsname': struct utsname,
'va_list': struct va_list[1], 'void': void, 'vtimes': struct vtimes, 'wchar_t':
short, 'winsize': struct winsize, 'word': uint16_t, 'wstring': wstring_t}

312 Chapter 10. API Reference

angr

state: angr.SimState = None

struct: StructMode

with_type(sim_type)
Returns a copy of the SimMemView with a type.

Parameters
sim_type (SimType) – The new type.

Return type
SimMemView

Returns
The typed SimMemView copy.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters

10.4. Storage 313

angr

• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

property resolvable

property resolved

property concrete

property deref: SimMemView

array(n)

Return type
SimMemView

member(member_name)
If self is a struct and member_name is a member of the struct, return that member element. Otherwise raise
an exception.

Return type
SimMemView

Parameters
member_name (str) –

store(value)

class angr.state_plugins.view.StructMode(view)
Bases: object

__init__(view)

class angr.storage.file.Flags

Bases: object

O_RDONLY = 0

O_WRONLY = 1

314 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

O_RDWR = 2

O_ACCMODE = 3

O_APPEND = 1024

O_ASYNC = 8192

O_CLOEXEC = 524288

O_CREAT = 64

O_DIRECT = 16384

O_DIRECTORY = 65536

O_DSYNC = 4096

O_EXCL = 128

O_LARGEFILE = 32768

O_NOATIME = 262144

O_NOCTTY = 256

O_NOFOLLOW = 131072

O_NONBLOCK = 2048

O_NDELAY = 2048

O_PATH = 2097152

O_SYNC = 1052672

O_TMPFILE = 4259840

O_TRUNC = 512

class angr.storage.file.SimFileBase(name=None, writable=True, ident=None, concrete=False,
file_exists=True, **kwargs)

Bases: SimStatePlugin

SimFiles are the storage mechanisms used by SimFileDescriptors.

Different types of SimFiles can have drastically different interfaces, and as a result there’s not much that can
be specified on this base class. All the read and write methods take a pos argument, which may have different
semantics per-class. 0 will always be a valid position to use, though, and the next position you should use is part
of the return tuple.

Some simfiles are “streams”, meaning that the position that reads come from is determined not by the position
you pass in (it will in fact be ignored), but by an internal variable. This is stored as .pos if you care to read it.
Don’t write to it. The same lack-of-semantics applies to this field as well.

Variables
• name – The name of the file. Purely for cosmetic purposes

• ident – The identifier of the file, typically autogenerated from the name and a nonce. Purely
for cosmetic purposes, but does appear in symbolic values autogenerated in the file.

10.4. Storage 315

angr

• seekable – Bool indicating whether seek operations on this file should succeed. If this is
True, then pos must be a number of bytes from the start of the file.

• writable – Bool indicating whether writing to this file is allowed.

• pos – If the file is a stream, this will be the current position. Otherwise, None.

• concrete – Whether or not this file contains mostly concrete data. Will be used by some
SimProcedures to choose how to handle variable-length operations like fgets.

• file_exists – Set to False, if file does not exists, set to a claripy Bool if unknown, default
True.

seekable = False

pos = None

__init__(name=None, writable=True, ident=None, concrete=False, file_exists=True, **kwargs)

static make_ident(name)

concretize(**kwargs)
Return a concretization of the contents of the file. The type of the return value of this method will vary
depending on which kind of SimFile you’re using.

read(pos, size, **kwargs)
Read some data from the file.

Parameters
• pos – The offset in the file to read from.

• size – The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.

write(pos, data, size=None, **kwargs)
Write some data to the file.

Parameters
• pos – The offset in the file to write to. May be ignored if the file is a stream or device.

• data – The data to write as a bitvector

• size – The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.

property size

The number of data bytes stored by the file at present. May be a symbolic value.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

316 Chapter 10. API Reference

angr

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.file.SimFile(name=None, content=None, size=None, has_end=None, seekable=True,
writable=True, ident=None, concrete=None, **kwargs)

Bases: SimFileBase, DefaultMemory

The normal SimFile is meant to model files on disk. It subclasses SimSymbolicMemory so loads and stores
to/from it are very simple.

Parameters
• name – The name of the file

• content – Optional initial content for the file as a string or bitvector

• size – Optional size of the file. If content is not specified, it defaults to zero

• has_end – Whether the size boundary is treated as the end of the file or a frontier at
which new content will be generated. If unspecified, will pick its value based on op-
tions.FILES_HAVE_EOF. Another caveat is that if the size is also unspecified this value
will default to False.

• seekable – Optional bool indicating whether seek operations on this file should succeed,
default True.

• writable – Whether writing to this file is allowed

• concrete – Whether or not this file contains mostly concrete data. Will be used by some
SimProcedures to choose how to handle variable-length operations like fgets.

Variables
has_end – Whether this file has an EOF

__init__(name=None, content=None, size=None, has_end=None, seekable=True, writable=True,
ident=None, concrete=None, **kwargs)

property category

reg, mem, or file.

Type
Return the category of this SimMemory instance. It can be one of the three following cate-
gories

set_state(state)
Sets a new state (for example, if the state has been branched)

property size

The number of data bytes stored by the file at present. May be a symbolic value.

concretize(**kwargs)
Return a concretization of the contents of the file, as a flat bytestring.

read(pos, size, **kwargs)
Read some data from the file.

10.4. Storage 317

angr

Parameters
• pos – The offset in the file to read from.

• size – The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.

write(pos, data, size=None, events=True, **kwargs)
Write some data to the file.

Parameters
• pos – The offset in the file to write to. May be ignored if the file is a stream or device.

• data – The data to write as a bitvector

• size – The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

318 Chapter 10. API Reference

angr

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(_)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.storage.file.SimFileStream(name=None, content=None, pos=0, **kwargs)
Bases: SimFile

A specialized SimFile that uses a flat memory backing, but functions as a stream, tracking its position internally.

The pos argument to the read and write methods will be ignored, and will return None. Instead, there is an
attribute pos on the file itself, which will give you what you want.

Parameters
• name – The name of the file, for cosmetic purposes

• pos – The initial position of the file, default zero

• kwargs – Any other keyword arguments will go on to the SimFile constructor.

Variables
pos – The current position in the file.

__init__(name=None, content=None, pos=0, **kwargs)

set_state(state)
Sets a new state (for example, if the state has been branched)

read(pos, size, **kwargs)
Read some data from the file.

Parameters

10.4. Storage 319

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• pos – The offset in the file to read from.

• size – The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.

write(_, data, size=None, **kwargs)
Write some data to the file.

Parameters
• pos – The offset in the file to write to. May be ignored if the file is a stream or device.

• data – The data to write as a bitvector

• size – The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

320 Chapter 10. API Reference

angr

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

state: angr.SimState

class angr.storage.file.SimPackets(name, write_mode=None, content=None, writable=True, ident=None,
**kwargs)

Bases: SimFileBase

The SimPackets is meant to model inputs whose content is delivered a series of asynchronous chunks. The data
is stored as a list of read or write results. For symbolic sizes, state.libc.max_packet_size will be respected. If the
SHORT_READS option is enabled, reads will return a symbolic size constrained to be less than or equal to the
requested size.

A SimPackets cannot be used for both reading and writing - for socket objects that can be both read and writ-
ten to you should use a file descriptor to multiplex the read and write operations into two separate file storage
mechanisms.

Parameters
• name – The name of the file, for cosmetic purposes

• write_mode – Whether this file is opened in read or write mode. If this is unspecified it will
be autodetected.

• content – Some initial content to use for the file. Can be a list of bytestrings or a list of
tuples of content ASTs and size ASTs.

Variables
• write_mode – See the eponymous parameter

• content – A list of packets, as tuples of content ASTs and size ASTs.

__init__(name, write_mode=None, content=None, writable=True, ident=None, **kwargs)

set_state(state)
Sets a new state (for example, if the state has been branched)

property size

The number of data bytes stored by the file at present. May be a symbolic value.

concretize(**kwargs)
Returns a list of the packets read or written as bytestrings.

read(pos, size, **kwargs)
Read a packet from the stream.

Parameters

10.4. Storage 321

https://docs.python.org/3/library/functions.html#bool

angr

• pos (int) – The packet number to read from the sequence of the stream. May be None to
append to the stream.

• size – The size to read. May be symbolic.

• short_reads – Whether to replace the size with a symbolic value constrained to less than
or equal to the original size. If unspecified, will be chosen based on the state option.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read) and
the actual size of the read.

write(pos, data, size=None, events=True, **kwargs)
Write a packet to the stream.

Parameters
• pos (int) – The packet number to write in the sequence of the stream. May be None to

append to the stream.

• data – The data to write, as a string or bitvector.

• size – The optional size to write. May be symbolic; must be constrained to at most the
size of data.

Returns
The next packet to use after this

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,

(continues on next page)

322 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

(continued from previous page)

common_ancestor=common_ancestor.foo if common_ancestor is not None else None
)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(_)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.storage.file.SimPacketsStream(name, pos=0, **kwargs)
Bases: SimPackets

A specialized SimPackets that tracks its position internally.

The pos argument to the read and write methods will be ignored, and will return None. Instead, there is an
attribute pos on the file itself, which will give you what you want.

Parameters
• name – The name of the file, for cosmetic purposes

• pos – The initial position of the file, default zero

• kwargs – Any other keyword arguments will go on to the SimPackets constructor.

Variables
pos – The current position in the file.

__init__(name, pos=0, **kwargs)

10.4. Storage 323

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

read(pos, size, **kwargs)
Read a packet from the stream.

Parameters
• pos (int) – The packet number to read from the sequence of the stream. May be None to

append to the stream.

• size – The size to read. May be symbolic.

• short_reads – Whether to replace the size with a symbolic value constrained to less than
or equal to the original size. If unspecified, will be chosen based on the state option.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read) and
the actual size of the read.

write(_, data, size=None, **kwargs)
Write a packet to the stream.

Parameters
• pos (int) – The packet number to write in the sequence of the stream. May be None to

append to the stream.

• data – The data to write, as a string or bitvector.

• size – The optional size to write. May be symbolic; must be constrained to at most the
size of data.

Returns
The next packet to use after this

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

324 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

state: angr.SimState

class angr.storage.file.SimFileDescriptorBase

Bases: SimStatePlugin

The base class for implementations of POSIX file descriptors.

All file descriptors should respect the CONCRETIZE_SYMBOLIC_{READ,WRITE}_SIZES state options.

read(pos, size, **kwargs)
Reads some data from the file, storing it into memory.

Parameters
• pos – The address to read data from file

• size – The requested length of the read

Returns
The real length of the read

write(pos, size, **kwargs)
Writes some data, loaded from the state, into the file.

Parameters
• pos – The address to read the data to write from in memory

• size – The requested size of the write

Returns
The real length of the write

read_data(size, **kwargs)
Reads some data from the file, returning the data.

10.4. Storage 325

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
size – The requested length of the read

Returns
A tuple of the data read and the real length of the read

write_data(data, size=None, **kwargs)
Write some data, provided as an argument into the file.

Parameters
• data – A bitvector to write into the file

• size – The requested size of the write (may be symbolic)

Returns
The real length of the write

seek(offset, whence='start')
Seek the file descriptor to a different position in the file.

Parameters
• offset – The offset to seek to, interpreted according to whence

• whence – What the offset is relative to; one of the strings “start”, “current”, or “end”

Returns
A symbolic boolean describing whether the seek succeeded or not

tell()

Return the current position, or None if the concept doesn’t make sense for the given file.

eof()

Return the EOF status. May be a symbolic boolean.

size()

Return the size of the data stored in the file in bytes, or None if the concept doesn’t make sense for the given
file.

property read_storage

Return the SimFile backing reads from this fd

property write_storage

Return the SimFile backing writes to this fd

property read_pos

Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

property write_pos

Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

concretize(**kwargs)
Return a concretizeation of the data in the underlying file. Has different return types to represent different
data structures on a per-class basis.

Any arguments passed to this will be passed onto state.solver.eval.

326 Chapter 10. API Reference

angr

property file_exists

This should be True in most cases. Only if we opened an fd of unknown existence, ALL_FILES_EXIST is
False and ANY_FILE_MIGHT_EXIST is True, this is a symbolic boolean.

state: angr.SimState

class angr.storage.file.SimFileDescriptor(simfile, flags=0)
Bases: SimFileDescriptorBase

A simple file descriptor forwarding reads and writes to a SimFile. Contains information about the current opened
state of the file, such as the flags or (if relevant) the current position.

Variables
• file – The SimFile described to by this descriptor

• flags – The mode that the file descriptor was opened with, a bitfield of flags

__init__(simfile, flags=0)

read_data(size, **kwargs)
Reads some data from the file, returning the data.

Parameters
size – The requested length of the read

Returns
A tuple of the data read and the real length of the read

write_data(data, size=None, **kwargs)
Write some data, provided as an argument into the file.

Parameters
• data – A bitvector to write into the file

• size – The requested size of the write (may be symbolic)

Returns
The real length of the write

seek(offset, whence='start')
Seek the file descriptor to a different position in the file.

Parameters
• offset – The offset to seek to, interpreted according to whence

• whence – What the offset is relative to; one of the strings “start”, “current”, or “end”

Returns
A symbolic boolean describing whether the seek succeeded or not

eof()

Return the EOF status. May be a symbolic boolean.

tell()

Return the current position, or None if the concept doesn’t make sense for the given file.

size()

Return the size of the data stored in the file in bytes, or None if the concept doesn’t make sense for the given
file.

10.4. Storage 327

angr

concretize(**kwargs)
Return a concretization of the underlying file. Returns whatever format is preferred by the file.

property file_exists

This should be True in most cases. Only if we opened an fd of unknown existence, ALL_FILES_EXIST is
False and ANY_FILE_MIGHT_EXIST is True, this is a symbolic boolean.

property read_storage

Return the SimFile backing reads from this fd

property write_storage

Return the SimFile backing writes to this fd

property read_pos

Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

property write_pos

Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

set_state(state)
Sets a new state (for example, if the state has been branched)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

328 Chapter 10. API Reference

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(_)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.storage.file.SimFileDescriptorDuplex(read_file, write_file)
Bases: SimFileDescriptorBase

A file descriptor that refers to two file storage mechanisms, one to read from and one to write to. As a result,
operations like seek, eof, etc no longer make sense.

Parameters
• read_file – The SimFile to read from

• write_file – The SimFile to write to

__init__(read_file, write_file)

read_data(size, **kwargs)
Reads some data from the file, returning the data.

Parameters
size – The requested length of the read

10.4. Storage 329

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Returns
A tuple of the data read and the real length of the read

write_data(data, size=None, **kwargs)
Write some data, provided as an argument into the file.

Parameters
• data – A bitvector to write into the file

• size – The requested size of the write (may be symbolic)

Returns
The real length of the write

set_state(state)
Sets a new state (for example, if the state has been branched)

eof()

Return the EOF status. May be a symbolic boolean.

tell()

Return the current position, or None if the concept doesn’t make sense for the given file.

seek(offset, whence='start')
Seek the file descriptor to a different position in the file.

Parameters
• offset – The offset to seek to, interpreted according to whence

• whence – What the offset is relative to; one of the strings “start”, “current”, or “end”

Returns
A symbolic boolean describing whether the seek succeeded or not

size()

Return the size of the data stored in the file in bytes, or None if the concept doesn’t make sense for the given
file.

concretize(**kwargs)
Return a concretization of the underlying files, as a tuple of (read file, write file).

property read_storage

Return the SimFile backing reads from this fd

property write_storage

Return the SimFile backing writes to this fd

property read_pos

Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

property write_pos

Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

330 Chapter 10. API Reference

angr

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(_)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

10.4. Storage 331

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.storage.file.SimPacketsSlots(name, read_sizes, ident=None, **kwargs)
Bases: SimFileBase

SimPacketsSlots is the new SimDialogue, if you’ve ever seen that before.

The idea is that in some cases, the only thing you really care about is getting the lengths of reads right, and some
of them should be short reads, and some of them should be truncated. You provide to this class a list of read
lengths, and it figures out the length of each read, and delivers some content.

This class will NOT respect the position argument you pass it - this storage is not stateless.

seekable = False

__init__(name, read_sizes, ident=None, **kwargs)

concretize(**kwargs)
Return a concretization of the contents of the file. The type of the return value of this method will vary
depending on which kind of SimFile you’re using.

read(pos, size, **kwargs)
Read some data from the file.

Parameters
• pos – The offset in the file to read from.

• size – The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.

write(pos, data, size=None, **kwargs)
Write some data to the file.

Parameters
• pos – The offset in the file to write to. May be ignored if the file is a stream or device.

• data – The data to write as a bitvector

• size – The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.

property size

The number of data bytes stored by the file at present. May be a symbolic value.

332 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

10.4. Storage 333

https://docs.python.org/3/library/functions.html#bool

angr

widen(_)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

angr.storage.memory_object.obj_bit_size(o)

class angr.storage.memory_object.SimMemoryObject(obj, base, endness, length=None, byte_width=8)
Bases: object

A SimMemoryObject is a reference to a byte or several bytes in a specific object in memory. It should be used
only by the bottom layer of memory.

__init__(obj, base, endness, length=None, byte_width=8)

is_bytes

base

object

length

endness

size()

property variables

property cache_key

property symbolic

property last_addr

includes(x)

bytes_at(addr, length, allow_concrete=False, endness='Iend_BE')

class angr.storage.memory_object.SimLabeledMemoryObject(obj, base, endness, length=None,
byte_width=8, label=None)

Bases: SimMemoryObject

__init__(obj, base, endness, length=None, byte_width=8, label=None)

label

angr.storage.memory_object.bv_slice(value, offset, size, rev, bw)
Extremely cute utility to pretend you’ve serialized a value to stored bytes, sliced it a la python slicing, and then
deserialized those bytes to an integer again.

Parameters

334 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

• value (BV) – The bitvector to slice

• offset (int) – The byte offset from the first stored byte to slice from, or a negative offset
from the end.

• size (int) – The number of bytes to return. If None, return all bytes from the offset to the
end. If larger than the number of bytes from the offset to the end, return all bytes from the
offset to the end.

• rev (bool) – Whether the pretend-serialization should be little-endian

• bw (int) – The byte width

Return type
BV

Returns
The new bitvector

class angr.storage.pcap.PCAP(path, ip_port_tup, init=True)
Bases: object

__init__(path, ip_port_tup, init=True)

initialize(path)

recv(length)

copy()

class angr.concretization_strategies.SimConcretizationStrategy(filter=None, exact=True)
Bases: object

Concretization strategies control the resolution of symbolic memory indices in SimuVEX. By sub-
classing this class and setting it as a concretization strategy (on state.memory.read_strategies and
state.memory.write_strategies), SimuVEX’s memory index concretization behavior can be modified.

__init__(filter=None, exact=True)
Initializes the base SimConcretizationStrategy.

Parameters
• filter – A function, taking arguments of (SimMemory, claripy.AST) that determins if

this strategy can handle resolving the provided AST.

• exact – A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

concretize(memory, addr, **kwargs)
Concretizes the address into a list of values. If this strategy cannot handle this address, returns None.

copy()

Returns a copy of the strategy, if there is data that should be kept separate between states. If not, returns
self.

merge(others)
Merges this strategy with others (if there is data that should be kept separate between states. If not, is a
no-op.

10.4. Storage 335

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

10.5 Memory Mixins

class angr.storage.memory_mixins.MemoryMixin(memory_id=None, endness='Iend_BE')
Bases: SimStatePlugin

SUPPORTS_CONCRETE_LOAD = False

__init__(memory_id=None, endness='Iend_BE')

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

property category

reg, mem, or file.

Type
Return the category of this SimMemory instance. It can be one of the three following cate-
gories

property variable_key_prefix

find(addr, data, max_search, **kwargs)

load(addr, size=None, **kwargs)

store(addr, data, **kwargs)

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

336 Chapter 10. API Reference

angr

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

permissions(addr, permissions=None, **kwargs)

map_region(addr, length, permissions, init_zero=False, **kwargs)

unmap_region(addr, length, **kwargs)

concrete_load(addr, size, writing=False, **kwargs)
Set SUPPORTS_CONCRETE_LOAD to True and implement concrete_load if reading concrete bytes is
faster in this memory model.

Parameters
• addr – The address to load from.

• size – Size of the memory read.

• writing –

Return type
memoryview

Returns
A memoryview into the loaded bytes.

erase(addr, size=None, **kwargs)
Set [addr:addr+size) to uninitialized. In many cases this will be faster than overwriting those locations with
new values. This is commonly used during static data flow analysis.

Parameters

10.5. Memory Mixins 337

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#memoryview

angr

• addr – The address to start erasing.

• size – The number of bytes for erasing.

Return type
None

Returns
None

replace_all(old, new)

Parameters
• old (BV) –

• new (BV) –

copy_contents(dst, src, size, condition=None, **kwargs)
Override this method to provide faster copying of large chunks of data.

Parameters
• dst – The destination of copying.

• src – The source of copying.

• size – The size of copying.

• condition – The storing condition.

• kwargs – Other parameters.

Returns
None

state: angr.SimState

class angr.storage.memory_mixins.DefaultMemory(*args, **kwargs)
Bases: HexDumperMixin, SmartFindMixin, UnwrapperMixin, NameResolutionMixin,
DataNormalizationMixin, SimplificationMixin, InspectMixinHigh , ActionsMixinHigh ,
UnderconstrainedMixin, SizeConcretizationMixin, SizeNormalizationMixin,
AddressConcretizationMixin, ActionsMixinLow, ConditionalMixin, ConvenientMappingsMixin,
DirtyAddrsMixin, StackAllocationMixin, ConcreteBackerMixin, ClemoryBackerMixin,
DictBackerMixin, PrivilegedPagingMixin, UltraPagesMixin, DefaultFillerMixin,
SymbolicMergerMixin, PagedMemoryMixin

class angr.storage.memory_mixins.DefaultListPagesMemory(*args, **kwargs)
Bases: HexDumperMixin, SmartFindMixin, UnwrapperMixin, NameResolutionMixin,
DataNormalizationMixin, SimplificationMixin, ActionsMixinHigh , UnderconstrainedMixin,
SizeConcretizationMixin, SizeNormalizationMixin, InspectMixinHigh ,
AddressConcretizationMixin, ActionsMixinLow, ConditionalMixin, ConvenientMappingsMixin,
DirtyAddrsMixin, StackAllocationMixin, ClemoryBackerMixin, DictBackerMixin,
PrivilegedPagingMixin, ListPagesMixin, DefaultFillerMixin, SymbolicMergerMixin,
PagedMemoryMixin

class angr.storage.memory_mixins.FastMemory(uninitialized_read_handler=None, **kwargs)
Bases: NameResolutionMixin, SimpleInterfaceMixin, SimplificationMixin, InspectMixinHigh ,
ConditionalMixin, ExplicitFillerMixin, DefaultFillerMixin, SlottedMemoryMixin

state: angr.SimState

338 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV

angr

class angr.storage.memory_mixins.AbstractMemory(*args, **kwargs)
Bases: UnwrapperMixin, NameResolutionMixin, DataNormalizationMixin,
SimplificationMixin, InspectMixinHigh , ActionsMixinHigh , UnderconstrainedMixin,
SizeConcretizationMixin, SizeNormalizationMixin, ActionsMixinLow, ConditionalMixin,
RegionedAddressConcretizationMixin, RegionedMemoryMixin

state: angr.SimState

class angr.storage.memory_mixins.RegionedMemory(related_function_addr=None, **kwargs)
Bases: RegionCategoryMixin, MemoryRegionMetaMixin, StaticFindMixin,
UnwrapperMixin, NameResolutionMixin, DataNormalizationMixin, SimplificationMixin,
SizeConcretizationMixin, SizeNormalizationMixin, AddressConcretizationMixin,
ConvenientMappingsMixin, DirtyAddrsMixin, ClemoryBackerMixin, DictBackerMixin,
UltraPagesMixin, DefaultFillerMixin, AbstractMergerMixin, PagedMemoryMixin

class angr.storage.memory_mixins.LabeledMemory(*args, top_func=None, **kwargs)
Bases: SizeNormalizationMixin, ListPagesWithLabelsMixin, DefaultFillerMixin,
TopMergerMixin, LabelMergerMixin, PagedMemoryMixin

LabeledMemory is used in static analysis. It allows storing values with labels, such as Definition.

class angr.storage.memory_mixins.MultiValuedMemory(*args,
skip_missing_values_during_merging=False,
**kwargs)

Bases: SizeNormalizationMixin, MVListPagesMixin, DefaultFillerMixin,
MultiValueMergerMixin, PagedMemoryMixin, PagedMemoryMultiValueMixin

class angr.storage.memory_mixins.KeyValueMemory(*args, **kwargs)
Bases: KeyValueMemoryMixin

state: angr.SimState

class angr.storage.memory_mixins.JavaVmMemory(memory_id='mem', stack=None, heap=None,
vm_static_table=None, load_strategies=None,
store_strategies=None, max_array_size=1000,
**kwargs)

Bases: JavaVmMemoryMixin

state: angr.SimState

class angr.storage.memory_mixins.name_resolution_mixin.NameResolutionMixin(memory_id=None,
end-
ness='Iend_BE')

Bases: MemoryMixin

This mixin allows you to provide register names as load addresses, and will automatically translate this to an
offset and size.

store(addr, data, size=None, **kwargs)

load(addr, size=None, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.smart_find_mixin.SmartFindMixin(memory_id=None,
endness='Iend_BE')

Bases: MemoryMixin

Memory mixin providing basic searching over concrete and symbolic data.

10.5. Memory Mixins 339

angr

find(addr, data, max_search, default=None, endness=None, chunk_size=None, max_symbolic_bytes=None,
condition=None, char_size=1, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.default_filler_mixin.DefaultFillerMixin(memory_id=None,
endness='Iend_BE')

Bases: MemoryMixin

state: angr.SimState

class angr.storage.memory_mixins.default_filler_mixin.SpecialFillerMixin(special_memory_filler=None,
**kwargs)

Bases: MemoryMixin

__init__(special_memory_filler=None, **kwargs)

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.default_filler_mixin.ExplicitFillerMixin(uninitialized_read_handler=None,
**kwargs)

Bases: MemoryMixin

__init__(uninitialized_read_handler=None, **kwargs)

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.bvv_conversion_mixin.DataNormalizationMixin(memory_id=None,
end-
ness='Iend_BE')

340 Chapter 10. API Reference

angr

Bases: MemoryMixin

Normalizes the data field for a store and the fallback field for a load to be BVs.

store(addr, data, size=None, **kwargs)

load(addr, size=None, fallback=None, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.hex_dumper_mixin.HexDumperMixin(memory_id=None,
endness='Iend_BE')

Bases: MemoryMixin

hex_dump(start, size, word_size=4, words_per_row=4, endianness='Iend_BE', symbolic_char='?',
unprintable_char='.', solve=False, extra_constraints=None, inspect=False,
disable_actions=True)

Returns a hex dump as a string. The solver, if enabled, is called once for every byte potentially making this
function very slow. It is meant to be used mainly as a “visualization” for debugging.

Warning: May read and display more bytes than size due to rounding. Particularly, if size is less than, or
not a multiple of word_size*words_per_line.

Parameters
• start – starting address from which to print

• size – number of bytes to display

• word_size – number of bytes to group together as one space-delimited unit

• words_per_row – number of words to display per row of output

• endianness – endianness to use when displaying each word (ASCII representation is un-
changed)

• symbolic_char – the character to display when a byte is symbolic and has multiple solu-
tions

• unprintable_char – the character to display when a byte is not printable

• solve – whether or not to attempt to solve (warning: can be very slow)

• extra_constraints – extra constraints to pass to the solver is solve is True

• inspect – whether or not to trigger SimInspect breakpoints for the memory load

• disable_actions – whether or not to disable SimActions for the memory load

Returns
hex dump as a string

state: angr.SimState

class angr.storage.memory_mixins.underconstrained_mixin.UnderconstrainedMixin(*args,
**kwargs)

Bases: MemoryMixin

__init__(*args, **kwargs)

10.5. Memory Mixins 341

angr

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

load(addr, **kwargs)

store(addr, data, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.simple_interface_mixin.SimpleInterfaceMixin(memory_id=None,
end-
ness='Iend_BE')

Bases: MemoryMixin

load(addr, size=None, endness=None, condition=None, fallback=None, **kwargs)

store(addr, data, size=None, endness=None, condition=None, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.actions_mixin.ActionsMixinHigh(memory_id=None,
endness='Iend_BE')

Bases: MemoryMixin

load(addr, size=None, condition=None, fallback=None, disable_actions=False, action=None, **kwargs)

store(addr, data, size=None, disable_actions=False, action=None, condition=None, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.actions_mixin.ActionsMixinLow(memory_id=None,
endness='Iend_BE')

Bases: MemoryMixin

load(addr, action=None, **kwargs)

store(addr, data, action=None, **kwargs)

Parameters
action (SimActionData | None) –

state: angr.SimState

class angr.storage.memory_mixins.symbolic_merger_mixin.SymbolicMergerMixin(memory_id=None,
end-
ness='Iend_BE')

Bases: MemoryMixin

342 Chapter 10. API Reference

angr

state: angr.SimState

class angr.storage.memory_mixins.size_resolution_mixin.SizeNormalizationMixin(memory_id=None,
end-
ness='Iend_BE')

Bases: MemoryMixin

Provides basic services related to normalizing sizes. After this mixin, sizes will always be a plain int. Assumes
that the data is a BV.

• load will throw a TypeError if no size is provided

• store will default to len(data)//byte_width if no size is provided

load(addr, size=None, **kwargs)

store(addr, data, size=None, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.size_resolution_mixin.SizeConcretizationMixin(concretize_symbolic_write_size=False,
max_concretize_count=256,
max_symbolic_size=4194304,
raise_memory_limit_error=False,
size_limit=257,
**kwargs)

Bases: MemoryMixin

This mixin allows memory to process symbolic sizes. It will not touch any sizes which are not ASTs with non-
BVV ops. Assumes that the data is a BV.

• symbolic load sizes will be concretized as their maximum and a warning will be logged

• symbolic store sizes will be dispatched as several conditional stores with concrete sizes

Parameters
• concretize_symbolic_write_size (bool) –

• max_concretize_count (int | None) –

• max_symbolic_size (int) –

• raise_memory_limit_error (bool) –

• size_limit (int) –

__init__(concretize_symbolic_write_size=False, max_concretize_count=256,
max_symbolic_size=4194304, raise_memory_limit_error=False, size_limit=257, **kwargs)

Parameters
• concretize_symbolic_write_size (bool) –

• max_concretize_count (int | None) –

• max_symbolic_size (int) –

• raise_memory_limit_error (bool) –

• size_limit (int) –

10.5. Memory Mixins 343

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

load(addr, size=None, **kwargs)

store(addr, data, size=None, condition=None, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.dirty_addrs_mixin.DirtyAddrsMixin(memory_id=None,
endness='Iend_BE')

Bases: MemoryMixin

store(addr, data, size=None, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.address_concretization_mixin.MultiwriteAnnotation

Bases: Annotation

property eliminatable

Returns whether this annotation can be eliminated in a simplification.

Returns
True if eliminatable, False otherwise

property relocateable

class angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin(read_strategies=None,
write_strategies=None,
**kwargs)

Bases: MemoryMixin

The address concretization mixin allows symbolic reads and writes to be handled sanely by dispatching them as
a number of conditional concrete reads/writes. It provides a “concretization strategies” interface allowing the
process of serializing symbolic addresses into concrete ones to be specified.

__init__(read_strategies=None, write_strategies=None, **kwargs)

set_state(state)
Sets a new state (for example, if the state has been branched)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

344 Chapter 10. API Reference

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.Annotation

angr

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

concretize_write_addr(addr, strategies=None, condition=None)
Concretizes an address meant for writing.

Parameters
• addr – An expression for the address.

• strategies – A list of concretization strategies (to override the default).

• condition – Any extra constraints that should be observed when determining address
satisfiability

10.5. Memory Mixins 345

https://docs.python.org/3/library/functions.html#bool

angr

Returns
A list of concrete addresses.

concretize_read_addr(addr, strategies=None, condition=None)
Concretizes an address meant for reading.

Parameters
• addr – An expression for the address.

• strategies – A list of concretization strategies (to override the default).

Returns
A list of concrete addresses.

load(addr, size=None, condition=None, **kwargs)

store(addr, data, size=None, condition=None, **kwargs)

permissions(addr, permissions=None, **kwargs)

map_region(addr, length, permissions, **kwargs)

unmap_region(addr, length, **kwargs)

concrete_load(addr, size, *args, **kwargs)
Set SUPPORTS_CONCRETE_LOAD to True and implement concrete_load if reading concrete bytes is
faster in this memory model.

Parameters
• addr – The address to load from.

• size – Size of the memory read.

• writing –

Returns
A memoryview into the loaded bytes.

state: angr.SimState

class angr.storage.memory_mixins.clouseau_mixin.InspectMixinHigh(memory_id=None,
endness='Iend_BE')

Bases: MemoryMixin

store(addr, data, size=None, condition=None, endness=None, inspect=True, **kwargs)

load(addr, size=None, condition=None, endness=None, inspect=True, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.conditional_store_mixin.ConditionalMixin(memory_id=None,
end-
ness='Iend_BE')

Bases: MemoryMixin

load(addr, condition=None, fallback=None, **kwargs)

store(addr, data, size=None, condition=None, **kwargs)

state: angr.SimState

346 Chapter 10. API Reference

angr

class angr.storage.memory_mixins.label_merger_mixin.LabelMergerMixin(*args, **kwargs)
Bases: MemoryMixin

A memory mixin for merging labels. Labels come from SimLabeledMemoryObject.

__init__(*args, **kwargs)

copy(memo=None)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.simplification_mixin.SimplificationMixin(memory_id=None,
end-
ness='Iend_BE')

Bases: MemoryMixin

store(addr, data, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.unwrapper_mixin.UnwrapperMixin(memory_id=None,
endness='Iend_BE')

Bases: MemoryMixin

This mixin processes SimActionObjects by passing on their .ast field.

store(addr, data, size=None, condition=None, **kwargs)

load(addr, size=None, condition=None, fallback=None, **kwargs)

find(addr, what, max_search, default=None, **kwargs)

copy_contents(dst, src, size, condition=None, **kwargs)
Override this method to provide faster copying of large chunks of data.

Parameters
• dst – The destination of copying.

• src – The source of copying.

• size – The size of copying.

• condition – The storing condition.

• kwargs – Other parameters.

Returns
None

10.5. Memory Mixins 347

angr

state: angr.SimState

class angr.storage.memory_mixins.convenient_mappings_mixin.ConvenientMappingsMixin(**kwargs)
Bases: MemoryMixin

Implements mappings between names and hashes of symbolic variables and these variables themselves.

__init__(**kwargs)

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

store(addr, data, size=None, **kwargs)

get_symbolic_addrs()

addrs_for_name(n)
Returns addresses that contain expressions that contain a variable named n.

addrs_for_hash(h)
Returns addresses that contain expressions that contain a variable with the hash of h.

replace_all(old, new)
Replaces all instances of expression old with expression new.

Parameters
• old (BV) – A claripy expression. Must contain at least one named variable (to make it

possible to use the name index for speedup).

• new (BV) – The new variable to replace it with.

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.mv_list_page.MVListPage(memory=None,
content=None,
sinkhole=None,
mo_cmp=None,
**kwargs)

Bases: MemoryObjectSetMixin, PageBase

MVListPage allows storing multiple values at the same location, thus allowing weak updates.

Each store() may take a value or multiple values, and a “weak” parameter to specify if this store is a weak update
or not. Each load() returns an iterator of all values stored at that location.

__init__(memory=None, content=None, sinkhole=None, mo_cmp=None, **kwargs)

348 Chapter 10. API Reference

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV

angr

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

Return type
MVListPage

load(addr, size=None, endness=None, page_addr=None, memory=None, cooperate=False, **kwargs)

Return type
List[Tuple[int, Union[SimMemoryObject, SimLabeledMemoryObject]]]

store(addr, data, size=None, endness=None, memory=None, cooperate=False, weak=False, **kwargs)

erase(addr, size=None, **kwargs)
Set [addr:addr+size) to uninitialized. In many cases this will be faster than overwriting those locations with
new values. This is commonly used during static data flow analysis.

Parameters
• addr – The address to start erasing.

• size – The number of bytes for erasing.

Return type
None

Returns
None

merge(others, merge_conditions, common_ancestor=None, page_addr=None, memory=None,
changed_offsets=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,

(continues on next page)

10.5. Memory Mixins 349

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None

angr

(continued from previous page)

common_ancestor=common_ancestor.foo if common_ancestor is not None else None
)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others (List[MVListPage]) – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

• page_addr (int | None) –

• changed_offsets (Set[int] | None) –

Returns
True if the state plugins are actually merged.

Return type
bool

changed_bytes(other, page_addr=None)

Parameters
• other (MVListPage) –

• page_addr (int | None) –

content_gen(index)

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.multi_values.MultiValues(v=None, off-
set_to_values=None)

Bases: object

Represents a byte vector where each byte can have one or multiple values.

As an implementation optimization (so that we do not create excessive sets and dicts), self._single_value stores
a claripy AST when this MultiValues object represents only one value at offset 0.

Parameters
v (Bits | MultiValues | None | Dict[int, Set[Bits]]) –

__init__(v=None, offset_to_values=None)

Parameters
v (Bits | MultiValues | None | Dict[int, Set[Bits]]) –

add_value(offset, value)

Return type
None

Parameters

350 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/constants.html#None

angr

• offset (int) –

• value (Bits) –

one_value(strip_annotations=False)

Return type
Optional[Bits]

Parameters
strip_annotations (bool) –

merge(mv)

Return type
MultiValues

Parameters
mv (MultiValues) –

keys()

Return type
Set[int]

values()

Return type
Iterator[Set[Bits]]

items()

Return type
Iterator[Tuple[int, Set[Bits]]]

count()

Return type
int

extract(offset, length, endness)

Return type
MultiValues

Parameters
• offset (int) –

• length (int) –

• endness (str) –

concat(other)

Return type
MultiValues

Parameters
other (MultiValues | Bits | bytes) –

10.5. Memory Mixins 351

https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/stdtypes.html#bytes

angr

class angr.storage.memory_mixins.top_merger_mixin.TopMergerMixin(*args, top_func=None,
**kwargs)

Bases: MemoryMixin

A memory mixin for merging values in memory to TOP.

__init__(*args, top_func=None, **kwargs)

copy(memo=None)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.multi_value_merger_mixin.MultiValueMergerMixin(*args, ele-
ment_limit=5,
annota-
tion_limit=256,
top_func=None,
phi_maker=None,
**kwargs)

Bases: MemoryMixin

__init__(*args, element_limit=5, annotation_limit=256, top_func=None, phi_maker=None, **kwargs)

copy(memo=None)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin(page_size=4096,
de-
fault_permissions=3,
permis-
sions_map=None,
page_kwargs=None,
**kwargs)

352 Chapter 10. API Reference

angr

Bases: MemoryMixin

A bottom-level storage mechanism. Dispatches reads to individual pages, the type of which is the PAGE_TYPE
class variable.

SUPPORTS_CONCRETE_LOAD = True

PAGE_TYPE: Type[TypeVar(PageType, bound= PageBase)] = None

__init__(page_size=4096, default_permissions=3, permissions_map=None, page_kwargs=None,
**kwargs)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

load(addr, size=None, endness=None, **kwargs)

Parameters
• addr (int) –

• size (int | None) –

store(addr, data, size=None, endness=None, **kwargs)

Parameters
• addr (int) –

• size (int | None) –

erase(addr, size=None, **kwargs)
Set [addr:addr+size) to uninitialized. In many cases this will be faster than overwriting those locations with
new values. This is commonly used during static data flow analysis.

Parameters
• addr – The address to start erasing.

• size – The number of bytes for erasing.

Return type
None

Returns
None

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

10.5. Memory Mixins 353

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

angr

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others (Iterable[PagedMemoryMixin]) – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

permissions(addr, permissions=None, **kwargs)

map_region(addr, length, permissions, init_zero=False, **kwargs)

unmap_region(addr, length, **kwargs)

concrete_load(addr, size, writing=False, with_bitmap=False, **kwargs)
Set SUPPORTS_CONCRETE_LOAD to True and implement concrete_load if reading concrete bytes is
faster in this memory model.

Parameters
• addr – The address to load from.

• size – Size of the memory read.

• writing –

Returns
A memoryview into the loaded bytes.

354 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool

angr

changed_bytes(other)

Return type
Set[int]

changed_pages(other)

Return type
Dict[int, Optional[Set[int]]]

copy_contents(dst, src, size, condition=None, **kwargs)
Override this method to provide faster copying of large chunks of data.

Parameters
• dst – The destination of copying.

• src – The source of copying.

• size – The size of copying.

• condition – The storing condition.

• kwargs – Other parameters.

Returns
None

flush_pages(white_list)
Flush all pages not included in the white_list by removing their pages. Note, this will not wipe them from
memory if they were backed by a memory_backer, it will simply reset them to their initial state. Returns
the list of pages that were cleared consisting of (addr, length) tuples. :type white_list: :param white_list:
white list of regions in the form of (start, end) to exclude from the flush :return: a list of memory page
ranges that were flushed :rtype: list

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.LabeledPagesMixin(page_size=4096,
de-
fault_permissions=3,
permis-
sions_map=None,
page_kwargs=None,
**kwargs)

Bases: PagedMemoryMixin

load_with_labels(addr, size=None, endness=None, **kwargs)

Return type
Tuple[Base, Tuple[Tuple[int, int, int, Any]]]

Parameters
• addr (int) –

• size (int | None) –

state: angr.SimState

10.5. Memory Mixins 355

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.ListPagesMixin(page_size=4096,
de-
fault_permissions=3,
permis-
sions_map=None,
page_kwargs=None,
**kwargs)

Bases: PagedMemoryMixin

PAGE_TYPE

alias of ListPage

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.MVListPagesMixin(*args,
skip_missing_values_during_merging=False,
**kwargs)

Bases: PagedMemoryMixin

PAGE_TYPE

alias of MVListPage

__init__(*args, skip_missing_values_during_merging=False, **kwargs)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.ListPagesWithLabelsMixin(page_size=4096,
de-
fault_permissions=3,
per-
mis-
sions_map=None,
page_kwargs=None,
**kwargs)

Bases: LabeledPagesMixin, ListPagesMixin

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.MVListPagesWithLabelsMixin(*args,
skip_missing_values_during_merging=False,
**kwargs)

Bases: LabeledPagesMixin, MVListPagesMixin

356 Chapter 10. API Reference

angr

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.UltraPagesMixin(page_size=4096,
de-
fault_permissions=3,
permis-
sions_map=None,
page_kwargs=None,
**kwargs)

Bases: PagedMemoryMixin

PAGE_TYPE

alias of UltraPage

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.page_backer_mixins.NotMemoryview(obj, offset,
size)

Bases: object

__init__(obj, offset, size)

class angr.storage.memory_mixins.paged_memory.page_backer_mixins.ClemoryBackerMixin(cle_memory_backer=None,
**kwargs)

Bases: PagedMemoryMixin

Parameters
cle_memory_backer (None | Loader | Clemory) –

__init__(cle_memory_backer=None, **kwargs)

Parameters
cle_memory_backer (None | Loader | Clemory) –

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.page_backer_mixins.ConcreteBackerMixin(cle_memory_backer=None,
**kwargs)

Bases: ClemoryBackerMixin

Parameters
cle_memory_backer (None | Loader | Clemory) –

state: angr.SimState

10.5. Memory Mixins 357

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/cle/en/latest/api/loader.html#cle.Loader
https://docs.angr.io/projects/cle/en/latest/api/utils.html#cle.memory.Clemory
https://docs.angr.io/projects/cle/en/latest/api/loader.html#cle.Loader
https://docs.angr.io/projects/cle/en/latest/api/utils.html#cle.memory.Clemory
https://docs.angr.io/projects/cle/en/latest/api/loader.html#cle.Loader
https://docs.angr.io/projects/cle/en/latest/api/utils.html#cle.memory.Clemory

angr

class angr.storage.memory_mixins.paged_memory.page_backer_mixins.DictBackerMixin(dict_memory_backer=None,
**kwargs)

Bases: PagedMemoryMixin

__init__(dict_memory_backer=None, **kwargs)

state: angr.SimState

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

class angr.storage.memory_mixins.paged_memory.stack_allocation_mixin.StackAllocationMixin(stack_end=None,
stack_size=None,
stack_perms=None,
**kwargs)

Bases: PagedMemoryMixin

This mixin adds automatic allocation for a stack region based on the stack_end and stack_size parameters.

__init__(stack_end=None, stack_size=None, stack_perms=None, **kwargs)

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

allocate_stack_pages(addr, size, **kwargs)
Pre-allocates pages for the stack without triggering any logic related to reading from them.

Parameters
• addr (int) – The highest address that should be mapped

• size (int) – The number of bytes to be allocated. byte 1 is the one at addr, byte 2 is the
one before that, and so on.

Returns
A list of the new page objects

state: angr.SimState

358 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

class angr.storage.memory_mixins.paged_memory.privileged_mixin.PrivilegedPagingMixin(page_size=4096,
de-
fault_permissions=3,
per-
mis-
sions_map=None,
page_kwargs=None,
**kwargs)

Bases: PagedMemoryMixin

A mixin for paged memory models which will raise SimSegfaultExceptions if STRICT_PAGE_ACCESS is en-
abled and a segfault condition is detected.

Segfault conditions include: - getting a page for reading which is non-readable - getting a page for writing which
is non-writable - creating a page

The latter condition means that this should be inserted under any mixins which provide other implementations
of _initialize_page.

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.PageBase(*args, **kwargs)
Bases: HistoryTrackingMixin, RefcountMixin, CooperationBase, ISPOMixin, PermissionsMixin,
MemoryMixin

This is a fairly succinct definition of the contract between PagedMemoryMixin and its constituent pages:

• Pages must implement the MemoryMixin model for loads, stores, copying, merging, etc

• However, loading/storing may not necessarily use the same data domain as PagedMemoryMixin. In order
to do more efficient loads/stores across pages, we use the CooperationBase interface which allows the page
class to determine how to generate and unwrap the objects which are actually stored.

• To support COW, we use the RefcountMixin and the ISPOMixin (which adds the contract element that
memory=self be passed to every method call)

• Pages have permissions associated with them, stored in the PermissionsMixin.

Read the docstrings for each of the constituent classes to understand the nuances of their functionalities

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.refcount_mixin.RefcountMixin(**kwargs)
Bases: MemoryMixin

This mixin adds a locked reference counter and methods to manipulate it, to facilitate copy-on-write optimiza-
tions.

__init__(**kwargs)

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

10.5. Memory Mixins 359

angr

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

acquire_unique()

Call this function to return a version of this page which can be used for writing, which may or may not be
the same object as before. If you use this you must immediately replace the shared reference you previously
had with the new unique copy.

acquire_shared()

Call this function to indicate that this page has had a reference added to it and must be copied before it can
be acquired uniquely again. Creating the object implicitly starts it with one shared reference.

Return type
None

release_shared()

Call this function to indicate that this page has had a shared reference to it released

Return type
None

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.permissions_mixin.PermissionsMixin(permissions=None,
**kwargs)

Bases: MemoryMixin

This mixin adds a permissions field and properties for extracting the read/write/exec permissions. It does NOT
add permissions checking.

__init__(permissions=None, **kwargs)

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

property perm_read

property perm_write

property perm_exec

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin.HistoryTrackingMixin(*args,
**kwargs)

Bases: RefcountMixin, MemoryMixin

Tracks the history of memory writes.

360 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

angr

__init__(*args, **kwargs)

store(addr, data, size=None, **kwargs)

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

acquire_unique()

Call this function to return a version of this page which can be used for writing, which may or may not be
the same object as before. If you use this you must immediately replace the shared reference you previously
had with the new unique copy.

parents()

changed_bytes(other, **kwargs)

Return type
Optional[Set[int]]

all_bytes_changed_in_history()

Return type
Set[int]

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.ispo_mixin.ISPOMixin(memory_id=None,
endness='Iend_BE')

Bases: MemoryMixin

An implementation of the International Stateless Persons Organisation, a mixin which should be applied as a
bottom layer for memories which have no state and must redirect certain operations to a parent memory. Main
usecase is for memory region classes which are stored within other memories, such as pages.

set_state(state)
Sets a new state (for example, if the state has been branched)

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.cooperation.CooperationBase

Bases: object

Any given subclass of this class which is not a subclass of MemoryMixin should have the property that any
subclass it which is a subclass of MemoryMixin should all work with the same datatypes

class angr.storage.memory_mixins.paged_memory.pages.cooperation.MemoryObjectMixin

Bases: CooperationBase

Uses SimMemoryObjects in region storage. With this, load will return a list of tuple (address, MO) and store
will take a MO.

10.5. Memory Mixins 361

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

class angr.storage.memory_mixins.paged_memory.pages.cooperation.MemoryObjectSetMixin

Bases: CooperationBase

Uses sets of SimMemoryObjects in region storage.

class angr.storage.memory_mixins.paged_memory.pages.cooperation.BasicClaripyCooperation

Bases: CooperationBase

Mix this (along with PageBase) into a storage class which supports loading and storing claripy bitvectors and it
will be able to work as a page in the paged memory model.

class angr.storage.memory_mixins.paged_memory.pages.list_page.ListPage(memory=None,
content=None,
sinkhole=None,
mo_cmp=None,
**kwargs)

Bases: MemoryObjectMixin, PageBase

This class implements a page memory mixin with lists as the main content store.

__init__(memory=None, content=None, sinkhole=None, mo_cmp=None, **kwargs)

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

load(addr, size=None, endness=None, page_addr=None, memory=None, cooperate=False, **kwargs)

store(addr, data, size=None, endness=None, memory=None, cooperate=False, **kwargs)

erase(addr, size=None, **kwargs)
Set [addr:addr+size) to uninitialized. In many cases this will be faster than overwriting those locations with
new values. This is commonly used during static data flow analysis.

Parameters
• addr – The address to start erasing.

• size – The number of bytes for erasing.

Return type
None

Returns
None

merge(others, merge_conditions, common_ancestor=None, page_addr=None, memory=None,
changed_offsets=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

362 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None

angr

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others (List[ListPage]) – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

• page_addr (int | None) –

• changed_offsets (Set[int] | None) –

Returns
True if the state plugins are actually merged.

Return type
bool

changed_bytes(other, page_addr=None)

Parameters
• other (ListPage) –

• page_addr (int | None) –

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage(memory=None,
init_zero=False,
**kwargs)

Bases: MemoryObjectMixin, PageBase

Default page implementation

SUPPORTS_CONCRETE_LOAD = True

10.5. Memory Mixins 363

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

__init__(memory=None, init_zero=False, **kwargs)

classmethod new_from_shared(data, memory=None, **kwargs)

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

load(addr, size=None, page_addr=None, endness=None, memory=None, cooperate=False, **kwargs)

store(addr, data, size=None, endness=None, memory=None, page_addr=None, cooperate=False,
**kwargs)

Parameters
• data (int | SimMemoryObject) –

• size (int | None) –

merge(others, merge_conditions, common_ancestor=None, page_addr=None, memory=None,
changed_offsets=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters

364 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

• others (List[UltraPage]) – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

• page_addr (int | None) –

• changed_offsets (Set[int] | None) –

Returns
True if the state plugins are actually merged.

Return type
bool

concrete_load(addr, size, **kwargs)
Set SUPPORTS_CONCRETE_LOAD to True and implement concrete_load if reading concrete bytes is
faster in this memory model.

Parameters
• addr – The address to load from.

• size – Size of the memory read.

• writing –

Returns
A memoryview into the loaded bytes.

changed_bytes(other, page_addr=None)

Return type
Set[int]

state: angr.SimState

replace_all_with_offsets(offsets, old, new, memory=None)

Parameters
• offsets (Iterable[int]) –

• old (BV) –

• new (BV) –

class angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin(write_targets_limit=2048,
read_targets_limit=4096,
stack_region_map=None,
generic_region_map=None,
stack_size=65536,
cle_memory_backer=None,
dict_memory_backer=None,
re-
gioned_memory_cls=None,
**kwargs)

Bases: MemoryMixin

Regioned memory. This mixin manages multiple memory regions. Each address is represented as a tuple of
(region ID, offset into the region), which is called a regioned address.

10.5. Memory Mixins 365

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV

angr

Converting absolute addresses into regioned addresses: We map an absolute address to a region by looking up
which region this address belongs to in the region map. Currently this is only enabled for stack. Heap support
has not landed yet.

When start analyzing a function, the user should call set_stack_address_mapping() to create a new region map-
ping. Likewise, when exiting from a function, the user should cancel the previous mapping by calling un-
set_stack_address_mapping().

Parameters
• write_targets_limit (int) –

• read_targets_limit (int) –

• stack_region_map (RegionMap | None) –

• generic_region_map (RegionMap | None) –

• stack_size (int) –

• cle_memory_backer (Optional) –

• dict_memory_backer (Dict | None) –

• regioned_memory_cls (type | None) –

__init__(write_targets_limit=2048, read_targets_limit=4096, stack_region_map=None,
generic_region_map=None, stack_size=65536, cle_memory_backer=None,
dict_memory_backer=None, regioned_memory_cls=None, **kwargs)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

load(addr, size=None, endness=None, condition=None, **kwargs)

Parameters
• size (BV | int | None) –

• condition (Bool | None) –

store(addr, data, size=None, endness=None, **kwargs)

Parameters
size (int | None) –

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to

366 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#type
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bool.Bool
https://docs.python.org/3/library/functions.html#int

angr

resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others (Iterable[RegionedMemoryMixin]) – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

find(addr, data, max_search, **kwargs)

Parameters
addr (int | Bits) –

set_state(state)
Sets a new state (for example, if the state has been branched)

replace_all(old, new)

Parameters
• old (BV) –

• new (BV) –

set_stack_address_mapping(absolute_address, region_id, related_function_address=None)
Create a new mapping between an absolute address (which is the base address of a specific stack frame)
and a region ID.

Parameters
• absolute_address (int) – The absolute memory address.

• region_id (str) – The region ID.

• related_function_address (Optional[int]) – Related function address.

10.5. Memory Mixins 367

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

angr

unset_stack_address_mapping(absolute_address)
Remove a stack mapping.

Parameters
absolute_address (int) – An absolute memory address that is the base address of the
stack frame to destroy.

stack_id(function_address)
Return a memory region ID for a function. If the default region ID exists in the region mapping, an integer
will appended to the region name. In this way we can handle recursive function calls, or a function that
appears more than once in the call frame.

This also means that stack_id() should only be called when creating a new stack frame for a function. You
are not supposed to call this function every time you want to map a function address to a stack ID.

Parameters
function_address (int) – Address of the function.

Return type
str

Returns
ID of the new memory region.

set_stack_size(size)

Parameters
size (int) –

state: angr.SimState

class angr.storage.memory_mixins.regioned_memory.region_data.AddressWrapper(region, re-
gion_base_addr,
address,
is_on_stack,
func-
tion_address)

Bases: object

AddressWrapper is used in SimAbstractMemory, which provides extra meta information for an address (or a
ValueSet object) that is normalized from an integer/BVV/StridedInterval.

Parameters
• region (str) –

• region_base_addr (int) –

• is_on_stack (bool) –

• function_address (int | None) –

__init__(region, region_base_addr, address, is_on_stack, function_address)
Constructor for the class AddressWrapper.

Parameters
• region (str) – Name of the memory regions it belongs to.

• region_base_addr (int) – Base address of the memory region

• address – An address (not a ValueSet object).

368 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

angr

• is_on_stack (bool) – Whether this address is on a stack region or not.

• function_address (Optional[int]) – Related function address (if any).

region

region_base_addr

address

is_on_stack

function_address

to_valueset(state)
Convert to a ValueSet instance

Parameters
state – A state

Returns
The converted ValueSet instance

class angr.storage.memory_mixins.regioned_memory.region_data.RegionDescriptor(region_id,
base_address,
re-
lated_function_address=None)

Bases: object

Descriptor for a memory region ID.

__init__(region_id, base_address, related_function_address=None)

region_id

base_address

related_function_address

class angr.storage.memory_mixins.regioned_memory.region_data.RegionMap(is_stack)
Bases: object

Mostly used in SimAbstractMemory, RegionMap stores a series of mappings between concrete memory address
ranges and memory regions, like stack frames and heap regions.

__init__(is_stack)
Constructor

Parameters
is_stack – Whether this is a region map for stack frames or not. Different strategies apply
for stack regions.

property is_empty

property stack_base

property region_ids

copy(memo=None, **kwargs)

10.5. Memory Mixins 369

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

map(absolute_address, region_id, related_function_address=None)
Add a mapping between an absolute address and a region ID. If this is a stack region map, all stack regions
beyond (lower than) this newly added regions will be discarded.

Parameters
• absolute_address – An absolute memory address.

• region_id – ID of the memory region.

• related_function_address – A related function address, mostly used for stack regions.

unmap_by_address(absolute_address)
Removes a mapping based on its absolute address.

Parameters
absolute_address – An absolute address

absolutize(region_id, relative_address)
Convert a relative address in some memory region to an absolute address.

Parameters
• region_id – The memory region ID

• relative_address – The relative memory offset in that memory region

Returns
An absolute address if converted, or an exception is raised when region id does not exist.

relativize(absolute_address, target_region_id=None)
Convert an absolute address to the memory offset in a memory region.

Note that if an address belongs to heap region is passed in to a stack region map, it will be converted to
an offset included in the closest stack frame, and vice versa for passing a stack address to a heap region.
Therefore you should only pass in address that belongs to the same category (stack or non-stack) of this
region map.

Parameters
absolute_address – An absolute memory address

Returns
A tuple of the closest region ID, the relative offset, and the related function address.

class angr.storage.memory_mixins.regioned_memory.region_category_mixin.RegionCategoryMixin(memory_id=None,
end-
ness='Iend_BE')

Bases: MemoryMixin

property category

reg, mem, or file.

Type
Return the category of this SimMemory instance. It can be one of the three following cate-
gories

state: angr.SimState

class angr.storage.memory_mixins.regioned_memory.static_find_mixin.StaticFindMixin(memory_id=None,
end-
ness='Iend_BE')

370 Chapter 10. API Reference

angr

Bases: SmartFindMixin

Implements data finding for abstract memory.

find(addr, data, max_search, default=None, endness=None, chunk_size=None, max_symbolic_bytes=None,
condition=None, char_size=1, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.regioned_memory.abstract_address_descriptor.
AbstractAddressDescriptor

Bases: object

AbstractAddressDescriptor describes a list of region+offset tuples. It provides a convenient way for accessing
the cardinality (the total number of addresses) without enumerating or creating all addresses in static mode.

__init__()

property cardinality

add_regioned_address(region, addr)

Parameters
• region (str) –

• addr (StridedInterval) –

clear()

class angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin(related_function_addr=None,
**kwargs)

Bases: MemoryMixin

__init__(related_function_addr=None, **kwargs)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

property is_stack

property related_function_addr

get_abstract_locations(addr, size)
Get a list of abstract locations that is within the range of [addr, addr + size]

This implementation is pretty slow. But since this method won’t be called frequently, we can live with the
bad implementation for now.

Parameters

10.5. Memory Mixins 371

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.vsa.strided_interval.StridedInterval

angr

• addr – Starting address of the memory region.

• size – Size of the memory region, in bytes.

Returns
A list of covered AbstractLocation objects, or an empty list if there is none.

store(addr, data, bbl_addr=None, stmt_id=None, ins_addr=None, endness=None, **kwargs)

load(addr, size=None, bbl_addr=None, stmt_idx=None, ins_addr=None, **kwargs)

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

372 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

Returns
True if the state plugin is actually widened.

Return type
bool

dbg_print(indent=0)
Print out debugging information

state: angr.SimState

class angr.storage.memory_mixins.regioned_memory.abstract_merger_mixin.AbstractMergerMixin(memory_id=None,
end-
ness='Iend_BE')

Bases: MemoryMixin

state: angr.SimState

class angr.storage.memory_mixins.regioned_memory.regioned_address_concretization_mixin.RegionedAddressConcretizationMixin(read_strategies=None,
write_strategies=None,
**kwargs)

Bases: MemoryMixin

__init__(read_strategies=None, write_strategies=None, **kwargs)

set_state(state)
Sets a new state (for example, if the state has been branched)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

10.5. Memory Mixins 373

https://docs.python.org/3/library/functions.html#bool

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

state: angr.SimState

class angr.storage.memory_mixins.slotted_memory.SlottedMemoryMixin(width=None, **kwargs)
Bases: MemoryMixin

__init__(width=None, **kwargs)

set_state(state)
Sets a new state (for example, if the state has been branched)

copy(memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

374 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

load(addr, size=None, endness=None, **kwargs)

store(addr, data, size=None, endness=None, **kwargs)

changed_bytes(other)

state: angr.SimState

class angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin.TypedVariable(type_,
value)

Bases: object

__init__(type_, value)

type

value

class angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin.KeyValueMemoryMixin(*args,
**kwargs)

Bases: MemoryMixin

__init__(*args, **kwargs)

load(key, none_if_missing=False, **kwargs)

store(key, data, type_=None, **kwargs)

10.5. Memory Mixins 375

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin(memory_id='mem',
stack=None,
heap=None,
vm_static_table=None,
load_strategies=None,
store_strategies=None,
max_array_size=1000,
**kwargs)

Bases: MemoryMixin

__init__(memory_id='mem', stack=None, heap=None, vm_static_table=None, load_strategies=None,
store_strategies=None, max_array_size=1000, **kwargs)

static get_new_uuid()

Generate a unique id within the scope of the JavaVM memory. This, for example, is used for distinguishing
memory objects of the same type (e.g. multiple instances of the same class).

store(addr, data, frame=0)

load(addr, frame=0, none_if_missing=False)

push_stack_frame()

pop_stack_frame()

property stack

store_array_element(array, idx, value)

store_array_elements(array, start_idx, data)
Stores either a single element or a range of elements in the array.

Parameters
• array – Reference to the array.

• start_idx – Starting index for the store.

• data – Either a single value or a list of values.

load_array_element(array, idx)

376 Chapter 10. API Reference

angr

load_array_elements(array, start_idx, no_of_elements)
Loads either a single element or a range of elements from the array.

Parameters
• array – Reference to the array.

• start_idx – Starting index for the load.

• no_of_elements – Number of elements to load.

concretize_store_idx(idx, strategies=None)
Concretizes a store index.

Parameters
• idx – An expression for the index.

• strategies – A list of concretization strategies (to override the default).

• min_idx – Minimum value for a concretized index (inclusive).

• max_idx – Maximum value for a concretized index (exclusive).

Returns
A list of concrete indexes.

concretize_load_idx(idx, strategies=None)
Concretizes a load index.

Parameters
• idx – An expression for the index.

• strategies – A list of concretization strategies (to override the default).

• min_idx – Minimum value for a concretized index (inclusive).

• max_idx – Maximum value for a concretized index (exclusive).

Returns
A list of concrete indexes.

set_state(state)
Sets a new state (for example, if the state has been branched)

copy(memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo – A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge(others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

10.5. Memory Mixins 377

angr

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
• others – the other state plugins to merge with

• merge_conditions – a symbolic condition for each of the plugins

• common_ancestor – a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)
The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others – the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

378 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

10.6 Concretization Strategies

class angr.concretization_strategies.single.SimConcretizationStrategySingle(filter=None,
exact=True)

Bases: SimConcretizationStrategy

Concretization strategy that ensures a single solution for an address.

class angr.concretization_strategies.eval.SimConcretizationStrategyEval(limit, **kwargs)
Bases: SimConcretizationStrategy

Concretization strategy that resolves an address into some limited number of solutions. Always handles the
concretization, but only returns a maximum of limit number of solutions. Therefore, should only be used as the
fallback strategy.

__init__(limit, **kwargs)
Initializes the base SimConcretizationStrategy.

Parameters
• filter – A function, taking arguments of (SimMemory, claripy.AST) that determins if

this strategy can handle resolving the provided AST.

• exact – A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

class angr.concretization_strategies.norepeats.SimConcretizationStrategyNorepeats(repeat_expr,
re-
peat_constraints=None,
**kwargs)

Bases: SimConcretizationStrategy

Concretization strategy that resolves addresses, without repeating.

__init__(repeat_expr, repeat_constraints=None, **kwargs)
Initializes the base SimConcretizationStrategy.

Parameters
• filter – A function, taking arguments of (SimMemory, claripy.AST) that determins if

this strategy can handle resolving the provided AST.

• exact – A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

copy()

Returns a copy of the strategy, if there is data that should be kept separate between states. If not, returns
self.

merge(others)
Merges this strategy with others (if there is data that should be kept separate between states. If not, is a
no-op.

class angr.concretization_strategies.solutions.SimConcretizationStrategySolutions(limit,
**kwargs)

Bases: SimConcretizationStrategy

Concretization strategy that resolves an address into some limited number of solutions.

10.6. Concretization Strategies 379

angr

__init__(limit, **kwargs)
Initializes the base SimConcretizationStrategy.

Parameters
• filter – A function, taking arguments of (SimMemory, claripy.AST) that determins if

this strategy can handle resolving the provided AST.

• exact – A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

class angr.concretization_strategies.nonzero_range.SimConcretizationStrategyNonzeroRange(limit,
**kwargs)

Bases: SimConcretizationStrategy

Concretization strategy that resolves a range in a non-zero location.

__init__(limit, **kwargs)
Initializes the base SimConcretizationStrategy.

Parameters
• filter – A function, taking arguments of (SimMemory, claripy.AST) that determins if

this strategy can handle resolving the provided AST.

• exact – A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

class angr.concretization_strategies.range.SimConcretizationStrategyRange(limit, **kwargs)
Bases: SimConcretizationStrategy

Concretization strategy that resolves addresses to a range.

__init__(limit, **kwargs)
Initializes the base SimConcretizationStrategy.

Parameters
• filter – A function, taking arguments of (SimMemory, claripy.AST) that determins if

this strategy can handle resolving the provided AST.

• exact – A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

class angr.concretization_strategies.max.SimConcretizationStrategyMax(max_addr=None)
Bases: SimConcretizationStrategy

Concretization strategy that returns the maximum address.

Parameters
max_addr (int | None) –

__init__(max_addr=None)
Initializes the base SimConcretizationStrategy.

Parameters
• filter – A function, taking arguments of (SimMemory, claripy.AST) that determins if

this strategy can handle resolving the provided AST.

• exact – A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

• max_addr (int | None) –

380 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

class angr.concretization_strategies.norepeats_range.SimConcretizationStrategyNorepeatsRange(repeat_expr,
min=None,
gran-
u-
lar-
ity=None,
**kwargs)

Bases: SimConcretizationStrategy

Concretization strategy that resolves a range, with no repeats.

__init__(repeat_expr, min=None, granularity=None, **kwargs)
Initializes the base SimConcretizationStrategy.

Parameters
• filter – A function, taking arguments of (SimMemory, claripy.AST) that determins if

this strategy can handle resolving the provided AST.

• exact – A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

copy()

Returns a copy of the strategy, if there is data that should be kept separate between states. If not, returns
self.

merge(others)
Merges this strategy with others (if there is data that should be kept separate between states. If not, is a
no-op.

class angr.concretization_strategies.nonzero.SimConcretizationStrategyNonzero(filter=None,
exact=True)

Bases: SimConcretizationStrategy

Concretization strategy that returns any non-zero solution.

class angr.concretization_strategies.any.SimConcretizationStrategyAny(filter=None,
exact=True)

Bases: SimConcretizationStrategy

Concretization strategy that returns any single solution.

class angr.concretization_strategies.controlled_data.SimConcretizationStrategyControlledData(limit,
fixed_addrs,
**kwargs)

Bases: SimConcretizationStrategy

Concretization strategy that constraints the address to controlled data. Controlled data consists of symbolic data
and the addresses given as arguments. memory.

__init__(limit, fixed_addrs, **kwargs)
Initializes the base SimConcretizationStrategy.

Parameters
• filter – A function, taking arguments of (SimMemory, claripy.AST) that determins if

this strategy can handle resolving the provided AST.

• exact – A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

10.6. Concretization Strategies 381

angr

class angr.concretization_strategies.unlimited_range.SimConcretizationStrategyUnlimitedRange(limit,
**kwargs)

Bases: SimConcretizationStrategy

Concretization strategy that resolves addresses to a range without checking if the number of possible addresses
is within the limit.

__init__(limit, **kwargs)
Initializes the base SimConcretizationStrategy.

Parameters
• filter – A function, taking arguments of (SimMemory, claripy.AST) that determins if

this strategy can handle resolving the provided AST.

• exact – A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

10.7 Simulation Manager

class angr.sim_manager.SimulationManager(project, active_states=None, stashes=None, hierarchy=None,
resilience=None, save_unsat=False, auto_drop=None,
errored=None, completion_mode=<built-in function any>,
techniques=None, suggestions=True, **kwargs)

Bases: object

The Simulation Manager is the future future.

Simulation managers allow you to wrangle multiple states in a slick way. States are organized into “stashes”,
which you can step forward, filter, merge, and move around as you wish. This allows you to, for example, step
two different stashes of states at different rates, then merge them together.

Stashes can be accessed as attributes (i.e. .active). A mulpyplexed stash can be retrieved by prepending the name
with mp_, e.g. .mp_active. A single state from the stash can be retrieved by prepending the name with one_, e.g.
.one_active.

Note that you shouldn’t usually be constructing SimulationManagers directly - there is a convenient shortcut for
creating them in Project.factory: see angr.factory.AngrObjectFactory.

The most important methods you should look at are step, explore, and use_technique.

Parameters
• project (angr.project.Project) – A Project instance.

• stashes – A dictionary to use as the stash store.

• active_states – Active states to seed the “active” stash with.

• hierarchy – A StateHierarchy object to use to track the relationships between states.

• resilience – A set of errors to catch during stepping to put a state in the errore list. You
may also provide the values False, None (default), or True to catch, respectively, no errors,
all angr-specific errors, and a set of many common errors.

• save_unsat – Set to True in order to introduce unsatisfiable states into the unsat stash
instead of discarding them immediately.

• auto_drop – A set of stash names which should be treated as garbage chutes.

382 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

• completion_mode – A function describing how multiple exploration techniques with the
complete hook set will interact. By default, the builtin function any.

• techniques – A list of techniques that should be pre-set to use with this manager.

• suggestions – Whether to automatically install the Suggestions exploration technique. De-
fault True.

Variables
• errored – Not a stash, but a list of ErrorRecords. Whenever a step raises an exception that

we catch, the state and some information about the error are placed in this list. You can adjust
the list of caught exceptions with the resilience parameter.

• stashes – All the stashes on this instance, as a dictionary.

• completion_mode – A function describing how multiple exploration techniques with the
complete hook set will interact. By default, the builtin function any.

ALL = '_ALL'

DROP = '_DROP'

__init__(project, active_states=None, stashes=None, hierarchy=None, resilience=None, save_unsat=False,
auto_drop=None, errored=None, completion_mode=<built-in function any>, techniques=None,
suggestions=True, **kwargs)

active: List[SimState]

stashed: List[SimState]

pruned: List[SimState]

unsat: List[SimState]

deadended: List[SimState]

unconstrained: List[SimState]

found: List[SimState]

one_active: SimState

one_stashed: SimState

one_pruned: SimState

one_unsat: SimState

one_deadended: SimState

one_unconstrained: SimState

one_found: SimState

property errored

property stashes: DefaultDict[str, List[SimState]]

10.7. Simulation Manager 383

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.DefaultDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List

angr

mulpyplex(*stashes)
Mulpyplex across several stashes.

Parameters
stashes – the stashes to mulpyplex

Returns
a mulpyplexed list of states from the stashes in question, in the specified order

copy(deep=False)
Make a copy of this simulation manager. Pass deep=True to copy all the states in it as well.

If the current callstack includes hooked methods, the already-called methods will not be included in the
copy.

use_technique(tech)
Use an exploration technique with this SimulationManager.

Techniques can be found in angr.exploration_techniques.

Parameters
tech (ExplorationTechnique) – An ExplorationTechnique object that contains code to
modify this SimulationManager’s behavior.

Returns
The technique that was added, for convenience

remove_technique(tech)
Remove an exploration technique from a list of active techniques.

Parameters
tech (ExplorationTechnique) – An ExplorationTechnique object.

explore(stash='active', n=None, find=None, avoid=None, find_stash='found', avoid_stash='avoid',
cfg=None, num_find=1, avoid_priority=False, **kwargs)

Tick stash “stash” forward (up to “n” times or until “num_find” states are found), looking for condi-
tion “find”, avoiding condition “avoid”. Stores found states into “find_stash’ and avoided states into
“avoid_stash”.

The “find” and “avoid” parameters may be any of:

• An address to find

• A set or list of addresses to find

• A function that takes a state and returns whether or not it matches.

If an angr CFG is passed in as the “cfg” parameter and “find” is either a number or a list or a set, then any
states which cannot possibly reach a success state without going through a failure state will be preemptively
avoided.

run(stash='active', n=None, until=None, **kwargs)
Run until the SimulationManager has reached a completed state, according to the current exploration tech-
niques. If no exploration techniques that define a completion state are being used, run until there is nothing
left to run.

Parameters
• stash – Operate on this stash

• n – Step at most this many times

384 Chapter 10. API Reference

angr

• until – If provided, should be a function that takes a SimulationManager and returns True
or False. Stepping will terminate when it is True.

Returns
The simulation manager, for chaining.

Return type
SimulationManager

complete()

Returns whether or not this manager has reached a “completed” state.

step(stash='active', target_stash=None, n=None, selector_func=None, step_func=None, error_list=None,
successor_func=None, until=None, filter_func=None, **run_args)

Step a stash of states forward and categorize the successors appropriately.

The parameters to this function allow you to control everything about the stepping and categorization pro-
cess.

Parameters
• stash – The name of the stash to step (default: ‘active’)

• target_stash – The name of the stash to put the results in (default: same as stash)

• error_list – The list to put ErroredState objects in (default: self.errored)

• selector_func – If provided, should be a function that takes a state and returns a boolean.
If True, the state will be stepped. Otherwise, it will be kept as-is.

• step_func – If provided, should be a function that takes a SimulationManager and returns
a SimulationManager. Will be called with the SimulationManager at every step. Note that
this function should not actually perform any stepping - it is meant to be a maintenance
function called after each step.

• successor_func – If provided, should be a function that takes a state and return its suc-
cessors. Otherwise, project.factory.successors will be used.

• filter_func – If provided, should be a function that takes a state and return the name of
the stash, to which the state should be moved.

• until – (DEPRECATED) If provided, should be a function that takes a SimulationMan-
ager and returns True or False. Stepping will terminate when it is True.

• n – (DEPRECATED) The number of times to step (default: 1 if “until” is not provided)

Additionally, you can pass in any of the following keyword args for project.factory.successors:

Parameters
• jumpkind – The jumpkind of the previous exit

• addr – An address to execute at instead of the state’s ip.

• stmt_whitelist – A list of stmt indexes to which to confine execution.

• last_stmt – A statement index at which to stop execution.

• thumb – Whether the block should be lifted in ARM’s THUMB mode.

• backup_state – A state to read bytes from instead of using project memory.

• opt_level – The VEX optimization level to use.

• insn_bytes – A string of bytes to use for the block instead of the project.

10.7. Simulation Manager 385

angr

• size – The maximum size of the block, in bytes.

• num_inst – The maximum number of instructions.

• traceflags – traceflags to be passed to VEX. Default: 0

Returns
The simulation manager, for chaining.

Return type
SimulationManager

step_state(state, successor_func=None, error_list=None, **run_args)
Don’t use this function manually - it is meant to interface with exploration techniques.

filter(state, filter_func=None)
Don’t use this function manually - it is meant to interface with exploration techniques.

selector(state, selector_func=None)
Don’t use this function manually - it is meant to interface with exploration techniques.

successors(state, successor_func=None, **run_args)
Don’t use this function manually - it is meant to interface with exploration techniques.

prune(filter_func=None, from_stash='active', to_stash='pruned')
Prune unsatisfiable states from a stash.

This function will move all unsatisfiable states in the given stash into a different stash.

Parameters
• filter_func – Only prune states that match this filter.

• from_stash – Prune states from this stash. (default: ‘active’)

• to_stash – Put pruned states in this stash. (default: ‘pruned’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

populate(stash, states)
Populate a stash with a collection of states.

Parameters
• stash – A stash to populate.

• states – A list of states with which to populate the stash.

absorb(simgr)
Collect all the states from simgr and put them in their corresponding stashes in this manager. This will not
modify simgr.

move(from_stash, to_stash, filter_func=None)
Move states from one stash to another.

Parameters
• from_stash – Take matching states from this stash.

• to_stash – Put matching states into this stash.

386 Chapter 10. API Reference

angr

• filter_func – Stash states that match this filter. Should be a function that takes a state
and returns True or False. (default: stash all states)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

stash(filter_func=None, from_stash='active', to_stash='stashed')
Stash some states. This is an alias for move(), with defaults for the stashes.

Parameters
• filter_func – Stash states that match this filter. Should be a function that takes a state

and returns True or False. (default: stash all states)

• from_stash – Take matching states from this stash. (default: ‘active’)

• to_stash – Put matching states into this stash. (default: ‘stashed’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

unstash(filter_func=None, to_stash='active', from_stash='stashed')
Unstash some states. This is an alias for move(), with defaults for the stashes.

Parameters
• filter_func – Unstash states that match this filter. Should be a function that takes a state

and returns True or False. (default: unstash all states)

• from_stash – take matching states from this stash. (default: ‘stashed’)

• to_stash – put matching states into this stash. (default: ‘active’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

drop(filter_func=None, stash='active')
Drops states from a stash. This is an alias for move(), with defaults for the stashes.

Parameters
• filter_func – Drop states that match this filter. Should be a function that takes a state

and returns True or False. (default: drop all states)

• stash – Drop matching states from this stash. (default: ‘active’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

apply(state_func=None, stash_func=None, stash='active', to_stash=None)
Applies a given function to a given stash.

Parameters

10.7. Simulation Manager 387

angr

• state_func – A function to apply to every state. Should take a state and return a state.
The returned state will take the place of the old state. If the function doesn’t return a state,
the old state will be used. If the function returns a list of states, they will replace the original
states.

• stash_func – A function to apply to the whole stash. Should take a list of states and return
a list of states. The resulting list will replace the stash. If both state_func and stash_func
are provided state_func is applied first, then stash_func is applied on the results.

• stash – A stash to work with.

• to_stash – If specified, this stash will be used to store the resulting states instead.

Returns
The simulation manager, for chaining.

Return type
SimulationManager

split(stash_splitter=None, stash_ranker=None, state_ranker=None, limit=8, from_stash='active',
to_stash='stashed')

Split a stash of states into two stashes depending on the specified options.

The stash from_stash will be split into two stashes depending on the other options passed in. If to_stash is
provided, the second stash will be written there.

stash_splitter overrides stash_ranker, which in turn overrides state_ranker. If no functions are provided, the
states are simply split according to the limit.

The sort done with state_ranker is ascending.

Parameters
• stash_splitter – A function that should take a list of states and return a tuple of two

lists (the two resulting stashes).

• stash_ranker – A function that should take a list of states and return a sorted list of states.
This list will then be split according to “limit”.

• state_ranker – An alternative to stash_splitter. States will be sorted with outputs of this
function, which are to be used as a key. The first “limit” of them will be kept, the rest split
off.

• limit – For use with state_ranker. The number of states to keep. Default: 8

• from_stash – The stash to split (default: ‘active’)

• to_stash – The stash to write to (default: ‘stashed’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

merge(merge_func=None, merge_key=None, stash='active', prune=True)
Merge the states in a given stash.

Parameters
• stash – The stash (default: ‘active’)

• merge_func – If provided, instead of using state.merge, call this function with the states
as the argument. Should return the merged state.

388 Chapter 10. API Reference

angr

• merge_key – If provided, should be a function that takes a state and returns a key that will
compare equal for all states that are allowed to be merged together, as a first aproximation.
By default: uses PC, callstack, and open file descriptors.

• prune – Whether to prune the stash prior to merging it

Returns
The simulation manager, for chaining.

Return type
SimulationManager

class angr.sim_manager.ErrorRecord(state, error, traceback)
Bases: object

A container class for a state and an error that was thrown during its execution. You can find these in Simulation-
Manager.errored.

Variables
• state – The state that encountered an error, at the point in time just before the erroring step

began.

• error – The error that was thrown.

• traceback – The traceback for the error that was thrown.

__init__(state, error, traceback)

debug()

Launch a postmortem debug shell at the site of the error.

reraise()

class angr.state_hierarchy.StateHierarchy

Bases: object

The state hierarchy holds weak references to SimStateHistory objects in a directed acyclic graph. It is useful
for queries about a state’s ancestry, notably “what is the best ancestor state for a merge among these states” and
“what is the most recent unsatisfiable state while using LAZY_SOLVES”

__init__()

get_ref(obj)

dead_ref(ref)

defer_cleanup()

add_state(s)

add_history(h)

simplify()

full_simplify()

lineage(h)
Returns the lineage of histories leading up to h.

all_successors(h)

10.7. Simulation Manager 389

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

history_successors(h)

history_predecessors(h)

history_contains(h)

unreachable_state(state)

unreachable_history(h)

most_mergeable(states)
Find the “most mergeable” set of states from those provided.

Parameters
states – a list of states

Returns
a tuple of: (list of states to merge, those states’ common history, list of states to not merge
yet)

10.8 Exploration Techniques

class angr.exploration_techniques.ExplorationTechnique

Bases: object

An otiegnqwvk is a set of hooks for a simulation manager that assists in the implementation of new techniques
in symbolic exploration.

TODO: choose actual name for the functionality (techniques? strategies?)

Any number of these methods may be overridden by a subclass. To use an exploration technique, call simgr.
use_technique with an instance of the technique.

__init__()

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

filter(simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.

390 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

angr

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

selector(simgr, state, **kwargs)
Determine if a state should participate in the current round of stepping. Return True if the state should be
stepped, and False if the state should not be stepped. To defer to the original selection procedure, return
the result of simgr.selector(state, **kwargs).

If the user provided a selector_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

step_state(simgr, state, **kwargs)
Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to
look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

successors(simgr, state, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

complete(simgr)
Return whether or not this manager has reached a “completed” state, i.e. SimulationManager.run()
should halt.

This is the one hook which is not subject to the nesting rules of hooks. You should not call simgr.
complete, you should make your own decision and return True or False. Each of the techniques’ comple-
tion checkers will be called and the final result will be compted with simgr.completion_mode.

Parameters
simgr (angr.SimulationManager) –

10.8. Exploration Techniques 391

angr

class angr.exploration_techniques.Slicecutor(annotated_cfg, force_taking_exit=False,
force_sat=False)

Bases: ExplorationTechnique

The Slicecutor is an exploration that executes provided code slices.

Parameters
force_sat (bool) –

__init__(annotated_cfg, force_taking_exit=False, force_sat=False)
All parameters except annotated_cfg are optional.

Parameters
• annotated_cfg – The AnnotatedCFG that provides the code slice.

• force_taking_exit – Set to True if you want to create a successor based on our slice in
case of unconstrained successors.

• force_sat (bool) – If a branch specified by the slice is unsatisfiable, set this option to
True if you want to force it to be satisfiable and be taken anyway.

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

filter(simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

step_state(simgr, state, **kwargs)
Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to
look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

392 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

successors(simgr, state, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.DrillerCore(trace, fuzz_bitmap=None)
Bases: ExplorationTechnique

An exploration technique that symbolically follows an input looking for new state transitions.

It has to be used with Tracer exploration technique. Results are put in ‘diverted’ stash.

__init__(trace, fuzz_bitmap=None)
:param trace : The basic block trace. :type fuzz_bitmap: :param fuzz_bitmap: AFL’s bitmap of state
transitions. Defaults to saying every transition is worth satisfying.

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

class angr.exploration_techniques.LoopSeer(cfg=None, functions=None, loops=None,
use_header=False, bound=None, bound_reached=None,
discard_stash='spinning', limit_concrete_loops=True)

Bases: ExplorationTechnique

This exploration technique monitors exploration and maintains all loop-related data (well, currently it is just the
loop trip counts, but feel free to add something else).

__init__(cfg=None, functions=None, loops=None, use_header=False, bound=None, bound_reached=None,
discard_stash='spinning', limit_concrete_loops=True)

Parameters
• cfg – Normalized CFG is required.

• functions – Function(s) containing the loop(s) to be analyzed.

• loops – Specific group of Loop(s) to be analyzed, if this is None we run the LoopFinder
analysis.

10.8. Exploration Techniques 393

https://docs.python.org/3/library/stdtypes.html#str

angr

• use_header – Whether to use header based trip counter to compare with the bound limit.

• bound – Limit the number of iterations a loop may be executed.

• bound_reached – If provided, should be a function that takes the LoopSeer and the
succ_state. Will be called when loop execution reach the given bound. Default to mov-
ing states that exceed the loop limit to a discard stash.

• discard_stash – Name of the stash containing states exceeding the loop limit.

• limit_concrete_loops – If False, do not limit a loop back-edge if it is the only successor
(Defaults to True to maintain the original behavior)

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

filter(simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

successors(simgr, state, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.Tracer(trace=None, resiliency=False, keep_predecessors=1,
crash_addr=None, syscall_data=None, copy_states=False,
fast_forward_to_entry=True, mode='strict', aslr=True,
follow_unsat=False)

Bases: ExplorationTechnique

An exploration technique that follows an angr path with a concrete input. The tracing result is the state at the last
address of the trace, which can be found in the ‘traced’ stash.

If the given concrete input makes the program crash, you should provide crash_addr, and the crashing state will
be found in the ‘crashed’ stash.

Parameters

394 Chapter 10. API Reference

angr

• trace – The basic block trace.

• resiliency – Should we continue to step forward even if qemu and angr disagree?

• keep_predecessors – Number of states before the final state we should log.

• crash_addr – If the trace resulted in a crash, provide the crashing instruction pointer here,
and the ‘crashed’ stash will be populated with the crashing state.

• syscall_data – Data related to various syscalls recorded by tracer for replaying

• copy_states – Whether COPY_STATES should be enabled for the tracing state. It is off
by default because most tracing workloads benefit greatly from not performing copying. You
want to enable it if you want to see the missed states. It will be re-added for the last 2% of
the trace in order to set the predecessors list correctly. If you turn this on you may want to
enable the LAZY_SOLVES option.

• mode – Tracing mode.

• aslr – Whether there are aslr slides. if not, tracer uses trace address as state address.

• follow_unsat – Whether unsatisfiable states should be treated as potential successors or
not.

Variables
predecessors – A list of states in the history before the final state.

__init__(trace=None, resiliency=False, keep_predecessors=1, crash_addr=None, syscall_data=None,
copy_states=False, fast_forward_to_entry=True, mode='strict', aslr=True, follow_unsat=False)

set_fd_data(fd_data)
Set concrete bytes of various fds read by the program

Parameters
fd_data (Dict[int, bytes]) –

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

complete(simgr)
Return whether or not this manager has reached a “completed” state, i.e. SimulationManager.run()
should halt.

This is the one hook which is not subject to the nesting rules of hooks. You should not call simgr.
complete, you should make your own decision and return True or False. Each of the techniques’ comple-
tion checkers will be called and the final result will be compted with simgr.completion_mode.

Parameters
simgr (angr.SimulationManager) –

filter(simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.

10.8. Exploration Techniques 395

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes

angr

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

step_state(simgr, state, **kwargs)
Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to
look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

classmethod crash_windup(state, crash_addr)

class angr.exploration_techniques.Explorer(find=None, avoid=None, find_stash='found',
avoid_stash='avoid', cfg=None, num_find=1,
avoid_priority=False)

Bases: ExplorationTechnique

Search for up to “num_find” paths that satisfy condition “find”, avoiding condition “avoid”. Stashes found paths
into “find_stash’ and avoided paths into “avoid_stash”.

The “find” and “avoid” parameters may be any of:

• An address to find

• A set or list of addresses to find

• A function that takes a path and returns whether or not it matches.

If an angr CFG is passed in as the “cfg” parameter and “find” is either a number or a list or a set, then any paths
which cannot possibly reach a success state without going through a failure state will be preemptively avoided.

If either the “find” or “avoid” parameter is a function returning a boolean, and a path triggers both conditions, it
will be added to the find stash, unless “avoid_priority” is set to True.

__init__(find=None, avoid=None, find_stash='found', avoid_stash='avoid', cfg=None, num_find=1,
avoid_priority=False)

396 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str

angr

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

filter(simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

complete(simgr)
Return whether or not this manager has reached a “completed” state, i.e. SimulationManager.run()
should halt.

This is the one hook which is not subject to the nesting rules of hooks. You should not call simgr.
complete, you should make your own decision and return True or False. Each of the techniques’ comple-
tion checkers will be called and the final result will be compted with simgr.completion_mode.

Parameters
simgr (angr.SimulationManager) –

class angr.exploration_techniques.Threading(threads=8, local_stash='thread_local')
Bases: ExplorationTechnique

Enable multithreading.

This is only useful in paths where a lot of time is taken inside z3, doing constraint solving. This is because of
python’s GIL, which says that only one thread at a time may be executing python code.

__init__(threads=8, local_stash='thread_local')

step(simgr, stash='active', error_list=None, target_stash=None, **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

10.8. Exploration Techniques 397

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

inner_step(state, simgr, **kwargs)

successors(simgr, state, engine=None, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.DFS(deferred_stash='deferred')
Bases: ExplorationTechnique

Depth-first search.

Will only keep one path active at a time, any others will be stashed in the ‘deferred’ stash. When we run out of
active paths to step, we take the longest one from deferred and continue.

__init__(deferred_stash='deferred')

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

class angr.exploration_techniques.LengthLimiter(max_length, drop=False)
Bases: ExplorationTechnique

Length limiter on paths.

__init__(max_length, drop=False)

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

398 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

class angr.exploration_techniques.Veritesting(**options)
Bases: ExplorationTechnique

Enable veritesting. This technique, described in a paper[1] from CMU, attempts to address the problem of state
explosions in loops by performing smart merging.

[1] https://users.ece.cmu.edu/~aavgerin/papers/veritesting-icse-2014.pdf

__init__(**options)

step_state(simgr, state, successor_func=None, **kwargs)
Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to
look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.Oppologist

Bases: ExplorationTechnique

The Oppologist is an exploration technique that forces uncooperative code through qemu.

__init__()

successors(simgr, state, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.Director(peek_blocks=100, peek_functions=5, goals=None,
cfg_keep_states=False, goal_satisfied_callback=None,
num_fallback_states=5)

Bases: ExplorationTechnique

An exploration technique for directed symbolic execution.

A control flow graph (using CFGEmulated) is built and refined during symbolic execution. Each time the ex-
ecution reaches a block that is outside of the CFG, the CFG recovery will be triggered with that state, with a
maximum recovery depth (100 by default). If we see a basic block during state stepping that is not yet in the
control flow graph, we go back to control flow graph recovery and “peek” more blocks forward.

10.8. Exploration Techniques 399

https://users.ece.cmu.edu/~aavgerin/papers/veritesting-icse-2014.pdf

angr

When stepping a simulation manager, all states are categorized into three different categories:

• Might reach the destination within the peek depth. Those states are prioritized.

• Will not reach the destination within the peek depth. Those states are de-prioritized. However, there is a
little chance for those states to be explored as well in order to prevent over-fitting.

__init__(peek_blocks=100, peek_functions=5, goals=None, cfg_keep_states=False,
goal_satisfied_callback=None, num_fallback_states=5)

Constructor.

step(simgr, stash='active', **kwargs)

Parameters
• simgr –

• stash –

• kwargs –

Returns
add_goal(goal)

Add a goal.

Parameters
goal (BaseGoal) – The goal to add.

Returns
None

class angr.exploration_techniques.ExecuteAddressGoal(addr)
Bases: BaseGoal

A goal that prioritizes states reaching (or are likely to reach) certain address in some specific steps.

__init__(addr)

check(cfg, state, peek_blocks)
Check if the specified address will be executed

Parameters
• cfg –

• state –

• peek_blocks (int) –

Returns
Return type

bool

check_state(state)
Check if the current address is the target address.

Parameters
state (angr.SimState) – The state to check.

Returns
True if the current address is the target address, False otherwise.

400 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

Return type
bool

class angr.exploration_techniques.CallFunctionGoal(function, arguments)
Bases: BaseGoal

A goal that prioritizes states reaching certain function, and optionally with specific arguments. Note that con-
straints on arguments (and on function address as well) have to be identifiable on an accurate CFG. For example,
you may have a CallFunctionGoal saying “call printf with the first argument being ‘Hello, world’”, and CFGEm-
ulated must be able to figure our the first argument to printf is in fact “Hello, world”, not some symbolic strings
that will be constrained to “Hello, world” during symbolic execution (or simulation, however you put it).

REQUIRE_CFG_STATES = True

__init__(function, arguments)

check(cfg, state, peek_blocks)
Check if the specified function will be reached with certain arguments.

Parameters
• cfg –

• state –

• peek_blocks –

Returns
check_state(state)

Check if the specific function is reached with certain arguments

Parameters
state (angr.SimState) – The state to check

Returns
True if the function is reached with certain arguments, False otherwise.

Return type
bool

class angr.exploration_techniques.Spiller(src_stash='active', min=5, max=10,
staging_stash='spill_stage', staging_min=10,
staging_max=20, pickle_callback=None,
unpickle_callback=None, post_pickle_callback=None,
priority_key=None, vault=None, states_collection=None)

Bases: ExplorationTechnique

Automatically spill states out. It can spill out states to a different stash, spill them out to ANA, or first do the
former and then (after enough states) the latter.

__init__(src_stash='active', min=5, max=10, staging_stash='spill_stage', staging_min=10,
staging_max=20, pickle_callback=None, unpickle_callback=None, post_pickle_callback=None,
priority_key=None, vault=None, states_collection=None)

Initializes the spiller.

Parameters
• max – the number of states that are not spilled

• src_stash – the stash from which to spill states (default: active)

• staging_stash – the stash to which to spill states (default: “spill_stage”)

10.8. Exploration Techniques 401

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• staging_max – the number of states that can be in the staging stash before things get spilled
to ANA (default: None. If staging_stash is set, then this means unlimited, and ANA will
not be used).

• priority_key – a function that takes a state and returns its numerical priority (MAX_INT
is lowest priority). By default, self.state_priority will be used, which prioritizes by object
ID.

• vault – an angr.Vault object to handle storing and loading of states. If not provided, an
angr.vaults.VaultShelf will be created with a temporary file.

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

static state_priority(state)

class angr.exploration_techniques.ManualMergepoint(address, wait_counter=10, prune=True)
Bases: ExplorationTechnique

__init__(address, wait_counter=10, prune=True)

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

mark_nofilter(simgr, stash)

mark_okfilter(simgr, stash)

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

class angr.exploration_techniques.TechniqueBuilder(setup=None, step_state=None, step=None,
successors=None, filter=None, selector=None,
complete=None)

Bases: ExplorationTechnique

This meta technique could be used to hook a couple of simulation manager methods without actually creating a
new exploration technique, for example:

class SomeComplexAnalysis(Analysis):

def do_something():
simgr = self.project.factory.simulation_manager() simgr.use_tech(ProxyTechnique(step_state=self._step_state))
simgr.run()

402 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

def _step_state(self, state):
Do stuff! pass

In the above example, the _step_state method can access all the necessary stuff, hidden in the analysis instance,
without passing that instance to a one-shot-styled exploration technique.

__init__(setup=None, step_state=None, step=None, successors=None, filter=None, selector=None,
complete=None)

class angr.exploration_techniques.StochasticSearch(start_state, restart_prob=0.0001)
Bases: ExplorationTechnique

Stochastic Search.

Will only keep one path active at a time, any others will be discarded. Before each pass through, weights are
randomly assigned to each basic block. These weights form a probability distribution for determining which
state remains after splits. When we run out of active paths to step, we start again from the start state.

__init__(start_state, restart_prob=0.0001)

Parameters
• start_state – The initial state from which exploration stems.

• restart_prob – The probability of randomly restarting the search (default 0.0001).

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

class angr.exploration_techniques.UniqueSearch(similarity_func=None, deferred_stash='deferred')
Bases: ExplorationTechnique

Unique Search.

Will only keep one path active at a time, any others will be deferred. The state that is explored depends on
how unique it is relative to the other deferred states. A path’s uniqueness is determined by its average similarity
between the other (deferred) paths. Similarity is calculated based on the supplied similarity_func, which by
default is: The (L2) distance between the counts of the state addresses in the history of the path.

__init__(similarity_func=None, deferred_stash='deferred')

Parameters
• similarity_func – How to calculate similarity between two states.

• deferred_stash – Where to store the deferred states.

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

10.8. Exploration Techniques 403

https://docs.python.org/3/library/stdtypes.html#str

angr

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

static similarity(state_a, state_b)
The (L2) distance between the counts of the state addresses in the history of the path. :type state_a: :param
state_a: The first state to compare :type state_b: :param state_b: The second state to compare

static sequence_matcher_similarity(state_a, state_b)
The difflib.SequenceMatcher ratio between the state addresses in the history of the path. :type state_a:
:param state_a: The first state to compare :type state_b: :param state_b: The second state to compare

class angr.exploration_techniques.Symbion(find=None, memory_concretize=None,
register_concretize=None, timeout=0, find_stash='found')

Bases: ExplorationTechnique

The Symbion exploration technique uses the SimEngineConcrete available to step a SimState.

Parameters
• find – address or list of addresses that we want to reach, these will be translated into break-

points inside the concrete process using the ConcreteTarget interface provided by the user
inside the SimEngineConcrete.

• memory_concretize – list of tuples (address, symbolic variable) that are going to be written
in the concrete process memory.

• register_concretize – list of tuples (reg_name, symbolic variable) that are going to be
written

• timeout – how long we should wait the concrete target to reach the breakpoint

__init__(find=None, memory_concretize=None, register_concretize=None, timeout=0, find_stash='found')

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

step_state(simgr, *args, **kwargs)
Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

404 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to
look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

complete(simgr)
Return whether or not this manager has reached a “completed” state, i.e. SimulationManager.run()
should halt.

This is the one hook which is not subject to the nesting rules of hooks. You should not call simgr.
complete, you should make your own decision and return True or False. Each of the techniques’ comple-
tion checkers will be called and the final result will be compted with simgr.completion_mode.

Parameters
simgr (angr.SimulationManager) –

class angr.exploration_techniques.MemoryWatcher(min_memory=512, memory_stash='lowmem')
Bases: ExplorationTechnique

Memory Watcher

Parameters
• min_memory (int,optional) – Minimum amount of free memory in MB before stopping

execution (default: 95% memory use)

• memory_stash (str, optional) – What to call the low memory stash (default:
‘lowmem’)

At each step, keep an eye on how much memory is left on the system. Stash off states to effectively stop execution
if we’re below a given threshold.

__init__(min_memory=512, memory_stash='lowmem')

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

class angr.exploration_techniques.Bucketizer

Bases: ExplorationTechnique

Loop bucketization: Pick log(n) paths out of n possible paths, and stash (or drop) everything else.

10.8. Exploration Techniques 405

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

__init__()

successors(simgr, state, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.LocalLoopSeer(bound=None, bound_reached=None,
discard_stash='spinning')

Bases: ExplorationTechnique

LocalLoopSeer monitors exploration and maintains all loop-related data without relying on a control flow graph.

__init__(bound=None, bound_reached=None, discard_stash='spinning')

Parameters
• bound – Limit the number of iterations a loop may be executed.

• bound_reached – If provided, should be a function that takes the LoopSeer and the
succ_state. Will be called when loop execution reach the given bound. Default to mov-
ing states that exceed the loop limit to a discard stash.

• discard_stash – Name of the stash containing states exceeding the loop limit.

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

filter(simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

successors(simgr, state, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

406 Chapter 10. API Reference

angr

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.Timeout(timeout=None)
Bases: ExplorationTechnique

Timeout exploration technique that stops an active exploration if the run time exceeds a predefined timeout

__init__(timeout=None)

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

class angr.exploration_techniques.Suggestions

Bases: ExplorationTechnique

An exploration technique which analyzes failure cases and logs suggestions for how to mitigate them in future
analyses.

__init__()

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

static report(state, event)

class angr.exploration_techniques.timeout.Timeout(timeout=None)
Bases: ExplorationTechnique

Timeout exploration technique that stops an active exploration if the run time exceeds a predefined timeout

__init__(timeout=None)

10.8. Exploration Techniques 407

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

class angr.exploration_techniques.dfs.DFS(deferred_stash='deferred')
Bases: ExplorationTechnique

Depth-first search.

Will only keep one path active at a time, any others will be stashed in the ‘deferred’ stash. When we run out of
active paths to step, we take the longest one from deferred and continue.

__init__(deferred_stash='deferred')

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

class angr.exploration_techniques.explorer.Explorer(find=None, avoid=None, find_stash='found',
avoid_stash='avoid', cfg=None, num_find=1,
avoid_priority=False)

Bases: ExplorationTechnique

Search for up to “num_find” paths that satisfy condition “find”, avoiding condition “avoid”. Stashes found paths
into “find_stash’ and avoided paths into “avoid_stash”.

The “find” and “avoid” parameters may be any of:

• An address to find

• A set or list of addresses to find

• A function that takes a path and returns whether or not it matches.

If an angr CFG is passed in as the “cfg” parameter and “find” is either a number or a list or a set, then any paths
which cannot possibly reach a success state without going through a failure state will be preemptively avoided.

408 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

If either the “find” or “avoid” parameter is a function returning a boolean, and a path triggers both conditions, it
will be added to the find stash, unless “avoid_priority” is set to True.

__init__(find=None, avoid=None, find_stash='found', avoid_stash='avoid', cfg=None, num_find=1,
avoid_priority=False)

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

filter(simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

complete(simgr)
Return whether or not this manager has reached a “completed” state, i.e. SimulationManager.run()
should halt.

This is the one hook which is not subject to the nesting rules of hooks. You should not call simgr.
complete, you should make your own decision and return True or False. Each of the techniques’ comple-
tion checkers will be called and the final result will be compted with simgr.completion_mode.

Parameters
simgr (angr.SimulationManager) –

class angr.exploration_techniques.lengthlimiter.LengthLimiter(max_length, drop=False)
Bases: ExplorationTechnique

Length limiter on paths.

__init__(max_length, drop=False)

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

10.8. Exploration Techniques 409

https://docs.python.org/3/library/stdtypes.html#str

angr

• stash (str) –

class angr.exploration_techniques.manual_mergepoint.ManualMergepoint(address,
wait_counter=10,
prune=True)

Bases: ExplorationTechnique

__init__(address, wait_counter=10, prune=True)

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

mark_nofilter(simgr, stash)

mark_okfilter(simgr, stash)

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

class angr.exploration_techniques.spiller.PickledStatesBase

Bases: object

The base class of pickled states

sort()

Sort pickled states.

add(prio, sid)
Add a newly pickled state.

Parameters
• prio (int) – Priority of the state.

• sid (str) – Persistent ID of the state.

Returns
None

pop_n(n)
Pop the top N states.

Parameters
n (int) – Number of states to take.

Returns
A list of states.

class angr.exploration_techniques.spiller.PickledStatesList

Bases: PickledStatesBase

List-backed pickled state storage.

410 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

angr

__init__()

sort()

Sort pickled states.

add(prio, sid)
Add a newly pickled state.

Parameters
• prio (int) – Priority of the state.

• sid (str) – Persistent ID of the state.

Returns
None

pop_n(n)
Pop the top N states.

Parameters
n (int) – Number of states to take.

Returns
A list of states.

class angr.exploration_techniques.spiller.PickledStatesDb(db_str='sqlite:///:memory:')
Bases: PickledStatesBase

Database-backed pickled state storage.

__init__(db_str='sqlite:///:memory:')

sort()

Sort pickled states.

add(prio, sid, taken=False, stash='spilled')
Add a newly pickled state.

Parameters
• prio (int) – Priority of the state.

• sid (str) – Persistent ID of the state.

Returns
None

pop_n(n, stash='spilled')
Pop the top N states.

Parameters
n (int) – Number of states to take.

Returns
A list of states.

get_recent_n(n, stash='spilled')

count()

10.8. Exploration Techniques 411

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

angr

class angr.exploration_techniques.spiller.Spiller(src_stash='active', min=5, max=10,
staging_stash='spill_stage', staging_min=10,
staging_max=20, pickle_callback=None,
unpickle_callback=None,
post_pickle_callback=None, priority_key=None,
vault=None, states_collection=None)

Bases: ExplorationTechnique

Automatically spill states out. It can spill out states to a different stash, spill them out to ANA, or first do the
former and then (after enough states) the latter.

__init__(src_stash='active', min=5, max=10, staging_stash='spill_stage', staging_min=10,
staging_max=20, pickle_callback=None, unpickle_callback=None, post_pickle_callback=None,
priority_key=None, vault=None, states_collection=None)

Initializes the spiller.

Parameters
• max – the number of states that are not spilled

• src_stash – the stash from which to spill states (default: active)

• staging_stash – the stash to which to spill states (default: “spill_stage”)

• staging_max – the number of states that can be in the staging stash before things get spilled
to ANA (default: None. If staging_stash is set, then this means unlimited, and ANA will
not be used).

• priority_key – a function that takes a state and returns its numerical priority (MAX_INT
is lowest priority). By default, self.state_priority will be used, which prioritizes by object
ID.

• vault – an angr.Vault object to handle storing and loading of states. If not provided, an
angr.vaults.VaultShelf will be created with a temporary file.

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

static state_priority(state)

class angr.exploration_techniques.spiller_db.PickledState(**kwargs)
Bases: Base

id

priority

taken

stash

timestamp

412 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str

angr

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

class angr.exploration_techniques.threading.Threading(threads=8, local_stash='thread_local')
Bases: ExplorationTechnique

Enable multithreading.

This is only useful in paths where a lot of time is taken inside z3, doing constraint solving. This is because of
python’s GIL, which says that only one thread at a time may be executing python code.

__init__(threads=8, local_stash='thread_local')

step(simgr, stash='active', error_list=None, target_stash=None, **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

inner_step(state, simgr, **kwargs)

successors(simgr, state, engine=None, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.veritesting.Veritesting(**options)
Bases: ExplorationTechnique

Enable veritesting. This technique, described in a paper[1] from CMU, attempts to address the problem of state
explosions in loops by performing smart merging.

[1] https://users.ece.cmu.edu/~aavgerin/papers/veritesting-icse-2014.pdf

__init__(**options)

step_state(simgr, state, successor_func=None, **kwargs)
Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to

10.8. Exploration Techniques 413

https://docs.python.org/3/library/stdtypes.html#str
https://users.ece.cmu.edu/~aavgerin/papers/veritesting-icse-2014.pdf

angr

look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.tracer.TracingMode

Bases: object

Variables
• Strict – Strict mode, the default mode, where an exception is raised immediately if tracer’s

path deviates from the provided trace.

• Permissive – Permissive mode, where tracer attempts to force the path back to the provided
trace when a deviation happens. This does not always work, especially when the cause of
deviation is related to input that will later be used in exploit generation. But, it might work
magically sometimes.

• CatchDesync – CatchDesync mode, catch desync because of sim_procedures. It might be
a sign of something interesting.

Strict = 'strict'

Permissive = 'permissive'

CatchDesync = 'catch_desync'

exception angr.exploration_techniques.tracer.TracerDesyncError(msg, deviating_addr=None,
deviating_trace_idx=None)

Bases: AngrTracerError

An error class to report tracing Tracing desyncronization error

__init__(msg, deviating_addr=None, deviating_trace_idx=None)

class angr.exploration_techniques.tracer.RepHook(mnemonic)
Bases: object

Hook rep movs/stos to speed up constraint solving TODO: This should be made an exploration technique later

__init__(mnemonic)

run(state)

class angr.exploration_techniques.tracer.Tracer(trace=None, resiliency=False, keep_predecessors=1,
crash_addr=None, syscall_data=None,
copy_states=False, fast_forward_to_entry=True,
mode='strict', aslr=True, follow_unsat=False)

Bases: ExplorationTechnique

An exploration technique that follows an angr path with a concrete input. The tracing result is the state at the last
address of the trace, which can be found in the ‘traced’ stash.

If the given concrete input makes the program crash, you should provide crash_addr, and the crashing state will
be found in the ‘crashed’ stash.

414 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

Parameters
• trace – The basic block trace.

• resiliency – Should we continue to step forward even if qemu and angr disagree?

• keep_predecessors – Number of states before the final state we should log.

• crash_addr – If the trace resulted in a crash, provide the crashing instruction pointer here,
and the ‘crashed’ stash will be populated with the crashing state.

• syscall_data – Data related to various syscalls recorded by tracer for replaying

• copy_states – Whether COPY_STATES should be enabled for the tracing state. It is off
by default because most tracing workloads benefit greatly from not performing copying. You
want to enable it if you want to see the missed states. It will be re-added for the last 2% of
the trace in order to set the predecessors list correctly. If you turn this on you may want to
enable the LAZY_SOLVES option.

• mode – Tracing mode.

• aslr – Whether there are aslr slides. if not, tracer uses trace address as state address.

• follow_unsat – Whether unsatisfiable states should be treated as potential successors or
not.

Variables
predecessors – A list of states in the history before the final state.

__init__(trace=None, resiliency=False, keep_predecessors=1, crash_addr=None, syscall_data=None,
copy_states=False, fast_forward_to_entry=True, mode='strict', aslr=True, follow_unsat=False)

set_fd_data(fd_data)
Set concrete bytes of various fds read by the program

Parameters
fd_data (Dict[int, bytes]) –

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

complete(simgr)
Return whether or not this manager has reached a “completed” state, i.e. SimulationManager.run()
should halt.

This is the one hook which is not subject to the nesting rules of hooks. You should not call simgr.
complete, you should make your own decision and return True or False. Each of the techniques’ comple-
tion checkers will be called and the final result will be compted with simgr.completion_mode.

Parameters
simgr (angr.SimulationManager) –

filter(simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

10.8. Exploration Techniques 415

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes

angr

If the user provided a filter_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

step_state(simgr, state, **kwargs)
Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to
look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

classmethod crash_windup(state, crash_addr)

class angr.exploration_techniques.driller_core.DrillerCore(trace, fuzz_bitmap=None)
Bases: ExplorationTechnique

An exploration technique that symbolically follows an input looking for new state transitions.

It has to be used with Tracer exploration technique. Results are put in ‘diverted’ stash.

__init__(trace, fuzz_bitmap=None)
:param trace : The basic block trace. :type fuzz_bitmap: :param fuzz_bitmap: AFL’s bitmap of state
transitions. Defaults to saying every transition is worth satisfying.

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

416 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str

angr

• stash (str) –

class angr.exploration_techniques.slicecutor.Slicecutor(annotated_cfg, force_taking_exit=False,
force_sat=False)

Bases: ExplorationTechnique

The Slicecutor is an exploration that executes provided code slices.

Parameters
force_sat (bool) –

__init__(annotated_cfg, force_taking_exit=False, force_sat=False)
All parameters except annotated_cfg are optional.

Parameters
• annotated_cfg – The AnnotatedCFG that provides the code slice.

• force_taking_exit – Set to True if you want to create a successor based on our slice in
case of unconstrained successors.

• force_sat (bool) – If a branch specified by the slice is unsatisfiable, set this option to
True if you want to force it to be satisfiable and be taken anyway.

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

filter(simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

step_state(simgr, state, **kwargs)
Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to
look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

10.8. Exploration Techniques 417

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

successors(simgr, state, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.director.BaseGoal(sort)
Bases: object

REQUIRE_CFG_STATES = False

__init__(sort)

check(cfg, state, peek_blocks)

Parameters
• cfg (angr.analyses.CFGEmulated) – An instance of CFGEmulated.

• state (angr.SimState) – The state to check.

• peek_blocks (int) – Number of blocks to peek ahead from the current point.

Returns
True if we can determine that this condition is definitely satisfiable if the path is taken, False
otherwise.

Return type
bool

check_state(state)
Check if the current state satisfies the goal.

Parameters
state (angr.SimState) – The state to check.

Returns
True if it satisfies the goal, False otherwise.

Return type
bool

class angr.exploration_techniques.director.ExecuteAddressGoal(addr)
Bases: BaseGoal

A goal that prioritizes states reaching (or are likely to reach) certain address in some specific steps.

__init__(addr)

check(cfg, state, peek_blocks)
Check if the specified address will be executed

Parameters

418 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• cfg –

• state –

• peek_blocks (int) –

Returns
Return type

bool

check_state(state)
Check if the current address is the target address.

Parameters
state (angr.SimState) – The state to check.

Returns
True if the current address is the target address, False otherwise.

Return type
bool

class angr.exploration_techniques.director.CallFunctionGoal(function, arguments)
Bases: BaseGoal

A goal that prioritizes states reaching certain function, and optionally with specific arguments. Note that con-
straints on arguments (and on function address as well) have to be identifiable on an accurate CFG. For example,
you may have a CallFunctionGoal saying “call printf with the first argument being ‘Hello, world’”, and CFGEm-
ulated must be able to figure our the first argument to printf is in fact “Hello, world”, not some symbolic strings
that will be constrained to “Hello, world” during symbolic execution (or simulation, however you put it).

REQUIRE_CFG_STATES = True

__init__(function, arguments)

check(cfg, state, peek_blocks)
Check if the specified function will be reached with certain arguments.

Parameters
• cfg –

• state –

• peek_blocks –

Returns
check_state(state)

Check if the specific function is reached with certain arguments

Parameters
state (angr.SimState) – The state to check

Returns
True if the function is reached with certain arguments, False otherwise.

Return type
bool

10.8. Exploration Techniques 419

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.exploration_techniques.director.Director(peek_blocks=100, peek_functions=5,
goals=None, cfg_keep_states=False,
goal_satisfied_callback=None,
num_fallback_states=5)

Bases: ExplorationTechnique

An exploration technique for directed symbolic execution.

A control flow graph (using CFGEmulated) is built and refined during symbolic execution. Each time the ex-
ecution reaches a block that is outside of the CFG, the CFG recovery will be triggered with that state, with a
maximum recovery depth (100 by default). If we see a basic block during state stepping that is not yet in the
control flow graph, we go back to control flow graph recovery and “peek” more blocks forward.

When stepping a simulation manager, all states are categorized into three different categories:

• Might reach the destination within the peek depth. Those states are prioritized.

• Will not reach the destination within the peek depth. Those states are de-prioritized. However, there is a
little chance for those states to be explored as well in order to prevent over-fitting.

__init__(peek_blocks=100, peek_functions=5, goals=None, cfg_keep_states=False,
goal_satisfied_callback=None, num_fallback_states=5)

Constructor.

step(simgr, stash='active', **kwargs)

Parameters
• simgr –

• stash –

• kwargs –

Returns
add_goal(goal)

Add a goal.

Parameters
goal (BaseGoal) – The goal to add.

Returns
None

class angr.exploration_techniques.oppologist.Oppologist

Bases: ExplorationTechnique

The Oppologist is an exploration technique that forces uncooperative code through qemu.

__init__()

successors(simgr, state, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters

420 Chapter 10. API Reference

angr

• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.loop_seer.LoopSeer(cfg=None, functions=None, loops=None,
use_header=False, bound=None,
bound_reached=None,
discard_stash='spinning',
limit_concrete_loops=True)

Bases: ExplorationTechnique

This exploration technique monitors exploration and maintains all loop-related data (well, currently it is just the
loop trip counts, but feel free to add something else).

__init__(cfg=None, functions=None, loops=None, use_header=False, bound=None, bound_reached=None,
discard_stash='spinning', limit_concrete_loops=True)

Parameters
• cfg – Normalized CFG is required.

• functions – Function(s) containing the loop(s) to be analyzed.

• loops – Specific group of Loop(s) to be analyzed, if this is None we run the LoopFinder
analysis.

• use_header – Whether to use header based trip counter to compare with the bound limit.

• bound – Limit the number of iterations a loop may be executed.

• bound_reached – If provided, should be a function that takes the LoopSeer and the
succ_state. Will be called when loop execution reach the given bound. Default to mov-
ing states that exceed the loop limit to a discard stash.

• discard_stash – Name of the stash containing states exceeding the loop limit.

• limit_concrete_loops – If False, do not limit a loop back-edge if it is the only successor
(Defaults to True to maintain the original behavior)

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

filter(simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

10.8. Exploration Techniques 421

angr

successors(simgr, state, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.local_loop_seer.LocalLoopSeer(bound=None,
bound_reached=None,
discard_stash='spinning')

Bases: ExplorationTechnique

LocalLoopSeer monitors exploration and maintains all loop-related data without relying on a control flow graph.

__init__(bound=None, bound_reached=None, discard_stash='spinning')

Parameters
• bound – Limit the number of iterations a loop may be executed.

• bound_reached – If provided, should be a function that takes the LoopSeer and the
succ_state. Will be called when loop execution reach the given bound. Default to mov-
ing states that exceed the loop limit to a discard stash.

• discard_stash – Name of the stash containing states exceeding the loop limit.

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

filter(simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

successors(simgr, state, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

422 Chapter 10. API Reference

angr

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

class angr.exploration_techniques.stochastic.StochasticSearch(start_state, restart_prob=0.0001)
Bases: ExplorationTechnique

Stochastic Search.

Will only keep one path active at a time, any others will be discarded. Before each pass through, weights are
randomly assigned to each basic block. These weights form a probability distribution for determining which
state remains after splits. When we run out of active paths to step, we start again from the start state.

__init__(start_state, restart_prob=0.0001)

Parameters
• start_state – The initial state from which exploration stems.

• restart_prob – The probability of randomly restarting the search (default 0.0001).

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

class angr.exploration_techniques.unique.UniqueSearch(similarity_func=None,
deferred_stash='deferred')

Bases: ExplorationTechnique

Unique Search.

Will only keep one path active at a time, any others will be deferred. The state that is explored depends on
how unique it is relative to the other deferred states. A path’s uniqueness is determined by its average similarity
between the other (deferred) paths. Similarity is calculated based on the supplied similarity_func, which by
default is: The (L2) distance between the counts of the state addresses in the history of the path.

__init__(similarity_func=None, deferred_stash='deferred')

Parameters
• similarity_func – How to calculate similarity between two states.

• deferred_stash – Where to store the deferred states.

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

10.8. Exploration Techniques 423

https://docs.python.org/3/library/stdtypes.html#str

angr

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

static similarity(state_a, state_b)
The (L2) distance between the counts of the state addresses in the history of the path. :type state_a: :param
state_a: The first state to compare :type state_b: :param state_b: The second state to compare

static sequence_matcher_similarity(state_a, state_b)
The difflib.SequenceMatcher ratio between the state addresses in the history of the path. :type state_a:
:param state_a: The first state to compare :type state_b: :param state_b: The second state to compare

class angr.exploration_techniques.tech_builder.TechniqueBuilder(setup=None, step_state=None,
step=None, successors=None,
filter=None, selector=None,
complete=None)

Bases: ExplorationTechnique

This meta technique could be used to hook a couple of simulation manager methods without actually creating a
new exploration technique, for example:

class SomeComplexAnalysis(Analysis):

def do_something():
simgr = self.project.factory.simulation_manager() simgr.use_tech(ProxyTechnique(step_state=self._step_state))
simgr.run()

def _step_state(self, state):
Do stuff! pass

In the above example, the _step_state method can access all the necessary stuff, hidden in the analysis instance,
without passing that instance to a one-shot-styled exploration technique.

__init__(setup=None, step_state=None, step=None, successors=None, filter=None, selector=None,
complete=None)

angr.exploration_techniques.common.condition_to_lambda(condition, default=False)
Translates an integer, set, list or function into a lambda that checks if state’s current basic block matches some
condition.

Parameters
• condition – An integer, set, list or lambda to convert to a lambda.

• default – The default return value of the lambda (in case condition is None). Default: false.

Returns
A tuple of two items: a lambda that takes a state and returns the set of addresses that it matched
from the condition, and a set that contains the normalized set of addresses to stop at, or None if
no addresses were provided statically.

class angr.exploration_techniques.symbion.Symbion(find=None, memory_concretize=None,
register_concretize=None, timeout=0,
find_stash='found')

424 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str

angr

Bases: ExplorationTechnique

The Symbion exploration technique uses the SimEngineConcrete available to step a SimState.

Parameters
• find – address or list of addresses that we want to reach, these will be translated into break-

points inside the concrete process using the ConcreteTarget interface provided by the user
inside the SimEngineConcrete.

• memory_concretize – list of tuples (address, symbolic variable) that are going to be written
in the concrete process memory.

• register_concretize – list of tuples (reg_name, symbolic variable) that are going to be
written

• timeout – how long we should wait the concrete target to reach the breakpoint

__init__(find=None, memory_concretize=None, register_concretize=None, timeout=0, find_stash='found')

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

step_state(simgr, *args, **kwargs)
Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to
look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

complete(simgr)
Return whether or not this manager has reached a “completed” state, i.e. SimulationManager.run()
should halt.

This is the one hook which is not subject to the nesting rules of hooks. You should not call simgr.
complete, you should make your own decision and return True or False. Each of the techniques’ comple-
tion checkers will be called and the final result will be compted with simgr.completion_mode.

10.8. Exploration Techniques 425

https://docs.python.org/3/library/stdtypes.html#str

angr

Parameters
simgr (angr.SimulationManager) –

class angr.exploration_techniques.memory_watcher.MemoryWatcher(min_memory=512,
memory_stash='lowmem')

Bases: ExplorationTechnique

Memory Watcher

Parameters
• min_memory (int,optional) – Minimum amount of free memory in MB before stopping

execution (default: 95% memory use)

• memory_stash (str, optional) – What to call the low memory stash (default:
‘lowmem’)

At each step, keep an eye on how much memory is left on the system. Stash off states to effectively stop execution
if we’re below a given threshold.

__init__(min_memory=512, memory_stash='lowmem')

setup(simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) – The simulation manager to which you have just been
added

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

class angr.exploration_techniques.bucketizer.Bucketizer

Bases: ExplorationTechnique

Loop bucketization: Pick log(n) paths out of n possible paths, and stash (or drop) everything else.

__init__()

successors(simgr, state, **kwargs)
Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.

Parameters
• simgr (angr.SimulationManager) –

• state (angr.SimState) –

angr.exploration_techniques.suggestions.ast_weight(ast, memo=None)

426 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

class angr.exploration_techniques.suggestions.Suggestions

Bases: ExplorationTechnique

An exploration technique which analyzes failure cases and logs suggestions for how to mitigate them in future
analyses.

__init__()

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

static report(state, event)

10.9 Simulation Engines

class angr.engines.UberEngine(*args, **kwargs)
Bases: SimEngineFailure, SimEngineSyscall, HooksMixin, SimEngineUnicorn,
SuperFastpathMixin, TrackActionsMixin, SimInspectMixin, HeavyResilienceMixin, SootMixin,
HeavyVEXMixin, TLSMixin

irsb

state

stmt_idx

successors: Optional[SimSuccessors]

tmps

class angr.engines.UberEnginePcode(*args, **kwargs)
Bases: SimEngineFailure, SimEngineSyscall, HooksMixin, HeavyPcodeMixin

class angr.engines.engine.SimEngineBase(project=None, **kwargs)
Bases: object

Even more basey of a base class for SimEngine. Used as a base by mixins which want access to the project but
for which having method process (contained in SimEngine) doesn’t make sense

__init__(project=None, **kwargs)

class angr.engines.engine.SimEngine(project=None, **kwargs)
Bases: SimEngineBase

A SimEngine is a class which understands how to perform execution on a state. This is a base class.

abstract process(state, **kwargs)
The main entry point for an engine. Should take a state and return a result.

Parameters
state – The state to proceed from

10.9. Simulation Engines 427

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

angr

Returns
The result. Whatever you want ;)

class angr.engines.engine.TLSMixin(*args, **kwargs)
Bases: object

Mix this class into any class that defines __tls to make all of the attributes named in that list into thread-local
properties.

MAGIC MAGIC MAGIC

class angr.engines.engine.TLSProperty(name)
Bases: object

__init__(name)

class angr.engines.engine.SuccessorsMixin(*args, **kwargs)
Bases: SimEngine

A mixin for SimEngine which implements process to perform common operations related to symbolic execution
and dispatches to a process_successors method to fill a SimSuccessors object with the results.

__init__(*args, **kwargs)

process(state, *args, **kwargs)
Perform execution with a state.

You should only override this method in a subclass in order to provide the correct method signature and
docstring. You should override the _process method to do your actual execution.

Parameters
• state – The state with which to execute. This state will be copied before modification.

• inline – This is an inline execution. Do not bother copying the state.

• force_addr – Force execution to pretend that we’re working at this concrete address

Returns
A SimSuccessors object categorizing the execution’s successor states

process_successors(successors, **kwargs)
Implement this function to fill out the SimSuccessors object with the results of stepping state.

In order to implement a model where multiple mixins can potentially handle a request, a mixin may imple-
ment this method and then perform a super() call if it wants to pass on handling to the next mixin.

Keep in mind python’s method resolution order when composing multiple classes implementing this
method. In short: left-to-right, depth-first, but deferring any base classes which are shared by multiple
subclasses (the merge point of a diamond pattern in the inheritance graph) until the last point where they
would be encountered in this depth-first search. For example, if you have classes A, B(A), C(B), D(A),
E(C, D), then the method resolution order will be E, C, B, D, A.

Parameters
• state – The state to manipulate

• successors – The successors object to fill out

• kwargs – Any extra arguments. Do not fail if you are passed unexpected arguments.

428 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

class angr.engines.successors.SimSuccessors(addr, initial_state)
Bases: object

This class serves as a categorization of all the kinds of result states that can come from a SimEngine run.

Variables
• addr (int) – The address at which execution is taking place, as a python int

• initial_state – The initial state for which execution produced these successors

• engine – The engine that produced these successors

• sort – A string identifying the type of engine that produced these successors

• processed (bool) – Whether or not the processing succeeded

• description (str) – A textual description of the execution step

The successor states produced by this run are categorized into several lists:

Variables
• artifacts (dict) – Any analysis byproducts (for example, an IRSB) that were produced

during execution

• successors – The “normal” successors. IP may be symbolic, but must have reasonable
number of solutions

• unsat_successors – Any successor which is unsatisfiable after its guard condition is
added.

• all_successors – successors + unsat_successors

• flat_successors – The normal successors, but any symbolic IPs have been concretized.
There is one state in this list for each possible value an IP may be concretized to for each
successor state.

• unconstrained_successors – Any state for which during the flattening process we find
too many solutions.

A more detailed description of the successor lists may be found here: https://docs.angr.io/core-concepts/
simulation#simsuccessors

__init__(addr, initial_state)

classmethod failure()

property is_empty

add_successor(state, target, guard, jumpkind, add_guard=True, exit_stmt_idx=None, exit_ins_addr=None,
source=None)

Add a successor state of the SimRun. This procedure stores method parameters into state.scratch, does some
housekeeping, and calls out to helper functions to prepare the state and categorize it into the appropriate
successor lists.

Parameters
• state (SimState) – The successor state.

• target – The target (of the jump/call/ret).

• guard – The guard expression.

• jumpkind (str) – The jumpkind (call, ret, jump, or whatnot).

10.9. Simulation Engines 429

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.angr.io/core-concepts/simulation#simsuccessors
https://docs.angr.io/core-concepts/simulation#simsuccessors
https://docs.python.org/3/library/stdtypes.html#str

angr

• add_guard (bool) – Whether to add the guard constraint (default: True).

• exit_stmt_idx (int) – The ID of the exit statement, an integer by default. ‘default’
stands for the default exit, and None means it’s not from a statement (for example, from a
SimProcedure).

• exit_ins_addr (int) – The instruction pointer of this exit, which is an integer by default.

• source (int) – The source of the jump (i.e., the address of the basic block).

class angr.engines.procedure.ProcedureMixin

Bases: object

A mixin for SimEngine which adds the process_procedure method for calling a SimProcedure and adding its
results to a SimSuccessors.

process_procedure(state, successors, procedure, ret_to=None, arguments=None, **kwargs)

class angr.engines.procedure.ProcedureEngine(*args, **kwargs)
Bases: ProcedureMixin, SuccessorsMixin

A SimEngine that you may use if you only care about processing SimProcedures. Requires the procedure kwarg
to be passed to process.

process_successors(successors, procedure=None, **kwargs)
Implement this function to fill out the SimSuccessors object with the results of stepping state.

In order to implement a model where multiple mixins can potentially handle a request, a mixin may imple-
ment this method and then perform a super() call if it wants to pass on handling to the next mixin.

Keep in mind python’s method resolution order when composing multiple classes implementing this
method. In short: left-to-right, depth-first, but deferring any base classes which are shared by multiple
subclasses (the merge point of a diamond pattern in the inheritance graph) until the last point where they
would be encountered in this depth-first search. For example, if you have classes A, B(A), C(B), D(A),
E(C, D), then the method resolution order will be E, C, B, D, A.

Parameters
• state – The state to manipulate

• successors – The successors object to fill out

• kwargs – Any extra arguments. Do not fail if you are passed unexpected arguments.

class angr.engines.hook.HooksMixin(*args, **kwargs)
Bases: SuccessorsMixin, ProcedureMixin

A SimEngine mixin which adds a SimSuccessors handler which will look into the project’s hooks and run the
hook at the current address.

Will respond to the following parameters provided to the step stack:

• procedure: A SimProcedure instance to force-run instead of consulting the current hooks

• ret_to: An address to force-return-to at the end of the procedure

process_successors(successors, procedure=None, **kwargs)
Implement this function to fill out the SimSuccessors object with the results of stepping state.

In order to implement a model where multiple mixins can potentially handle a request, a mixin may imple-
ment this method and then perform a super() call if it wants to pass on handling to the next mixin.

Keep in mind python’s method resolution order when composing multiple classes implementing this
method. In short: left-to-right, depth-first, but deferring any base classes which are shared by multiple

430 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

subclasses (the merge point of a diamond pattern in the inheritance graph) until the last point where they
would be encountered in this depth-first search. For example, if you have classes A, B(A), C(B), D(A),
E(C, D), then the method resolution order will be E, C, B, D, A.

Parameters
• state – The state to manipulate

• successors – The successors object to fill out

• kwargs – Any extra arguments. Do not fail if you are passed unexpected arguments.

class angr.engines.syscall.SimEngineSyscall(*args, **kwargs)
Bases: SuccessorsMixin, ProcedureMixin

A SimEngine mixin which adds a successors handling step that checks if a syscall was just requested and if so
handles it as a step.

process_successors(successors, **kwargs)
Implement this function to fill out the SimSuccessors object with the results of stepping state.

In order to implement a model where multiple mixins can potentially handle a request, a mixin may imple-
ment this method and then perform a super() call if it wants to pass on handling to the next mixin.

Keep in mind python’s method resolution order when composing multiple classes implementing this
method. In short: left-to-right, depth-first, but deferring any base classes which are shared by multiple
subclasses (the merge point of a diamond pattern in the inheritance graph) until the last point where they
would be encountered in this depth-first search. For example, if you have classes A, B(A), C(B), D(A),
E(C, D), then the method resolution order will be E, C, B, D, A.

Parameters
• state – The state to manipulate

• successors – The successors object to fill out

• kwargs – Any extra arguments. Do not fail if you are passed unexpected arguments.

class angr.engines.failure.SimEngineFailure(*args, **kwargs)
Bases: SuccessorsMixin, ProcedureMixin

process_successors(successors, **kwargs)
Implement this function to fill out the SimSuccessors object with the results of stepping state.

In order to implement a model where multiple mixins can potentially handle a request, a mixin may imple-
ment this method and then perform a super() call if it wants to pass on handling to the next mixin.

Keep in mind python’s method resolution order when composing multiple classes implementing this
method. In short: left-to-right, depth-first, but deferring any base classes which are shared by multiple
subclasses (the merge point of a diamond pattern in the inheritance graph) until the last point where they
would be encountered in this depth-first search. For example, if you have classes A, B(A), C(B), D(A),
E(C, D), then the method resolution order will be E, C, B, D, A.

Parameters
• state – The state to manipulate

• successors – The successors object to fill out

• kwargs – Any extra arguments. Do not fail if you are passed unexpected arguments.

10.9. Simulation Engines 431

angr

class angr.engines.soot.engine.SootMixin(*args, **kwargs)
Bases: SuccessorsMixin, ProcedureMixin

Execution engine based on Soot.

lift_soot(addr=None, the_binary=None, **kwargs)

process_successors(successors, **kwargs)
Implement this function to fill out the SimSuccessors object with the results of stepping state.

In order to implement a model where multiple mixins can potentially handle a request, a mixin may imple-
ment this method and then perform a super() call if it wants to pass on handling to the next mixin.

Keep in mind python’s method resolution order when composing multiple classes implementing this
method. In short: left-to-right, depth-first, but deferring any base classes which are shared by multiple
subclasses (the merge point of a diamond pattern in the inheritance graph) until the last point where they
would be encountered in this depth-first search. For example, if you have classes A, B(A), C(B), D(A),
E(C, D), then the method resolution order will be E, C, B, D, A.

Parameters
• state – The state to manipulate

• successors – The successors object to fill out

• kwargs – Any extra arguments. Do not fail if you are passed unexpected arguments.

get_unconstrained_simprocedure()

classmethod setup_callsite(state, args, ret_addr, ret_var=None)

static setup_arguments(state, args)

static prepare_return_state(state, ret_value=None)

static terminate_execution(statement, state, successors)

static prepare_native_return_state(native_state)
Hook target for native function call returns.

Recovers and stores the return value from native memory and toggles the state, s.t. execution continues in
the Soot engine.

class angr.engines.unicorn.SimEngineUnicorn(*args, **kwargs)
Bases: SuccessorsMixin

Concrete execution in the Unicorn Engine, a fork of qemu.

Responds to the following parameters in the step stack:

• step: How many basic blocks we want to execute

• extra_stop_points: A collection of addresses at which execution should halt

__init__(*args, **kwargs)

process_successors(successors, **kwargs)
Implement this function to fill out the SimSuccessors object with the results of stepping state.

In order to implement a model where multiple mixins can potentially handle a request, a mixin may imple-
ment this method and then perform a super() call if it wants to pass on handling to the next mixin.

Keep in mind python’s method resolution order when composing multiple classes implementing this
method. In short: left-to-right, depth-first, but deferring any base classes which are shared by multiple

432 Chapter 10. API Reference

angr

subclasses (the merge point of a diamond pattern in the inheritance graph) until the last point where they
would be encountered in this depth-first search. For example, if you have classes A, B(A), C(B), D(A),
E(C, D), then the method resolution order will be E, C, B, D, A.

Parameters
• state – The state to manipulate

• successors – The successors object to fill out

• kwargs – Any extra arguments. Do not fail if you are passed unexpected arguments.

class angr.engines.concrete.SimEngineConcrete(project)
Bases: SuccessorsMixin

Concrete execution using a concrete target provided by the user.

__init__(project)

process_successors(successors, extra_stop_points=None, memory_concretize=None,
register_concretize=None, timeout=0, *args, **kwargs)

Implement this function to fill out the SimSuccessors object with the results of stepping state.

In order to implement a model where multiple mixins can potentially handle a request, a mixin may imple-
ment this method and then perform a super() call if it wants to pass on handling to the next mixin.

Keep in mind python’s method resolution order when composing multiple classes implementing this
method. In short: left-to-right, depth-first, but deferring any base classes which are shared by multiple
subclasses (the merge point of a diamond pattern in the inheritance graph) until the last point where they
would be encountered in this depth-first search. For example, if you have classes A, B(A), C(B), D(A),
E(C, D), then the method resolution order will be E, C, B, D, A.

Parameters
• state – The state to manipulate

• successors – The successors object to fill out

• kwargs – Any extra arguments. Do not fail if you are passed unexpected arguments.

to_engine(state, extra_stop_points, memory_concretize, register_concretize, timeout)
Handle the concrete execution of the process This method takes care of: 1- Set the breakpoints on the ad-
dresses provided by the user 2- Concretize the symbolic variables and perform the write inside the concrete
process 3- Continue the program execution.

Parameters
• state – The state with which to execute

• extra_stop_points – list of a addresses where to stop the concrete execution and return
to the simulated one

• memory_concretize – list of tuples (address, symbolic variable) that are going to be
written in the concrete process memory.

• register_concretize – list of tuples (reg_name, symbolic variable) that are going to
be written

• timeout – how long we should wait the concrete target to reach the breakpoint

Returns
None

10.9. Simulation Engines 433

angr

static check_concrete_target_methods(concrete_target)
Check if the concrete target methods return the correct type of data :return: True if the concrete target is
compliant

class angr.engines.pcode.engine.HeavyPcodeMixin(*args, **kwargs)
Bases: SuccessorsMixin, PcodeLifterEngineMixin, PcodeEmulatorMixin

Execution engine based on P-code, Ghidra’s IR.

Responds to the following parameters to the step stack:

• irsb: The P-Code IRSB object to use for execution. If not provided one will be lifted.

• skip_stmts: The number of statements to skip in processing

• last_stmt: Do not execute any statements after this statement

• thumb: Whether the block should be force to be lifted in ARM’s THUMB mode. (FIXME)

• extra_stop_points:
An extra set of points at which to break basic blocks

• insn_bytes: A string of bytes to use for the block instead of the project.

• size: The maximum size of the block, in bytes.

• num_inst: The maximum number of instructions.

__init__(*args, **kwargs)

process_successors(successors, irsb=None, insn_text=None, insn_bytes=None, thumb=False, size=None,
num_inst=None, extra_stop_points=None, **kwargs)

Implement this function to fill out the SimSuccessors object with the results of stepping state.

In order to implement a model where multiple mixins can potentially handle a request, a mixin may imple-
ment this method and then perform a super() call if it wants to pass on handling to the next mixin.

Keep in mind python’s method resolution order when composing multiple classes implementing this
method. In short: left-to-right, depth-first, but deferring any base classes which are shared by multiple
subclasses (the merge point of a diamond pattern in the inheritance graph) until the last point where they
would be encountered in this depth-first search. For example, if you have classes A, B(A), C(B), D(A),
E(C, D), then the method resolution order will be E, C, B, D, A.

Parameters
• state – The state to manipulate

• successors (SimSuccessors) – The successors object to fill out

• kwargs – Any extra arguments. Do not fail if you are passed unexpected arguments.

• irsb (IRSB | None) –

• insn_text (str | None) –

• insn_bytes (bytes | None) –

• thumb (bool) –

• size (int | None) –

• num_inst (int | None) –

• extra_stop_points (Iterable[int] | None) –

434 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int

angr

Return type
None

class angr.engines.pcode.lifter.ExitStatement(dst, jumpkind)
Bases: object

This class exists to ease compatibility with CFGFast’s processing of exit_statements. See _scan_irsb method.

Parameters
• dst (int | None) –

• jumpkind (str) –

__init__(dst, jumpkind)

Parameters
• dst (int | None) –

• jumpkind (str) –

dst: Optional[int]

jumpkind: str

class angr.engines.pcode.lifter.PcodeDisassemblerBlock(addr, insns, thumb, arch)
Bases: DisassemblerBlock

Helper class to represent a block of disassembled target architecture instructions

addr

insns

thumb

arch

class angr.engines.pcode.lifter.PcodeDisassemblerInsn(pcode_insn)
Bases: DisassemblerInsn

Helper class to represent a disassembled target architecture instruction

__init__(pcode_insn)

property size: int

property address: int

property mnemonic: str

property op_str: str

class angr.engines.pcode.lifter.IRSB(data, mem_addr, arch, max_inst=None, max_bytes=None,
bytes_offset=0, traceflags=0, opt_level=1, num_inst=None,
num_bytes=None, strict_block_end=False, skip_stmts=False,
collect_data_refs=False)

Bases: object

IRSB stands for Intermediate Representation Super-Block. An IRSB in is a single-entry, multiple-exit code block.

Variables

10.9. Simulation Engines 435

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

angr

• arch (archinfo.Arch) – The architecture this block is lifted under

• statements (list of IRStmt) – The statements in this block

• next (IRExpr) – The expression for the default exit target of this block

• offsIP (int) – The offset of the instruction pointer in the VEX guest state

• stmts_used (int) – The number of statements in this IRSB

• jumpkind (str) – The type of this block’s default jump (call, boring, syscall, etc) as a VEX
enum string

• direct_next (bool) – Whether this block ends with a direct (not indirect) jump or branch

• size (int) – The size of this block in bytes

• addr (int) – The address of this basic block, i.e. the address in the first IMark

Parameters
• data (str | bytes | None) –

• mem_addr (int) –

• arch (Arch) –

• max_inst (int | None) –

• max_bytes (int | None) –

• bytes_offset (int) –

• traceflags (int) –

• opt_level (int) –

• num_inst (int | None) –

• num_bytes (int | None) –

• strict_block_end (bool) –

• skip_stmts (bool) –

• collect_data_refs (bool) –

MAX_EXITS = 400

MAX_DATA_REFS = 2000

__init__(data, mem_addr, arch, max_inst=None, max_bytes=None, bytes_offset=0, traceflags=0,
opt_level=1, num_inst=None, num_bytes=None, strict_block_end=False, skip_stmts=False,
collect_data_refs=False)

Parameters
• data (Union[str, bytes, None]) – The bytes to lift. Can be either a string of bytes or a

cffi buffer object. You may also pass None to initialize an empty IRSB.

• mem_addr (int) – The address to lift the data at.

• arch (Arch) – The architecture to lift the data as.

• max_inst (Optional[int]) – The maximum number of instructions to lift. (See note
below)

• max_bytes (Optional[int]) – The maximum number of bytes to use.

436 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

angr

• num_inst (Optional[int]) – Replaces max_inst if max_inst is None. If set to None as
well, no instruction limit is used.

• num_bytes (Optional[int]) – Replaces max_bytes if max_bytes is None. If set to None
as well, no byte limit is used.

• bytes_offset (int) – The offset into data to start lifting at. Note that for ARM THUMB
mode, both mem_addr and bytes_offset must be odd (typically bytes_offset is set to 1).

• traceflags (int) – Unused by P-Code lifter

• opt_level (int) – Unused by P-Code lifter

• strict_block_end (bool) – Unused by P-Code lifter

• skip_stmts (bool) –

• collect_data_refs (bool) –

Return type
None

Note: Explicitly specifying the number of instructions to lift (max_inst) may not always work exactly as
expected. For example, on MIPS, it is meaningless to lift a branch or jump instruction without its delay slot.
VEX attempts to Do The Right Thing by possibly decoding fewer instructions than requested. Specifically,
this means that lifting a branch or jump on MIPS as a single instruction (max_inst=1) will result in an
empty IRSB, and subsequent attempts to run this block will raise SimIRSBError(‘Empty IRSB passed to
SimIRSB.’).

Note: If no instruction and byte limit is used, the lifter will continue lifting the block until the block ends
properly or until it runs out of data to lift.

addr: int

arch: Arch

behaviors: Optional[BehaviorFactory]

data_refs: Sequence

default_exit_target: Optional

jumpkind: Optional[str]

next: Optional[int]

static empty_block(arch, addr, statements=None, nxt=None, tyenv=None, jumpkind=None,
direct_next=None, size=None)

Return type
IRSB

Parameters
• arch (Arch) –

• addr (int) –

• statements (Sequence | None) –

10.9. Simulation Engines 437

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence

angr

• nxt (int | None) –

• jumpkind (str | None) –

• direct_next (bool | None) –

• size (int | None) –

property has_statements: bool

property exit_statements: Sequence[Tuple[int, int, ExitStatement]]

copy()

Copy by creating an empty IRSB and then filling in the leftover attributes. Copy is made as deep as possible

Return type
IRSB

extend(extendwith)
Appends an irsb to the current irsb. The irsb that is appended is invalidated. The appended irsb’s jumpkind
and default exit are used. :type extendwith: IRSB :param extendwith: The IRSB to append to this IRSB

Return type
IRSB

Parameters
extendwith (IRSB) –

invalidate_direct_next()

Return type
None

pp()

Pretty-print the IRSB to stdout.

Return type
None

property tyenv

property stmts_used: int

property offsIP: int

property direct_next: bool

property expressions

Return an iterator of all expressions contained in the IRSB.

property instructions: int

The number of instructions in this block

property instruction_addresses: Sequence[int]

Addresses of instructions in this block.

property size: int

The size of this block, in bytes

property operations

A list of all operations done by the IRSB, as libVEX enum names

438 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

property all_constants

Returns all constants in the block (including incrementing of the program counter) as pyvex.const.
IRConst.

property constants

The constants (excluding updates of the program counter) in the IRSB as pyvex.const.IRConst.

property constant_jump_targets

A set of the static jump targets of the basic block.

property constant_jump_targets_and_jumpkinds

A dict of the static jump targets of the basic block to their jumpkind.

property statements: Iterable

property disassembly: PcodeDisassemblerBlock

class angr.engines.pcode.lifter.Lifter(arch, addr)
Bases: object

A lifter is a class of methods for processing a block.

Variables
• data – The bytes to lift as either a python string of bytes or a cffi buffer object.

• bytes_offset – The offset into data to start lifting at.

• max_bytes – The maximum number of bytes to lift. If set to None, no byte limit is used.

• max_inst – The maximum number of instructions to lift. If set to None, no instruction limit
is used.

• opt_level – Unused by P-Code lifter

• traceflags – Unused by P-Code lifter

• allow_arch_optimizations – Unused by P-Code lifter

• strict_block_end – Unused by P-Code lifter

• skip_stmts – Unused by P-Code lifter

Parameters
• arch (Arch) –

• addr (int) –

REQUIRE_DATA_C = False

REQUIRE_DATA_PY = False

__init__(arch, addr)

Parameters
• arch (Arch) –

• addr (int) –

arch: Arch

addr: int

10.9. Simulation Engines 439

https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.const.IRConst
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.const.IRConst
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.const.IRConst
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int

angr

data: Union[str, bytes, None]

bytes_offset: Optional[int]

opt_level: int

traceflags: Optional[int]

allow_arch_optimizations: Optional[bool]

strict_block_end: Optional[bool]

collect_data_refs: bool

max_inst: Optional[int]

max_bytes: Optional[int]

skip_stmts: bool

irsb: IRSB

lift()

Lifts the data using the information passed into _lift. Should be overridden in child classes.

Should set the lifted IRSB to self.irsb. If a lifter raises a LiftingException on the data, this signals that the
lifter cannot lift this data and arch and the lifter is skipped. If a lifter can lift any amount of data, it should
lift it and return the lifted block with a jumpkind of Ijk_NoDecode, signalling to pyvex that other lifters
should be used on the undecodable data.

Return type
None

angr.engines.pcode.lifter.lift(data, addr, arch, max_bytes=None, max_inst=None, bytes_offset=0,
opt_level=1, traceflags=0, strict_block_end=True, inner=False,
skip_stmts=False, collect_data_refs=False)

Lift machine code in data to a P-code IRSB.

If a lifter raises a LiftingException on the data, it is skipped. If it succeeds and returns a block with a jumpkind
of Ijk_NoDecode, all of the lifters are tried on the rest of the data and if they work, their output is appended to
the first block.

Parameters
• arch (Arch) – The arch to lift the data as.

• addr (int) – The starting address of the block. Effects the IMarks.

• data (Union[str, bytes, None]) – The bytes to lift as either a python string of bytes or a
cffi buffer object.

• max_bytes (Optional[int]) – The maximum number of bytes to lift. If set to None, no
byte limit is used.

• max_inst (Optional[int]) – The maximum number of instructions to lift. If set to None,
no instruction limit is used.

• bytes_offset (int) – The offset into data to start lifting at.

• opt_level (int) – Unused by P-Code lifter

• traceflags (int) – Unused by P-Code lifter

440 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

• strict_block_end (bool) –

• inner (bool) –

• skip_stmts (bool) –

• collect_data_refs (bool) –

Return type
IRSB

Note: Explicitly specifying the number of instructions to lift (max_inst) may not always work exactly as ex-
pected. For example, on MIPS, it is meaningless to lift a branch or jump instruction without its delay slot. VEX
attempts to Do The Right Thing by possibly decoding fewer instructions than requested. Specifically, this means
that lifting a branch or jump on MIPS as a single instruction (max_inst=1) will result in an empty IRSB, and
subsequent attempts to run this block will raise SimIRSBError(‘Empty IRSB passed to SimIRSB.’).

Note: If no instruction and byte limit is used, the lifter will continue lifting the block until the block ends
properly or until it runs out of data to lift.

class angr.engines.pcode.lifter.PcodeBasicBlockLifter(arch)
Bases: object

Lifts basic blocks to P-code

Parameters
arch (Arch) –

__init__(arch)

Parameters
arch (Arch) –

context: Context

behaviors: BehaviorFactory

lift(irsb, baseaddr, data, bytes_offset=0, max_bytes=None, max_inst=None, branch_delay_slot=False,
is_sparc32=False)

Return type
None

Parameters
• irsb (IRSB) –

• baseaddr (int) –

• data (bytes | bytearray) –

• bytes_offset (int) –

• max_bytes (int | None) –

• max_inst (int | None) –

• branch_delay_slot (bool) –

• is_sparc32 (bool) –

10.9. Simulation Engines 441

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.angr.io/projects/pypcode/en/latest/api.html#pypcode.Context
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.engines.pcode.lifter.PcodeLifter(arch, addr)
Bases: Lifter

Handles calling into pypcode to lift a block

Parameters
• arch (Arch) –

• addr (int) –

data: Union[str, bytes, None]

bytes_offset: Optional[int]

opt_level: int

traceflags: Optional[int]

allow_arch_optimizations: Optional[bool]

strict_block_end: Optional[bool]

collect_data_refs: bool

max_inst: Optional[int]

max_bytes: Optional[int]

skip_stmts: bool

irsb: IRSB

arch: Arch

addr: int

lift()

Lifts the data using the information passed into _lift. Should be overridden in child classes.

Should set the lifted IRSB to self.irsb. If a lifter raises a LiftingException on the data, this signals that the
lifter cannot lift this data and arch and the lifter is skipped. If a lifter can lift any amount of data, it should
lift it and return the lifted block with a jumpkind of Ijk_NoDecode, signalling to pyvex that other lifters
should be used on the undecodable data.

Return type
None

class angr.engines.pcode.lifter.PcodeLifterEngineMixin(project=None, use_cache=None,
cache_size=50000, default_opt_level=1,
selfmodifying_code=None,
single_step=False,
default_strict_block_end=False, **kwargs)

Bases: SimEngineBase

Lifter mixin to lift from machine code to P-Code.

Parameters
• use_cache (bool | None) –

• cache_size (int) –

442 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

• default_opt_level (int) –

• selfmodifying_code (bool | None) –

• single_step (bool) –

• default_strict_block_end (bool) –

__init__(project=None, use_cache=None, cache_size=50000, default_opt_level=1,
selfmodifying_code=None, single_step=False, default_strict_block_end=False, **kwargs)

Parameters
• use_cache (bool | None) –

• cache_size (int) –

• default_opt_level (int) –

• selfmodifying_code (bool | None) –

• single_step (bool) –

• default_strict_block_end (bool) –

clear_cache()

Return type
None

lift_vex(addr=None, state=None, clemory=None, insn_bytes=None, arch=None, size=None,
num_inst=None, traceflags=0, thumb=False, extra_stop_points=None, opt_level=None,
strict_block_end=None, skip_stmts=False, collect_data_refs=False, load_from_ro_regions=False,
cross_insn_opt=None)

Temporary compatibility interface for integration with block code.

Parameters
• addr (int | None) –

• state (SimState | None) –

• clemory (Clemory | None) –

• insn_bytes (bytes | None) –

• arch (Arch | None) –

• size (int | None) –

• num_inst (int | None) –

• traceflags (int) –

• thumb (bool) –

• extra_stop_points (Iterable[int] | None) –

• opt_level (int | None) –

• strict_block_end (bool | None) –

• skip_stmts (bool) –

• collect_data_refs (bool) –

• load_from_ro_regions (bool) –

• cross_insn_opt (bool | None) –

10.9. Simulation Engines 443

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/cle/en/latest/api/utils.html#cle.memory.Clemory
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

lift_pcode(addr=None, state=None, clemory=None, insn_bytes=None, arch=None, size=None,
num_inst=None, traceflags=0, thumb=False, extra_stop_points=None, opt_level=None,
strict_block_end=None, skip_stmts=False, collect_data_refs=False,
load_from_ro_regions=False, cross_insn_opt=None)

Lift an IRSB.

There are many possible valid sets of parameters. You at the very least must pass some source of data,
some source of an architecture, and some source of an address.

Sources of data in order of priority: insn_bytes, clemory, state

Sources of an address, in order of priority: addr, state

Sources of an architecture, in order of priority: arch, clemory, state

Parameters
• state (Optional[SimState]) – A state to use as a data source.

• clemory (Optional[Clemory]) – A cle.memory.Clemory object to use as a data source.

• addr (Optional[int]) – The address at which to start the block.

• thumb (bool) – Whether the block should be lifted in ARM’s THUMB mode.

• opt_level (Optional[int]) – Unused for P-Code lifter

• insn_bytes (Optional[bytes]) – A string of bytes to use as a data source.

• size (Optional[int]) – The maximum size of the block, in bytes.

• num_inst (Optional[int]) – The maximum number of instructions.

• traceflags (int) – Unused by P-Code lifter

• strict_block_end (Optional[bool]) – Unused by P-Code lifter

• load_from_ro_regions (bool) – Unused by P-Code lifter

• arch (Arch | None) –

• extra_stop_points (Iterable[int] | None) –

• skip_stmts (bool) –

• collect_data_refs (bool) –

• cross_insn_opt (bool | None) –

class angr.engines.pcode.emulate.PcodeEmulatorMixin(*args, **kwargs)
Bases: SimEngineBase

Mixin for p-code execution.

__init__(*args, **kwargs)

handle_pcode_block(irsb)
Execute a single P-Code IRSB.

Parameters
irsb (IRSB) – Block to be executed.

Return type
None

444 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/cle/en/latest/api/utils.html#cle.memory.Clemory
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

angr

angr.engines.pcode.behavior.make_bv_sizes_equal(bv1, bv2)
Makes two BVs equal in length through sign extension.

Return type
Tuple[BV, BV]

Parameters
• bv1 (BV) –

• bv2 (BV) –

class angr.engines.pcode.behavior.OpBehavior(opcode, is_unary, is_special=False)
Bases: object

Base class for all operation behaviors.

Parameters
• opcode (int) –

• is_unary (bool) –

• is_special (bool) –

__init__(opcode, is_unary, is_special=False)

Parameters
• opcode (int) –

• is_unary (bool) –

• is_special (bool) –

Return type
None

opcode: int

is_unary: bool

is_special: bool

evaluate_unary(size_out, size_in, in1)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

10.9. Simulation Engines 445

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

• in1 (BV) –

• in2 (BV) –

static generic_compare(args, comparison)

Return type
BV

Parameters
• args (Iterable[BV]) –

• comparison (Callable[[BV, BV], BV]) –

classmethod booleanize(in1)
Reduce input BV to a single bit of truth: out <- 1 if (in1 != 0) else 0.

Return type
BV

Parameters
in1 (BV) –

class angr.engines.pcode.behavior.OpBehaviorCopy

Bases: OpBehavior

Behavior for the COPY operation.

__init__()

evaluate_unary(size_out, size_in, in1)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorEqual

Bases: OpBehavior

Behavior for the INT_EQUAL operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

446 Chapter 10. API Reference

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int

angr

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorNotEqual

Bases: OpBehavior

Behavior for the INT_NOTEQUAL operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntSless

Bases: OpBehavior

Behavior for the INT_SLESS operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

10.9. Simulation Engines 447

https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntSlessEqual

Bases: OpBehavior

Behavior for the INT_SLESSEQUAL operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntLess

Bases: OpBehavior

Behavior for the INT_LESS operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntLessEqual

Bases: OpBehavior

Behavior for the INT_LESSEQUAL operation.

__init__()

448 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntZext

Bases: OpBehavior

Behavior for the INT_ZEXT operation.

__init__()

evaluate_unary(size_out, size_in, in1)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntSext

Bases: OpBehavior

Behavior for the INT_SEXT operation.

__init__()

evaluate_unary(size_out, size_in, in1)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

10.9. Simulation Engines 449

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV

angr

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntAdd

Bases: OpBehavior

Behavior for the INT_ADD operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntSub

Bases: OpBehavior

Behavior for the INT_SUB operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

450 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.engines.pcode.behavior.OpBehaviorIntCarry

Bases: OpBehavior

Behavior for the INT_CARRY operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntScarry

Bases: OpBehavior

Behavior for the INT_SCARRY operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntSborrow

Bases: OpBehavior

Behavior for the INT_SBORROW operation.

__init__()

10.9. Simulation Engines 451

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorInt2Comp

Bases: OpBehavior

Behavior for the INT_2COMP operation.

__init__()

evaluate_unary(size_out, size_in, in1)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntNegate

Bases: OpBehavior

Behavior for the INT_NEGATE operation.

__init__()

evaluate_unary(size_out, size_in, in1)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

452 Chapter 10. API Reference

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV

angr

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntXor

Bases: OpBehavior

Behavior for the INT_XOR operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntAnd

Bases: OpBehavior

Behavior for the INT_AND operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

10.9. Simulation Engines 453

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.engines.pcode.behavior.OpBehaviorIntOr

Bases: OpBehavior

Behavior for the INT_OR operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntLeft

Bases: OpBehavior

Behavior for the INT_LEFT operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntRight

Bases: OpBehavior

Behavior for the INT_RIGHT operation.

__init__()

454 Chapter 10. API Reference

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntSright

Bases: OpBehavior

Behavior for the INT_SRIGHT operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntMult

Bases: OpBehavior

Behavior for the INT_MULT operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

10.9. Simulation Engines 455

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntDiv

Bases: OpBehavior

Behavior for the INT_DIV operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntSdiv

Bases: OpBehavior

Behavior for the INT_SDIV operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

456 Chapter 10. API Reference

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.engines.pcode.behavior.OpBehaviorIntRem

Bases: OpBehavior

Behavior for the INT_REM operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorIntSrem

Bases: OpBehavior

Behavior for the INT_SREM operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorBoolNegate

Bases: OpBehavior

Behavior for the BOOL_NEGATE operation.

__init__()

10.9. Simulation Engines 457

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

evaluate_unary(size_out, size_in, in1)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorBoolXor

Bases: OpBehavior

Behavior for the BOOL_XOR operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorBoolAnd

Bases: OpBehavior

Behavior for the BOOL_AND operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

458 Chapter 10. API Reference

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV

angr

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorBoolOr

Bases: OpBehavior

Behavior for the BOOL_OR operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatEqual

Bases: OpBehavior

Behavior for the FLOAT_EQUAL operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatNotEqual

Bases: OpBehavior

Behavior for the FLOAT_NOTEQUAL operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

10.9. Simulation Engines 459

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.engines.pcode.behavior.OpBehaviorFloatLess

Bases: OpBehavior

Behavior for the FLOAT_LESS operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatLessEqual

Bases: OpBehavior

Behavior for the FLOAT_LESSEQUAL operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatNan

Bases: OpBehavior

Behavior for the FLOAT_NAN operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatAdd

Bases: OpBehavior

Behavior for the FLOAT_ADD operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatDiv

Bases: OpBehavior

Behavior for the FLOAT_DIV operation.

__init__()

opcode: int

is_unary: bool

460 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatMult

Bases: OpBehavior

Behavior for the FLOAT_MULT operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatSub

Bases: OpBehavior

Behavior for the FLOAT_SUB operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatNeg

Bases: OpBehavior

Behavior for the FLOAT_NEG operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatAbs

Bases: OpBehavior

Behavior for the FLOAT_ABS operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatSqrt

Bases: OpBehavior

Behavior for the FLOAT_SQRT operation.

__init__()

opcode: int

10.9. Simulation Engines 461

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatInt2Float

Bases: OpBehavior

Behavior for the FLOAT_INT2FLOAT operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatFloat2Float

Bases: OpBehavior

Behavior for the FLOAT_FLOAT2FLOAT operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatTrunc

Bases: OpBehavior

Behavior for the FLOAT_TRUNC operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatCeil

Bases: OpBehavior

Behavior for the FLOAT_CEIL operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatFloor

Bases: OpBehavior

Behavior for the FLOAT_FLOOR operation.

__init__()

462 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorFloatRound

Bases: OpBehavior

Behavior for the FLOAT_ROUND operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorPiece

Bases: OpBehavior

Behavior for the PIECE operation.

__init__()

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorSubpiece

Bases: OpBehavior

Behavior for the SUBPIECE operation.

__init__()

evaluate_binary(size_out, size_in, in1, in2)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

• in2 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.OpBehaviorPopcount

Bases: OpBehavior

Behavior for the POPCOUNT operation.

10.9. Simulation Engines 463

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

__init__()

evaluate_unary(size_out, size_in, in1)

Return type
BV

Parameters
• size_out (int) –

• size_in (int) –

• in1 (BV) –

opcode: int

is_unary: bool

is_special: bool

class angr.engines.pcode.behavior.BehaviorFactory

Bases: object

Returns the behavior object for a given opcode.

__init__()

get_behavior_for_opcode(opcode)

Return type
OpBehavior

Parameters
opcode (int) –

class angr.engines.pcode.cc.SimCCM68k(arch)
Bases: SimCC

Default CC for M68k

Parameters
arch (Arch) –

ARG_REGS: List[str] = []

FP_ARG_REGS: List[str] = []

STACKARG_SP_DIFF = 4

RETURN_VAL: SimFunctionArgument = <d0>

RETURN_ADDR: SimFunctionArgument = [0x0]

class angr.engines.pcode.cc.SimCCRISCV(arch)
Bases: SimCC

Default CC for RISCV

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7']

464 Chapter 10. API Reference

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

angr

RETURN_ADDR: SimFunctionArgument = <ra>

RETURN_VAL: SimFunctionArgument = <a0>

class angr.engines.pcode.cc.SimCCSPARC(arch)
Bases: SimCC

Default CC for SPARC

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['o0', 'o1']

RETURN_VAL: SimFunctionArgument = <o0>

RETURN_ADDR: SimFunctionArgument = <o7>

class angr.engines.pcode.cc.SimCCSH4(arch)
Bases: SimCC

Default CC for SH4

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['r4', 'r5']

RETURN_VAL: SimFunctionArgument = <r0>

RETURN_ADDR: SimFunctionArgument = <pr>

class angr.engines.pcode.cc.SimCCPARISC(arch)
Bases: SimCC

Default CC for PARISC

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['r26', 'r25']

RETURN_VAL: SimFunctionArgument = <r28>

RETURN_ADDR: SimFunctionArgument = <rp>

class angr.engines.pcode.cc.SimCCPowerPC(arch)
Bases: SimCC

Default CC for PowerPC

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['r3', 'r4', 'r5', 'r6', 'r7', 'r8', 'r9', 'r10']

FP_ARG_REGS: List[str] = []

STACKARG_SP_BUFF = 8

RETURN_ADDR: SimFunctionArgument = <lr>

10.9. Simulation Engines 465

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

angr

RETURN_VAL: SimFunctionArgument = <r3>

class angr.engines.pcode.cc.SimCCXtensa(arch)
Bases: SimCC

Default CC for Xtensa

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['i2', 'i3', 'i4', 'i5', 'i6', 'i7']

FP_ARG_REGS: List[str] = []

RETURN_ADDR: SimFunctionArgument = <a0>

RETURN_VAL: SimFunctionArgument = <o2>

angr.engines.pcode.cc.register_pcode_arch_default_cc(arch)

Parameters
arch (ArchPcode) –

10.10 Simulation Logging

class angr.state_plugins.sim_action.SimAction(state, region_type)
Bases: SimEvent

A SimAction represents a semantic action that an analyzed program performs.

TMP = 'tmp'

REG = 'reg'

MEM = 'mem'

__init__(state, region_type)
Initializes the SimAction.

Parameters
state – the state that’s the SimAction is taking place in.

property all_objects

property is_symbolic

property tmp_deps

property reg_deps

copy()

downsize()

Clears some low-level details (that take up memory) out of the SimAction.

class angr.state_plugins.sim_action.SimActionExit(state, target, condition=None, exit_type=None)
Bases: SimAction

An Exit action represents a (possibly conditional) jump.

466 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_pcode.ArchPcode

angr

CONDITIONAL = 'conditional'

DEFAULT = 'default'

__init__(state, target, condition=None, exit_type=None)
Initializes the SimAction.

Parameters
state – the state that’s the SimAction is taking place in.

property all_objects

property is_symbolic

class angr.state_plugins.sim_action.SimActionConstraint(state, constraint, condition=None)
Bases: SimAction

A constraint action represents an extra constraint added during execution of a path.

__init__(state, constraint, condition=None)
Initializes the SimAction.

Parameters
state – the state that’s the SimAction is taking place in.

property all_objects

property is_symbolic

class angr.state_plugins.sim_action.SimActionOperation(state, op, exprs, result)
Bases: SimAction

An action representing an operation between variables and/or constants.

__init__(state, op, exprs, result)
Initializes the SimAction.

Parameters
state – the state that’s the SimAction is taking place in.

property all_objects

property is_symbolic

class angr.state_plugins.sim_action.SimActionData(state, region_type, action, tmp=None, addr=None,
size=None, data=None, condition=None,
fallback=None, fd=None)

Bases: SimAction

A Data action represents a read or a write from memory, registers or a file.

READ = 'read'

WRITE = 'write'

OPERATE = 'operate'

__init__(state, region_type, action, tmp=None, addr=None, size=None, data=None, condition=None,
fallback=None, fd=None)

Initializes the SimAction.

10.10. Simulation Logging 467

angr

Parameters
state – the state that’s the SimAction is taking place in.

downsize()

Clears some low-level details (that take up memory) out of the SimAction.

property all_objects

property is_symbolic

property tmp_deps

property reg_deps

property storage

angr.state_plugins.sim_action_object.ast_stripping_op(f , *args, **kwargs)

angr.state_plugins.sim_action_object.ast_preserving_op(f , *args, **kwargs)

angr.state_plugins.sim_action_object.ast_stripping_decorator(f)

class angr.state_plugins.sim_action_object.SimActionObject(ast, reg_deps=None, tmp_deps=None,
deps=None, state=None)

Bases: object

A SimActionObject tracks an AST and its dependencies.

__init__(ast, reg_deps=None, tmp_deps=None, deps=None, state=None)

to_claripy()

copy()

SDiv(*args, **kwargs)

SMod(*args, **kwargs)

intersection(*args, **kwargs)

union(*args, **kwargs)

widen(*args, **kwargs)

angr.state_plugins.sim_action_object.make_methods()

class angr.state_plugins.sim_event.SimEvent(state, event_type, **kwargs)
Bases: object

A SimEvent is a log entry for some notable event during symbolic execution. It logs the location it was generated
(ins_addr, bbl_addr, stmt_idx, and sim_procedure) as well as arbitrary tags (objects).

You may also be interested in SimAction, which is a specialization of SimEvent for CPU events.

__init__(state, event_type, **kwargs)

angr.state_plugins.sim_event.resource_event(state, exception)

468 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

10.11 Procedures

class angr.sim_procedure.SimProcedure(project=None, cc=None, prototype=None, symbolic_return=None,
returns=None, is_syscall=False, is_stub=False, num_args=None,
display_name=None, library_name=None, is_function=None,
**kwargs)

Bases: object

A SimProcedure is a wonderful object which describes a procedure to run on a state.

You may subclass SimProcedure and override run(), replacing it with mutating self.state however you like,
and then either returning a value or jumping away somehow.

A detailed discussion of programming SimProcedures may be found at https://docs.angr.io/extending-angr/
simprocedures

Parameters
• arch – The architecture to use for this procedure

• project (Project) –

• cc (SimCC) –

• prototype (SimTypeFunction) –

The following parameters are optional:

Parameters
• symbolic_return – Whether the procedure’s return value should be stubbed into a single

symbolic variable constratined to the real return value

• returns – Whether the procedure should return to its caller afterwards

• is_syscall – Whether this procedure is a syscall

• num_args – The number of arguments this procedure should extract

• display_name – The name to use when displaying this procedure

• library_name – The name of the library from which the function we’re emulating comes

• cc – The SimCC to use for this procedure

• sim_kwargs – Additional keyword arguments to be passed to run()

• is_function – Whether this procedure emulates a function

• project (Project) –

• prototype (SimTypeFunction) –

The following class variables should be set if necessary when implementing a new SimProcedure:

Variables
• NO_RET – Set this to true if control flow will never return from this function

• DYNAMIC_RET – Set this to true if whether the control flow returns from this function or not
depends on the context (e.g., libc’s error() call). Must implement dynamic_returns() method.

• ADDS_EXITS – Set this to true if you do any control flow other than returning

• IS_FUNCTION – Does this procedure simulate a function? True by default

10.11. Procedures 469

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/extending-angr/simprocedures
https://docs.angr.io/extending-angr/simprocedures

angr

• ARGS_MISMATCH – Does this procedure have a different list of arguments than what is pro-
vided in the function specification? This may happen when we manually extract arguments
in the run() method of a SimProcedure. False by default.

• local_vars – If you use self.call(), set this to a list of all the local variable names in
your class. They will be restored on return.

Parameters
• project (Project) –

• cc (SimCC) –

• prototype (SimTypeFunction) –

The following instance variables are available when working with simprocedures from the inside or the outside:

Variables
• project – The associated angr project

• arch – The associated architecture

• addr – The linear address at which the procedure is executing

• cc – The calling convention in use for engaging with the ABI

• canonical – The canonical version of this SimProcedure. Procedures are deepcopied for
many reasons, including to be able to store state related to a specific run and to be able to
hook continuations.

• kwargs – Any extra keyword arguments used to construct the procedure; will be passed to
run

• display_name – See the eponymous parameter

• library_name – See the eponymous parameter

• abi – If this is a syscall simprocedure, which ABI are we using to map the syscall numbers?

• symbolic_return – See the eponymous parameter

• syscall_number – If this procedure is a syscall, the number will be populated here.

• returns – See eponymous parameter and NO_RET cvar

• is_syscall – See eponymous parameter

• is_function – See eponymous parameter and cvar

• is_stub – See eponymous parameter

• is_continuation – Whether this procedure is the original or a continuation resulting from
self.call()

• continuations – A mapping from name to each known continuation

• run_func – The name of the function implementing the procedure. “run” by default, but
different in continuations.

• num_args – The number of arguments to the procedure. If not provided in the parameter,
extracted from the definition of self.run

Parameters
• project (Project) –

• cc (SimCC) –

470 Chapter 10. API Reference

angr

• prototype (SimTypeFunction) –

The following instance variables are only used in a copy of the procedure that is actually executing on a state:

Variables
• state – The SimState we should be mutating to perform the procedure

• successors – The SimSuccessors associated with the current step

• arguments – The function arguments, deserialized from the state

• arg_session – The ArgSession that was used to parse arguments out of the state, in case
you need it for varargs

• use_state_arguments – Whether we’re using arguments extracted from the state or man-
ually provided

• ret_to – The current return address

• ret_expr – The computed return value

• call_ret_expr – The return value from having used self.call()

• inhibit_autoret – Whether we should avoid automatically adding an exit for returning
once the run function ends

• arg_session – The ArgSession object that was used to extract the runtime argument values.
Useful for if you want to extract variadic args.

Parameters
• project (Project) –

• cc (SimCC) –

• prototype (SimTypeFunction) –

__init__(project=None, cc=None, prototype=None, symbolic_return=None, returns=None,
is_syscall=False, is_stub=False, num_args=None, display_name=None, library_name=None,
is_function=None, **kwargs)

project: Project

arch: Arch

cc: SimCC

prototype: SimTypeFunction

state: SimState

arg_session: Union[None, ArgSession, int]

execute(state, successors=None, arguments=None, ret_to=None)
Call this method with a SimState and a SimSuccessors to execute the procedure.

Alternately, successors may be none if this is an inline call. In that case, you should provide arguments to
the function.

make_continuation(name)

NO_RET = False

DYNAMIC_RET = False

10.11. Procedures 471

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

angr

ADDS_EXITS = False

IS_FUNCTION = True

ARGS_MISMATCH = False

ALT_NAMES = None

local_vars: Tuple[str, ...] = ()

run(*args, **kwargs)
Implement the actual procedure here!

static_exits(blocks, **kwargs)
Get new exits by performing static analysis and heuristics. This is a fast and best-effort approach to get new
exits for scenarios where states are not available (e.g. when building a fast CFG).

Parameters
blocks (list) – Blocks that are executed before reaching this SimProcedure.

Returns
A list of dicts. Each dict should contain the following entries: ‘address’, ‘jumpkind’, and
‘namehint’.

Return type
list

dynamic_returns(blocks, **kwargs)
Determines if a call to this function returns or not by performing static analysis and heuristics.

Parameters
blocks – Blocks that are executed before reaching this SimProcedure.

Return type
bool

Returns
True if the call returns, False otherwise.

property should_add_successors

set_args(args)

va_arg(ty, index=None)

inline_call(procedure, *arguments, **kwargs)
Call another SimProcedure in-line to retrieve its return value. Returns an instance of the procedure with
the ret_expr property set.

Parameters
• procedure – The class of the procedure to execute

• arguments – Any additional positional args will be used as arguments to the procedure
call

• sim_kwargs – Any additional keyword args will be passed as sim_kwargs to the procedure
construtor

fix_prototype_returnty(ret_size)

472 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

angr

ret(expr=None)
Add an exit representing a return from this function. If this is not an inline call, grab a return address from
the state and jump to it. If this is not an inline call, set a return expression with the calling convention.

call(addr, args, continue_at, cc=None, prototype=None, jumpkind='Ijk_Call')
Add an exit representing calling another function via pointer.

Parameters
• addr – The address of the function to call

• args – The list of arguments to call the function with

• continue_at – Later, when the called function returns, execution of the current procedure
will continue in the named method.

• cc – Optional: use this calling convention for calling the new function. Default is to use
the current convention.

• prototype – Optional: The prototype to use for the call. Will default to all-ints.

jump(addr, jumpkind='Ijk_Boring')
Add an exit representing jumping to an address.

exit(exit_code)
Add an exit representing terminating the program.

ty_ptr(ty)

property is_java

property argument_types

property return_type

class angr.procedures.stubs.format_parser.FormatString(parser, components)
Bases: object

Describes a format string.

SCANF_DELIMITERS = [b'\t', b'\n', b'\x0b', b'\r', b' ']

__init__(parser, components)
Takes a list of components which are either just strings or a FormatSpecifier.

property state

replace(va_arg)
Implement printf - based on the stored format specifier information, format the values from the arg getter
function args into a string.

Parameters
va_arg – A function which takes a type and returns the next argument of that type

Returns
The result formatted string

interpret(va_arg, addr=None, simfd=None)
implement scanf - extract formatted data from memory or a file according to the stored format specifiers
and store them into the pointers extracted from args.

Parameters

10.11. Procedures 473

https://docs.python.org/3/library/functions.html#object

angr

• va_arg – A function which, given a type, returns the next argument of that type

• addr – The address in the memory to extract data from, or. . .

• simfd – A file descriptor to use for reading data from

Returns
The number of arguments parsed

class angr.procedures.stubs.format_parser.FormatSpecifier(string, length_spec, pad_chr, size,
signed)

Bases: object

Describes a format specifier within a format string.

__init__(string, length_spec, pad_chr, size, signed)

string

size

signed

length_spec

pad_chr

property spec_type

class angr.procedures.stubs.format_parser.FormatParser(project=None, cc=None, prototype=None,
symbolic_return=None, returns=None,
is_syscall=False, is_stub=False,
num_args=None, display_name=None,
library_name=None, is_function=None,
**kwargs)

Bases: SimProcedure

For SimProcedures relying on printf-style format strings.

Parameters
• project (Project) –

• cc (SimCC) –

• prototype (SimTypeFunction) –

ARGS_MISMATCH = True

basic_spec = {b'A': double, b'E': double, b'F': double, b'G': double, b'X': unsigned
int, b'a': double, b'c': char, b'd': int, b'e': double, b'f': double, b'g':
double, b'i': int, b'n': unsigned int*, b'o': unsigned int, b'p': unsigned int*,
b's': char*, b'u': unsigned int, b'x': unsigned int}

int_sign = {'signed': [b'd', b'i'], 'unsigned': [b'o', b'u', b'x', b'X']}

int_len_mod = {b'h': (short, unsigned short), b'hh': (char, char), b'j': (long
long, unsigned long long), b'l': (long, unsigned long), b'll': (long long,
unsigned long long), b't': (long, long), b'z': (size_t, size_t)}

other_types = {('string',): <function FormatParser.<lambda>>}

474 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

flags = ['#', '0', '\\-', ' ', '\\+', "\\'", 'I']

extract_components(fmt)
Extract the actual formats from the format string fmt.

Parameters
fmt (List) – A list of format chars.

Return type
List

Returns
a FormatString object

state: SimState

project: angr.Project

arch: archinfo.arch.Arch

cc: angr.SimCC

prototype: angr.sim_type.SimTypeFunction

arg_session: Union[None, ArgSession, int]

class angr.procedures.stubs.format_parser.ScanfFormatParser(project=None, cc=None,
prototype=None,
symbolic_return=None,
returns=None, is_syscall=False,
is_stub=False, num_args=None,
display_name=None,
library_name=None,
is_function=None, **kwargs)

Bases: FormatParser

For SimProcedures relying on scanf-style format strings.

basic_spec = {b'A': float, b'E': float, b'F': float, b'G': float, b'X': unsigned
int, b'a': float, b'c': char, b'd': int, b'e': float, b'f': float, b'g':
float, b'i': int, b'n': unsigned int*, b'o': unsigned int, b'p': unsigned int*,
b's': char*, b'u': unsigned int, b'x': unsigned int}

float_spec = [b'e', b'E', b'f', b'F', b'g', b'G', b'a', b'A']

float_len_mod = {b'l': <class 'angr.sim_type.SimTypeDouble'>, b'll': <class
'angr.sim_type.SimTypeDouble'>}

state: SimState

project: angr.Project

arch: archinfo.arch.Arch

cc: angr.SimCC

prototype: angr.sim_type.SimTypeFunction

arg_session: Union[None, ArgSession, int]

10.11. Procedures 475

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

angr

class angr.procedures.definitions.SimLibrary

Bases: object

A SimLibrary is the mechanism for describing a dynamic library’s API, its functions and metadata.

Any instance of this class (or its subclasses) found in the angr.procedures.definitions package will be
automatically picked up and added to angr.SIM_LIBRARIES via all its names.

Variables
• fallback_cc – A mapping from architecture to the default calling convention that should

be used if no other information is present. Contains some sane defaults for linux.

• fallback_proc – A SimProcedure class that should be used to provide stub procedures.
By default, ReturnUnconstrained.

__init__()

copy()

Make a copy of this SimLibrary, allowing it to be mutated without affecting the global version.

Returns
A new SimLibrary object with the same library references but different dict/list references

update(other)
Augment this SimLibrary with the information from another SimLibrary

Parameters
other – The other SimLibrary

property name

The first common name of this library, e.g. libc.so.6, or ‘??????’ if none are known.

set_library_names(*names)
Set some common names of this library by which it may be referred during linking

Parameters
names – Any number of string library names may be passed as varargs.

set_default_cc(arch_name, cc_cls)
Set the default calling convention used for this library under a given architecture

Parameters
arch_name – The string name of the architecture, i.e. the .name field from archinfo.

Parm cc_cls
The SimCC class (not an instance!) to use

set_non_returning(*names)
Mark some functions in this class as never returning, i.e. loops forever or terminates execution

Parameters
names – Any number of string function names may be passed as varargs

set_prototype(name, proto)
Set the prototype of a function in the form of a SimTypeFunction containing argument and return types

Parameters
• name – The name of the function as a string

• proto – The prototype of the function as a SimTypeFunction

476 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

set_prototypes(protos)
Set the prototypes of many functions

Parameters
protos – Dictionary mapping function names to SimTypeFunction objects

set_c_prototype(c_decl)
Set the prototype of a function in the form of a C-style function declaration.

Parameters
c_decl (str) – The C-style declaration of the function.

Returns
A tuple of (function name, function prototype)

Return type
tuple

add(name, proc_cls, **kwargs)
Add a function implementation fo the library.

Parameters
• name – The name of the function as a string

• proc_cls – The implementation of the function as a SimProcedure _class_, not instance

• kwargs – Any additional parameters to the procedure class constructor may be passed as
kwargs

add_all_from_dict(dictionary, **kwargs)
Batch-add function implementations to the library.

Parameters
• dictionary – A mapping from name to procedure class, i.e. the first two arguments to

add()

• kwargs – Any additional kwargs will be passed to the constructors of _each_ procedure
class

add_alias(name, *alt_names)
Add some duplicate names for a given function. The original function’s implementation must already be
registered.

Parameters
• name – The name of the function for which an implementation is already present

• alt_names – Any number of alternate names may be passed as varargs

get(name, arch)
Get an implementation of the given function specialized for the given arch, or a stub procedure if none
exists.

Parameters
• name – The name of the function as a string

• arch – The architecure to use, as either a string or an archinfo.Arch instance

Returns
A SimProcedure instance representing the function as found in the library

10.11. Procedures 477

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

angr

get_stub(name, arch)
Get a stub procedure for the given function, regardless of if a real implementation is available. This will
apply any metadata, such as a default calling convention or a function prototype.

By stub, we pretty much always mean a ReturnUnconstrained SimProcedure with the appropriate dis-
play name and metadata set. This will appear in state.history.descriptions as <SimProcedure
display_name (stub)>

Parameters
• name – The name of the function as a string

• arch – The architecture to use, as either a string or an archinfo.Arch instance

Returns
A SimProcedure instance representing a plausable stub as could be found in the library.

get_prototype(name, arch=None)
Get a prototype of the given function name, optionally specialize the prototype to a given architecture.

Parameters
• name (str) – Name of the function.

• arch – The architecture to specialize to.

Return type
Optional[SimTypeFunction]

Returns
Prototype of the function, or None if the prototype does not exist.

has_metadata(name)
Check if a function has either an implementation or any metadata associated with it

Parameters
name – The name of the function as a string

Returns
A bool indicating if anything is known about the function

has_implementation(name)
Check if a function has an implementation associated with it

Parameters
name – The name of the function as a string

Returns
A bool indicating if an implementation of the function is available

has_prototype(func_name)
Check if a function has a prototype associated with it.

Parameters
func_name (str) – The name of the function.

Returns
A bool indicating if a prototype of the function is available.

Return type
bool

478 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

angr

class angr.procedures.definitions.SimCppLibrary

Bases: SimLibrary

SimCppLibrary is a specialized version of SimLibrary that will demangle C++ function names before looking
for an implementation or prototype for it.

get(name, arch)
Get an implementation of the given function specialized for the given arch, or a stub procedure if none
exists. Demangle the function name if it is a mangled C++ name.

Parameters
• name (str) – The name of the function as a string

• arch – The architecure to use, as either a string or an archinfo.Arch instance

Returns
A SimProcedure instance representing the function as found in the library

get_stub(name, arch)
Get a stub procedure for the given function, regardless of if a real implementation is available. This will
apply any metadata, such as a default calling convention or a function prototype. Demangle the function
name if it is a mangled C++ name.

Parameters
• name (str) – The name of the function as a string

• arch – The architecture to use, as either a string or an archinfo.Arch instance

Returns
A SimProcedure instance representing a plausable stub as could be found in the library.

get_prototype(name, arch=None)
Get a prototype of the given function name, optionally specialize the prototype to a given architecture. The
function name will be demangled first.

Parameters
• name (str) – Name of the function.

• arch – The architecture to specialize to.

Return type
Optional[SimTypeFunction]

Returns
Prototype of the function, or None if the prototype does not exist.

has_metadata(name)
Check if a function has either an implementation or any metadata associated with it. Demangle the function
name if it is a mangled C++ name.

Parameters
name – The name of the function as a string

Returns
A bool indicating if anything is known about the function

has_implementation(name)
Check if a function has an implementation associated with it. Demangle the function name if it is a mangled
C++ name.

10.11. Procedures 479

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

angr

Parameters
name (str) – A mangled function name.

Returns
bool

has_prototype(func_name)
Check if a function has a prototype associated with it. Demangle the function name if it is a mangled C++
name.

Parameters
name (str) – A mangled function name.

Returns
bool

class angr.procedures.definitions.SimSyscallLibrary

Bases: SimLibrary

SimSyscallLibrary is a specialized version of SimLibrary for dealing not with a dynamic library’s API but rather
an operating system’s syscall API. Because this interface is inherently lower-level than a dynamic library, many
parts of this class has been changed to store data based on an “ABI name” (ABI = application binary interface,
like an API but for when there’s no programming language) instead of an architecture. An ABI name is just an
arbitrary string with which a calling convention and a syscall numbering is associated.

All the SimLibrary methods for adding functions still work, but now there’s an additional layer on top that
associates them with numbers.

__init__()

copy()

Make a copy of this SimLibrary, allowing it to be mutated without affecting the global version.

Returns
A new SimLibrary object with the same library references but different dict/list references

update(other)
Augment this SimLibrary with the information from another SimLibrary

Parameters
other – The other SimLibrary

minimum_syscall_number(abi)

Parameters
abi – The abi to evaluate

Returns
The smallest syscall number known for the given abi

maximum_syscall_number(abi)

Parameters
abi – The abi to evaluate

Returns
The largest syscall number known for the given abi

add_number_mapping(abi, number, name)
Associate a syscall number with the name of a function present in the underlying SimLibrary

Parameters

480 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

• abi – The abi for which this mapping applies

• number – The syscall number

• name – The name of the function

add_number_mapping_from_dict(abi, mapping)
Batch-associate syscall numbers with names of functions present in the underlying SimLibrary

Parameters
• abi – The abi for which this mapping applies

• mapping – A dict mapping syscall numbers to function names

set_abi_cc(abi, cc_cls)
Set the default calling convention for an abi

Parameters
• abi – The name of the abi

• cc_cls – A SimCC _class_, not an instance, that should be used for syscalls using the abi

set_prototype(abi, name, proto)
Set the prototype of a function in the form of a SimTypeFunction containing argument and return types

Parameters
• abi (str) – ABI of the syscall.

• name (str) – The name of the syscall as a string

• proto (SimTypeFunction) – The prototype of the syscall as a SimTypeFunction

Return type
None

set_prototypes(abi, protos)
Set the prototypes of many syscalls.

Parameters
• abi (str) – ABI of the syscalls.

• protos (Dict[str, SimTypeFunction]) – Dictionary mapping syscall names to Sim-
TypeFunction objects

Return type
None

get(number, arch, abi_list=())
The get() function for SimSyscallLibrary looks a little different from its original version.

Instead of providing a name, you provide a number, and you additionally provide a list of abi names that
are applicable. The first abi for which the number is present in the mapping will be chosen. This allows for
the easy abstractions of architectures like ARM or MIPS linux for which there are many ABIs that can be
used at any time by using syscall numbers from various ranges. If no abi knows about the number, the stub
procedure with the name “sys_%d” will be used.

Parameters
• number – The syscall number

• arch – The architecture being worked with, as either a string name or an archinfo.Arch

10.11. Procedures 481

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

angr

• abi_list – A list of ABI names that could be used

Returns
A SimProcedure representing the implementation of the given syscall, or a stub if no imple-
mentation is available

get_stub(number, arch, abi_list=())
Pretty much the intersection of SimLibrary.get_stub() and SimSyscallLibrary.get().

Parameters
• number – The syscall number

• arch – The architecture being worked with, as either a string name or an archinfo.Arch

• abi_list – A list of ABI names that could be used

Returns
A SimProcedure representing a plausable stub that could model the syscall

get_prototype(abi, name, arch=None)
Get a prototype of the given syscall name and its ABI, optionally specialize the prototype to a given archi-
tecture.

Parameters
• abi (str) – ABI of the prototype to get.

• name (str) – Name of the syscall.

• arch – The architecture to specialize to.

Return type
Optional[SimTypeFunction]

Returns
Prototype of the syscall, or None if the prototype does not exist.

has_metadata(number, arch, abi_list=())
Pretty much the intersection of SimLibrary.has_metadata() and SimSyscallLibrary.get().

Parameters
• number – The syscall number

• arch – The architecture being worked with, as either a string name or an archinfo.Arch

• abi_list – A list of ABI names that could be used

Returns
A bool of whether or not any implementation or metadata is known about the given syscall

has_implementation(number, arch, abi_list=())
Pretty much the intersection of SimLibrary.has_implementation() and SimSyscallLibrary.get().

Parameters
• number – The syscall number

• arch – The architecture being worked with, as either a string name or an archinfo.Arch

• abi_list – A list of ABI names that could be used

Returns
A bool of whether or not an implementation of the syscall is available

482 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

angr

has_prototype(abi, name)
Check if a function has a prototype associated with it. Demangle the function name if it is a mangled C++
name.

Parameters
• abi (str) – Name of the ABI.

• name (str) – The syscall name.

Return type
bool

Returns
bool

angr.procedures.definitions.load_win32api_definitions()

angr.procedures.definitions.load_all_definitions()

10.12 Calling Conventions and Types

class angr.calling_conventions.PointerWrapper(value, buffer=False)
Bases: object

__init__(value, buffer=False)

class angr.calling_conventions.AllocHelper(ptrsize)
Bases: object

__init__(ptrsize)

alloc(size)

dump(val, state, loc=None)

translate(val, base)

apply(state, base)

size()

classmethod calc_size(val, arch)

classmethod stack_loc(val, arch, offset=0)

angr.calling_conventions.refine_locs_with_struct_type(arch, locs, arg_type, offset=0,
treat_bot_as_int=True)

Parameters
• arch (Arch) –

• locs (List) –

• arg_type (SimType) –

• offset (int) –

10.12. Calling Conventions and Types 483

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

angr

class angr.calling_conventions.SerializableIterator

Bases: object

getstate()

setstate(state)

class angr.calling_conventions.SerializableListIterator(lst)
Bases: SerializableIterator

__init__(lst)

getstate()

setstate(state)

class angr.calling_conventions.SerializableCounter(start, stride, mapping=<function
SerializableCounter.<lambda>>)

Bases: SerializableIterator

__init__(start, stride, mapping=<function SerializableCounter.<lambda>>)

getstate()

setstate(state)

class angr.calling_conventions.SimFunctionArgument(size, is_fp=False)
Bases: object

Represent a generic function argument.

Variables
• size (int) – The size of the argument, in number of bytes.

• is_fp (bool) – Whether loads from this location should return a floating point bitvector

__init__(size, is_fp=False)

check_value_set(value, arch)

check_value_get(value)

set_value(state, value, **kwargs)

get_value(state, **kwargs)

refine(size, arch=None, offset=None, is_fp=None)

get_footprint()

Return a list of SimRegArg and SimStackArgs that are the base components used for this location

Return type
List[Union[SimRegArg, SimStackArg]]

class angr.calling_conventions.SimRegArg(reg_name, size, reg_offset=0, is_fp=False,
clear_entire_reg=False)

Bases: SimFunctionArgument

Represents a function argument that has been passed in a register.

Variables

484 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union

angr

• reg_name (string) – The name of the represented register.

• size (int) – The size of the data to store, in number of bytes.

• reg_offset – The offset into the register to start storing data.

• clear_entire_reg – Whether a store to this register should zero the unused parts of the
register.

• is_fp (bool) – Whether loads from this location should return a floating point bitvector

Parameters
• reg_name (str) –

• size (int) –

__init__(reg_name, size, reg_offset=0, is_fp=False, clear_entire_reg=False)

Parameters
• reg_name (str) –

• size (int) –

get_footprint()

Return a list of SimRegArg and SimStackArgs that are the base components used for this location

check_offset(arch)

set_value(state, value, **kwargs)

get_value(state, **kwargs)

refine(size, arch=None, offset=None, is_fp=None)

sse_extend()

class angr.calling_conventions.SimStackArg(stack_offset, size, is_fp=False)
Bases: SimFunctionArgument

Represents a function argument that has been passed on the stack.

Variables
• stack_offset (int) – The position of the argument relative to the stack pointer after the

function prelude.

• size (int) – The size of the argument, in number of bytes.

• is_fp (bool) – Whether loads from this location should return a floating point bitvector

__init__(stack_offset, size, is_fp=False)

get_footprint()

Return a list of SimRegArg and SimStackArgs that are the base components used for this location

set_value(state, value, stack_base=None, **kwargs)

get_value(state, stack_base=None, **kwargs)

refine(size, arch=None, offset=None, is_fp=None)

10.12. Calling Conventions and Types 485

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

class angr.calling_conventions.SimComboArg(locations, is_fp=False)
Bases: SimFunctionArgument

An argument which spans multiple storage locations. Locations should be given least-significant first.

__init__(locations, is_fp=False)

get_footprint()

Return a list of SimRegArg and SimStackArgs that are the base components used for this location

set_value(state, value, **kwargs)

get_value(state, **kwargs)

class angr.calling_conventions.SimStructArg(struct, locs)
Bases: SimFunctionArgument

An argument which de/serializes a struct from a list of storage locations

Variables
• struct – The simtype describing the structure

• locs – The storage locations to use

Parameters
• struct (SimStruct) –

• locs (Dict[str, SimFunctionArgument]) –

__init__(struct, locs)

Parameters
• struct (SimStruct) –

• locs (Dict[str, SimFunctionArgument]) –

get_footprint()

Return a list of SimRegArg and SimStackArgs that are the base components used for this location

get_value(state, **kwargs)

set_value(state, value, **kwargs)

class angr.calling_conventions.SimArrayArg(locs)
Bases: SimFunctionArgument

__init__(locs)

get_footprint()

Return a list of SimRegArg and SimStackArgs that are the base components used for this location

get_value(state, **kwargs)

set_value(state, value, **kwargs)

class angr.calling_conventions.SimReferenceArgument(ptr_loc, main_loc)
Bases: SimFunctionArgument

A function argument which is passed by reference.

Variables

486 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str

angr

• ptr_loc – The location the reference’s pointer is stored

• main_loc – A SimStackArgument describing how to load the argument’s value as if
it were stored at offset zero on the stack. It will be passed stack_base=ptr_loc.
get_value(state)

__init__(ptr_loc, main_loc)

get_footprint()

Return a list of SimRegArg and SimStackArgs that are the base components used for this location

get_value(state, **kwargs)

set_value(state, value, **kwargs)

class angr.calling_conventions.ArgSession(cc)
Bases: object

A class to keep track of the state accumulated in laying parameters out into memory

__init__(cc)

cc

fp_iter

int_iter

both_iter

getstate()

setstate(state)

class angr.calling_conventions.UsercallArgSession(cc)
Bases: object

An argsession for use with SimCCUsercall

__init__(cc)

cc

real_args

getstate()

setstate(state)

class angr.calling_conventions.SimCC(arch)
Bases: object

A calling convention allows you to extract from a state the data passed from function to function by calls and
returns. Most of the methods provided by SimCC that operate on a state assume that the program is just after a
call but just before stack frame allocation, though this may be overridden with the stack_base parameter to each
individual method.

This is the base class for all calling conventions.

Parameters
arch (Arch) –

10.12. Calling Conventions and Types 487

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch

angr

__init__(arch)

Parameters
arch (Arch) – The Archinfo arch for this CC

ARG_REGS: List[str] = []

FP_ARG_REGS: List[str] = []

STACKARG_SP_BUFF = 0

STACKARG_SP_DIFF = 0

CALLER_SAVED_REGS: List[str] = []

RETURN_ADDR: SimFunctionArgument = None

RETURN_VAL: SimFunctionArgument = None

OVERFLOW_RETURN_VAL: Optional[SimFunctionArgument] = None

FP_RETURN_VAL: Optional[SimFunctionArgument] = None

ARCH = None

CALLEE_CLEANUP = False

STACK_ALIGNMENT = 1

property int_args

Iterate through all the possible arg positions that can only be used to store integer or pointer values.

Returns an iterator of SimFunctionArguments

property memory_args

Iterate through all the possible arg positions that can be used to store any kind of argument.

Returns an iterator of SimFunctionArguments

property fp_args

Iterate through all the possible arg positions that can only be used to store floating point values.

Returns an iterator of SimFunctionArguments

is_fp_arg(arg)
This should take a SimFunctionArgument instance and return whether or not that argument is a floating-
point argument.

Returns True for MUST be a floating point arg,
False for MUST NOT be a floating point arg, None for when it can be either.

class ArgSession(cc)
Bases: object

A class to keep track of the state accumulated in laying parameters out into memory

cc

fp_iter

int_iter

488 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object

angr

both_iter

__init__(cc)

getstate()

setstate(state)

arg_session(ret_ty)
Return an arg session.

A session provides the control interface necessary to describe how integral and floating-point arguments
are laid out into memory. The default behavior is that there are a finite list of int-only and fp-only argument
slots, and an infinite number of generic slots, and when an argument of a given type is requested, the most
slot available is used. If you need different behavior, subclass ArgSession.

You need to provide the return type of the function in order to kick off an arg layout session.

Parameters
ret_ty (SimType | None) –

return_in_implicit_outparam(ty)

stack_space(args)

Parameters
args – A list of SimFunctionArguments

Returns
The number of bytes that should be allocated on the stack to store all these args, NOT IN-
CLUDING the return address.

return_val(ty, perspective_returned=False)
The location the return value is stored, based on its type.

property return_addr

The location the return address is stored.

next_arg(session, arg_type)

Parameters
• session (ArgSession) –

• arg_type (SimType) –

static is_fp_value(val)

static guess_prototype(args, prototype=None)
Come up with a plausible SimTypeFunction for the given args (as would be passed to e.g. setup_callsite).

You can pass a variadic function prototype in the base_type parameter and all its arguments will be used,
only guessing types for the variadic arguments.

arg_locs(prototype)

Return type
List[SimFunctionArgument]

get_args(state, prototype, stack_base=None)

set_return_val(state, val, ty, stack_base=None, perspective_returned=False)

10.12. Calling Conventions and Types 489

https://docs.python.org/3/library/typing.html#typing.List

angr

setup_callsite(state, ret_addr, args, prototype, stack_base=None, alloc_base=None,
grow_like_stack=True)

This function performs the actions of the caller getting ready to jump into a function.

Parameters
• state – The SimState to operate on

• ret_addr – The address to return to when the called function finishes

• args – The list of arguments that that the called function will see

• prototype – The signature of the call you’re making. Should include variadic args con-
cretely.

• stack_base – An optional pointer to use as the top of the stack, circa the function entry
point

• alloc_base – An optional pointer to use as the place to put excess argument data

• grow_like_stack – When allocating data at alloc_base, whether to allocate at decreasing
addresses

The idea here is that you can provide almost any kind of python type in args and it’ll be translated to a
binary format to be placed into simulated memory. Lists (representing arrays) must be entirely elements of
the same type and size, while tuples (representing structs) can be elements of any type and size. If you’d
like there to be a pointer to a given value, wrap the value in a PointerWrapper.

If stack_base is not provided, the current stack pointer will be used, and it will be updated. If alloc_base is
not provided, the stack base will be used and grow_like_stack will implicitly be True.

grow_like_stack controls the behavior of allocating data at alloc_base. When data from args needs to
be wrapped in a pointer, the pointer needs to point somewhere, so that data is dumped into memory at
alloc_base. If you set alloc_base to point to somewhere other than the stack, set grow_like_stack to False
so that sequential allocations happen at increasing addresses.

teardown_callsite(state, return_val=None, prototype=None, force_callee_cleanup=False)
This function performs the actions of the callee as it’s getting ready to return. It returns the address to return
to.

Parameters
• state – The state to mutate

• return_val – The value to return

• prototype – The prototype of the given function

• force_callee_cleanup – If we should clean up the stack allocation for the arguments
even if it’s not the callee’s job to do so

TODO: support the stack_base parameter from setup_callsite. . . ? Does that make sense in this context?
Maybe it could make sense by saying that you pass it in as something like the “saved base pointer” value?

static find_cc(arch, args, sp_delta, platform='Linux')
Pinpoint the best-fit calling convention and return the corresponding SimCC instance, or None if no fit is
found.

Parameters
• arch (Arch) – An ArchX instance. Can be obtained from archinfo.

• args (List[SimFunctionArgument]) – A list of arguments. It may be updated by the
first matched calling convention to remove non-argument arguments.

490 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List

angr

• sp_delta (int) – The change of stack pointer before and after the call is made.

• platform (str) –

Return type
Optional[SimCC]

Returns
A calling convention instance, or None if none of the SimCC subclasses seems to fit the
arguments provided.

get_arg_info(state, prototype)
This is just a simple wrapper that collects the information from various locations prototype is as passed to
self.arg_locs and self.get_args :param angr.SimState state: The state to evaluate and extract the values from
:return: A list of tuples, where the nth tuple is (type, name, location, value) of the nth argument

class angr.calling_conventions.SimLyingRegArg(name, size=8)
Bases: SimRegArg

A register that LIES about the types it holds

__init__(name, size=8)

get_value(state, **kwargs)

set_value(state, value, **kwargs)

refine(size, arch=None, offset=None, is_fp=None)

class angr.calling_conventions.SimCCUsercall(arch, args, ret_loc)
Bases: SimCC

__init__(arch, args, ret_loc)

Parameters
arch – The Archinfo arch for this CC

ArgSession

alias of UsercallArgSession

next_arg(session, arg_type)

return_val(ty, **kwargs)
The location the return value is stored, based on its type.

class angr.calling_conventions.SimCCCdecl(arch)
Bases: SimCC

Parameters
arch (Arch) –

ARG_REGS: List[str] = []

FP_ARG_REGS: List[str] = []

STACKARG_SP_DIFF = 4

CALLER_SAVED_REGS: List[str] = ['eax', 'ecx', 'edx']

RETURN_VAL: SimFunctionArgument = <eax>

10.12. Calling Conventions and Types 491

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

angr

OVERFLOW_RETURN_VAL: Optional[SimFunctionArgument] = <edx>

FP_RETURN_VAL: Optional[SimFunctionArgument] = <st0>

RETURN_ADDR: SimFunctionArgument = [0x0]

ARCH

alias of ArchX86

next_arg(session, arg_type)

STRUCT_RETURN_THRESHOLD = 32

return_val(ty, perspective_returned=False)
The location the return value is stored, based on its type.

return_in_implicit_outparam(ty)

class angr.calling_conventions.SimCCMicrosoftCdecl(arch)
Bases: SimCCCdecl

Parameters
arch (Arch) –

STRUCT_RETURN_THRESHOLD = 64

class angr.calling_conventions.SimCCStdcall(arch)
Bases: SimCCMicrosoftCdecl

Parameters
arch (Arch) –

CALLEE_CLEANUP = True

class angr.calling_conventions.SimCCMicrosoftFastcall(arch)
Bases: SimCC

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['ecx', 'edx']

STACKARG_SP_DIFF = 4

RETURN_VAL: SimFunctionArgument = <eax>

RETURN_ADDR: SimFunctionArgument = [0x0]

ARCH

alias of ArchX86

class angr.calling_conventions.MicrosoftAMD64ArgSession(cc)
Bases: object

__init__(cc)

class angr.calling_conventions.SimCCMicrosoftAMD64(arch)
Bases: SimCC

Parameters
arch (Arch) –

492 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_x86.ArchX86
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_x86.ArchX86
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch

angr

ARG_REGS: List[str] = ['rcx', 'rdx', 'r8', 'r9']

FP_ARG_REGS: List[str] = ['xmm0', 'xmm1', 'xmm2', 'xmm3']

STACKARG_SP_DIFF = 8

STACKARG_SP_BUFF = 32

RETURN_VAL: SimFunctionArgument = <rax>

OVERFLOW_RETURN_VAL: Optional[SimFunctionArgument] = <rdx>

FP_RETURN_VAL: Optional[SimFunctionArgument] = <xmm0>

RETURN_ADDR: SimFunctionArgument = [0x0]

ARCH

alias of ArchAMD64

STACK_ALIGNMENT = 16

ArgSession

alias of MicrosoftAMD64ArgSession

next_arg(session, arg_type)

return_in_implicit_outparam(ty)

class angr.calling_conventions.SimCCSyscall(arch)
Bases: SimCC

The base class of all syscall CCs.

Parameters
arch (Arch) –

ERROR_REG: SimRegArg = None

SYSCALL_ERRNO_START = None

static syscall_num(state)

Return type
int

linux_syscall_update_error_reg(state, expr)

set_return_val(state, val, ty, **kwargs)

class angr.calling_conventions.SimCCX86LinuxSyscall(arch)
Bases: SimCCSyscall

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['ebx', 'ecx', 'edx', 'esi', 'edi', 'ebp']

FP_ARG_REGS: List[str] = []

RETURN_VAL: SimFunctionArgument = <eax>

10.12. Calling Conventions and Types 493

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_amd64.ArchAMD64
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

angr

RETURN_ADDR: SimFunctionArgument = <ip_at_syscall>

ARCH

alias of ArchX86

static syscall_num(state)

class angr.calling_conventions.SimCCX86WindowsSyscall(arch)
Bases: SimCCSyscall

Parameters
arch (Arch) –

ARG_REGS: List[str] = []

FP_ARG_REGS: List[str] = []

RETURN_VAL: SimFunctionArgument = <eax>

RETURN_ADDR: SimFunctionArgument = <ip_at_syscall>

ARCH

alias of ArchX86

static syscall_num(state)

class angr.calling_conventions.SimCCSystemVAMD64(arch)
Bases: SimCC

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['rdi', 'rsi', 'rdx', 'rcx', 'r8', 'r9']

FP_ARG_REGS: List[str] = ['xmm0', 'xmm1', 'xmm2', 'xmm3', 'xmm4', 'xmm5', 'xmm6',
'xmm7']

STACKARG_SP_DIFF = 8

CALLER_SAVED_REGS: List[str] = ['rdi', 'rsi', 'rdx', 'rcx', 'r8', 'r9', 'r10',
'r11', 'rax']

RETURN_ADDR: SimFunctionArgument = [0x0]

RETURN_VAL: SimFunctionArgument = <rax>

OVERFLOW_RETURN_VAL: Optional[SimFunctionArgument] = <rdx>

FP_RETURN_VAL: Optional[SimFunctionArgument] = <xmm0>

OVERFLOW_FP_RETURN_VAL = <xmm1>

ARCH

alias of ArchAMD64

STACK_ALIGNMENT = 16

next_arg(session, arg_type)

494 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_x86.ArchX86
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_x86.ArchX86
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_amd64.ArchAMD64

angr

return_val(ty, perspective_returned=False)
The location the return value is stored, based on its type.

Parameters
ty (SimType | None) –

return_in_implicit_outparam(ty)

class angr.calling_conventions.SimCCAMD64LinuxSyscall(arch)
Bases: SimCCSyscall

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['rdi', 'rsi', 'rdx', 'r10', 'r8', 'r9']

RETURN_VAL: SimFunctionArgument = <rax>

RETURN_ADDR: SimFunctionArgument = <ip_at_syscall>

ARCH

alias of ArchAMD64

CALLER_SAVED_REGS: List[str] = ['rax', 'rcx', 'r11']

static syscall_num(state)

class angr.calling_conventions.SimCCAMD64WindowsSyscall(arch)
Bases: SimCCSyscall

Parameters
arch (Arch) –

ARG_REGS: List[str] = []

FP_ARG_REGS: List[str] = []

RETURN_VAL: SimFunctionArgument = <rax>

RETURN_ADDR: SimFunctionArgument = <ip_at_syscall>

ARCH

alias of ArchAMD64

static syscall_num(state)

class angr.calling_conventions.SimCCARM(arch)
Bases: SimCC

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['r0', 'r1', 'r2', 'r3']

FP_ARG_REGS: List[str] = []

CALLER_SAVED_REGS: List[str] = []

RETURN_ADDR: SimFunctionArgument = <lr>

RETURN_VAL: SimFunctionArgument = <r0>

10.12. Calling Conventions and Types 495

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_amd64.ArchAMD64
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_amd64.ArchAMD64
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

angr

OVERFLOW_RETURN_VAL: Optional[SimFunctionArgument] = <r1>

ARCH

alias of ArchARM

next_arg(session, arg_type)

class angr.calling_conventions.SimCCARMHF(arch)
Bases: SimCCARM

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['r0', 'r1', 'r2', 'r3']

FP_ARG_REGS: List[str] = ['s0', 's1', 's2', 's3', 's4', 's5', 's6', 's7', 's8',
's9', 's10', 's11', 's12', 's13', 's14', 's15']

FP_RETURN_VAL: Optional[SimFunctionArgument] = <s0>

CALLER_SAVED_REGS: List[str] = []

RETURN_ADDR: SimFunctionArgument = <lr>

RETURN_VAL: SimFunctionArgument = <r0>

ARCH

alias of ArchARMHF

next_arg(session, arg_type)

class angr.calling_conventions.SimCCARMLinuxSyscall(arch)
Bases: SimCCSyscall

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['r0', 'r1', 'r2', 'r3']

FP_ARG_REGS: List[str] = []

RETURN_ADDR: SimFunctionArgument = <ip_at_syscall>

RETURN_VAL: SimFunctionArgument = <r0>

ARCH

alias of ArchARM

static syscall_num(state)

class angr.calling_conventions.SimCCAArch64(arch)
Bases: SimCC

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7']

FP_ARG_REGS: List[str] = []

496 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_arm.ArchARM
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_arm.ArchARMHF
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_arm.ArchARM
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

angr

RETURN_ADDR: SimFunctionArgument = <lr>

RETURN_VAL: SimFunctionArgument = <x0>

ARCH

alias of ArchAArch64

class angr.calling_conventions.SimCCAArch64LinuxSyscall(arch)
Bases: SimCCSyscall

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['x0', 'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7']

FP_ARG_REGS: List[str] = []

RETURN_VAL: SimFunctionArgument = <x0>

RETURN_ADDR: SimFunctionArgument = <ip_at_syscall>

ARCH

alias of ArchAArch64

static syscall_num(state)

class angr.calling_conventions.SimCCRISCV64LinuxSyscall(arch)
Bases: SimCCSyscall

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7']

FP_ARG_REGS: List[str] = []

RETURN_VAL: SimFunctionArgument = <a0>

RETURN_ADDR: SimFunctionArgument = <ip_at_syscall>

ARCH

alias of ArchRISCV64

static syscall_num(state)

class angr.calling_conventions.SimCCO32(arch)
Bases: SimCC

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['a0', 'a1', 'a2', 'a3']

FP_ARG_REGS: List[str] = ['f12', 'f13', 'f14', 'f15']

STACKARG_SP_BUFF = 16

CALLER_SAVED_REGS: List[str] = ['t9', 'gp']

RETURN_ADDR: SimFunctionArgument = <ra>

10.12. Calling Conventions and Types 497

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_aarch64.ArchAArch64
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_aarch64.ArchAArch64
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.ArchRISCV64
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

angr

RETURN_VAL: SimFunctionArgument = <v0>

OVERFLOW_RETURN_VAL: Optional[SimFunctionArgument] = <v1>

ARCH

alias of ArchMIPS32

next_arg(session, arg_type)

class angr.calling_conventions.SimCCO32LinuxSyscall(arch)
Bases: SimCCSyscall

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['a0', 'a1', 'a2', 'a3']

FP_ARG_REGS: List[str] = []

RETURN_VAL: SimFunctionArgument = <v0>

RETURN_ADDR: SimFunctionArgument = <ip_at_syscall>

ARCH

alias of ArchMIPS32

ERROR_REG: SimRegArg = <a3>

SYSCALL_ERRNO_START = -1133

static syscall_num(state)

class angr.calling_conventions.SimCCN64(arch)
Bases: SimCC

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7']

CALLER_SAVED_REGS: List[str] = ['t9', 'gp']

FP_ARG_REGS: List[str] = []

STACKARG_SP_BUFF = 32

RETURN_ADDR: SimFunctionArgument = <ra>

RETURN_VAL: SimFunctionArgument = <v0>

ARCH

alias of ArchMIPS64

angr.calling_conventions.SimCCO64

alias of SimCCN64

class angr.calling_conventions.SimCCN64LinuxSyscall(arch)
Bases: SimCCSyscall

Parameters
arch (Arch) –

498 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_mips32.ArchMIPS32
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_mips32.ArchMIPS32
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_mips64.ArchMIPS64
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch

angr

ARG_REGS: List[str] = ['a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7']

FP_ARG_REGS: List[str] = []

RETURN_VAL: SimFunctionArgument = <v0>

RETURN_ADDR: SimFunctionArgument = <ip_at_syscall>

ARCH

alias of ArchMIPS64

ERROR_REG: SimRegArg = <a3>

SYSCALL_ERRNO_START = -1133

static syscall_num(state)

class angr.calling_conventions.SimCCPowerPC(arch)
Bases: SimCC

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['r3', 'r4', 'r5', 'r6', 'r7', 'r8', 'r9', 'r10']

FP_ARG_REGS: List[str] = []

STACKARG_SP_BUFF = 8

RETURN_ADDR: SimFunctionArgument = <lr>

RETURN_VAL: SimFunctionArgument = <r3>

ARCH

alias of ArchPPC32

class angr.calling_conventions.SimCCPowerPCLinuxSyscall(arch)
Bases: SimCCSyscall

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['r3', 'r4', 'r5', 'r6', 'r7', 'r8', 'r9', 'r10']

FP_ARG_REGS: List[str] = []

RETURN_VAL: SimFunctionArgument = <r3>

RETURN_ADDR: SimFunctionArgument = <ip_at_syscall>

ARCH

alias of ArchPPC32

ERROR_REG: SimRegArg = <cr0_0>

SYSCALL_ERRNO_START = -515

static syscall_num(state)

10.12. Calling Conventions and Types 499

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_mips64.ArchMIPS64
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_ppc32.ArchPPC32
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_ppc32.ArchPPC32

angr

class angr.calling_conventions.SimCCPowerPC64(arch)
Bases: SimCC

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['r3', 'r4', 'r5', 'r6', 'r7', 'r8', 'r9', 'r10']

FP_ARG_REGS: List[str] = []

STACKARG_SP_BUFF = 112

RETURN_ADDR: SimFunctionArgument = <lr>

RETURN_VAL: SimFunctionArgument = <r3>

ARCH

alias of ArchPPC64

class angr.calling_conventions.SimCCPowerPC64LinuxSyscall(arch)
Bases: SimCCSyscall

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['r3', 'r4', 'r5', 'r6', 'r7', 'r8', 'r9', 'r10']

FP_ARG_REGS: List[str] = []

RETURN_VAL: SimFunctionArgument = <r3>

RETURN_ADDR: SimFunctionArgument = <ip_at_syscall>

ARCH

alias of ArchPPC64

ERROR_REG: SimRegArg = <cr0_0>

SYSCALL_ERRNO_START = -515

static syscall_num(state)

class angr.calling_conventions.SimCCSoot(arch)
Bases: SimCC

Parameters
arch (Arch) –

ARCH

alias of ArchSoot

ARG_REGS: List[str] = []

setup_callsite(state, ret_addr, args, prototype, stack_base=None, alloc_base=None,
grow_like_stack=True)

This function performs the actions of the caller getting ready to jump into a function.

Parameters
• state – The SimState to operate on

• ret_addr – The address to return to when the called function finishes

500 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_ppc64.ArchPPC64
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_ppc64.ArchPPC64
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_soot.ArchSoot
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

angr

• args – The list of arguments that that the called function will see

• prototype – The signature of the call you’re making. Should include variadic args con-
cretely.

• stack_base – An optional pointer to use as the top of the stack, circa the function entry
point

• alloc_base – An optional pointer to use as the place to put excess argument data

• grow_like_stack – When allocating data at alloc_base, whether to allocate at decreasing
addresses

The idea here is that you can provide almost any kind of python type in args and it’ll be translated to a
binary format to be placed into simulated memory. Lists (representing arrays) must be entirely elements of
the same type and size, while tuples (representing structs) can be elements of any type and size. If you’d
like there to be a pointer to a given value, wrap the value in a PointerWrapper.

If stack_base is not provided, the current stack pointer will be used, and it will be updated. If alloc_base is
not provided, the stack base will be used and grow_like_stack will implicitly be True.

grow_like_stack controls the behavior of allocating data at alloc_base. When data from args needs to
be wrapped in a pointer, the pointer needs to point somewhere, so that data is dumped into memory at
alloc_base. If you set alloc_base to point to somewhere other than the stack, set grow_like_stack to False
so that sequential allocations happen at increasing addresses.

static guess_prototype(args, prototype=None)
Come up with a plausible SimTypeFunction for the given args (as would be passed to e.g. setup_callsite).

You can pass a variadic function prototype in the base_type parameter and all its arguments will be used,
only guessing types for the variadic arguments.

class angr.calling_conventions.SimCCUnknown(arch)
Bases: SimCC

Represent an unknown calling convention.

Parameters
arch (Arch) –

class angr.calling_conventions.SimCCS390X(arch)
Bases: SimCC

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['r2', 'r3', 'r4', 'r5', 'r6']

FP_ARG_REGS: List[str] = ['f0', 'f2', 'f4', 'f6']

STACKARG_SP_BUFF = 160

RETURN_ADDR: SimFunctionArgument = <r14>

RETURN_VAL: SimFunctionArgument = <r2>

ARCH

alias of ArchS390X

class angr.calling_conventions.SimCCS390XLinuxSyscall(arch)
Bases: SimCCSyscall

10.12. Calling Conventions and Types 501

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_s390x.ArchS390X

angr

Parameters
arch (Arch) –

ARG_REGS: List[str] = ['r2', 'r3', 'r4', 'r5', 'r6', 'r7']

FP_ARG_REGS: List[str] = []

RETURN_VAL: SimFunctionArgument = <r2>

RETURN_ADDR: SimFunctionArgument = <ip_at_syscall>

ARCH

alias of ArchS390X

static syscall_num(state)

angr.calling_conventions.register_default_cc(arch, cc, platform='Linux')

Parameters
• arch (str) –

• cc (Type[SimCC]) –

• platform (str) –

angr.calling_conventions.default_cc(arch, platform='Linux', language=None, syscall=False, **kwargs)
Return the default calling convention for a given architecture, platform, and language combination.

Parameters
• arch (str) – The architecture name.

• platform (Optional[str]) – The platform name (e.g., “Linux” or “Win32”).

• language (Optional[str]) – The programming language name (e.g., “go”).

• syscall (bool) – Return syscall convention (True), or normal calling convention (False,
default).

Return type
Optional[Type[SimCC]]

Returns
A default calling convention class if we can find one for the architecture, platform, and language
combination, or None if nothing fits.

angr.calling_conventions.unify_arch_name(arch)
Return the unified architecture name.

Parameters
arch (str) – The architecture name.

Return type
str

Returns
A unified architecture name.

angr.calling_conventions.register_syscall_cc(arch, os, cc)

502 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch_s390x.ArchS390X
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

class angr.sim_variable.SimVariable(ident=None, name=None, region=None, category=None, size=None)
Bases: Serializable

Parameters
• region (int | None) –

• size (int | None) –

__init__(ident=None, name=None, region=None, category=None, size=None)

Parameters
• ident – A unique identifier provided by user or the program. Usually a string.

• name (str) – Name of this variable.

• region (int | None) –

• size (int | None) –

ident

name

region: Optional[int]

category: Optional[str]

renamed

candidate_names

size

copy()

loc_repr(arch)
The representation that shows up in a GUI

Parameters
arch (Arch) –

property is_function_argument

class angr.sim_variable.SimConstantVariable(ident=None, value=None, region=None, size=None)
Bases: SimVariable

Parameters
region (int | None) –

__init__(ident=None, value=None, region=None, size=None)

Parameters
• ident – A unique identifier provided by user or the program. Usually a string.

• name (str) – Name of this variable.

value

loc_repr(arch)
The representation that shows up in a GUI

10.12. Calling Conventions and Types 503

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

copy()

Return type
SimConstantVariable

class angr.sim_variable.SimTemporaryVariable(tmp_id, size=None)
Bases: SimVariable

__init__(tmp_id, size=None)

Parameters
• ident – A unique identifier provided by user or the program. Usually a string.

• name (str) – Name of this variable.

tmp_id

loc_repr(arch)
The representation that shows up in a GUI

copy()

Return type
SimTemporaryVariable

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, **kwargs)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

class angr.sim_variable.SimRegisterVariable(reg_offset, size, ident=None, name=None, region=None,
category=None)

Bases: SimVariable

Parameters
• region (int | None) –

• category (str | None) –

__init__(reg_offset, size, ident=None, name=None, region=None, category=None)

Parameters
• ident – A unique identifier provided by user or the program. Usually a string.

• name (str) – Name of this variable.

504 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

reg: int

property bits

loc_repr(arch)
The representation that shows up in a GUI

copy()

Return type
SimRegisterVariable

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, **kwargs)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

class angr.sim_variable.SimMemoryVariable(addr, size, ident=None, name=None, region=None,
category=None)

Bases: SimVariable

Parameters
• region (int | None) –

• category (str | None) –

__init__(addr, size, ident=None, name=None, region=None, category=None)

Parameters
• ident – A unique identifier provided by user or the program. Usually a string.

• name (str) – Name of this variable.

addr

loc_repr(arch)
The representation that shows up in a GUI

property bits

copy()

Return type
SimMemoryVariable

10.12. Calling Conventions and Types 505

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, **kwargs)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

class angr.sim_variable.SimStackVariable(offset, size, base='sp', base_addr=None, ident=None,
name=None, region=None, category=None)

Bases: SimMemoryVariable

Parameters
• region (int | None) –

• category (str | None) –

__init__(offset, size, base='sp', base_addr=None, ident=None, name=None, region=None, category=None)

Parameters
• ident – A unique identifier provided by user or the program. Usually a string.

• name (str) – Name of this variable.

base

offset

base_addr

loc_repr(arch)
The representation that shows up in a GUI

copy()

Return type
SimStackVariable

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

506 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

classmethod parse_from_cmessage(cmsg, **kwargs)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

class angr.sim_variable.SimVariableSet

Bases: MutableSet

A collection of SimVariables.

__init__()

add(item)

Add an element.

add_register_variable(reg_var)

add_memory_variable(mem_var)

discard(item)

Remove an element. Do not raise an exception if absent.

discard_register_variable(reg_var)

discard_memory_variable(mem_var)

add_memory_variables(addrs, size)

copy()

complement(other)
Calculate the complement of self and other.

Parameters
other – Another SimVariableSet instance.

Returns
The complement result.

contains_register_variable(reg_var)

contains_memory_variable(mem_var)

class angr.sim_type.SimType(label=None)
Bases: object

SimType exists to track type information for SimProcedures.

base = True

__init__(label=None)

Parameters
label – the type label.

10.12. Calling Conventions and Types 507

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSet
https://docs.python.org/3/library/functions.html#object

angr

property size

The size of the type in bits.

property alignment

The alignment of the type in bytes.

with_arch(arch)

c_repr(name=None, full=0, memo=None, indent=0)

copy()

extract_claripy(bits)
Given a bitvector bits which was loaded from memory in a big-endian fashion, return a more appropriate
or structured representation of the data.

A type must have an arch associated in order to use this method.

class angr.sim_type.TypeRef(name, ty)
Bases: SimType

A TypeRef is a reference to a type with a name. This allows for interactivity in type analysis, by storing a type
and having the option to update it later and have all references to it automatically update as well.

__init__(name, ty)

Parameters
label – the type label.

property name

This is a read-only property because it is desirable to store typerefs in a mapping from name to type, and
we want the mapping to be in the loop for any updates.

property size

The size of the type in bits.

property alignment

The alignment of the type in bytes.

with_arch(arch)

c_repr(name=None, full=0, memo=None, indent=0)

copy()

class angr.sim_type.NamedTypeMixin(*args, name=None, **kwargs)
Bases: object

SimType classes with this mixin in the class hierarchy allows setting custom class names. A typical use
case is to represent same or similar type classes with different qualified names, such as “std::basic_string” vs
“std::__cxx11::basic_string”. In such cases, .name stores the qualified name, and .unqualified_name() returns
the unqualified name of the type.

Parameters
name (str | None) –

__init__(*args, name=None, **kwargs)

Parameters
name (str | None) –

508 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

property name: str

unqualified_name(lang='c++')

Return type
str

Parameters
lang (str) –

class angr.sim_type.SimTypeBottom(label=None)
Bases: SimType

SimTypeBottom basically represents a type error.

__init__(label=None)

Parameters
label – the type label.

c_repr(name=None, full=0, memo=None, indent=0)

copy()

class angr.sim_type.SimTypeTop(size=None, label=None)
Bases: SimType

SimTypeTop represents any type (mostly used with a pointer for void*).

__init__(size=None, label=None)

Parameters
label – the type label.

copy()

class angr.sim_type.SimTypeReg(size, label=None)
Bases: SimType

SimTypeReg is the base type for all types that are register-sized.

__init__(size, label=None)

Parameters
• label – the type label.

• size – the size of the type (e.g. 32bit, 8bit, etc.).

extract(state, addr, concrete=False)

store(state, addr, value)

copy()

class angr.sim_type.SimTypeNum(size, signed=True, label=None)
Bases: SimType

SimTypeNum is a numeric type of arbitrary length

10.12. Calling Conventions and Types 509

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

__init__(size, signed=True, label=None)

Parameters
• size – The size of the integer, in bits

• signed – Whether the integer is signed or not

• label – A label for the type

extract(state, addr, concrete=False)

store(state, addr, value)

copy()

class angr.sim_type.SimTypeInt(signed=True, label=None)
Bases: SimTypeReg

SimTypeInt is a type that specifies a signed or unsigned C integer.

__init__(signed=True, label=None)

Parameters
• signed – True if signed, False if unsigned

• label – The type label

c_repr(name=None, full=0, memo=None, indent=0)

property size

The size of the type in bits.

extract(state, addr, concrete=False)

copy()

class angr.sim_type.SimTypeShort(signed=True, label=None)
Bases: SimTypeInt

class angr.sim_type.SimTypeLong(signed=True, label=None)
Bases: SimTypeInt

class angr.sim_type.SimTypeLongLong(signed=True, label=None)
Bases: SimTypeInt

class angr.sim_type.SimTypeChar(signed=True, label=None)
Bases: SimTypeReg

SimTypeChar is a type that specifies a character; this could be represented by a byte, but this is meant to be
interpreted as a character.

__init__(signed=True, label=None)

Parameters
label – the type label.

store(state, addr, value)

extract(state, addr, concrete=False)

510 Chapter 10. API Reference

angr

copy()

class angr.sim_type.SimTypeWideChar(signed=True, label=None)
Bases: SimTypeReg

SimTypeWideChar is a type that specifies a wide character (a UTF-16 character).

__init__(signed=True, label=None)

Parameters
label – the type label.

store(state, addr, value)

extract(state, addr, concrete=False)

copy()

class angr.sim_type.SimTypeBool(signed=True, label=None)
Bases: SimTypeChar

store(state, addr, value)

extract(state, addr, concrete=False)

class angr.sim_type.SimTypeFd(label=None)
Bases: SimTypeReg

SimTypeFd is a type that specifies a file descriptor.

__init__(label=None)

Parameters
label – the type label

copy()

class angr.sim_type.SimTypePointer(pts_to, label=None, offset=0)
Bases: SimTypeReg

SimTypePointer is a type that specifies a pointer to some other type.

__init__(pts_to, label=None, offset=0)

Parameters
• label – The type label.

• pts_to – The type to which this pointer points.

c_repr(name=None, full=0, memo=None, indent=0)

make(pts_to)

property size

The size of the type in bits.

copy()

class angr.sim_type.SimTypeReference(refs, label=None)
Bases: SimTypeReg

SimTypeReference is a type that specifies a reference to some other type.

10.12. Calling Conventions and Types 511

angr

__init__(refs, label=None)

Parameters
• label – the type label.

• size – the size of the type (e.g. 32bit, 8bit, etc.).

c_repr(name=None, full=0, memo=None, indent=0)

make(refs)

property size

The size of the type in bits.

copy()

class angr.sim_type.SimTypeArray(elem_type, length=None, label=None)
Bases: SimType

SimTypeArray is a type that specifies a series of data laid out in sequence.

__init__(elem_type, length=None, label=None)

Parameters
• label – The type label.

• elem_type – The type of each element in the array.

• length – An expression of the length of the array, if known.

c_repr(name=None, full=0, memo=None, indent=0)

property size

The size of the type in bits.

property alignment

The alignment of the type in bytes.

copy()

extract(state, addr, concrete=False)

store(state, addr, values)

angr.sim_type.SimTypeFixedSizeArray

alias of SimTypeArray

class angr.sim_type.SimTypeString(length=None, label=None, name=None)
Bases: NamedTypeMixin, SimTypeArray

SimTypeString is a type that represents a C-style string, i.e. a NUL-terminated array of bytes.

Parameters
name (str | None) –

__init__(length=None, label=None, name=None)

Parameters
• label – The type label.

• length – An expression of the length of the string, if known.

512 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str

angr

• name (str | None) –

extract(state, addr, concrete=False)

Parameters
state (SimState) –

property size

The size of the type in bits.

property alignment

The alignment of the type in bytes.

copy()

class angr.sim_type.SimTypeWString(length=None, label=None, name=None)
Bases: NamedTypeMixin, SimTypeArray

A wide-character null-terminated string, where each character is 2 bytes.

Parameters
name (str | None) –

__init__(length=None, label=None, name=None)

Parameters
• label – The type label.

• elem_type – The type of each element in the array.

• length – An expression of the length of the array, if known.

• name (str | None) –

extract(state, addr, concrete=False)

property size

The size of the type in bits.

property alignment

The alignment of the type in bytes.

copy()

class angr.sim_type.SimTypeFunction(args, returnty, label=None, arg_names=None, variadic=False)
Bases: SimType

SimTypeFunction is a type that specifies an actual function (i.e. not a pointer) with certain types of arguments
and a certain return value.

Parameters
• args (List[SimType]) –

• returnty (SimType | None) –

base = False

__init__(args, returnty, label=None, arg_names=None, variadic=False)

Parameters
• label – The type label

10.12. Calling Conventions and Types 513

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List

angr

• args (List[SimType]) – A tuple of types representing the arguments to the function

• returnty (Optional[SimType]) – The return type of the function, or none for void

• variadic – Whether the function accepts varargs

c_repr(name=None, full=0, memo=None, indent=0)

property size

The size of the type in bits.

copy()

class angr.sim_type.SimTypeCppFunction(args, returnty, label=None, arg_names=None, ctor=False,
dtor=False)

Bases: SimTypeFunction

SimTypeCppFunction is a type that specifies an actual C++-style function with information about arguments,
return value, and more C++-specific properties.

Variables
• ctor – Whether the function is a constructor or not.

• dtor – Whether the function is a destructor or not.

Parameters
• args (List[SimType]) –

• returnty (SimType | None) –

• arg_names (Tuple[str]) –

• ctor (bool) –

• dtor (bool) –

__init__(args, returnty, label=None, arg_names=None, ctor=False, dtor=False)

Parameters
• label – The type label

• args – A tuple of types representing the arguments to the function

• returnty – The return type of the function, or none for void

• variadic – Whether the function accepts varargs

• arg_names (Tuple[str] | None) –

• ctor (bool) –

• dtor (bool) –

copy()

args: List[SimType]

returnty: Optional[SimType]

514 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional

angr

class angr.sim_type.SimTypeLength(signed=False, addr=None, length=None, label=None)
Bases: SimTypeLong

SimTypeLength is a type that specifies the length of some buffer in memory.

. . . I’m not really sure what the original design of this class was going for

__init__(signed=False, addr=None, length=None, label=None)

Parameters
• signed – Whether the value is signed or not

• label – The type label.

• addr – The memory address (expression).

• length – The length (expression).

property size

The size of the type in bits.

copy()

class angr.sim_type.SimTypeFloat(size=32)
Bases: SimTypeReg

An IEEE754 single-precision floating point number

__init__(size=32)

Parameters
• label – the type label.

• size – the size of the type (e.g. 32bit, 8bit, etc.).

sort = FLOAT

signed = True

extract(state, addr, concrete=False)

store(state, addr, value)

copy()

class angr.sim_type.SimTypeDouble(align_double=True)
Bases: SimTypeFloat

An IEEE754 double-precision floating point number

__init__(align_double=True)

Parameters
• label – the type label.

• size – the size of the type (e.g. 32bit, 8bit, etc.).

sort = DOUBLE

property alignment

The alignment of the type in bytes.

10.12. Calling Conventions and Types 515

angr

copy()

class angr.sim_type.SimStruct(fields, name=None, pack=False, align=None)
Bases: NamedTypeMixin, SimType

Parameters
fields (Dict[str, SimType] | OrderedDict) –

__init__(fields, name=None, pack=False, align=None)

Parameters
• label – the type label.

• fields (Dict[str, SimType] | OrderedDict) –

property packed

property offsets: Dict[str, int]

extract(state, addr, concrete=False)

c_repr(name=None, full=0, memo=None, indent=0)

property size

The size of the type in bits.

property alignment

The alignment of the type in bytes.

store(state, addr, value)

copy()

class angr.sim_type.SimStructValue(struct, values=None)
Bases: object

A SimStruct type paired with some real values

__init__(struct, values=None)

Parameters
• struct – A SimStruct instance describing the type of this struct

• values – A mapping from struct fields to values

property struct

copy()

class angr.sim_type.SimUnion(members, name=None, label=None)
Bases: NamedTypeMixin, SimType

fields = ('members', 'name')

__init__(members, name=None, label=None)

Parameters
• members – The members of the union, as a mapping name -> type

• name – The name of the union

516 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

property size

The size of the type in bits.

property alignment

The alignment of the type in bytes.

extract(state, addr, concrete=False)

c_repr(name=None, full=0, memo=None, indent=0)

copy()

class angr.sim_type.SimUnionValue(union, values=None)
Bases: object

A SimStruct type paired with some real values

__init__(union, values=None)

Parameters
• union – A SimUnion instance describing the type of this union

• values – A mapping from union members to values

copy()

class angr.sim_type.SimCppClass(members=None, function_members=None, vtable_ptrs=None,
name=None, pack=False, align=None)

Bases: SimStruct

Parameters
• members (Dict[str, SimType] | None) –

• function_members (Dict[str, SimTypeCppFunction] | None) –

• name (str | None) –

• pack (bool) –

__init__(members=None, function_members=None, vtable_ptrs=None, name=None, pack=False,
align=None)

Parameters
• label – the type label.

• members (Dict[str, SimType] | None) –

• function_members (Dict[str, SimTypeCppFunction] | None) –

• name (str | None) –

• pack (bool) –

property members

extract(state, addr, concrete=False)

store(state, addr, value)

copy()

10.12. Calling Conventions and Types 517

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

angr

class angr.sim_type.SimCppClassValue(class_type, values)
Bases: object

A SimCppClass type paired with some real values

__init__(class_type, values)

copy()

class angr.sim_type.SimTypeNumOffset(size, signed=True, label=None, offset=0)
Bases: SimTypeNum

like SimTypeNum, but supports an offset of 1 to 7 to a byte aligned address to allow structs with bitfields

__init__(size, signed=True, label=None, offset=0)

Parameters
• size – The size of the integer, in bits

• signed – Whether the integer is signed or not

• label – A label for the type

extract(state, addr, concrete=False)

Parameters
state (SimState) –

store(state, addr, value)

copy()

angr.sim_type.register_types(types)
Pass in some types and they will be registered to the global type store.

The argument may be either a mapping from name to SimType, or a plain SimType. The plain SimType must be
either a struct or union type with a name present.

>>> register_types(parse_types("typedef int x; typedef float y;"))
>>> register_types(parse_type("struct abcd { int ab; float cd; }"))

angr.sim_type.do_preprocess(defn, include_path=())
Run a string through the C preprocessor that ships with pycparser but is weirdly inaccessible?

angr.sim_type.parse_signature(defn, preprocess=True, predefined_types=None, arch=None)
Parse a single function prototype and return its type

angr.sim_type.parse_defns(defn, preprocess=True, predefined_types=None, arch=None)
Parse a series of C definitions, returns a mapping from variable name to variable type object

angr.sim_type.parse_types(defn, preprocess=True, predefined_types=None, arch=None)
Parse a series of C definitions, returns a mapping from type name to type object

angr.sim_type.parse_file(defn, preprocess=True, predefined_types=None, arch=None)
Parse a series of C definitions, returns a tuple of two type mappings, one for variable definitions and one for type
definitions.

Parameters
predefined_types (Dict[Any, SimType] | None) –

518 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any

angr

angr.sim_type.type_parser_singleton()

Return type
Optional[CParser]

angr.sim_type.parse_type(defn, preprocess=True, predefined_types=None, arch=None)
Parse a simple type expression into a SimType

>>> parse_type('int *')

angr.sim_type.parse_type_with_name(defn, preprocess=True, predefined_types=None, arch=None)
Parse a simple type expression into a SimType, returning a tuple of the type object and any associated name that
might be found in the place a name would go in a type declaration.

>>> parse_type_with_name('int *foo')

Parameters
predefined_types (Dict[Any, SimType] | None) –

angr.sim_type.normalize_cpp_function_name(name)

Return type
str

Parameters
name (str) –

angr.sim_type.parse_cpp_file(cpp_decl, with_param_names=False)

Parameters
with_param_names (bool) –

class angr.callable.Callable(project, addr, prototype=None, concrete_only=False, perform_merge=True,
base_state=None, toc=None, cc=None, add_options=None,
remove_options=None)

Bases: object

Callable is a representation of a function in the binary that can be interacted with like a native python function.

If you set perform_merge=True (the default), the result will be returned to you, and you can get the result state
with callable.result_state.

Otherwise, you can get the resulting simulation manager at callable.result_path_group.

__init__(project, addr, prototype=None, concrete_only=False, perform_merge=True, base_state=None,
toc=None, cc=None, add_options=None, remove_options=None)

Parameters
• project – The project to operate on

• addr – The address of the function to use

The following parameters are optional:

Parameters
• prototype – The signature of the calls you would like to make. This really shouldn’t be

optional.

• concrete_only – Throw an exception if the execution splits into multiple paths

10.12. Calling Conventions and Types 519

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

• perform_merge – Merge all result states into one at the end (only relevant if con-
crete_only=False)

• base_state – The state from which to do these runs

• toc – The address of the table of contents for ppc64

• cc – The SimCC to use for a calling convention

set_base_state(state)
Swap out the state you’d like to use to perform the call :type state: :param state: The state to use to perform
the call

perform_call(*args, prototype=None)

call_c(c_args)
Call this Callable with a string of C-style arguments.

Parameters
c_args (str) – C-style arguments.

Returns
The return value from the call.

Return type
claripy.Ast

10.13 Knowledge Base

Representing the artifacts of a project.

class angr.knowledge_base.knowledge_base.KnowledgeBase(project, obj=None, name=None)
Bases: object

Represents a “model” of knowledge about an artifact.

Contains things like a CFG, data references, etc.

functions: FunctionManager

variables: VariableManager

structured_code: StructuredCodeManager

defs: KeyDefinitionManager

cfgs: CFGManager

types: TypesStore

propagations: PropagationManager

xrefs: XRefManager

__init__(project, obj=None, name=None)

property callgraph

property unresolved_indirect_jumps

520 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

angr

property resolved_indirect_jumps

has_plugin(name)

get_plugin(name)

register_plugin(name, plugin)

release_plugin(name)

K = ~K

get_knowledge(requested_plugin_cls)
Type inference safe method to request a knowledge base plugin Explicitly passing the type of the requested
plugin achieves two things: 1. Every location using this plugin can be easily found with an IDE by searching
explicit references to the type 2. Basic type inference can deduce the result type and properly type check
usages of it

If there isn’t already an instance of this class None will be returned to make it clear to the caller that there
is no existing knowledge of this type yet. The code that initially creates this knowledge should use the reg-
ister_plugin method to register the initial knowledge state :type requested_plugin_cls: Type[TypeVar(K,
bound= KnowledgeBasePlugin)] :param requested_plugin_cls: :rtype: Optional[TypeVar(K, bound=
KnowledgeBasePlugin)] :return: Instance of the requested plugin class or null if it is not a known plugin

Parameters
requested_plugin_cls (Type[K]) –

Return type
K | None

request_knowledge(requested_plugin_cls)

Return type
TypeVar(K, bound= KnowledgeBasePlugin)

Parameters
requested_plugin_cls (Type[K]) –

class angr.knowledge_plugins.patches.Patch(addr, new_bytes, comment=None)
Bases: object

Parameters
comment (str | None) –

__init__(addr, new_bytes, comment=None)

Parameters
comment (str | None) –

class angr.knowledge_plugins.patches.PatchManager(kb)
Bases: KnowledgeBasePlugin

A placeholder-style implementation for a binary patch manager. This class should be significantly changed in
the future when all data about loaded binary objects are loaded into angr knowledge base from CLE. As of now,
it only stores byte-level replacements.

Patches should not overlap, but it’s user’s responsibility to check for and avoid overlapping patches.

__init__(kb)

10.13. Knowledge Base 521

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

add_patch(addr, new_bytes, comment=None)

Parameters
comment (str | None) –

add_patch_obj(patch)

Parameters
patch (Patch) –

remove_patch(addr)

patch_addrs()

get_patch(addr)
Get patch at the given address.

Parameters
addr (int) – The address of the patch.

Returns
The patch if there is one starting at the address, or None if there isn’t any.

Return type
Patch or None

get_all_patches(addr, size)
Retrieve all patches that cover a region specified by [addr, addr+size).

Parameters
• addr (int) – The address of the beginning of the region.

• size (int) – Size of the region.

Returns
A list of patches.

Return type
list

keys()

items()

values()

copy()

static overlap(a0, a1, b0, b1)

apply_patches_to_binary(binary_bytes=None, patches=None)

Return type
bytes

Parameters
• binary_bytes (bytes | None) –

• patches (List[Patch] | None) –

apply_patches_to_state(state)

522 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.List

angr

property patched_entry_state

class angr.knowledge_plugins.plugin.KnowledgeBasePlugin

Bases: object

copy()

static register_default(name, cls)

class angr.knowledge_plugins.callsite_prototypes.CallsitePrototypes(kb)
Bases: KnowledgeBasePlugin

CallsitePrototypes manages callee prototypes at call sites.

__init__(kb)

set_prototype(callsite_block_addr, cc, prototype, manual=False)

Return type
None

Parameters
• callsite_block_addr (int) –

• cc (SimCC) –

• prototype (SimTypeFunction) –

• manual (bool) –

get_cc(callsite_block_addr)

Return type
Optional[SimCC]

Parameters
callsite_block_addr (int) –

get_prototype(callsite_block_addr)

Return type
Optional[SimTypeFunction]

Parameters
callsite_block_addr (int) –

get_prototype_type(callsite_block_addr)

Return type
Optional[bool]

Parameters
callsite_block_addr (int) –

has_prototype(callsite_block_addr)

Return type
bool

Parameters
callsite_block_addr (int) –

10.13. Knowledge Base 523

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

copy()

class angr.knowledge_plugins.cfg.MemoryDataSort

Bases: object

Unspecified = None

Unknown = 'unknown'

Integer = 'integer'

PointerArray = 'pointer-array'

String = 'string'

UnicodeString = 'unicode'

SegmentBoundary = 'segment-boundary'

CodeReference = 'code reference'

GOTPLTEntry = 'GOT PLT Entry'

ELFHeader = 'elf-header'

FloatingPoint = 'fp'

class angr.knowledge_plugins.cfg.MemoryData(address, size, sort, pointer_addr=None, max_size=None,
reference_size=None)

Bases: Serializable

MemoryData describes the syntactic content of a single address of memory.

reference_size reflects the size of content. It can be different from size, which is the actual size of the memory
data item in memory. The intended way to get the actual content in memory is self.content[:self.size].

Parameters
• address (int) –

• size (int) –

• sort (str | None) –

• pointer_addr (int | None) –

• max_size (int | None) –

• reference_size (int | None) –

__init__(address, size, sort, pointer_addr=None, max_size=None, reference_size=None)

Parameters
• address (int) –

• size (int) –

• sort (str | None) –

• pointer_addr (int | None) –

• max_size (int | None) –

• reference_size (int | None) –

524 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

addr: int

size: int

reference_size: int

sort: Optional[str]

max_size: Optional[int]

pointer_addr: Optional[int]

content: Optional[bytes]

property address

copy()

Make a copy of the MemoryData.

Returns
A copy of the MemoryData instance.

Return type
MemoryData

fill_content(loader)
Load data to fill self.content.

Parameters
loader – The project loader.

Returns
None

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, **kwargs)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

class angr.knowledge_plugins.cfg.CFGNode(addr, size, cfg, simprocedure_name=None, no_ret=False,
function_address=None, block_id=None, irsb=None,
soot_block=None, instruction_addrs=None, thumb=False,
byte_string=None, is_syscall=None, name=None)

Bases: Serializable

This class stands for each single node in CFG.

10.13. Knowledge Base 525

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes

angr

__init__(addr, size, cfg, simprocedure_name=None, no_ret=False, function_address=None,
block_id=None, irsb=None, soot_block=None, instruction_addrs=None, thumb=False,
byte_string=None, is_syscall=None, name=None)

Note: simprocedure_name is not used to recreate the SimProcedure object. It’s only there for better
__repr__.

addr

size

simprocedure_name

no_ret

function_address

thumb

byte_string: Optional[bytes]

is_syscall

instruction_addrs

irsb

soot_block

has_return

block_id: Union[angr.analyses.cfg.cfg_job_base.BlockID, int]

property name

property successors

property predecessors

successors_and_jumpkinds(excluding_fakeret=True)

predecessors_and_jumpkinds(excluding_fakeret=True)

get_data_references(kb=None)
Get the known data references for this CFGNode via the knowledge base.

Parameters
kb – Which knowledge base to use; uses the global KB by default if none is provided

Returns
Generator yielding xrefs to this CFGNode’s block.

Return type
iter

property accessed_data_references

Property providing a view of all the known data references for this CFGNode via the global knowledge base

Returns
Generator yielding xrefs to this CFGNode’s block.

Return type
iter

526 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int

angr

property is_simprocedure

property callstack_key

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, cfg=None)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

copy()

merge(other)
Merges this node with the other, returning a new node that spans the both.

to_codenode()

property block

syscall_name

class angr.knowledge_plugins.cfg.CFGENode(addr, size, cfg, simprocedure_name=None, no_ret=False,
function_address=None, block_id=None, irsb=None,
instruction_addrs=None, thumb=False, byte_string=None,
is_syscall=None, name=None, input_state=None,
final_states=None, syscall_name=None, looping_times=0,
depth=None, callstack_key=None,
creation_failure_info=None)

Bases: CFGNode

The CFGNode that is used in CFGEmulated.

Parameters
• block_id (angr.analyses.cfg.cfg_job_base.BlockID | int) –

• byte_string (bytes | None) –

__init__(addr, size, cfg, simprocedure_name=None, no_ret=False, function_address=None,
block_id=None, irsb=None, instruction_addrs=None, thumb=False, byte_string=None,
is_syscall=None, name=None, input_state=None, final_states=None, syscall_name=None,
looping_times=0, depth=None, callstack_key=None, creation_failure_info=None)

Note: simprocedure_name is not used to recreate the SimProcedure object. It’s only there for better
__repr__.

10.13. Knowledge Base 527

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes

angr

input_state

looping_times

depth

creation_failure_info

final_states

return_target

syscall

property callstack_key

property creation_failed

downsize()

Drop saved states.

copy()

class angr.knowledge_plugins.cfg.IndirectJump(addr, ins_addr, func_addr, jumpkind, stmt_idx,
resolved_targets=None, jumptable=False,
jumptable_addr=None, jumptable_size=None,
jumptable_entry_size=None, jumptable_entries=None,
type_=255)

Bases: Serializable

Parameters
• addr (int) –

• ins_addr (int) –

• func_addr (int) –

• jumpkind (str) –

• stmt_idx (int) –

• resolved_targets (List[int] | None) –

• jumptable (bool) –

• jumptable_addr (int | None) –

• jumptable_size (int | None) –

• jumptable_entry_size (int | None) –

• jumptable_entries (List[int] | None) –

• type_ (int | None) –

__init__(addr, ins_addr, func_addr, jumpkind, stmt_idx, resolved_targets=None, jumptable=False,
jumptable_addr=None, jumptable_size=None, jumptable_entry_size=None,
jumptable_entries=None, type_=255)

Parameters
• addr (int) –

• ins_addr (int) –

528 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

• func_addr (int) –

• jumpkind (str) –

• stmt_idx (int) –

• resolved_targets (List[int] | None) –

• jumptable (bool) –

• jumptable_addr (int | None) –

• jumptable_size (int | None) –

• jumptable_entry_size (int | None) –

• jumptable_entries (List[int] | None) –

• type_ (int | None) –

addr

ins_addr

func_addr

jumpkind

stmt_idx

resolved_targets

jumptable

jumptable_addr

jumptable_size

jumptable_entry_size

jumptable_entries

type

class angr.knowledge_plugins.cfg.IndirectJumpType

Bases: object

Jumptable_AddressLoadedFromMemory = 0

Jumptable_AddressComputed = 1

Vtable = 3

Unknown = 255

class angr.knowledge_plugins.cfg.CFGModel(ident, cfg_manager=None, is_arm=False)
Bases: Serializable

This class describes a Control Flow Graph for a specific range of code.

__init__(ident, cfg_manager=None, is_arm=False)

ident

10.13. Knowledge Base 529

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

is_arm

graph

jump_tables: Dict[int, IndirectJump]

memory_data: Dict[int, MemoryData]

insn_addr_to_memory_data: Dict[int, MemoryData]

normalized

edges_to_repair

property project

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, cfg_manager=None, loader=None)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

copy()

add_node(block_id, node)

Return type
None

Parameters
• block_id (int) –

• node (CFGNode) –

remove_node(block_id, node)
Remove the given CFGNode instance. Note that this method does not remove the node from the graph.

Parameters
• block_id (int) – The Unique ID of the CFGNode.

• node (CFGNode) – The CFGNode instance to remove.

Return type
None

Returns
None

530 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

angr

get_node(block_id)
Get a single node from node key.

Parameters
block_id (BlockID) – Block ID of the node.

Returns
The CFGNode

Return type
CFGNode

get_any_node(addr, is_syscall=None, anyaddr=False, force_fastpath=False)
Get an arbitrary CFGNode (without considering their contexts) from our graph.

Parameters
• addr (int) – Address of the beginning of the basic block. Set anyaddr to True to support

arbitrary address.

• is_syscall (Optional[bool]) – Whether you want to get the syscall node or any other
node. This is due to the fact that syscall SimProcedures have the same address as the
targer it returns to. None means get either, True means get a syscall node, False means get
something that isn’t a syscall node.

• anyaddr (bool) – If anyaddr is True, then addr doesn’t have to be the beginning address
of a basic block. By default the entire graph.nodes() will be iterated, and the first node
containing the specific address is returned, which can be slow.

• force_fastpath (bool) – If force_fastpath is True, it will only perform a dict lookup in
the _nodes_by_addr dict.

Return type
Optional[CFGNode]

Returns
A CFGNode if there is any that satisfies given conditions, or None otherwise

get_all_nodes(addr, is_syscall=None, anyaddr=False)
Get all CFGNodes whose address is the specified one.

Parameters
• addr (int) – Address of the node

• is_syscall (Optional[bool]) – True returns the syscall node, False returns the normal
CFGNode, None returns both

• anyaddr (bool) –

Return type
List[CFGNode]

Returns
all CFGNodes

get_all_nodes_intersecting_region(addr, size=1)
Get all CFGNodes that intersect the given region.

Parameters
• addr (int) – Minimum address of target region.

• size (int) – Size of region, in bytes.

10.13. Knowledge Base 531

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

Return type
Set[CFGNode]

nodes()

An iterator of all nodes in the graph.

Returns
The iterator.

Return type
iterator

get_predecessors(cfgnode, excluding_fakeret=True, jumpkind=None)
Get predecessors of a node in the control flow graph.

Parameters
• cfgnode (CFGNode) – The node.

• excluding_fakeret (bool) – True if you want to exclude all predecessors that is con-
nected to the node with a fakeret edge.

• jumpkind (Optional[str]) – Only return predecessors with the specified jumpkind. This
argument will be ignored if set to None.

Return type
List[CFGNode]

Returns
A list of predecessors

get_successors(node, excluding_fakeret=True, jumpkind=None)
Get successors of a node in the control flow graph.

Parameters
• node (CFGNode) – The node.

• excluding_fakeret (bool) – True if you want to exclude all successors that is connected
to the node with a fakeret edge.

• jumpkind (str | None) – Only return successors with the specified jumpkind. This ar-
gument will be ignored if set to None.

• jumpkind –

Returns
A list of successors

Return type
list

get_successors_and_jumpkinds(node, excluding_fakeret=True)
Get a list of tuples where the first element is the successor of the CFG node and the second element is the
jumpkind of the successor.

Parameters
• node (CFGNode) – The node.

• excluding_fakeret (bool) – True if you want to exclude all successors that are fall-
through successors.

Returns
A list of successors and their corresponding jumpkinds.

532 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

angr

Return type
list

get_successors_and_jumpkind(node, excluding_fakeret=True)
Get a list of tuples where the first element is the successor of the CFG node and the second element is the
jumpkind of the successor.

Parameters
• node (CFGNode) – The node.

• excluding_fakeret (bool) – True if you want to exclude all successors that are fall-
through successors.

Returns
A list of successors and their corresponding jumpkinds.

Return type
list

get_predecessors_and_jumpkinds(node, excluding_fakeret=True)
Get a list of tuples where the first element is the predecessor of the CFG node and the second element is
the jumpkind of the predecessor.

Parameters
• node (CFGNode) – The node.

• excluding_fakeret (bool) – True if you want to exclude all predecessors that are fall-
through predecessors.

Return type
List[Tuple[CFGNode, str]]

Returns
A list of predecessors and their corresponding jumpkinds.

get_predecessors_and_jumpkind(node, excluding_fakeret=True)
Get a list of tuples where the first element is the predecessor of the CFG node and the second element is
the jumpkind of the predecessor.

Parameters
• node (CFGNode) – The node.

• excluding_fakeret (bool) – True if you want to exclude all predecessors that are fall-
through predecessors.

Return type
List[Tuple[CFGNode, str]]

Returns
A list of predecessors and their corresponding jumpkinds.

get_all_predecessors(cfgnode, depth_limit=None)
Get all predecessors of a specific node on the control flow graph.

Parameters
• cfgnode (CFGNode) – The CFGNode object

• depth_limit (int) – Optional depth limit for the depth-first search

Returns
A list of predecessors in the CFG

10.13. Knowledge Base 533

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

angr

Return type
list

get_all_successors(cfgnode, depth_limit=None)
Get all successors of a specific node on the control flow graph.

Parameters
• cfgnode (CFGNode) – The CFGNode object

• depth_limit (int) – Optional depth limit for the depth-first search

Returns
A list of successors in the CFG

Return type
list

get_branching_nodes()

Returns all nodes that has an out degree >= 2

get_exit_stmt_idx(src_block, dst_block)
Get the corresponding exit statement ID for control flow to reach destination block from source block. The
exit statement ID was put on the edge when creating the CFG. Note that there must be a direct edge between
the two blocks, otherwise an exception will be raised.

Returns
The exit statement ID

add_memory_data(data_addr, data_type, data_size=None)
Add a MemoryData entry to self.memory_data.

Parameters
• data_addr (int) – Address of the data

• data_type (Optional[MemoryDataSort]) – Type of the memory data

• data_size (Optional[int]) – Size of the memory data, or None if unknown for now.

Return type
bool

Returns
True if a new memory data entry is added, False otherwise.

tidy_data_references(memory_data_addrs=None, exec_mem_regions=None, xrefs=None,
seg_list=None, data_type_guessing_handlers=None)

Go through all data references (or the ones as specified by memory_data_addrs) and determine their sizes
and types if possible.

Parameters
• memory_data_addrs (Optional[List[int]]) – A list of addresses of memory data, or

None if tidying all known memory data entries.

• exec_mem_regions (Optional[List[Tuple[int, int]]]) – A list of start and end ad-
dresses of executable memory regions.

• seg_list (Optional[SegmentList]) – The segment list that CFGFast uses during CFG
recovery.

534 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional

angr

• data_type_guessing_handlers (Optional[List[Callable]]) – A list of Python
functions that will guess data types. They will be called in sequence to determine data
types for memory data whose type is unknown.

• xrefs (XRefManager | None) –

Return type
bool

Returns
True if new data entries are found, False otherwise.

remove_node_and_graph_node(node)
Like remove_node, but also removes node from the graph.

Parameters
node (CFGNode) – The node to remove.

Return type
None

get_intersecting_functions(addr, size=1, kb=None)
Find all functions with nodes intersecting [addr, addr + size).

Parameters
• addr (int) – Minimum address of target region.

• size (int) – Size of region, in bytes.

• kb (Optional[KnowledgeBase]) – Knowledge base to search for functions in.

Return type
Set[Function]

find_function_for_reflow_into_addr(addr, kb=None)
Look for a function that flows into a new node at addr.

Parameters
• addr (int) – Address of new block.

• kb (Optional[KnowledgeBase]) – Knowledge base to search for functions in.

Return type
Optional[Function]

clear_region_for_reflow(addr, size=1, kb=None)
Remove nodes in the graph intersecting region [addr, addr + size).

Any functions that intersect the range, and their associated nodes in the CFG, will also be removed from
the knowledge base for analysis.

Parameters
• addr (int) – Minimum address of target region.

• size (int) – Size of the region, in bytes.

• kb (Optional[KnowledgeBase]) – Knowledge base to search for functions in.

Return type
None

10.13. Knowledge Base 535

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None

angr

class angr.knowledge_plugins.cfg.CFGManager(kb)
Bases: KnowledgeBasePlugin

__init__(kb)

new_model(prefix)

copy()

get_most_accurate()

Return type
Optional[CFGModel]

Returns
The most accurate CFG present in the CFGManager, or None if it does not hold any.

class angr.knowledge_plugins.cfg.cfg_model.CFGModel(ident, cfg_manager=None, is_arm=False)
Bases: Serializable

This class describes a Control Flow Graph for a specific range of code.

__init__(ident, cfg_manager=None, is_arm=False)

ident

is_arm

graph

jump_tables: Dict[int, IndirectJump]

memory_data: Dict[int, MemoryData]

insn_addr_to_memory_data: Dict[int, MemoryData]

normalized

edges_to_repair

property project

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, cfg_manager=None, loader=None)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

536 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int

angr

copy()

add_node(block_id, node)

Return type
None

Parameters
• block_id (int) –

• node (CFGNode) –

remove_node(block_id, node)
Remove the given CFGNode instance. Note that this method does not remove the node from the graph.

Parameters
• block_id (int) – The Unique ID of the CFGNode.

• node (CFGNode) – The CFGNode instance to remove.

Return type
None

Returns
None

get_node(block_id)
Get a single node from node key.

Parameters
block_id (BlockID) – Block ID of the node.

Returns
The CFGNode

Return type
CFGNode

get_any_node(addr, is_syscall=None, anyaddr=False, force_fastpath=False)
Get an arbitrary CFGNode (without considering their contexts) from our graph.

Parameters
• addr (int) – Address of the beginning of the basic block. Set anyaddr to True to support

arbitrary address.

• is_syscall (Optional[bool]) – Whether you want to get the syscall node or any other
node. This is due to the fact that syscall SimProcedures have the same address as the
targer it returns to. None means get either, True means get a syscall node, False means get
something that isn’t a syscall node.

• anyaddr (bool) – If anyaddr is True, then addr doesn’t have to be the beginning address
of a basic block. By default the entire graph.nodes() will be iterated, and the first node
containing the specific address is returned, which can be slow.

• force_fastpath (bool) – If force_fastpath is True, it will only perform a dict lookup in
the _nodes_by_addr dict.

Return type
Optional[CFGNode]

10.13. Knowledge Base 537

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional

angr

Returns
A CFGNode if there is any that satisfies given conditions, or None otherwise

get_all_nodes(addr, is_syscall=None, anyaddr=False)
Get all CFGNodes whose address is the specified one.

Parameters
• addr (int) – Address of the node

• is_syscall (Optional[bool]) – True returns the syscall node, False returns the normal
CFGNode, None returns both

• anyaddr (bool) –

Return type
List[CFGNode]

Returns
all CFGNodes

get_all_nodes_intersecting_region(addr, size=1)
Get all CFGNodes that intersect the given region.

Parameters
• addr (int) – Minimum address of target region.

• size (int) – Size of region, in bytes.

Return type
Set[CFGNode]

nodes()

An iterator of all nodes in the graph.

Returns
The iterator.

Return type
iterator

get_predecessors(cfgnode, excluding_fakeret=True, jumpkind=None)
Get predecessors of a node in the control flow graph.

Parameters
• cfgnode (CFGNode) – The node.

• excluding_fakeret (bool) – True if you want to exclude all predecessors that is con-
nected to the node with a fakeret edge.

• jumpkind (Optional[str]) – Only return predecessors with the specified jumpkind. This
argument will be ignored if set to None.

Return type
List[CFGNode]

Returns
A list of predecessors

get_successors(node, excluding_fakeret=True, jumpkind=None)
Get successors of a node in the control flow graph.

Parameters

538 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List

angr

• node (CFGNode) – The node.

• excluding_fakeret (bool) – True if you want to exclude all successors that is connected
to the node with a fakeret edge.

• jumpkind (str | None) – Only return successors with the specified jumpkind. This ar-
gument will be ignored if set to None.

• jumpkind –

Returns
A list of successors

Return type
list

get_successors_and_jumpkinds(node, excluding_fakeret=True)
Get a list of tuples where the first element is the successor of the CFG node and the second element is the
jumpkind of the successor.

Parameters
• node (CFGNode) – The node.

• excluding_fakeret (bool) – True if you want to exclude all successors that are fall-
through successors.

Returns
A list of successors and their corresponding jumpkinds.

Return type
list

get_successors_and_jumpkind(node, excluding_fakeret=True)
Get a list of tuples where the first element is the successor of the CFG node and the second element is the
jumpkind of the successor.

Parameters
• node (CFGNode) – The node.

• excluding_fakeret (bool) – True if you want to exclude all successors that are fall-
through successors.

Returns
A list of successors and their corresponding jumpkinds.

Return type
list

get_predecessors_and_jumpkinds(node, excluding_fakeret=True)
Get a list of tuples where the first element is the predecessor of the CFG node and the second element is
the jumpkind of the predecessor.

Parameters
• node (CFGNode) – The node.

• excluding_fakeret (bool) – True if you want to exclude all predecessors that are fall-
through predecessors.

Return type
List[Tuple[CFGNode, str]]

10.13. Knowledge Base 539

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str

angr

Returns
A list of predecessors and their corresponding jumpkinds.

get_predecessors_and_jumpkind(node, excluding_fakeret=True)
Get a list of tuples where the first element is the predecessor of the CFG node and the second element is
the jumpkind of the predecessor.

Parameters
• node (CFGNode) – The node.

• excluding_fakeret (bool) – True if you want to exclude all predecessors that are fall-
through predecessors.

Return type
List[Tuple[CFGNode, str]]

Returns
A list of predecessors and their corresponding jumpkinds.

get_all_predecessors(cfgnode, depth_limit=None)
Get all predecessors of a specific node on the control flow graph.

Parameters
• cfgnode (CFGNode) – The CFGNode object

• depth_limit (int) – Optional depth limit for the depth-first search

Returns
A list of predecessors in the CFG

Return type
list

get_all_successors(cfgnode, depth_limit=None)
Get all successors of a specific node on the control flow graph.

Parameters
• cfgnode (CFGNode) – The CFGNode object

• depth_limit (int) – Optional depth limit for the depth-first search

Returns
A list of successors in the CFG

Return type
list

get_branching_nodes()

Returns all nodes that has an out degree >= 2

get_exit_stmt_idx(src_block, dst_block)
Get the corresponding exit statement ID for control flow to reach destination block from source block. The
exit statement ID was put on the edge when creating the CFG. Note that there must be a direct edge between
the two blocks, otherwise an exception will be raised.

Returns
The exit statement ID

540 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

angr

add_memory_data(data_addr, data_type, data_size=None)
Add a MemoryData entry to self.memory_data.

Parameters
• data_addr (int) – Address of the data

• data_type (Optional[MemoryDataSort]) – Type of the memory data

• data_size (Optional[int]) – Size of the memory data, or None if unknown for now.

Return type
bool

Returns
True if a new memory data entry is added, False otherwise.

tidy_data_references(memory_data_addrs=None, exec_mem_regions=None, xrefs=None,
seg_list=None, data_type_guessing_handlers=None)

Go through all data references (or the ones as specified by memory_data_addrs) and determine their sizes
and types if possible.

Parameters
• memory_data_addrs (Optional[List[int]]) – A list of addresses of memory data, or

None if tidying all known memory data entries.

• exec_mem_regions (Optional[List[Tuple[int, int]]]) – A list of start and end ad-
dresses of executable memory regions.

• seg_list (Optional[SegmentList]) – The segment list that CFGFast uses during CFG
recovery.

• data_type_guessing_handlers (Optional[List[Callable]]) – A list of Python
functions that will guess data types. They will be called in sequence to determine data
types for memory data whose type is unknown.

• xrefs (XRefManager | None) –

Return type
bool

Returns
True if new data entries are found, False otherwise.

remove_node_and_graph_node(node)
Like remove_node, but also removes node from the graph.

Parameters
node (CFGNode) – The node to remove.

Return type
None

get_intersecting_functions(addr, size=1, kb=None)
Find all functions with nodes intersecting [addr, addr + size).

Parameters
• addr (int) – Minimum address of target region.

• size (int) – Size of region, in bytes.

• kb (Optional[KnowledgeBase]) – Knowledge base to search for functions in.

10.13. Knowledge Base 541

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional

angr

Return type
Set[Function]

find_function_for_reflow_into_addr(addr, kb=None)
Look for a function that flows into a new node at addr.

Parameters
• addr (int) – Address of new block.

• kb (Optional[KnowledgeBase]) – Knowledge base to search for functions in.

Return type
Optional[Function]

clear_region_for_reflow(addr, size=1, kb=None)
Remove nodes in the graph intersecting region [addr, addr + size).

Any functions that intersect the range, and their associated nodes in the CFG, will also be removed from
the knowledge base for analysis.

Parameters
• addr (int) – Minimum address of target region.

• size (int) – Size of the region, in bytes.

• kb (Optional[KnowledgeBase]) – Knowledge base to search for functions in.

Return type
None

class angr.knowledge_plugins.cfg.memory_data.MemoryDataSort

Bases: object

Unspecified = None

Unknown = 'unknown'

Integer = 'integer'

PointerArray = 'pointer-array'

String = 'string'

UnicodeString = 'unicode'

SegmentBoundary = 'segment-boundary'

CodeReference = 'code reference'

GOTPLTEntry = 'GOT PLT Entry'

ELFHeader = 'elf-header'

FloatingPoint = 'fp'

class angr.knowledge_plugins.cfg.memory_data.MemoryData(address, size, sort, pointer_addr=None,
max_size=None, reference_size=None)

Bases: Serializable

MemoryData describes the syntactic content of a single address of memory.

reference_size reflects the size of content. It can be different from size, which is the actual size of the memory
data item in memory. The intended way to get the actual content in memory is self.content[:self.size].

542 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object

angr

Parameters
• address (int) –

• size (int) –

• sort (str | None) –

• pointer_addr (int | None) –

• max_size (int | None) –

• reference_size (int) –

__init__(address, size, sort, pointer_addr=None, max_size=None, reference_size=None)

Parameters
• address (int) –

• size (int) –

• sort (str | None) –

• pointer_addr (int | None) –

• max_size (int | None) –

• reference_size (int | None) –

addr: int

size: int

reference_size: int

sort: Optional[str]

max_size: Optional[int]

pointer_addr: Optional[int]

content: Optional[bytes]

property address

copy()

Make a copy of the MemoryData.

Returns
A copy of the MemoryData instance.

Return type
MemoryData

fill_content(loader)
Load data to fill self.content.

Parameters
loader – The project loader.

Returns
None

10.13. Knowledge Base 543

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes

angr

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, **kwargs)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

class angr.knowledge_plugins.cfg.cfg_manager.CFGManager(kb)
Bases: KnowledgeBasePlugin

__init__(kb)

new_model(prefix)

copy()

get_most_accurate()

Return type
Optional[CFGModel]

Returns
The most accurate CFG present in the CFGManager, or None if it does not hold any.

class angr.knowledge_plugins.cfg.cfg_node.CFGNodeCreationFailure(exc_info=None,
to_copy=None)

Bases: object

This class contains additional information for whenever creating a CFGNode failed. It includes a full traceback
and the exception messages.

__init__(exc_info=None, to_copy=None)

short_reason

long_reason

traceback

class angr.knowledge_plugins.cfg.cfg_node.CFGNode(addr, size, cfg, simprocedure_name=None,
no_ret=False, function_address=None,
block_id=None, irsb=None, soot_block=None,
instruction_addrs=None, thumb=False,
byte_string=None, is_syscall=None, name=None)

Bases: Serializable

This class stands for each single node in CFG.

544 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object

angr

Parameters
• block_id (angr.analyses.cfg.cfg_job_base.BlockID | int) –

• byte_string (bytes | None) –

__init__(addr, size, cfg, simprocedure_name=None, no_ret=False, function_address=None,
block_id=None, irsb=None, soot_block=None, instruction_addrs=None, thumb=False,
byte_string=None, is_syscall=None, name=None)

Note: simprocedure_name is not used to recreate the SimProcedure object. It’s only there for better
__repr__.

addr

size

simprocedure_name

no_ret

function_address

thumb

byte_string: Optional[bytes]

is_syscall

instruction_addrs

irsb

soot_block

has_return

block_id: Union[angr.analyses.cfg.cfg_job_base.BlockID, int]

property name

property successors

property predecessors

successors_and_jumpkinds(excluding_fakeret=True)

predecessors_and_jumpkinds(excluding_fakeret=True)

get_data_references(kb=None)
Get the known data references for this CFGNode via the knowledge base.

Parameters
kb – Which knowledge base to use; uses the global KB by default if none is provided

Returns
Generator yielding xrefs to this CFGNode’s block.

Return type
iter

10.13. Knowledge Base 545

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int

angr

property accessed_data_references

Property providing a view of all the known data references for this CFGNode via the global knowledge base

Returns
Generator yielding xrefs to this CFGNode’s block.

Return type
iter

property is_simprocedure

property callstack_key

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, cfg=None)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

copy()

merge(other)
Merges this node with the other, returning a new node that spans the both.

to_codenode()

property block

syscall_name

class angr.knowledge_plugins.cfg.cfg_node.CFGENode(addr, size, cfg, simprocedure_name=None,
no_ret=False, function_address=None,
block_id=None, irsb=None,
instruction_addrs=None, thumb=False,
byte_string=None, is_syscall=None, name=None,
input_state=None, final_states=None,
syscall_name=None, looping_times=0,
depth=None, callstack_key=None,
creation_failure_info=None)

Bases: CFGNode

The CFGNode that is used in CFGEmulated.

Parameters
• block_id (angr.analyses.cfg.cfg_job_base.BlockID | int) –

546 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int

angr

• byte_string (bytes | None) –

__init__(addr, size, cfg, simprocedure_name=None, no_ret=False, function_address=None,
block_id=None, irsb=None, instruction_addrs=None, thumb=False, byte_string=None,
is_syscall=None, name=None, input_state=None, final_states=None, syscall_name=None,
looping_times=0, depth=None, callstack_key=None, creation_failure_info=None)

Note: simprocedure_name is not used to recreate the SimProcedure object. It’s only there for better
__repr__.

input_state

looping_times

depth

creation_failure_info

final_states

return_target

syscall

property callstack_key

property creation_failed

downsize()

Drop saved states.

copy()

class angr.knowledge_plugins.cfg.indirect_jump.IndirectJumpType

Bases: object

Jumptable_AddressLoadedFromMemory = 0

Jumptable_AddressComputed = 1

Vtable = 3

Unknown = 255

class angr.knowledge_plugins.cfg.indirect_jump.IndirectJump(addr, ins_addr, func_addr, jumpkind,
stmt_idx, resolved_targets=None,
jumptable=False,
jumptable_addr=None,
jumptable_size=None,
jumptable_entry_size=None,
jumptable_entries=None, type_=255)

Bases: Serializable

Parameters
• addr (int) –

• ins_addr (int) –

• func_addr (int) –

• jumpkind (str) –

10.13. Knowledge Base 547

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

• stmt_idx (int) –

• resolved_targets (List[int] | None) –

• jumptable (bool) –

• jumptable_addr (int | None) –

• jumptable_size (int | None) –

• jumptable_entry_size (int | None) –

• jumptable_entries (List[int] | None) –

• type_ (int | None) –

__init__(addr, ins_addr, func_addr, jumpkind, stmt_idx, resolved_targets=None, jumptable=False,
jumptable_addr=None, jumptable_size=None, jumptable_entry_size=None,
jumptable_entries=None, type_=255)

Parameters
• addr (int) –

• ins_addr (int) –

• func_addr (int) –

• jumpkind (str) –

• stmt_idx (int) –

• resolved_targets (List[int] | None) –

• jumptable (bool) –

• jumptable_addr (int | None) –

• jumptable_size (int | None) –

• jumptable_entry_size (int | None) –

• jumptable_entries (List[int] | None) –

• type_ (int | None) –

addr

ins_addr

func_addr

jumpkind

stmt_idx

resolved_targets

jumptable

jumptable_addr

jumptable_size

jumptable_entry_size

548 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

jumptable_entries

type

class angr.knowledge_plugins.types.TypesStore(kb)
Bases: KnowledgeBasePlugin, UserDict

A kb plugin that stores a mapping from name to TypeRef. It will return types from angr.sim_type.ALL_TYPES
as a default.

__init__(kb)

copy()

iter_own()

Iterate over all the names which are stored in this object - i.e. values() without ALL_TYPES

rename(old, new)

unique_type_name()

Return type
str

class angr.knowledge_plugins.comments.Comments(kb)
Bases: KnowledgeBasePlugin, dict

__init__(kb)

copy()→ a shallow copy of D

class angr.knowledge_plugins.data.Data(kb)
Bases: KnowledgeBasePlugin

__init__(kb)

copy()

class angr.knowledge_plugins.indirect_jumps.IndirectJumps(kb)
Bases: KnowledgeBasePlugin, dict

__init__(kb)

copy()→ a shallow copy of D

update_resolved_addrs(indirect_address, resolved_addresses)

Parameters
• indirect_address (int) –

• resolved_addresses (List[int]) –

class angr.knowledge_plugins.labels.Labels(kb)
Bases: KnowledgeBasePlugin

__init__(kb)

items()

10.13. Knowledge Base 549

https://docs.python.org/3/library/collections.html#collections.UserDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

angr

get(addr)
Get a label as string for a given address Same as .labels[x]

lookup(name)
Returns an address to a given label To show all available labels, iterate over .labels or list(b.kb.labels)

copy()

get_unique_label(label)
Get a unique label name from the given label name.

Parameters
label (str) – The desired label name.

Returns
A unique label name.

class angr.knowledge_plugins.functions.function_manager.FunctionDict(backref , *args, **kwargs)
Bases: SortedDict

FunctionDict is a dict where the keys are function starting addresses and map to the associated Function.

__init__(backref , *args, **kwargs)
Initialize sorted dict instance.

Optional key-function argument defines a callable that, like the key argument to the built-in sorted function,
extracts a comparison key from each dictionary key. If no function is specified, the default compares the
dictionary keys directly. The key-function argument must be provided as a positional argument and must
come before all other arguments.

Optional iterable argument provides an initial sequence of pairs to initialize the sorted dict. Each pair in the
sequence defines the key and corresponding value. If a key is seen more than once, the last value associated
with it is stored in the new sorted dict.

Optional mapping argument provides an initial mapping of items to initialize the sorted dict.

If keyword arguments are given, the keywords themselves, with their associated values, are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is stored in the sorted dict.

Sorted dict keys must be hashable, per the requirement for Python’s dictionaries. Keys (or the result of the
key-function) must also be comparable, per the requirement for sorted lists.

>>> d = {'alpha': 1, 'beta': 2}
>>> SortedDict([('alpha', 1), ('beta', 2)]) == d
True
>>> SortedDict({'alpha': 1, 'beta': 2}) == d
True
>>> SortedDict(alpha=1, beta=2) == d
True

get(addr)
Return the value for key if key is in the dictionary, else default.

floor_addr(addr)

ceiling_addr(addr)

550 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str

angr

class angr.knowledge_plugins.functions.function_manager.FunctionManager(kb)
Bases: KnowledgeBasePlugin, Mapping

This is a function boundaries management tool. It takes in intermediate results during CFG generation, and
manages a function map of the binary.

__init__(kb)

copy()

clear()

get_by_addr(addr)

Return type
Function

get_by_name(name)

Return type
Generator[Function, None, None]

Parameters
name (str) –

contains_addr(addr)
Decide if an address is handled by the function manager.

Note: this function is non-conformant with python programming idioms, but its needed for performance
reasons.

Parameters
addr (int) – Address of the function.

ceiling_func(addr)
Return the function who has the least address that is greater than or equal to addr.

Parameters
addr (int) – The address to query.

Returns
A Function instance, or None if there is no other function after addr.

Return type
Function or None

floor_func(addr)
Return the function who has the greatest address that is less than or equal to addr.

Parameters
addr (int) – The address to query.

Returns
A Function instance, or None if there is no other function before addr.

Return type
Function or None

query(query)
Query for a function using selectors to disambiguate. Supported variations: :rtype: Optional[Function]

::<name> Function <name> in the main object ::<addr>::<name> Function <name> at <addr>
::<obj>::<name> Function <name> in <obj>

10.13. Knowledge Base 551

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional

angr

Parameters
query (str) –

Return type
Function | None

function(addr=None, name=None, create=False, syscall=False, plt=None)
Get a function object from the function manager.

Pass either addr or name with the appropriate values.

Parameters
• addr (int) – Address of the function.

• name (str) – Name of the function.

• create (bool) – Whether to create the function or not if the function does not exist.

• syscall (bool) – True to create the function as a syscall, False otherwise.

• plt (bool or None) – True to find the PLT stub, False to find a non-PLT stub, None to
disable this restriction.

Returns
The Function instance, or None if the function is not found and create is False.

Return type
Function or None

dbg_draw(prefix='dbg_function_')

rebuild_callgraph()

class angr.knowledge_plugins.functions.function.Function(function_manager, addr, name=None,
syscall=None, is_simprocedure=None,
binary_name=None, is_plt=None,
returning=None, alignment=False)

Bases: Serializable

A representation of a function and various information about it.

Parameters
• is_simprocedure (bool | None) –

• is_plt (bool | None) –

__init__(function_manager, addr, name=None, syscall=None, is_simprocedure=None,
binary_name=None, is_plt=None, returning=None, alignment=False)

Function constructor. If the optional parameters are not provided, they will be automatically determined
upon the creation of a Function object.

Parameters
• addr – The address of the function.

• is_simprocedure (bool | None) –

• is_plt (bool | None) –

The following parameters are optional.

Parameters

552 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• name (str) – The name of the function.

• syscall (bool) – Whether this function is a syscall or not.

• is_simprocedure (bool) – Whether this function is a SimProcedure or not.

• binary_name (str) – Name of the binary where this function is.

• is_plt (bool) – If this function is a PLT entry.

• returning (bool) – If this function returns.

• alignment (bool) – If this function acts as an alignment filler. Such functions usually
only contain nops.

transition_graph

normalized

addr

startpoint

is_alignment

bp_on_stack

retaddr_on_stack

sp_delta

prototype: Optional[SimTypeFunction]

is_prototype_guessed: bool

prepared_registers

prepared_stack_variables

registers_read_afterwards

info

tags

ran_cca

is_syscall

is_simprocedure

is_plt

is_default_name

from_signature

binary_name

calling_convention: Optional[SimCC]

property alignment

10.13. Knowledge Base 553

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional

angr

property name

property project

property returning

property blocks

An iterator of all local blocks in the current function.

Returns
angr.lifter.Block instances.

property cyclomatic_complexity

The cyclomatic complexity of the function.

Cyclomatic complexity is a software metric used to indicate the complexity of a program. It is a quantitative
measure of the number of linearly independent paths through a program’s source code. It is computed using
the formula: M = E - N + 2P, where E = the number of edges in the graph, N = the number of nodes in the
graph, P = the number of connected components.

The cyclomatic complexity value is lazily computed and cached for future use. Initially this value is None
until it is computed for the first time

Returns
The cyclomatic complexity of the function.

Return type
int

property xrefs

An iterator of all xrefs of the current function.

Returns
angr.knowledge_plugins.xrefs.xref.XRef instances.

property block_addrs

An iterator of all local block addresses in the current function.

Returns
block addresses.

property block_addrs_set

Return a set of block addresses for a better performance of inclusion tests.

Returns
A set of block addresses.

Return type
set

get_block(addr, size=None, byte_string=None)
Getting a block out of the current function.

Parameters
• addr (int) – The address of the block.

• size (int) – The size of the block. This is optional. If not provided, angr will load

• byte_string (Optional[bytes]) –

Returns

554 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes

angr

get_block_size(addr)

Return type
Optional[int]

Parameters
addr (int) –

property nodes: Iterable[CodeNode]

get_node(addr)

Return type
Block

property has_unresolved_jumps

property has_unresolved_calls

property operations

All of the operations that are done by this functions.

property code_constants

All of the constants that are used by this functions’s code.

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, **kwargs)

Parameters
cmsg –

Return Function
The function instantiated out of the cmsg data.

string_references(minimum_length=2)
All of the constant string references used by this function.

Parameters
minimum_length – The minimum length of strings to find (default is 1)

Returns
A generator yielding tuples of (address, string) where is address is the location of the string
in memory.

property local_runtime_values

Tries to find all runtime values of this function which do not come from inputs. These values are generated
by starting from a blank state and reanalyzing the basic blocks once each. Function calls are skipped, and
back edges are never taken so these values are often unreliable, This function is good at finding simple
constant addresses which the function will use or calculate.

Returns
a set of constants

10.13. Knowledge Base 555

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable

angr

property num_arguments

property endpoints

property endpoints_with_type

property ret_sites

property jumpout_sites

property retout_sites

property callout_sites

property size

property binary

Get the object this function belongs to. :return: The object this function belongs to.

property offset: int

the function’s binary offset (i.e., non-rebased address)

Type
return

property symbol: None | Symbol

the function’s Symbol, if any

Type
return

property pseudocode: str

the function’s pseudocode

Type
return

add_jumpout_site(node)
Add a custom jumpout site.

Parameters
node – The address of the basic block that control flow leaves during this transition.

Returns
None

add_retout_site(node)
Add a custom retout site.

Retout (returning to outside of the function) sites are very rare. It mostly occurs during CFG recovery
when we incorrectly identify the beginning of a function in the first iteration, and then correctly identify
that function later in the same iteration (function alignments can lead to this bizarre case). We will mark
all edges going out of the header of that function as a outside edge, because all successors now belong to
the incorrectly-identified function. This identification error will be fixed in the second iteration of CFG
recovery. However, we still want to keep track of jumpouts/retouts during the first iteration so other logic
in CFG recovery still work.

Parameters
node – The address of the basic block that control flow leaves the current function after a call.

556 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.angr.io/projects/cle/en/latest/api/backend.html#cle.backends.symbol.Symbol
https://docs.python.org/3/library/stdtypes.html#str

angr

Returns
None

mark_nonreturning_calls_endpoints()

Iterate through all call edges in transition graph. For each call a non-returning function, mark the source
basic block as an endpoint.

This method should only be executed once all functions are recovered and analyzed by CFG recovery, so
we know whether each function returns or not.

Returns
None

get_call_sites()

Gets a list of all the basic blocks that end in calls.

Return type
Iterable[int]

Returns
A view of the addresses of the blocks that end in calls.

get_call_target(callsite_addr)
Get the target of a call.

Parameters
callsite_addr – The address of a basic block that ends in a call.

Returns
The target of said call, or None if callsite_addr is not a callsite.

get_call_return(callsite_addr)
Get the hypothetical return address of a call.

Parameters
callsite_addr – The address of the basic block that ends in a call.

Returns
The likely return target of said call, or None if callsite_addr is not a callsite.

property graph

Get a local transition graph. A local transition graph is a transition graph that only contains nodes that
belong to the current function. All edges, except for the edges going out from the current function or
coming from outside the current function, are included.

The generated graph is cached in self._local_transition_graph.

Returns
A local transition graph.

Return type
networkx.DiGraph

graph_ex(exception_edges=True)
Get a local transition graph with a custom configuration. A local transition graph is a transition graph that
only contains nodes that belong to the current function. This method allows user to exclude certain types
of edges together with the nodes that are only reachable through such edges, such as exception edges.

The generated graph is not cached.

10.13. Knowledge Base 557

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int

angr

Parameters
exception_edges (bool) – Should exception edges and the nodes that are only reachable
through exception edges be kept.

Returns
A local transition graph with a special configuration.

Return type
networkx.DiGraph

transition_graph_ex(exception_edges=True)
Get a transition graph with a custom configuration. This method allows user to exclude certain types of
edges together with the nodes that are only reachable through such edges, such as exception edges.

The generated graph is not cached.

Parameters
exception_edges (bool) – Should exception edges and the nodes that are only reachable
through exception edges be kept.

Returns
A local transition graph with a special configuration.

Return type
networkx.DiGraph

subgraph(ins_addrs)
Generate a sub control flow graph of instruction addresses based on self.graph

Parameters
ins_addrs (iterable) – A collection of instruction addresses that should be included in
the subgraph.

Return networkx.DiGraph
A subgraph.

instruction_size(insn_addr)
Get the size of the instruction specified by insn_addr.

Parameters
insn_addr (int) – Address of the instruction

Return int
Size of the instruction in bytes, or None if the instruction is not found.

addr_to_instruction_addr(addr)
Obtain the address of the instruction that covers @addr.

Parameters
addr (int) – An address.

Returns
Address of the instruction that covers @addr, or None if this addr is not covered by any in-
struction of this function.

Return type
int or None

dbg_print()

Returns a representation of the list of basic blocks in this function.

558 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

dbg_draw(filename)
Draw the graph and save it to a PNG file.

property arguments

property has_return

property callable

normalize()

Make sure all basic blocks in the transition graph of this function do not overlap. You will end up with a
CFG that IDA Pro generates.

This method does not touch the CFG result. You may call CFG{Emulated, Fast}.normalize() for that matter.

Returns
None

find_declaration(ignore_binary_name=False, binary_name_hint=None)
Find the most likely function declaration from the embedded collection of prototypes, set it to self.prototype,
and update self.calling_convention with the declaration.

Parameters
• ignore_binary_name (bool) – Do not rely on the executable or library where the func-

tion belongs to determine its source library. This is useful when working on statically
linked binaries (because all functions will belong to the main executable). We will search
for all libraries in angr to find the first declaration match.

• binary_name_hint (Optional[str]) – Substring of the library name where this function
might be originally coming from. Useful for FLIRT-identified functions in statically linked
binaries.

Return type
bool

Returns
True if a declaration is found and self.prototype and self.calling_convention are updated.
False if we fail to find a matching function declaration, in which case self.prototype or
self.calling_convention will be kept untouched.

property demangled_name

get_unambiguous_name(display_name=None)
Get a disambiguated function name.

Parameters
display_name (Optional[str]) – Name to display, otherwise the function name.

Return type
str

Returns
The function name in the form: ::<name> when the function binary is the main object.
::<obj>::<name> when the function binary is not the main object. ::<addr>::<name> when
the function binary is an unnamed non-main object, or when multiple functions with

the same name are defined in the function binary.

10.13. Knowledge Base 559

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

apply_definition(definition, calling_convention=None)

Return type
None

Parameters
• definition (str) –

• calling_convention (SimCC | Type[SimCC] | None) –

functions_called()

Return type
Set[Function]

Returns
The set of all functions that can be reached from the function represented by self.

copy()

pp(**kwargs)
Pretty-print the function disassembly.

class angr.knowledge_plugins.functions.function_parser.FunctionParser

Bases: object

The implementation of the serialization methods for the <Function> class.

static serialize(function)
:return :

static parse_from_cmsg(cmsg, function_manager=None, project=None, all_func_addrs=None)

Parameters
cmsg – The data to instanciate the <Function> from.

Return Function
class angr.knowledge_plugins.functions.soot_function.SootFunction(function_manager, addr,

name=None, syscall=None)
Bases: Function

A representation of a function and various information about it.

__init__(function_manager, addr, name=None, syscall=None)
Function constructor for Soot

Parameters
• addr – The address of the function.

• name – (Optional) The name of the function.

• syscall – (Optional) Whether this function is a syscall or not.

transition_graph

normalized

addr

is_syscall

560 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#object

angr

is_plt

is_simprocedure

binary_name

bp_on_stack

retaddr_on_stack

sp_delta

calling_convention: Optional[SimCC]

prototype: Optional[SimTypeFunction]

prepared_registers

prepared_stack_variables

registers_read_afterwards

startpoint

info

tags

normalize()

Make sure all basic blocks in the transition graph of this function do not overlap. You will end up with a
CFG that IDA Pro generates.

This method does not touch the CFG result. You may call CFG{Emulated, Fast}.normalize() for that matter.

Returns
None

is_default_name

from_signature

is_alignment

is_prototype_guessed: bool

ran_cca

class angr.knowledge_plugins.variables.variable_access.VariableAccessSort

Bases: object

Provides enums for variable access types.

WRITE = 0

READ = 1

REFERENCE = 2

10.13. Knowledge Base 561

https://docs.python.org/3/library/functions.html#object

angr

class angr.knowledge_plugins.variables.variable_access.VariableAccess(variable, access_type,
location, offset,
atom_hash=None)

Bases: Serializable

Describes a variable access.

__init__(variable, access_type, location, offset, atom_hash=None)

variable: SimVariable

access_type: int

location: CodeLocation

offset: Optional[int]

atom_hash: Optional[int]

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, variable_by_ident=None, **kwargs)
Parse a protobuf cmessage and create a class object.

Parameters
• cmsg – The probobuf cmessage object.

• variable_by_ident (Dict[str, SimVariable] | None) –

Returns
A unserialized class object.

Return type
cls

class angr.knowledge_plugins.variables.variable_manager.VariableType

Bases: object

Describes variable types.

REGISTER = 0

MEMORY = 1

class angr.knowledge_plugins.variables.variable_manager.LiveVariables(register_region,
stack_region)

Bases: object

A collection of live variables at a program point.

__init__(register_region, stack_region)

register_region

562 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

stack_region

class angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal(manager,
func_addr=None)

Bases: Serializable

Manage variables for a function. It is meant to be used internally by VariableManager, but it’s common to be
given a reference to one in response to a query for “the variables for a given function”. Maybe a better name
would be “VariableManagerScope”.

__init__(manager, func_addr=None)

set_manager(manager)

Parameters
manager (VariableManager) –

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, variable_manager=None, func_addr=None, **kwargs)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

next_variable_ident(sort)

add_variable(sort, start, variable)

Parameters
variable (SimVariable) –

set_variable(sort, start, variable)

Parameters
variable (SimVariable) –

write_to(variable, offset, location, overwrite=False, atom=None)

read_from(variable, offset, location, overwrite=False, atom=None)

reference_at(variable, offset, location, overwrite=False, atom=None)

record_variable(location, variable, offset, overwrite=False, atom=None)

Parameters
location (CodeLocation) –

10.13. Knowledge Base 563

angr

make_phi_node(block_addr, *variables)
Create a phi variable for variables at block block_addr.

Parameters
• block_addr (int) – The address of the current block.

• variables – Variables that the phi variable represents.

Returns
The created phi variable.

set_live_variables(addr, register_region, stack_region)

find_variables_by_insn(ins_addr, sort)

is_variable_used_at(variable, loc)

Return type
bool

Parameters
• variable (SimVariable) –

• loc (Tuple[int, int]) –

find_variable_by_stmt(block_addr, stmt_idx, sort, block_idx=None)

Parameters
block_idx (int | None) –

find_variables_by_stmt(block_addr, stmt_idx, sort, block_idx=None)

Return type
List[Tuple[SimVariable, int]]

Parameters
• block_addr (int) –

• stmt_idx (int) –

• sort (str) –

• block_idx (int | None) –

find_variable_by_atom(block_addr, stmt_idx, atom, block_idx=None)

Parameters
block_idx (int | None) –

find_variables_by_atom(block_addr, stmt_idx, atom, block_idx=None)

Return type
Set[Tuple[SimVariable, int]]

Parameters
block_idx (int | None) –

find_variables_by_stack_offset(offset)

Return type
Set[SimVariable]

564 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set

angr

Parameters
offset (int) –

find_variables_by_register(reg)

Return type
Set[SimVariable]

Parameters
reg (str | int) –

get_variable_accesses(variable, same_name=False)

Return type
List[VariableAccess]

Parameters
• variable (SimVariable) –

• same_name (bool) –

get_variables(sort=None, collapse_same_ident=False)
Get a list of variables.

Parameters
• sort (Optional[Literal['stack', 'reg']]) – Sort of the variable to get.

• collapse_same_ident – Whether variables of the same identifier should be collapsed or
not.

Return type
List[Union[SimStackVariable, SimRegisterVariable]]

Returns
A list of variables.

get_unified_variables(sort=None)
Get a list of unified variables.

Parameters
sort (Optional[Literal['stack', 'reg']]) – Sort of the variable to get.

Return type
List[Union[SimStackVariable, SimRegisterVariable]]

Returns
A list of variables.

get_global_variables(addr)
Get global variable by the address of the variable.

Parameters
addr (int) – Address of the variable.

Returns
A set of variables or an empty set if no variable exists.

is_phi_variable(var)
Test if var is a phi variable.

Parameters
var (SimVariable) – The variable instance.

10.13. Knowledge Base 565

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int

angr

Returns
True if var is a phi variable, False otherwise.

Return type
bool

get_phi_subvariables(var)
Get sub-variables that phi variable var represents.

Parameters
var (SimVariable) – The variable instance.

Returns
A set of sub-variables, or an empty set if var is not a phi variable.

Return type
set

get_phi_variables(block_addr)
Get a dict of phi variables and their corresponding variables.

Parameters
block_addr (int) – Address of the block.

Returns
A dict of phi variables of an empty dict if there are no phi variables at the block.

Return type
dict

get_variables_without_writes()

Get all variables that have never been written to.

Return type
List[SimVariable]

Returns
A list of variables that are never written to.

input_variables(exclude_specials=True)
Get all variables that have never been written to.

Returns
A list of variables that are never written to.

Parameters
exclude_specials (bool) –

assign_variable_names(labels=None, types=None)
Assign default names to all SSA variables.

Parameters
labels – Known labels in the binary.

Returns
None

assign_unified_variable_names(labels=None, arg_names=None, reset=False)
Assign default names to all unified variables.

Parameters
• labels – Known labels in the binary.

566 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool

angr

• arg_names (Optional[List[str]]) – Known argument names.

• reset (bool) – Reset all variable names or not.

Return type
None

set_variable_type(var, ty, name=None, override_bot=True, all_unified=False, mark_manual=False)

Return type
None

Parameters
• var (SimVariable) –

• ty (SimType) –

• name (str | None) –

• override_bot (bool) –

• all_unified (bool) –

• mark_manual (bool) –

get_variable_type(var)

Return type
Optional[SimType]

remove_types()

unify_variables()

Map SSA variables to a unified variable. Fill in self._unified_variables.

Return type
None

set_unified_variable(variable, unified)
Set the unified variable for a given SSA variable.

Parameters
• variable (SimVariable) – The SSA variable.

• unified (SimVariable) – The unified variable.

Return type
None

Returns
None

unified_variable(variable)
Return the unified variable for a given SSA variable,

Parameters
variable (SimVariable) – The SSA variable.

Return type
Optional[SimVariable]

Returns
The unified variable, or None if there is no such SSA variable.

10.13. Knowledge Base 567

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional

angr

class angr.knowledge_plugins.variables.variable_manager.VariableManager(kb)
Bases: KnowledgeBasePlugin

Manage variables.

__init__(kb)

has_function_manager(key)

Return type
bool

Parameters
key (int) –

get_function_manager(func_addr)

Return type
VariableManagerInternal

initialize_variable_names()

Return type
None

get_variable_accesses(variable, same_name=False)
Get a list of all references to the given variable.

Parameters
• variable (SimVariable) – The variable.

• same_name (bool) – Whether to include all variables with the same variable name, or just
based on the variable identifier.

Return type
List[VariableAccess]

Returns
All references to the variable.

copy()

static convert_variable_list(vlist, manager)

Parameters
• vlist (List[Variable]) –

• manager (VariableManagerInternal) –

load_from_dwarf(cu_list=None)

Parameters
cu_list (List[CompilationUnit] | None) –

class angr.knowledge_plugins.debug_variables.DebugVariableContainer

Bases: object

Variable tree for variables with same name to lock up which variable is visible at a given program counter address.

568 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable.Variable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.compilation_unit.CompilationUnit
https://docs.python.org/3/library/functions.html#object

angr

__init__()

It is recommended to use DebugVariableManager.add_variable() instead

from_pc(pc)
Returns the visible variable (if any) for a given pc address.

Return type
Variable

class angr.knowledge_plugins.debug_variables.DebugVariable(low_pc, high_pc, cle_variable)
Bases: DebugVariableContainer

Variables
• low_pc – Start of the visibility scope of the variable as program counter address (rebased)

• high_pc – End of the visibility scope of the variable as program counter address (rebased)

• cle_variable – Original variable from cle

Parameters
• low_pc (int) –

• high_pc (int) –

• cle_variable (Variable) –

__init__(low_pc, high_pc, cle_variable)
It is recommended to use DebugVariableManager.add_variable() instead

Parameters
• low_pc (int) –

• high_pc (int) –

• cle_variable (Variable) –

from_pc(pc)
Returns the visible variable (if any) for a given pc address.

Return type
Variable

contains(dvar)

Return type
bool

Parameters
dvar (DebugVariable) –

test_unsupported_overlap(dvar)
Test for an unsupported overlapping

Parameters
dvar (DebugVariable) – Second DebugVariable to compare with

Return type
bool

Returns
True if there is an unsupported overlapping

10.13. Knowledge Base 569

https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable.Variable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable.Variable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable.Variable
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable.Variable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.knowledge_plugins.debug_variables.DebugVariableManager(kb)
Bases: KnowledgeBasePlugin

Structure to manage and access variables with different visibility scopes.

Parameters
kb (KnowledgeBase) –

__init__(kb)

Parameters
kb (KnowledgeBase) –

from_name_and_pc(var_name, pc_addr)
Get a variable from its string in the scope of pc.

Return type
Variable

Parameters
• var_name (str) –

• pc_addr (int) –

from_name(var_name)
Get the variable container for all variables named var_name

Parameters
var_name (str) – name for a variable

Return type
DebugVariableContainer

add_variable(cle_var, low_pc, high_pc)
Add/load a variable

Parameters
• cle_variable – The variable to add

• low_pc (int) – Start of the visibility scope of the variable as program counter address
(rebased)

• high_pc (int) – End of the visibility scope of the variable as program counter address
(rebased)

• cle_var (Variable) –

add_variable_list(vlist, low_pc, high_pc)
Add all variables in a list with the same visibility range

Parameters
• vlist (List[Variable]) – A list of cle varibles to add

• low_pc (int) – Start of the visibility scope as program counter address (rebased)

• high_pc (int) – End of the visibility scope as program counter address (rebased)

load_from_dwarf(elf_object=None, cu=None)
Automatically load all variables (global/local) from the DWARF debugging info

Parameters

570 Chapter 10. API Reference

https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable.Variable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable.Variable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable.Variable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

• elf_object (Optional[ELF]) – Optional, when only one elf object should be considered
(e.g. p.loader.main_object)

• cu (Optional[CompilationUnit]) – Optional, when only one compilation unit should
be considered

class angr.knowledge_plugins.structured_code.manager.StructuredCodeManager(kb)
Bases: KnowledgeBasePlugin

__init__(kb)

discard(key)

available_flavors(item)

copy()

class angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel(func_addr=None,
track_liveness=True)

Bases: object

Models the definitions, uses, and memory of a ReachingDefinitionState object

Parameters
• func_addr (int | None) –

• track_liveness (bool) –

__init__(func_addr=None, track_liveness=True)

Parameters
• func_addr (int | None) –

• track_liveness (bool) –

add_def(d)

Return type
None

Parameters
d (Definition) –

kill_def(d)

Return type
None

Parameters
d (Definition) –

at_new_stmt(codeloc)

Return type
None

Parameters
codeloc (CodeLocation) –

10.13. Knowledge Base 571

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.ELF
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.compilation_unit.CompilationUnit
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

angr

at_new_block(code_loc, pred_codelocs)

Return type
None

Parameters
• code_loc (CodeLocation) –

• pred_codelocs (List[CodeLocation]) –

make_liveness_snapshot()

Return type
None

find_defs_at(code_loc, op=ObservationPointType.OP_BEFORE)

Return type
Set[Definition]

Parameters
• code_loc (CodeLocation) –

• op (int) –

get_defs(atom, code_loc, op)

Return type
Set[Definition]

Parameters
• atom (Atom) –

• code_loc (CodeLocation) –

• op (int) –

copy()

Return type
ReachingDefinitionsModel

merge(model)

Parameters
model (ReachingDefinitionsModel) –

get_observation_by_insn(ins_addr, kind)

Return type
Optional[LiveDefinitions]

Parameters
• ins_addr (int | CodeLocation) –

• kind (ObservationPointType) –

get_observation_by_node(node_addr, kind, node_idx=None)

Return type
Optional[LiveDefinitions]

Parameters

572 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional

angr

• node_addr (int | CodeLocation) –

• kind (ObservationPointType) –

• node_idx (int | None) –

get_observation_by_stmt(arg1, arg2, arg3=None, *, block_idx=None)

get_observation_by_exit(node_addr, stmt_idx, src_node_idx=None)

Return type
Optional[LiveDefinitions]

Parameters
• node_addr (int) –

• stmt_idx (int) –

• src_node_idx (int | None) –

class angr.knowledge_plugins.key_definitions.KeyDefinitionManager(kb)
Bases: KnowledgeBasePlugin

KeyDefinitionManager manages and caches reaching definition models for each function.

For each function, by default we cache the entire reaching definitions model with observed results at the following
locations: - Before each call instruction: (‘insn’, address of the call instruction, OP_BEFORE) - After returning
from each call: (‘node’, address of the block that ends with a call, OP_AFTER)

Parameters
kb (KnowledgeBase) –

__init__(kb)

Parameters
kb (KnowledgeBase) –

has_model(func_addr)

Parameters
func_addr (int) –

get_model(func_addr)

Parameters
func_addr (int) –

copy()

Return type
KeyDefinitionManager

class angr.knowledge_plugins.key_definitions.LiveDefinitions(arch, track_tmps=False,
canonical_size=8, registers=None,
stack=None, memory=None,
heap=None, tmps=None,
others=None, register_uses=None,
stack_uses=None, heap_uses=None,
memory_uses=None,
tmp_uses=None, other_uses=None)

10.13. Knowledge Base 573

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

Bases: object

A LiveDefinitions instance contains definitions and uses for register, stack, memory, and temporary variables,
uncovered during the analysis.

Parameters
• arch (Arch) –

• track_tmps (bool) –

INITIAL_SP_32BIT = 2147418112

INITIAL_SP_64BIT = 140737488289792

__init__(arch, track_tmps=False, canonical_size=8, registers=None, stack=None, memory=None,
heap=None, tmps=None, others=None, register_uses=None, stack_uses=None, heap_uses=None,
memory_uses=None, tmp_uses=None, other_uses=None)

Parameters
• arch (Arch) –

• track_tmps (bool) –

project: Optional[Project]

arch

track_tmps

registers: MultiValuedMemory

stack: MultiValuedMemory

memory: MultiValuedMemory

heap: MultiValuedMemory

tmps: Dict[int, Set[Definition]]

others: Dict[Atom, MultiValues]

register_uses

stack_uses

heap_uses

memory_uses

tmp_uses: Dict[int, Set[CodeLocation]]

other_uses

uses_by_codeloc: Dict[CodeLocation, Set[Definition]]

property register_definitions

property stack_definitions

574 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Set

angr

property memory_definitions

property heap_definitions

copy(discard_tmpdefs=False)

Return type
LiveDefinitions

reset_uses()

static top(bits)
Get a TOP value.

Parameters
bits (int) – Width of the TOP value (in bits).

Returns
The TOP value.

static is_top(expr)
Check if the given expression is a TOP value.

Parameters
expr – The given expression.

Return type
bool

Returns
True if the expression is TOP, False otherwise.

stack_address(offset)

Return type
Optional[BV]

Parameters
offset (int) –

static is_stack_address(addr)

Return type
bool

Parameters
addr (Base) –

static get_stack_offset(addr, had_stack_base=False)

Return type
Optional[int]

Parameters
addr (Base) –

static annotate_with_def(symvar, definition)

Parameters
• symvar (BV) –

• definition (Definition) –

10.13. Knowledge Base 575

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV

angr

Return type
BV

Returns
static extract_defs(symvar)

Return type
Generator[Definition, None, None]

Parameters
symvar (Base) –

static extract_defs_from_annotations(annos)

Return type
Set[Definition]

Parameters
annos (Iterable[Annotation]) –

static extract_defs_from_mv(mv)

Return type
Generator[Definition, None, None]

Parameters
mv (MultiValues) –

get_sp()

Return the concrete value contained by the stack pointer.

Return type
int

get_sp_offset()

Return the offset of the stack pointer.

Return type
Optional[int]

get_stack_address(offset)

Return type
Optional[int]

Parameters
offset (Base) –

stack_offset_to_stack_addr(offset)

Return type
int

merge(*others)

Return type
Tuple[LiveDefinitions, bool]

Parameters
others (LiveDefinitions) –

576 Chapter 10. API Reference

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.Annotation
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool

angr

kill_definitions(atom)

Overwrite existing definitions w.r.t ‘atom’ with a dummy definition instance. A dummy definition will not
be removed during simplification.

Parameters
atom (Atom) –

Return type
None

Returns
None

kill_and_add_definition(atom, code_loc, data, dummy=False, tags=None, endness=None,
annotated=False)

Return type
Optional[MultiValues]

Parameters
• atom (Atom) –

• code_loc (CodeLocation) –

• data (MultiValues) –

• tags (Set[Tag] | None) –

add_use(atom, code_loc, expr=None)

Return type
None

Parameters
• atom (Atom) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_use_by_def(definition, code_loc, expr=None)

Return type
None

Parameters
• definition (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

get_definitions(thing)

Return type
Set[Definition[Atom]]

Parameters
thing (Atom | Definition[Atom] | Iterable[Atom] |
Iterable[Definition[Atom]] | MultiValues) –

10.13. Knowledge Base 577

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable

angr

get_tmp_definitions(tmp_idx)

Return type
Set[Definition]

Parameters
tmp_idx (int) –

get_register_definitions(reg_offset, size)

Return type
Set[Definition]

Parameters
• reg_offset (int) –

• size (int) –

get_stack_values(stack_offset, size, endness)

Return type
Optional[MultiValues]

Parameters
• stack_offset (int) –

• size (int) –

• endness (str) –

get_stack_definitions(stack_offset, size)

Return type
Set[Definition]

Parameters
• stack_offset (int) –

• size (int) –

get_heap_definitions(heap_addr, size)

Return type
Set[Definition]

Parameters
• heap_addr (int) –

• size (int) –

get_memory_definitions(addr, size)

Return type
Set[Definition]

Parameters
• addr (int) –

• size (int) –

get_definitions_from_atoms(**kwargs)

578 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

get_value_from_definition(**kwargs)

get_one_value_from_definition(**kwargs)

get_concrete_value_from_definition(**kwargs)

get_value_from_atom(**kwargs)

get_one_value_from_atom(**kwargs)

get_concrete_value_from_atom(**kwargs)

get_values(spec)

Return type
Optional[MultiValues]

Parameters
spec (Atom | Definition[Atom] | Iterable[Atom] |
Iterable[Definition[Atom]]) –

get_one_value(spec, strip_annotations=False)

Return type
Optional[BV]

Parameters
• spec (Atom | Definition | Iterable[Atom] | Iterable[Definition[Atom]])

–

• strip_annotations (bool) –

get_concrete_value(spec, cast_to=<class 'int'>)

Return type
Union[int, bytes, None]

Parameters
• spec (Atom | Definition[Atom] | Iterable[Atom] |
Iterable[Definition[Atom]]) –

• cast_to (Type[int] | Type[bytes]) –

add_register_use(reg_offset, size, code_loc, expr=None)

Return type
None

Parameters
• reg_offset (int) –

• size (int) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_register_use_by_def(def_, code_loc, expr=None)

Return type
None

10.13. Knowledge Base 579

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

angr

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_stack_use(atom, code_loc, expr=None)

Return type
None

Parameters
• atom (MemoryLocation) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_stack_use_by_def(def_, code_loc, expr=None)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_heap_use(atom, code_loc, expr=None)

Return type
None

Parameters
• atom (MemoryLocation) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_heap_use_by_def(def_, code_loc, expr=None)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_memory_use(atom, code_loc, expr=None)

Return type
None

Parameters
• atom (MemoryLocation) –

580 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

angr

• code_loc (CodeLocation) –

• expr (Any | None) –

add_memory_use_by_def(def_, code_loc, expr=None)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_tmp_use(atom, code_loc)

Return type
None

Parameters
• atom (Tmp) –

• code_loc (CodeLocation) –

add_tmp_use_by_def(def_, code_loc)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

deref(pointer, size, endness=Endness.BE)

static is_heap_address(addr)

Return type
bool

Parameters
addr (Base) –

static get_heap_offset(addr)

Return type
Optional[int]

Parameters
addr (Base) –

heap_address(offset)

Return type
BV

Parameters
offset (int | HeapAddress) –

10.13. Knowledge Base 581

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int

angr

class angr.knowledge_plugins.key_definitions.DerefSize(value)
Bases: Enum

An enum for specialized kinds of dereferences

NULL_TERMINATE - Dereference until the first byte which could be a literal null. Return a value
including the

terminator.

NULL_TERMINATE = 1

class angr.knowledge_plugins.key_definitions.Uses(uses_by_definition=None,
uses_by_location=None)

Bases: object

Describes uses (including the use location and the use expression) for definitions.

Parameters
• uses_by_definition (DefaultChainMapCOW | None) –

• uses_by_location (DefaultChainMapCOW | None) –

__init__(uses_by_definition=None, uses_by_location=None)

Parameters
• uses_by_definition (DefaultChainMapCOW | None) –

• uses_by_location (DefaultChainMapCOW | None) –

add_use(definition, codeloc, expr=None)
Add a use for a given definition.

Parameters
• definition (Definition) – The definition that is used.

• codeloc (CodeLocation) – The code location where the use occurs.

• expr (Optional[Any]) – The expression that uses the specified definition at this location.

get_uses(definition)
Retrieve the uses of a given definition.

Parameters
definition (Definition) – The definition for which we get the uses.

Return type
Set[CodeLocation]

get_uses_with_expr(definition)
Retrieve the uses and the corresponding expressions of a given definition.

Parameters
definition (Definition) – The definition for which we get the uses and the corresponding
expressions.

Return type
Set[Tuple[CodeLocation, Optional[Any]]]

582 Chapter 10. API Reference

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

angr

remove_use(definition, codeloc, expr=None)
Remove one use of a given definition.

Parameters
• definition (Definition) – The definition of which to remove the uses.

• codeloc (CodeLocation) – The code location where the use is.

• expr (Optional[Any]) – The expression that uses the definition at the given location.

Return type
None

Returns
None

remove_uses(definition)
Remove all uses of a given definition.

Parameters
definition (Definition) – The definition of which to remove the uses.

Returns
None

get_uses_by_location(codeloc, exprs=False)
Retrieve all definitions that are used at a given location.

Parameters
• codeloc (CodeLocation) – The code location.

• exprs (bool) –

Return type
Union[Set[Definition], Set[Tuple[Definition, Optional[Any]]]]

Returns
A set of definitions that are used at the given location.

get_uses_by_insaddr(ins_addr, exprs=False)
Retrieve all definitions that are used at a given location specified by the instruction address.

Parameters
• ins_addr (int) – The instruction address.

• exprs (bool) –

Return type
Union[Set[Definition], Set[Tuple[Definition, Optional[Any]]]]

Returns
A set of definitions that are used at the given location.

copy()

Copy the instance.

Return type
Uses

Returns
Return a new <Uses> instance containing the same data.

10.13. Knowledge Base 583

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

angr

merge(other)
Merge an instance of <Uses> into the current instance.

Parameters
other (Uses) – The other <Uses> from which the data will be added to the current instance.

Return type
bool

Returns
True if any merge occurred, False otherwise

class angr.knowledge_plugins.key_definitions.Definition(atom, codeloc, dummy=False, tags=None)
Bases: Generic[A]

An atom definition.

Variables
• atom – The atom being defined.

• codeloc – Where this definition is created in the original binary code.

• dummy – Tell whether the definition should be considered dummy or not. During simplifica-
tion by AILment, definitions marked as dummy will not be removed.

• tags – A set of tags containing information about the definition gathered during analyses.

__init__(atom, codeloc, dummy=False, tags=None)

Parameters
• atom (A) –

• codeloc (CodeLocation) –

• dummy (bool) –

• tags (Set[Tag] | None) –

atom: TypeVar(A, bound= Atom)

codeloc: CodeLocation

dummy: bool

tags

property offset: int

property size: int

matches(**kwargs)
Return whether this definition has certain characteristics.

Return type
bool

class angr.knowledge_plugins.key_definitions.atoms.AtomKind(value)
Bases: Enum

An enum indicating the class of an atom

REGISTER = 1

584 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/enum.html#enum.Enum

angr

MEMORY = 2

TMP = 3

GUARD = 4

CONSTANT = 5

class angr.knowledge_plugins.key_definitions.atoms.Atom(size)
Bases: object

This class represents a data storage location manipulated by IR instructions.

It could either be a Tmp (temporary variable), a Register, a MemoryLocation.

__init__(size)

Parameters
size – The size of the atom in bytes

size

property bits: int

static from_ail_expr(expr, arch, full_reg=False)

Return type
Register

Parameters
• expr (Expression) –

• arch (Arch) –

• full_reg (bool) –

static from_argument(argument, arch, full_reg=False, sp=None)
Instanciate an Atom from a given argument.

Parameters
• argument (SimFunctionArgument) – The argument to create a new atom from.

• registers – A mapping representing the registers of a given architecture.

• full_reg – Whether to return an atom indicating the entire register if the argument only
specifies a slice of the register.

• sp (Optional[int]) – The current stack offset. Optional. Only used when argument is a
SimStackArg.

• arch (Arch) –

Return type
Union[Register, MemoryLocation]

static reg(thing, size=None, arch=None)
Create a Register atom.

Parameters
• thing (Union[str, RegisterOffset]) – The register offset (e.g.,

project.arch.registers[“rax”][0]) or the register name (e.g., “rax”).

10.13. Knowledge Base 585

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.types.RegisterOffset

angr

• size (Optional[int]) – Size of the register atom. Must be provided when creating the
atom using a register offset.

• arch (Optional[Arch]) – The architecture. Must be provided when creating the atom
using a register name.

Return type
Register

Returns
The Register Atom object.

static register(thing, size=None, arch=None)
Create a Register atom.

Parameters
• thing (Union[str, RegisterOffset]) – The register offset (e.g.,

project.arch.registers[“rax”][0]) or the register name (e.g., “rax”).

• size (Optional[int]) – Size of the register atom. Must be provided when creating the
atom using a register offset.

• arch (Optional[Arch]) – The architecture. Must be provided when creating the atom
using a register name.

Return type
Register

Returns
The Register Atom object.

static mem(addr, size, endness=None)
Create a MemoryLocation atom,

Parameters
• addr (Union[SpOffset, HeapAddress, int]) – The memory location. Can be an SpOff-

set for stack variables, an int for global memory variables, or a HeapAddress for items on
the heap.

• size (int) – Size of the atom.

• endness (Optional[str]) – Optional, either “Iend_LE” or “Iend_BE”.

Return type
MemoryLocation

Returns
The MemoryLocation Atom object.

static memory(addr, size, endness=None)
Create a MemoryLocation atom,

Parameters
• addr (Union[SpOffset, HeapAddress, int]) – The memory location. Can be an SpOff-

set for stack variables, an int for global memory variables, or a HeapAddress for items on
the heap.

• size (int) – Size of the atom.

• endness (Optional[str]) – Optional, either “Iend_LE” or “Iend_BE”.

586 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.types.RegisterOffset
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

angr

Return type
MemoryLocation

Returns
The MemoryLocation Atom object.

class angr.knowledge_plugins.key_definitions.atoms.GuardUse(target)
Bases: Atom

Implements a guard use.

__init__(target)

Parameters
size – The size of the atom in bytes

target

class angr.knowledge_plugins.key_definitions.atoms.ConstantSrc(value, size)
Bases: Atom

Represents a constant.

Parameters
• value (int) –

• size (int) –

__init__(value, size)

Parameters
• size (int) – The size of the atom in bytes

• value (int) –

value: int

class angr.knowledge_plugins.key_definitions.atoms.Tmp(tmp_idx, size)
Bases: Atom

Represents a variable used by the IR to store intermediate values.

Parameters
• tmp_idx (int) –

• size (int) –

__init__(tmp_idx, size)

Parameters
• size (int) – The size of the atom in bytes

• tmp_idx (int) –

tmp_idx

class angr.knowledge_plugins.key_definitions.atoms.Register(reg_offset, size, arch=None)
Bases: Atom

Represents a given CPU register.

As an IR abstracts the CPU design to target different architectures, registers are represented as a separated mem-
ory space. Thus a register is defined by its offset from the base of this memory and its size.

10.13. Knowledge Base 587

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

Variables
• reg_offset (int) – The offset from the base to define its place in the memory bloc.

• size (int) – The size, in number of bytes.

Parameters
• reg_offset (RegisterOffset) –

• size (int) –

• arch (Arch | None) –

__init__(reg_offset, size, arch=None)

Parameters
• size (int) – The size of the atom in bytes

• reg_offset (RegisterOffset) –

• arch (Arch | None) –

reg_offset

arch

property name: str

class angr.knowledge_plugins.key_definitions.atoms.MemoryLocation(addr, size, endness=None)
Bases: Atom

Represents a memory slice.

It is characterized by its address and its size.

Parameters
• addr (SpOffset | HeapAddress | int) –

• size (int) –

• endness (str | None) –

__init__(addr, size, endness=None)

Parameters
• addr (int) – The address of the beginning memory location slice.

• size (int) – The size of the represented memory location, in bytes.

• endness (str | None) –

addr: Union[SpOffset, int, BV]

endness

property is_on_stack: bool

True if this memory location is located on the stack.

property symbolic: bool

588 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.types.RegisterOffset
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.types.RegisterOffset
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.knowledge_plugins.key_definitions.constants.ObservationPointType(value)
Bases: IntEnum

Enum to replace the previously generic constants This makes it possible to annotate where they are expected by
typing something as ObservationPointType instead of Literal[0,1]

OP_BEFORE = 0

OP_AFTER = 1

class angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate(kind=None,
bbl_addr=None,
ins_addr=None,
vari-
able=None,
vari-
able_manager=None,
stack_offset=None,
reg_name=None,
heap_offset=None,
global_addr=None,
tmp_idx=None,
const_val=None,
ex-
tern=None)

Bases: object

A dataclass indicating several facts which much all must match in order for a definition to match. Largely an
internal class; don’t worry about this.

Parameters
• kind (AtomKind | Type[Atom] | None) –

• bbl_addr (int | None) –

• ins_addr (int | None) –

• variable (SimVariable | None) –

• variable_manager (VariableManagerInternal | None | Literal[False]) –

• stack_offset (int | None) –

• reg_name (str | int | None) –

• heap_offset (int | None) –

• global_addr (int | None) –

• tmp_idx (int | None) –

• const_val (int | None) –

• extern (bool | None) –

kind: Union[AtomKind, Type[Atom], None] = None

bbl_addr: Optional[int] = None

ins_addr: Optional[int] = None

10.13. Knowledge Base 589

https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

angr

variable: Optional[SimVariable] = None

variable_manager: Union[VariableManagerInternal, None, Literal[False]] = None

stack_offset: Optional[int] = None

reg_name: Union[str, int, None] = None

heap_offset: Optional[int] = None

global_addr: Optional[int] = None

tmp_idx: Optional[int] = None

const_val: Optional[int] = None

extern: Optional[bool] = None

static construct(predicate=None, **kwargs)

Return type
DefinitionMatchPredicate

Parameters
predicate (DefinitionMatchPredicate | None) –

normalize()

matches(defn)

Return type
bool

Parameters
defn (Definition) –

__init__(kind=None, bbl_addr=None, ins_addr=None, variable=None, variable_manager=None,
stack_offset=None, reg_name=None, heap_offset=None, global_addr=None, tmp_idx=None,
const_val=None, extern=None)

Parameters
• kind (AtomKind | Type[Atom] | None) –

• bbl_addr (int | None) –

• ins_addr (int | None) –

• variable (SimVariable | None) –

• variable_manager (VariableManagerInternal | None | Literal[False]) –

• stack_offset (int | None) –

• reg_name (str | int | None) –

• heap_offset (int | None) –

• global_addr (int | None) –

• tmp_idx (int | None) –

• const_val (int | None) –

• extern (bool | None) –

590 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

Return type
None

class angr.knowledge_plugins.key_definitions.definition.Definition(atom, codeloc,
dummy=False, tags=None)

Bases: Generic[A]

An atom definition.

Variables
• atom – The atom being defined.

• codeloc – Where this definition is created in the original binary code.

• dummy – Tell whether the definition should be considered dummy or not. During simplifica-
tion by AILment, definitions marked as dummy will not be removed.

• tags – A set of tags containing information about the definition gathered during analyses.

__init__(atom, codeloc, dummy=False, tags=None)

Parameters
• atom (A) –

• codeloc (CodeLocation) –

• dummy (bool) –

• tags (Set[Tag] | None) –

atom: TypeVar(A, bound= Atom)

codeloc: CodeLocation

dummy: bool

tags

property offset: int

property size: int

matches(**kwargs)
Return whether this definition has certain characteristics.

Return type
bool

class angr.knowledge_plugins.key_definitions.environment.Environment(environment=None)
Bases: object

Represent the environment in which a program runs. It’s a mapping of variable names, to claripy.ast.Base that
should contain possible addresses, or <UNDEFINED>, at which their respective values are stored.

Note: The <Environment> object does not store the values associated with variables themselves.

Parameters
environment (Dict[str | Undefined, Set[Base]]) –

__init__(environment=None)

Parameters
environment (Dict[str | Undefined, Set[Base]] | None) –

10.13. Knowledge Base 591

https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base

angr

get(names)

Parameters
names (Set[str]) – Potential values for the name of the environment variable to get the
pointers of.

Return type
Tuple[Set[Base], bool]

Returns
The potential addresses of the values the environment variable can take; And a boolean value
telling whether all the names were known of the internal representation (i.e. will be False if
one of the queried variable was not found).

set(name, pointers)

Parameters
• name (Union[str, Undefined]) – Name of the environment variable to which we will

associate the pointers.

• pointers (Set[Base]) – New addresses where the new values of the environment variable
are located.

merge(*others)

Return type
Tuple[Environment, bool]

Parameters
others (Environment) –

class angr.knowledge_plugins.key_definitions.heap_address.HeapAddress(value)
Bases: object

The representation of an address on the heap.

Parameters
value (int | Undefined) –

__init__(value)

Parameters
value (int | Undefined) –

property value

class angr.knowledge_plugins.key_definitions.key_definition_manager.RDAObserverControl(func_addr,
call_site_block_addrs,
call_site_ins_addrs)

Bases: object

Parameters
• func_addr (int) –

• call_site_block_addrs (Iterable[int]) –

• call_site_ins_addrs (Iterable[int]) –

__init__(func_addr, call_site_block_addrs, call_site_ins_addrs)

Parameters

592 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int

angr

• func_addr (int) –

• call_site_block_addrs (Iterable[int]) –

• call_site_ins_addrs (Iterable[int]) –

rda_observe_callback(ob_type, **kwargs)

class angr.knowledge_plugins.key_definitions.key_definition_manager.KeyDefinitionManager(kb)
Bases: KnowledgeBasePlugin

KeyDefinitionManager manages and caches reaching definition models for each function.

For each function, by default we cache the entire reaching definitions model with observed results at the following
locations: - Before each call instruction: (‘insn’, address of the call instruction, OP_BEFORE) - After returning
from each call: (‘node’, address of the block that ends with a call, OP_AFTER)

Parameters
kb (KnowledgeBase) –

__init__(kb)

Parameters
kb (KnowledgeBase) –

has_model(func_addr)

Parameters
func_addr (int) –

get_model(func_addr)

Parameters
func_addr (int) –

copy()

Return type
KeyDefinitionManager

class angr.knowledge_plugins.key_definitions.live_definitions.DerefSize(value)
Bases: Enum

An enum for specialized kinds of dereferences

NULL_TERMINATE - Dereference until the first byte which could be a literal null. Return a value
including the

terminator.

NULL_TERMINATE = 1

class angr.knowledge_plugins.key_definitions.live_definitions.DefinitionAnnotation(definition)
Bases: Annotation

An annotation that attaches a Definition to an AST.

__init__(definition)

definition

10.13. Knowledge Base 593

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.Annotation

angr

property relocatable

Returns whether this annotation can be relocated in a simplification.

Returns
True if it can be relocated, false otherwise.

property eliminatable

Returns whether this annotation can be eliminated in a simplification.

Returns
True if eliminatable, False otherwise

class angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions(arch,
track_tmps=False,
canoni-
cal_size=8,
regis-
ters=None,
stack=None,
mem-
ory=None,
heap=None,
tmps=None,
others=None,
regis-
ter_uses=None,
stack_uses=None,
heap_uses=None,
mem-
ory_uses=None,
tmp_uses=None,
other_uses=None)

Bases: object

A LiveDefinitions instance contains definitions and uses for register, stack, memory, and temporary variables,
uncovered during the analysis.

Parameters
• arch (Arch) –

• track_tmps (bool) –

• registers (MultiValuedMemory) –

• stack (MultiValuedMemory) –

• memory (MultiValuedMemory) –

• heap (MultiValuedMemory) –

• tmps (Dict[int, Set[Definition]]) –

• others (Dict[Atom, MultiValues]) –

• tmp_uses (Dict[int, Set[CodeLocation]]) –

INITIAL_SP_32BIT = 2147418112

INITIAL_SP_64BIT = 140737488289792

594 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set

angr

__init__(arch, track_tmps=False, canonical_size=8, registers=None, stack=None, memory=None,
heap=None, tmps=None, others=None, register_uses=None, stack_uses=None, heap_uses=None,
memory_uses=None, tmp_uses=None, other_uses=None)

Parameters
• arch (Arch) –

• track_tmps (bool) –

project: Optional[Project]

arch

track_tmps

registers: MultiValuedMemory

stack: MultiValuedMemory

memory: MultiValuedMemory

heap: MultiValuedMemory

tmps: Dict[int, Set[Definition]]

others: Dict[Atom, MultiValues]

register_uses

stack_uses

heap_uses

memory_uses

tmp_uses: Dict[int, Set[CodeLocation]]

other_uses

uses_by_codeloc: Dict[CodeLocation, Set[Definition]]

property register_definitions

property stack_definitions

property memory_definitions

property heap_definitions

copy(discard_tmpdefs=False)

Return type
LiveDefinitions

reset_uses()

10.13. Knowledge Base 595

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Set

angr

static top(bits)
Get a TOP value.

Parameters
bits (int) – Width of the TOP value (in bits).

Returns
The TOP value.

static is_top(expr)
Check if the given expression is a TOP value.

Parameters
expr – The given expression.

Return type
bool

Returns
True if the expression is TOP, False otherwise.

stack_address(offset)

Return type
Optional[BV]

Parameters
offset (int) –

static is_stack_address(addr)

Return type
bool

Parameters
addr (Base) –

static get_stack_offset(addr, had_stack_base=False)

Return type
Optional[int]

Parameters
addr (Base) –

static annotate_with_def(symvar, definition)

Parameters
• symvar (BV) –

• definition (Definition) –

Return type
BV

Returns
static extract_defs(symvar)

Return type
Generator[Definition, None, None]

596 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

angr

Parameters
symvar (Base) –

static extract_defs_from_annotations(annos)

Return type
Set[Definition]

Parameters
annos (Iterable[Annotation]) –

static extract_defs_from_mv(mv)

Return type
Generator[Definition, None, None]

Parameters
mv (MultiValues) –

get_sp()

Return the concrete value contained by the stack pointer.

Return type
int

get_sp_offset()

Return the offset of the stack pointer.

Return type
Optional[int]

get_stack_address(offset)

Return type
Optional[int]

Parameters
offset (Base) –

stack_offset_to_stack_addr(offset)

Return type
int

merge(*others)

Return type
Tuple[LiveDefinitions, bool]

Parameters
others (LiveDefinitions) –

kill_definitions(atom)

Overwrite existing definitions w.r.t ‘atom’ with a dummy definition instance. A dummy definition will not
be removed during simplification.

Parameters
atom (Atom) –

Return type
None

10.13. Knowledge Base 597

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.Annotation
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

angr

Returns
None

kill_and_add_definition(atom, code_loc, data, dummy=False, tags=None, endness=None,
annotated=False)

Return type
Optional[MultiValues]

Parameters
• atom (Atom) –

• code_loc (CodeLocation) –

• data (MultiValues) –

• tags (Set[Tag] | None) –

add_use(atom, code_loc, expr=None)

Return type
None

Parameters
• atom (Atom) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_use_by_def(definition, code_loc, expr=None)

Return type
None

Parameters
• definition (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

get_definitions(thing)

Return type
Set[Definition[Atom]]

Parameters
thing (Atom | Definition[Atom] | Iterable[Atom] |
Iterable[Definition[Atom]] | MultiValues) –

get_tmp_definitions(tmp_idx)

Return type
Set[Definition]

Parameters
tmp_idx (int) –

get_register_definitions(reg_offset, size)

Return type
Set[Definition]

598 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set

angr

Parameters
• reg_offset (int) –

• size (int) –

get_stack_values(stack_offset, size, endness)

Return type
Optional[MultiValues]

Parameters
• stack_offset (int) –

• size (int) –

• endness (str) –

get_stack_definitions(stack_offset, size)

Return type
Set[Definition]

Parameters
• stack_offset (int) –

• size (int) –

get_heap_definitions(heap_addr, size)

Return type
Set[Definition]

Parameters
• heap_addr (int) –

• size (int) –

get_memory_definitions(addr, size)

Return type
Set[Definition]

Parameters
• addr (int) –

• size (int) –

get_definitions_from_atoms(**kwargs)

get_value_from_definition(**kwargs)

get_one_value_from_definition(**kwargs)

get_concrete_value_from_definition(**kwargs)

get_value_from_atom(**kwargs)

get_one_value_from_atom(**kwargs)

get_concrete_value_from_atom(**kwargs)

10.13. Knowledge Base 599

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

get_values(spec)

Return type
Optional[MultiValues]

Parameters
spec (Atom | Definition[Atom] | Iterable[Atom] |
Iterable[Definition[Atom]]) –

get_one_value(spec, strip_annotations=False)

Return type
Optional[BV]

Parameters
• spec (Atom | Definition | Iterable[Atom] | Iterable[Definition[Atom]])

–

• strip_annotations (bool) –

get_concrete_value(spec, cast_to=<class 'int'>)

Return type
Union[int, bytes, None]

Parameters
• spec (Atom | Definition[Atom] | Iterable[Atom] |
Iterable[Definition[Atom]]) –

• cast_to (Type[int] | Type[bytes]) –

add_register_use(reg_offset, size, code_loc, expr=None)

Return type
None

Parameters
• reg_offset (int) –

• size (int) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_register_use_by_def(def_, code_loc, expr=None)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_stack_use(atom, code_loc, expr=None)

Return type
None

Parameters

600 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

angr

• atom (MemoryLocation) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_stack_use_by_def(def_, code_loc, expr=None)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_heap_use(atom, code_loc, expr=None)

Return type
None

Parameters
• atom (MemoryLocation) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_heap_use_by_def(def_, code_loc, expr=None)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_memory_use(atom, code_loc, expr=None)

Return type
None

Parameters
• atom (MemoryLocation) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_memory_use_by_def(def_, code_loc, expr=None)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

10.13. Knowledge Base 601

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

angr

• expr (Any | None) –

add_tmp_use(atom, code_loc)

Return type
None

Parameters
• atom (Tmp) –

• code_loc (CodeLocation) –

add_tmp_use_by_def(def_, code_loc)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

deref(pointer, size, endness=Endness.BE)

static is_heap_address(addr)

Return type
bool

Parameters
addr (Base) –

static get_heap_offset(addr)

Return type
Optional[int]

Parameters
addr (Base) –

heap_address(offset)

Return type
BV

Parameters
offset (int | HeapAddress) –

class angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel(func_addr=None,
track_liveness=True)

Bases: object

Models the definitions, uses, and memory of a ReachingDefinitionState object

Parameters
• func_addr (int | None) –

• track_liveness (bool) –

602 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

__init__(func_addr=None, track_liveness=True)

Parameters
• func_addr (int | None) –

• track_liveness (bool) –

add_def(d)

Return type
None

Parameters
d (Definition) –

kill_def(d)

Return type
None

Parameters
d (Definition) –

at_new_stmt(codeloc)

Return type
None

Parameters
codeloc (CodeLocation) –

at_new_block(code_loc, pred_codelocs)

Return type
None

Parameters
• code_loc (CodeLocation) –

• pred_codelocs (List[CodeLocation]) –

make_liveness_snapshot()

Return type
None

find_defs_at(code_loc, op=ObservationPointType.OP_BEFORE)

Return type
Set[Definition]

Parameters
• code_loc (CodeLocation) –

• op (int) –

get_defs(atom, code_loc, op)

Return type
Set[Definition]

Parameters

10.13. Knowledge Base 603

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set

angr

• atom (Atom) –

• code_loc (CodeLocation) –

• op (int) –

copy()

Return type
ReachingDefinitionsModel

merge(model)

Parameters
model (ReachingDefinitionsModel) –

get_observation_by_insn(ins_addr, kind)

Return type
Optional[LiveDefinitions]

Parameters
• ins_addr (int | CodeLocation) –

• kind (ObservationPointType) –

get_observation_by_node(node_addr, kind, node_idx=None)

Return type
Optional[LiveDefinitions]

Parameters
• node_addr (int | CodeLocation) –

• kind (ObservationPointType) –

• node_idx (int | None) –

get_observation_by_stmt(arg1, arg2, arg3=None, *, block_idx=None)

get_observation_by_exit(node_addr, stmt_idx, src_node_idx=None)

Return type
Optional[LiveDefinitions]

Parameters
• node_addr (int) –

• stmt_idx (int) –

• src_node_idx (int | None) –

Classes to structure the different types of <Tag>s that can be attached to <Definition>s.

• Tag
– FunctionTag

∗ ParameterTag

∗ LocalVariableTag

∗ ReturnValueTag

– InitialValueTag

604 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

class angr.knowledge_plugins.key_definitions.tag.Tag(metadata=None)
Bases: object

A tag for a Definition that can carry different kinds of metadata.

Parameters
metadata (object) –

__init__(metadata=None)

Parameters
metadata (object | None) –

class angr.knowledge_plugins.key_definitions.tag.FunctionTag(function=None, metadata=None)
Bases: Tag

A tag for a definition created (or used) in the context of a function.

Parameters
• function (int) –

• metadata (object) –

__init__(function=None, metadata=None)

Parameters
• function (int | None) –

• metadata (object | None) –

class angr.knowledge_plugins.key_definitions.tag.SideEffectTag(function=None, metadata=None)
Bases: FunctionTag

A tag for a definition created or used as a side-effect of a function.

Example: The <MemoryLocation> pointed by rdi during a sprintf.

Parameters
• function (int) –

• metadata (object) –

class angr.knowledge_plugins.key_definitions.tag.ParameterTag(function=None, metadata=None)
Bases: FunctionTag

A tag for a definition of a parameter.

Parameters
• function (int) –

• metadata (object) –

class angr.knowledge_plugins.key_definitions.tag.LocalVariableTag(function=None,
metadata=None)

Bases: FunctionTag

A tag for a definition of a local variable of a function.

Parameters
• function (int) –

• metadata (object) –

10.13. Knowledge Base 605

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

class angr.knowledge_plugins.key_definitions.tag.ReturnValueTag(function=None,
metadata=None)

Bases: FunctionTag

A tag for a definiton of a return value of a function.

Parameters
• function (int) –

• metadata (object) –

class angr.knowledge_plugins.key_definitions.tag.InitialValueTag(metadata=None)
Bases: Tag

A tag for a definiton of an initial value

Parameters
metadata (object) –

class angr.knowledge_plugins.key_definitions.tag.UnknownSizeTag(metadata=None)
Bases: Tag

A tag for a definiton of an initial value

Parameters
metadata (object) –

class angr.knowledge_plugins.key_definitions.undefined.Undefined

Bases: object

A TOP-like value indicating an unknown data source. Should live next to raw integers in DataSets.

class angr.knowledge_plugins.key_definitions.unknown_size.UnknownSize

Bases: object

A value indicating an unknown size for elements of DataSets. Should “behave” like an integer.

class angr.knowledge_plugins.key_definitions.uses.Uses(uses_by_definition=None,
uses_by_location=None)

Bases: object

Describes uses (including the use location and the use expression) for definitions.

Parameters
• uses_by_definition (DefaultChainMapCOW | None) –

• uses_by_location (DefaultChainMapCOW | None) –

__init__(uses_by_definition=None, uses_by_location=None)

Parameters
• uses_by_definition (DefaultChainMapCOW | None) –

• uses_by_location (DefaultChainMapCOW | None) –

add_use(definition, codeloc, expr=None)
Add a use for a given definition.

Parameters
• definition (Definition) – The definition that is used.

606 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

• codeloc (CodeLocation) – The code location where the use occurs.

• expr (Optional[Any]) – The expression that uses the specified definition at this location.

get_uses(definition)
Retrieve the uses of a given definition.

Parameters
definition (Definition) – The definition for which we get the uses.

Return type
Set[CodeLocation]

get_uses_with_expr(definition)
Retrieve the uses and the corresponding expressions of a given definition.

Parameters
definition (Definition) – The definition for which we get the uses and the corresponding
expressions.

Return type
Set[Tuple[CodeLocation, Optional[Any]]]

remove_use(definition, codeloc, expr=None)
Remove one use of a given definition.

Parameters
• definition (Definition) – The definition of which to remove the uses.

• codeloc (CodeLocation) – The code location where the use is.

• expr (Optional[Any]) – The expression that uses the definition at the given location.

Return type
None

Returns
None

remove_uses(definition)
Remove all uses of a given definition.

Parameters
definition (Definition) – The definition of which to remove the uses.

Returns
None

get_uses_by_location(codeloc, exprs=False)
Retrieve all definitions that are used at a given location.

Parameters
• codeloc (CodeLocation) – The code location.

• exprs (bool) –

Return type
Union[Set[Definition], Set[Tuple[Definition, Optional[Any]]]]

Returns
A set of definitions that are used at the given location.

10.13. Knowledge Base 607

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any

angr

get_uses_by_insaddr(ins_addr, exprs=False)
Retrieve all definitions that are used at a given location specified by the instruction address.

Parameters
• ins_addr (int) – The instruction address.

• exprs (bool) –

Return type
Union[Set[Definition], Set[Tuple[Definition, Optional[Any]]]]

Returns
A set of definitions that are used at the given location.

copy()

Copy the instance.

Return type
Uses

Returns
Return a new <Uses> instance containing the same data.

merge(other)
Merge an instance of <Uses> into the current instance.

Parameters
other (Uses) – The other <Uses> from which the data will be added to the current instance.

Return type
bool

Returns
True if any merge occurred, False otherwise

angr.knowledge_plugins.sync.sync_controller.import_binsync()

angr.knowledge_plugins.sync.sync_controller.make_state(f)
Build a writeable State instance and pass to f as the state kwarg if the state kwarg is None. Function f should
have have at least two kwargs, user and state.

angr.knowledge_plugins.sync.sync_controller.make_ro_state(f)
Build a read-only State instance and pass to f as the state kwarg if the state kwarg is None. Function f should
have have at least two kwargs, user and state.

angr.knowledge_plugins.sync.sync_controller.init_checker(f)

class angr.knowledge_plugins.sync.sync_controller.SyncController(kb)
Bases: KnowledgeBasePlugin

SyncController interfaces with a binsync client to push changes upwards and pull changes downwards.

Variables
client (binsync.Client) – The binsync client.

__init__(kb)

connect(user, path, bin_hash='', init_repo=False, ssh_agent_pid=None, ssh_auth_sock=None,
remote_url=None)

property connected

608 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

angr

commit()

update()

copy()

pull()

property has_remote

users()

status()

tally(users=None)

push_function(func, user=None, state=None)
Push a function upwards.

Parameters
func (Function) – The angr Function object to push upwards.

Returns
True if updates are made. False otherwise.

Return type
bool

push_comment(addr, comment, decompiled=False, user=None, state=None)

push_comments(comments, user=None, state=None)
Push a bunch of comments upwards.

Parameters
comments (list) – A list of BinSync Comments

Returns
bool

push_stack_variables(stack_variables, var_manager, user=None, state=None)

Parameters
• stack_variables (List[SimStackVariable]) –

• var_manager (VariableManagerInternal) –

Returns
push_stack_variable(func_addr, offset, name, type_, size_, user=None, state=None)

pull_function(addr, user=None, state=None)
Pull a function downwards.

Parameters
• addr (int) – Address of the function.

• user (str) – Name of the user.

Returns
The binsync.data.Function object if pulling succeeds, or None if pulling fails.

10.13. Knowledge Base 609

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

Return type
binsync.data.Function | None

pull_comment(addr, user=None, state=None)
Pull a comment downwards.

Parameters
• addr (int) – Address of the comment.

• user (str) – Name of the user.

Returns
a Comment object from BinSync, or None

Return type
binsync.data.Comment | None

pull_comments(func_addr, user=None, state=None)
Pull comments downwards.

Parameters
• start_addr (int) – Where we want to pull comments.

• end_addr (int) – Where we want to stop pulling comments (exclusive).

Returns
An iterator.

Return type
Iterable

pull_patches(user=None, state=None)
Pull patches.

Parameters
user (str) – Name of the user to patches from.

Returns
An iterator

Return type
Iterable

pull_stack_variables(func_addr, user=None, state=None)
Pull stack variables from a function.

@param func_addr: Function address to pull from @param user: @param state: @return:

get_func_addr_from_addr(addr)

class angr.knowledge_plugins.xrefs.xref.XRef(ins_addr=None, block_addr=None, stmt_idx=None,
insn_op_idx=None, memory_data=None, dst=None,
xref_type=None)

Bases: Serializable

XRef describes a reference to a MemoryData instance (if a MemoryData instance is available) or just an address.

Parameters
• ins_addr (int | None) –

• block_addr (int | None) –

610 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

• stmt_idx (int | None) –

• insn_op_idx (int | None) –

• dst (int | None) –

__init__(ins_addr=None, block_addr=None, stmt_idx=None, insn_op_idx=None, memory_data=None,
dst=None, xref_type=None)

Parameters
• ins_addr (int | None) –

• block_addr (int | None) –

• stmt_idx (int | None) –

• insn_op_idx (int | None) –

• dst (int | None) –

ins_addr: Optional[int]

insn_op_idx: Optional[int]

block_addr: Optional[int]

stmt_idx: Optional[int]

memory_data

type

dst

property type_string

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, bits=None, **kwargs)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

copy()

insn_op_type

class angr.knowledge_plugins.xrefs.xref_types.XRefType

Bases: object

10.13. Knowledge Base 611

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

Offset = 0

Read = 1

Write = 2

static to_string(ty)

class angr.knowledge_plugins.xrefs.xref_manager.XRefManager(kb)
Bases: KnowledgeBasePlugin, Serializable

__init__(kb)

copy()

add_xref(xref)

add_xrefs(xrefs)

get_xrefs_by_ins_addr(ins_addr)

get_xrefs_by_dst(dst)

get_xrefs_by_dst_region(start, end)
Get a set of XRef objects that point to a given address region bounded by start and end. Will only return
absolute xrefs, not relative ones (like SP offsets)

get_xrefs_by_ins_addr_region(start, end)
Get a set of XRef objects that originate at a given address region bounded by start and end. Useful for
finding references from a basic block or function.

Return type
Set[XRef]

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage(cmsg, cfg_model=None, kb=None, **kwargs)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

class angr.code_location.CodeLocation(block_addr, stmt_idx, sim_procedure=None, ins_addr=None,
context=None, block_idx=None, **kwargs)

Bases: object

Stands for a specific program point by specifying basic block address and statement ID (for IRSBs), or SimPro-
cedure name (for SimProcedures).

612 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#object

angr

Parameters
• block_addr (int) –

• stmt_idx (int | None) –

• ins_addr (int | None) –

• context (Any) –

• block_idx (int) –

__init__(block_addr, stmt_idx, sim_procedure=None, ins_addr=None, context=None, block_idx=None,
**kwargs)

Constructor.

Parameters
• block_addr (int) – Address of the block

• stmt_idx (Optional[int]) – Statement ID. None for SimProcedures or if the code loca-
tion is meant to refer to the entire block.

• sim_procedure (class) – The corresponding SimProcedure class.

• ins_addr (Optional[int]) – The instruction address.

• context (Optional[Any]) – A tuple that represents the context of this CodeLocation in
contextful mode, or None in contextless mode.

• kwargs – Optional arguments, will be stored, but not used in __eq__ or __hash__.

• block_idx (int | None) –

block_addr: int

stmt_idx: Optional[int]

sim_procedure

ins_addr: Optional[int]

context: Optional[Tuple[int]]

block_idx

info: Optional[Dict]

property short_repr

class angr.code_location.ExternalCodeLocation(call_string=None)
Bases: CodeLocation

Stands for a program point that originates from outside an analysis’ scope. i.e. a value loaded from rdi in a callee
where the caller has not been analyzed.

Parameters
call_string (Tuple[int, ...] | None) –

__init__(call_string=None)
Constructor.

Parameters
• block_addr – Address of the block

10.13. Knowledge Base 613

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int

angr

• stmt_idx – Statement ID. None for SimProcedures or if the code location is meant to refer
to the entire block.

• sim_procedure (class) – The corresponding SimProcedure class.

• ins_addr – The instruction address.

• context – A tuple that represents the context of this CodeLocation in contextful mode, or
None in contextless mode.

• kwargs – Optional arguments, will be stored, but not used in __eq__ or __hash__.

• call_string (Tuple[int, ...] | None) –

call_string

class angr.keyed_region.StoredObject(start, obj, size)
Bases: object

__init__(start, obj, size)

start

obj

size: Union[UnknownSize, int]

property obj_id

class angr.keyed_region.RegionObject(start, size, objects=None)
Bases: object

Represents one or more objects occupying one or more bytes in KeyedRegion.

__init__(start, size, objects=None)

start

size

stored_objects

property is_empty

property end

property internal_objects

includes(offset)

split(split_at)

add_object(obj)

set_object(obj)

copy()

614 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

class angr.keyed_region.KeyedRegion(tree=None, phi_node_contains=None, canonical_size=8)
Bases: object

KeyedRegion keeps a mapping between stack offsets and all objects covering that offset. It assumes no variable
in this region overlap with another variable in this region.

Registers and function frames can all be viewed as a keyed region.

__init__(tree=None, phi_node_contains=None, canonical_size=8)

copy()

merge(other, replacements=None)
Merge another KeyedRegion into this KeyedRegion.

Parameters
other (KeyedRegion) – The other instance to merge with.

Returns
None

merge_to_top(other, replacements=None, top=None)
Merge another KeyedRegion into this KeyedRegion, but mark all variables with different values as TOP.

Parameters
• other – The other instance to merge with.

• replacements –

Returns
self

replace(replacements)
Replace variables with other variables.

Parameters
replacements (dict) – A dict of variable replacements.

Returns
self

dbg_repr()

Get a debugging representation of this keyed region. :return: A string of debugging output.

add_variable(start, variable)
Add a variable to this region at the given offset.

Parameters
• start (int) –

• variable (SimVariable) –

Returns
None

add_object(start, obj, object_size)
Add/Store an object to this region at the given offset.

Parameters
• start –

10.13. Knowledge Base 615

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

angr

• obj –

• object_size (int) – Size of the object

Returns
set_variable(start, variable)

Add a variable to this region at the given offset, and remove all other variables that are fully covered by this
variable.

Parameters
• start (int) –

• variable (SimVariable) –

Returns
None

set_object(start, obj, object_size)
Add an object to this region at the given offset, and remove all other objects that are fully covered by this
object.

Parameters
• start –

• obj –

• object_size –

Returns
get_base_addr(addr)

Get the base offset (the key we are using to index objects covering the given offset) of a specific offset.

Parameters
addr (int) –

Returns
Return type

int or None

get_variables_by_offset(start)
Find variables covering the given region offset.

Parameters
start (int) –

Returns
A set of variables.

Return type
set

get_objects_by_offset(start)
Find objects covering the given region offset.

Parameters
start –

Returns

616 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#set

angr

get_all_variables()

Get all variables covering the current region.

Returns
A set of all variables.

10.14 Serialization

class angr.serializable.Serializable

Bases: object

The base class of all protobuf-serializable classes in angr.

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

serialize()

Serialize the class object and returns a bytes object.

Returns
A bytes object.

Return type
bytes

classmethod parse_from_cmessage(cmsg, **kwargs)
Parse a protobuf cmessage and create a class object.

Parameters
cmsg – The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

classmethod parse(s, **kwargs)
Parse a bytes object and create a class object.

Parameters
s (bytes) – A bytes object.

Returns
A class object.

Return type
cls

class angr.vaults.VaultPickler(vault, file, *args, assigned_objects=(), **kwargs)
Bases: Pickler

10.14. Serialization 617

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

angr

__init__(vault, file, *args, assigned_objects=(), **kwargs)
A persistence-aware pickler. It will check for persistence of any objects except for those with IDs in ‘as-
signed_objects’.

persistent_id(obj)

class angr.vaults.VaultUnpickler(vault, file, *args, **kwargs)
Bases: Unpickler

__init__(vault, file, *args, **kwargs)

persistent_load(pid)

class angr.vaults.Vault

Bases: MutableMapping

The vault is a serializer for angr.

keys()

Should return the IDs stored by the vault.

__init__()

is_stored(i)
Checks if the provided id is already in the vault.

load(oid)

store(o)

dumps(o)
Returns a serialized string representing the object, post-deduplication.

Parameters
o – the object

loads(s)
Deserializes a string representation of the object.

Parameters
s – the string

static close()

class angr.vaults.VaultDict(d=None)
Bases: Vault

A Vault that uses a dictionary for storage.

__init__(d=None)

is_stored(i)
Checks if the provided id is already in the vault.

keys()

Should return the IDs stored by the vault.

class angr.vaults.VaultDir(d=None)
Bases: Vault

A Vault that uses a directory for storage.

618 Chapter 10. API Reference

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping

angr

__init__(d=None)

keys()

Should return the IDs stored by the vault.

class angr.vaults.VaultShelf(path=None)
Bases: VaultDict

A Vault that uses a shelve.Shelf for storage.

__init__(path=None)

close()

class angr.vaults.VaultDirShelf(d=None)
Bases: VaultDict

A Vault that uses a directory for storage, where every object is stored into a single shelve.Shelf instance. Vault-
Dir creates a file for each object. VaultDirShelf creates only one file for a stored object and everything else it
references.

__init__(d=None)

store(o)

load(oid)

keys()

Should return the IDs stored by the vault.

10.15 Analysis

angr.analyses.register_analysis(cls, name)

class angr.analyses.analysis.AnalysisLogEntry(message, exc_info=False)
Bases: object

__init__(message, exc_info=False)

class angr.analyses.analysis.AnalysesHub(project)
Bases: PluginVendor[A]

This class contains functions for all the registered and runnable analyses,

__init__(project)

reload_analyses(**kwargs)

class angr.analyses.analysis.KnownAnalysesPlugin(*args, **kwargs)
Bases: Protocol

Identifier: Type[Identifier]

CalleeCleanupFinder: Type[CalleeCleanupFinder]

VSA_DDG: Type[VSA_DDG]

10.15. Analysis 619

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Protocol
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type

angr

CDG: Type[CDG]

BinDiff: Type[BinDiff]

CFGEmulated: Type[CFGEmulated]

CFB: Type[CFBlanket]

CFBlanket: Type[CFBlanket]

CFG: Type[CFG]

CFGFast: Type[CFGFast]

StaticHooker: Type[StaticHooker]

DDG: Type[DDG]

CongruencyCheck: Type[CongruencyCheck]

Reassembler: Type[Reassembler]

BackwardSlice: Type[BackwardSlice]

BinaryOptimizer: Type[BinaryOptimizer]

VFG: Type[VFG]

LoopFinder: Type[LoopFinder]

Disassembly: Type[Disassembly]

Veritesting: Type[Veritesting]

CodeTagging: Type[CodeTagging]

BoyScout: Type[BoyScout]

VariableRecoveryFast: Type[VariableRecoveryFast]

VariableRecovery: Type[VariableRecovery]

ReachingDefinitions: Type[ReachingDefinitionsAnalysis]

CompleteCallingConventions: Type[CompleteCallingConventionsAnalysis]

Clinic: Type[Clinic]

Propagator: Type[PropagatorAnalysis]

CallingConvention: Type[CallingConventionAnalysis]

Decompiler: Type[Decompiler]

XRefs: Type[XRefsAnalysis]

__init__(*args, **kwargs)

class angr.analyses.analysis.AnalysesHubWithDefault(project)
Bases: AnalysesHub, KnownAnalysesPlugin

This class has type-hinting for all built-in analyses plugin

620 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type

angr

class angr.analyses.analysis.AnalysisFactory(project, analysis_cls)
Bases: Generic[A]

__init__(project, analysis_cls)

Parameters
• project (Project) –

• analysis_cls (Type[A]) –

prep(fail_fast=False, kb=None, progress_callback=None, show_progressbar=False)

Return type
Type[TypeVar(A, bound= Analysis)]

Parameters
• kb (KnowledgeBase | None) –

• progress_callback (Callable | None) –

• show_progressbar (bool) –

class angr.analyses.analysis.Analysis

Bases: object

This class represents an analysis on the program.

Variables
• project – The project for this analysis.

• kb (KnowledgeBase) – The knowledgebase object.

• _progress_callback – A callback function for receiving the progress of this analysis. It
only takes one argument, which is a float number from 0.0 to 100.0 indicating the current
progress.

• _show_progressbar (bool) – If a progressbar should be shown during the analysis. It’s
independent from _progress_callback.

• _progressbar (progress.Progress) – The progress bar object.

project: Project

kb: KnowledgeBase

errors = []

named_errors = {}

class angr.analyses.forward_analysis.forward_analysis.ForwardAnalysis(order_jobs=False,
allow_merging=False,
allow_widening=False,
status_callback=None,
graph_visitor=None)

Bases: Generic[AnalysisState, NodeType, JobType, JobKey]

This is my very first attempt to build a static forward analysis framework that can serve as the base of multiple
static analyses in angr, including CFG analysis, VFG analysis, DDG, etc.

In short, ForwardAnalysis performs a forward data-flow analysis by traversing a graph, compute on abstract
values, and store results in abstract states. The user can specify what graph to traverse, how a graph should be
traversed, how abstract values and abstract states are defined, etc.

10.15. Analysis 621

https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Generic

angr

ForwardAnalysis has a few options to toggle, making it suitable to be the base class of several different styles of
forward data-flow analysis implementations.

ForwardAnalysis supports a special mode when no graph is available for traversal (for example, when a CFG is
being initialized and constructed, no other graph can be used). In that case, the graph traversal functionality is
disabled, and the optimal graph traversal order is not guaranteed. The user can provide a job sorting method to
sort the jobs in queue and optimize traversal order.

Feel free to discuss with me (Fish) if you have any suggestions or complaints.

__init__(order_jobs=False, allow_merging=False, allow_widening=False, status_callback=None,
graph_visitor=None)

Constructor

Parameters
• order_jobs (bool) – If all jobs should be ordered or not.

• allow_merging (bool) – If job merging is allowed.

• allow_widening (bool) – If job widening is allowed.

• graph_visitor (GraphVisitor or None) – A graph visitor to provide successors.

• status_callback (Callable[[Type[ForwardAnalysis]], Any] | None) –

Returns
None

property should_abort

Should the analysis be terminated. :return: True/False

property graph: DiGraph

property jobs

abort()

Abort the analysis :return: None

has_job(job)
Checks whether there exists another job which has the same job key. :type job: TypeVar(JobType) :param
job: The job to check.

Return type
bool

Returns
True if there exists another job with the same key, False otherwise.

Parameters
job (JobType) –

downsize()

class angr.analyses.forward_analysis.job_info.JobInfo(key, job)
Bases: Generic[JobType, JobKey]

Stores information of each job.

__init__(key, job)

Parameters
• key (JobKey) –

622 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Generic

angr

• job (JobType) –

property job: JobType

Get the latest available job.

Returns
The latest available job.

property merged_jobs

property widened_jobs

add_job(job, merged=False, widened=False)
Appended a new job to this JobInfo node. :type job: :param job: The new job to append. :param bool
merged: Whether it is a merged job or not. :param bool widened: Whether it is a widened job or not.

class angr.analyses.forward_analysis.visitors.call_graph.CallGraphVisitor(callgraph)
Bases: GraphVisitor

Parameters
callgraph (networkx.DiGraph) –

__init__(callgraph)

successors(node)
Get successors of a node. The node should be in the graph.

Parameters
node – The node to work with.

Returns
A list of successors.

Return type
list

predecessors(node)
Get predecessors of a node. The node should be in the graph.

Parameters
node – The node to work with.

Returns
A list of predecessors.

sort_nodes(nodes=None)
Get a list of all nodes sorted in an optimal traversal order.

Parameters
nodes (iterable) – A collection of nodes to sort. If none, all nodes in the graph will be
used to sort.

Returns
A list of sorted nodes.

class angr.analyses.forward_analysis.visitors.function_graph.FunctionGraphVisitor(func,
graph=None)

Bases: GraphVisitor

Parameters
func (knowledge.Function) –

10.15. Analysis 623

https://docs.python.org/3/library/stdtypes.html#list

angr

__init__(func, graph=None)

resume_with_new_graph(graph)
We can only reasonably reuse existing results if the node index of the already traversed nodes are the same
as the ones from the new graph. Otherwise, we always restart.

Return type
bool

Returns
True if we are resuming, False if reset() is called.

Parameters
graph (DiGraph) –

successors(node)
Get successors of a node. The node should be in the graph.

Parameters
node – The node to work with.

Returns
A list of successors.

Return type
list

predecessors(node)
Get predecessors of a node. The node should be in the graph.

Parameters
node – The node to work with.

Returns
A list of predecessors.

sort_nodes(nodes=None)
Get a list of all nodes sorted in an optimal traversal order.

Parameters
nodes (iterable) – A collection of nodes to sort. If none, all nodes in the graph will be
used to sort.

Returns
A list of sorted nodes.

back_edges()

Get a list of back edges. This function is optional. If not overriden, the traverser cannot achieve an optimal
graph traversal order.

Return type
List[Tuple[TypeVar(NodeType), TypeVar(NodeType)]]

Returns
A list of back edges (source -> destination).

class angr.analyses.forward_analysis.visitors.graph.GraphVisitor

Bases: Generic[NodeType]

A graph visitor takes a node in the graph and returns its successors. Typically, it visits a control flow graph, and
returns successors of a CFGNode each time. This is the base class of all graph visitors.

624 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Generic

angr

__init__()

successors(node)
Get successors of a node. The node should be in the graph.

Parameters
node (TypeVar(NodeType)) – The node to work with.

Returns
A list of successors.

Return type
list

predecessors(node)
Get predecessors of a node. The node should be in the graph.

Parameters
node (TypeVar(NodeType)) – The node to work with.

Return type
List[TypeVar(NodeType)]

Returns
A list of predecessors.

sort_nodes(nodes=None)
Get a list of all nodes sorted in an optimal traversal order.

Parameters
nodes (iterable) – A collection of nodes to sort. If none, all nodes in the graph will be
used to sort.

Return type
List[TypeVar(NodeType)]

Returns
A list of sorted nodes.

back_edges()

Get a list of back edges. This function is optional. If not overriden, the traverser cannot achieve an optimal
graph traversal order.

Return type
List[Tuple[TypeVar(NodeType), TypeVar(NodeType)]]

Returns
A list of back edges (source -> destination).

nodes()

Return an iterator of nodes following an optimal traversal order.

Return type
Iterator[TypeVar(NodeType)]

Returns
nodes_iter(**kwargs)

reset()

Reset the internal node traversal state. Must be called prior to visiting future nodes.

10.15. Analysis 625

https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.TypeVar

angr

Returns
None

next_node()

Get the next node to visit.

Return type
Optional[TypeVar(NodeType)]

Returns
A node in the graph.

all_successors(node, skip_reached_fixedpoint=False)
Returns all successors to the specific node.

Parameters
node (TypeVar(NodeType)) – A node in the graph.

Returns
A set of nodes that are all successors to the given node.

Return type
set

revisit_successors(node, include_self=True)
Revisit a node in the future. As a result, the successors to this node will be revisited as well.

Parameters
node (TypeVar(NodeType)) – The node to revisit in the future.

Return type
None

Returns
None

revisit_node(node)
Revisit a node in the future. Do not include its successors immediately.

Parameters
node (TypeVar(NodeType)) – The node to revisit in the future.

Return type
None

Returns
None

reached_fixedpoint(node)
Mark a node as reached fixed-point. This node as well as all its successors will not be visited in the future.

Parameters
node (TypeVar(NodeType)) – The node to mark as reached fixed-point.

Return type
None

Returns
None

class angr.analyses.forward_analysis.visitors.loop.LoopVisitor(loop)
Bases: GraphVisitor

626 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/constants.html#None

angr

Parameters
loop (angr.analyses.loopfinder.Loop) – The loop to visit.

__init__(loop)

successors(node)
Get successors of a node. The node should be in the graph.

Parameters
node – The node to work with.

Returns
A list of successors.

Return type
list

predecessors(node)
Get predecessors of a node. The node should be in the graph.

Parameters
node – The node to work with.

Returns
A list of predecessors.

sort_nodes(nodes=None)
Get a list of all nodes sorted in an optimal traversal order.

Parameters
nodes (iterable) – A collection of nodes to sort. If none, all nodes in the graph will be
used to sort.

Returns
A list of sorted nodes.

class angr.analyses.forward_analysis.visitors.single_node_graph.SingleNodeGraphVisitor(node)
Bases: GraphVisitor

Parameters
node – The single node that should be in the graph.

__init__(node)

node

node_returned

reset()

Reset the internal node traversal state. Must be called prior to visiting future nodes.

Returns
None

next_node()

Get the next node to visit.

Returns
A node in the graph.

10.15. Analysis 627

https://docs.python.org/3/library/stdtypes.html#list

angr

successors(node)
Get successors of a node. The node should be in the graph.

Parameters
node – The node to work with.

Returns
A list of successors.

Return type
list

predecessors(node)
Get predecessors of a node. The node should be in the graph.

Parameters
node – The node to work with.

Returns
A list of predecessors.

sort_nodes(nodes=None)
Get a list of all nodes sorted in an optimal traversal order.

Parameters
nodes (iterable) – A collection of nodes to sort. If none, all nodes in the graph will be
used to sort.

Returns
A list of sorted nodes.

class angr.analyses.backward_slice.BackwardSlice(cfg, cdg, ddg, targets=None, cfg_node=None,
stmt_id=None, control_flow_slice=False,
same_function=False, no_construct=False)

Bases: Analysis

Represents a backward slice of the program.

__init__(cfg, cdg, ddg, targets=None, cfg_node=None, stmt_id=None, control_flow_slice=False,
same_function=False, no_construct=False)

Create a backward slice from a specific statement based on provided control flow graph (CFG), control
dependence graph (CDG), and data dependence graph (DDG).

The data dependence graph can be either CFG-based, or Value-set analysis based. A CFG-based DDG is
much faster to generate, but it only reflects those states while generating the CFG, and it is neither sound
nor accurate. The VSA based DDG (called VSA_DDG) is based on static analysis, which gives you a much
better result.

Parameters
• cfg – The control flow graph.

• cdg – The control dependence graph.

• ddg – The data dependence graph.

• targets – A list of “target” that specify targets of the backward slices. Each target can be
a tuple in form of (cfg_node, stmt_idx), or a CodeLocation instance.

• cfg_node – Deprecated. The target CFGNode to reach. It should exist in the CFG.

• stmt_id – Deprecated. The target statement to reach.

628 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#list

angr

• control_flow_slice – True/False, indicates whether we should slice only based on
CFG. Sometimes when acquiring DDG is difficult or impossible, you can just create a
slice on your CFG. Well, if you don’t even have a CFG, then. . .

• no_construct – Only used for testing and debugging to easily create a BackwardSlice
object.

dbg_repr(max_display=10)
Debugging output of this slice.

Parameters
max_display – The maximum number of SimRun slices to show.

Returns
A string representation.

dbg_repr_run(run_addr)
Debugging output of a single SimRun slice.

Parameters
run_addr – Address of the SimRun.

Returns
A string representation.

annotated_cfg(start_point=None)
Returns an AnnotatedCFG based on slicing result.

is_taint_related_to_ip(simrun_addr, stmt_idx, taint_type, simrun_whitelist=None)
Query in taint graph to check if a specific taint will taint the IP in the future or not. The taint is specified
with the tuple (simrun_addr, stmt_idx, taint_type).

Parameters
• simrun_addr – Address of the SimRun.

• stmt_idx – Statement ID.

• taint_type – Type of the taint, might be one of the following: ‘reg’, ‘tmp’, ‘mem’.

• simrun_whitelist – A list of SimRun addresses that are whitelisted, i.e. the tainted exit
will be ignored if it is in those SimRuns.

Returns
True/False

is_taint_impacting_stack_pointers(simrun_addr, stmt_idx, taint_type, simrun_whitelist=None)
Query in taint graph to check if a specific taint will taint the stack pointer in the future or not. The taint is
specified with the tuple (simrun_addr, stmt_idx, taint_type).

Parameters
• simrun_addr – Address of the SimRun.

• stmt_idx – Statement ID.

• taint_type – Type of the taint, might be one of the following: ‘reg’, ‘tmp’, ‘mem’.

• simrun_whitelist – A list of SimRun addresses that are whitelisted.

Returns
True/False.

10.15. Analysis 629

angr

project: Project

kb: KnowledgeBase

exception angr.analyses.bindiff.UnmatchedStatementsException

Bases: Exception

class angr.analyses.bindiff.Difference(diff_type, value_a, value_b)
Bases: object

__init__(diff_type, value_a, value_b)

class angr.analyses.bindiff.ConstantChange(offset, value_a, value_b)
Bases: object

__init__(offset, value_a, value_b)

angr.analyses.bindiff.differing_constants(block_a, block_b)
Compares two basic blocks and finds all the constants that differ from the first block to the second.

Parameters
• block_a – The first block to compare.

• block_b – The second block to compare.

Returns
Returns a list of differing constants in the form of ConstantChange, which has the offset in the
block and the respective constants.

angr.analyses.bindiff.compare_statement_dict(statement_1, statement_2)

class angr.analyses.bindiff.NormalizedBlock(block, function)
Bases: object

__init__(block, function)

class angr.analyses.bindiff.NormalizedFunction(function)
Bases: object

Parameters
function (Function) –

__init__(function)

Parameters
function (Function) –

class angr.analyses.bindiff.FunctionDiff(function_a, function_b, bindiff=None)
Bases: object

This class computes the a diff between two functions.

Parameters
• function_a (Function) –

• function_b (Function) –

630 Chapter 10. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

__init__(function_a, function_b, bindiff=None)

Parameters
• function_a (Function) – The first angr Function object to diff.

• function_b (Function) – The second angr Function object.

• bindiff – An optional Bindiff object. Used for some extra normalization during basic
block comparison.

property probably_identical

Whether or not these two functions are identical.

Type
returns

property identical_blocks

A list of block matches which appear to be identical

Type
returns

property differing_blocks

A list of block matches which appear to differ

Type
returns

property blocks_with_differing_constants

A list of block matches which appear to differ

Type
return

property block_matches

property unmatched_blocks

static get_normalized_block(addr, function)

Parameters
• addr – Where to start the normalized block.

• function – A function containing the block address.

Returns
A normalized basic block.

block_similarity(block_a, block_b)

Parameters
• block_a – The first block address.

• block_b – The second block address.

Returns
The similarity of the basic blocks, normalized for the base address of the block and function
call addresses.

10.15. Analysis 631

angr

blocks_probably_identical(block_a, block_b, check_constants=False)

Parameters
• block_a – The first block address.

• block_b – The second block address.

• check_constants – Whether or not to require matching constants in blocks.

Returns
Whether or not the blocks appear to be identical.

class angr.analyses.bindiff.BinDiff(other_project, enable_advanced_backward_slicing=False,
cfg_a=None, cfg_b=None)

Bases: Analysis

This class computes the a diff between two binaries represented by angr Projects

__init__(other_project, enable_advanced_backward_slicing=False, cfg_a=None, cfg_b=None)

Parameters
other_project – The second project to diff

functions_probably_identical(func_a_addr, func_b_addr, check_consts=False)
Compare two functions and return True if they appear identical.

Parameters
• func_a_addr – The address of the first function (in the first binary).

• func_b_addr – The address of the second function (in the second binary).

Returns
Whether or not the functions appear to be identical.

property identical_functions

A list of function matches that appear to be identical

Type
returns

property differing_functions

A list of function matches that appear to differ

Type
returns

differing_functions_with_consts()

Returns
A list of function matches that appear to differ including just by constants

property differing_blocks

A list of block matches that appear to differ

Type
returns

property identical_blocks

return A list of all block matches that appear to be identical

632 Chapter 10. API Reference

angr

property blocks_with_differing_constants

A dict of block matches with differing constants to the tuple of constants

Type
return

property unmatched_functions

get_function_diff(function_addr_a, function_addr_b)

Parameters
• function_addr_a – The address of the first function (in the first binary)

• function_addr_b – The address of the second function (in the second binary)

Returns
the FunctionDiff of the two functions

project: Project

kb: KnowledgeBase

class angr.analyses.boyscout.BoyScout(cookiesize=1)
Bases: Analysis

Try to determine the architecture and endieness of a binary blob

__init__(cookiesize=1)

project: Project

kb: KnowledgeBase

class angr.analyses.calling_convention.CallSiteFact(return_value_used)
Bases: object

Store facts about each call site.

__init__(return_value_used)

class angr.analyses.calling_convention.UpdateArgumentsOption

Bases: object

Enums for controlling the argument updating behavior in _adjust_cc.

DoNotUpdate = 0

AlwaysUpdate = 1

UpdateWhenCCHasNoArgs = 2

class angr.analyses.calling_convention.CallingConventionAnalysis(func, cfg=None,
analyze_callsites=False,
caller_func_addr=None,
callsite_block_addr=None,
callsite_insn_addr=None,
func_graph=None)

Bases: Analysis

Analyze the calling convention of a function and guess a probable prototype.

10.15. Analysis 633

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

The calling convention of a function can be inferred at both its call sites and the function itself. At call sites, we
consider all register and stack variables that are not alive after the function call as parameters to this function.
In the function itself, we consider all register and stack variables that are read but without initialization as pa-
rameters. Then we synthesize the information from both locations and make a reasonable inference of calling
convention of this function.

Variables
• _function – The function to recover calling convention for.

• _variable_manager – A handy accessor to the variable manager.

• _cfg – A reference of the CFGModel of the current binary. It is used to discover call sites
of the current function in order to perform analysis at call sites.

• analyze_callsites – True if we should analyze all call sites of the current function to
determine the calling convention and arguments. This can be time-consuming if there are
many call sites to analyze.

• cc – The recovered calling convention for the function.

Parameters
• func (Function | int | str | None) –

• cfg (CFGModel | None) –

• analyze_callsites (bool) –

• caller_func_addr (int | None) –

• callsite_block_addr (int | None) –

• callsite_insn_addr (int | None) –

• func_graph (DiGraph | None) –

__init__(func, cfg=None, analyze_callsites=False, caller_func_addr=None, callsite_block_addr=None,
callsite_insn_addr=None, func_graph=None)

Parameters
• func (Function | int | str | None) –

• cfg (CFGModel | None) –

• analyze_callsites (bool) –

• caller_func_addr (int | None) –

• callsite_block_addr (int | None) –

• callsite_insn_addr (int | None) –

• func_graph (DiGraph | None) –

project: Project

kb: KnowledgeBase

is_va_start_amd64(func)

Return type
Tuple[bool, Optional[int]]

Parameters
func (Function) –

634 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

angr

class angr.analyses.complete_calling_conventions.CompleteCallingConventionsAnalysis(recover_variables=False,
low_priority=False,
force=False,
cfg=None,
ana-
lyze_callsites=False,
skip_signature_matched_functions=False,
max_function_blocks=None,
max_function_size=None,
work-
ers=0,
cc_callback=None,
priori-
tize_func_addrs=None,
skip_other_funcs=False,
auto_start=True,
func_graphs=None)

Bases: Analysis

Implements full-binary calling convention analysis. During the initial analysis of a binary, you may set re-
cover_variables to True so that it will perform variable recovery on each function before performing calling
convention analysis.

Parameters
• cfg (CFGModel | None) –

• analyze_callsites (bool) –

• skip_signature_matched_functions (bool) –

• max_function_blocks (int | None) –

• max_function_size (int | None) –

• workers (int) –

• cc_callback (Callable | None) –

• prioritize_func_addrs (Iterable[int] | None) –

• skip_other_funcs (bool) –

• auto_start (bool) –

• func_graphs (Dict[int, networkx.DiGraph] | None) –

__init__(recover_variables=False, low_priority=False, force=False, cfg=None, analyze_callsites=False,
skip_signature_matched_functions=False, max_function_blocks=None, max_function_size=None,
workers=0, cc_callback=None, prioritize_func_addrs=None, skip_other_funcs=False,
auto_start=True, func_graphs=None)

Parameters
• recover_variables – Recover variables on each function before performing calling con-

vention analysis.

• low_priority – Run in the background - periodically release GIL.

• force – Perform calling convention analysis on functions even if they have calling con-
ventions or prototypes already specified (or previously recovered).

10.15. Analysis 635

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int

angr

• cfg (Optional[CFGModel]) – The control flow graph model, which will be passed to
CallingConventionAnalysis.

• analyze_callsites (bool) – Consider artifacts at call sites when performing calling
convention analysis.

• skip_signature_matched_functions (bool) – Do not perform calling convention
analysis on functions that match against existing FLIRT signatures.

• max_function_blocks (Optional[int]) – Do not perform calling convention analysis
on functions with more than the specified number of blocks. Setting it to None disables
this check.

• max_function_size (Optional[int]) – Do not perform calling convention analysis on
functions whose sizes are more than max_function_size. Setting it to None disables this
check.

• workers (int) – Number of multiprocessing workers.

• cc_callback (Callable | None) –

• prioritize_func_addrs (Iterable[int] | None) –

• skip_other_funcs (bool) –

• auto_start (bool) –

• func_graphs (Dict[int, DiGraph] | None) –

work()

project: Project

kb: KnowledgeBase

prioritize_functions(func_addrs_to_prioritize)
Prioritize the analysis of specified functions.

Parameters
func_addrs_to_prioritize (Iterable[int]) – A collection of function addresses to an-
alyze first.

static function_needs_variable_recovery(func)
Check if running variable recovery on the function is the only way to determine the calling convention of
the this function.

We do not need to run variable recovery to determine the calling convention of a function if: - The function
is a SimProcedure. - The function is a PLT stub. - The function is a library function and we already know
its prototype.

Parameters
func – The function object.

Returns
True if we must run VariableRecovery before we can determine what the calling convention
of this function is. False otherwise.

Return type
bool

exception angr.analyses.soot_class_hierarchy.SootClassHierarchyError(msg)
Bases: Exception

636 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception

angr

__init__(msg)

exception angr.analyses.soot_class_hierarchy.NoConcreteDispatch(msg)
Bases: SootClassHierarchyError

__init__(msg)

class angr.analyses.soot_class_hierarchy.SootClassHierarchy

Bases: Analysis

Generate complete hierarchy.

__init__()

init_hierarchy()

has_super_class(cls)

is_subclass_including(cls_child, cls_parent)

is_subclass(cls_child, cls_parent)

is_visible_method(cls, method)

is_visible_class(cls_from, cls_to)

get_super_classes(cls)

get_super_classes_including(cls)

get_implementers(interface)

get_sub_interfaces_including(interface)

get_sub_interfaces(interface)

get_sub_classes(cls)

get_sub_classes_including(cls)

resolve_abstract_dispatch(cls, method)

resolve_concrete_dispatch(cls, method)

resolve_special_dispatch(method, container)

resolve_invoke(invoke_expr, method, container)

project: Project

kb: KnowledgeBase

class angr.analyses.cfg.cfb.CFBlanketView(cfb)
Bases: object

A view into the control-flow blanket.

__init__(cfb)

class angr.analyses.cfg.cfb.MemoryRegion(addr, size, type_, object_, cle_region)
Bases: object

10.15. Analysis 637

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

__init__(addr, size, type_, object_, cle_region)

class angr.analyses.cfg.cfb.Unknown(addr, size, bytes_=None, object_=None, segment=None,
section=None)

Bases: object

__init__(addr, size, bytes_=None, object_=None, segment=None, section=None)

class angr.analyses.cfg.cfb.CFBlanket(exclude_region_types=None, on_object_added=None)
Bases: Analysis

A Control-Flow Blanket is a representation for storing all instructions, data entries, and bytes of a full program.

Region types: - section - segment - extern - tls - kernel

Parameters
• exclude_region_types (Set[str] | None) –

• on_object_added (Callable[[int, Any], None] | None) –

__init__(exclude_region_types=None, on_object_added=None)

Parameters
• on_object_added (Optional[Callable[[int, Any], None]]) – Callable with parame-

ters (addr, obj) called after an object is added to the blanket.

• exclude_region_types (Set[str] | None) –

property regions

Return all memory regions.

floor_addr(addr)

floor_item(addr)

floor_items(addr=None, reverse=False)

ceiling_addr(addr)

ceiling_item(addr)

ceiling_items(addr=None, reverse=False, include_first=True)

add_obj(addr, obj)
Adds an object obj to the blanket at the specified address addr

add_function(func)
Add a function func and all blocks of this function to the blanket.

dbg_repr()

The debugging representation of this CFBlanket.

Returns
The debugging representation of this CFBlanket.

Return type
str

project: Project

638 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

kb: KnowledgeBase

exception angr.analyses.cfg.cfg.OutdatedError

Bases: Exception

class angr.analyses.cfg.cfg.CFG(**kwargs)
Bases: CFGFast

tl;dr: CFG is just a wrapper around CFGFast for compatibility issues. It will be fully replaced by CFGFast in
future releases. Feel free to use CFG if you intend to use CFGFast. Please use CFGEmulated if you have to use
the old, slow, dynamically-generated version of CFG.

For multiple historical reasons, angr’s CFG is accurate but slow, which does not meet what most people expect.
We developed CFGFast for light-speed CFG recovery, and renamed the old CFG class to CFGEmulated. For
compability concerns, CFG was kept as an alias to CFGEmulated.

However, so many new users of angr would load up a binary and generate a CFG immediately after running “pip
install angr”, and draw the conclusion that “angr’s CFG is so slow - angr must be unusable!” Therefore, we made
the hard decision: CFG will be an alias to CFGFast, instead of CFGEmulated.

To ease the transition of your existing code and script, the following changes are made:

• A CFG class, which is a sub class of CFGFast, is created.

• You will see both a warning message printed out to stderr and an exception raised by angr if you are passing
CFG any parameter that only CFGEmulated supports. This exception is not a sub class of AngrError, so
you wouldn’t capture it with your old code by mistake.

• In the near future, this wrapper class will be removed completely, and CFG will be a simple alias to CFGFast.

We expect most interfaces are the same between CFGFast and CFGEmulated. Apparently some functionalities
(like context-sensitivity, and state keeping) only exist in CFGEmulated, which is when you want to use CFGEm-
ulated instead.

__init__(**kwargs)

Parameters
• binary – The binary to recover CFG on. By default the main binary is used.

• objects – A list of objects to recover the CFG on. By default it will recover the CFG of
all loaded objects.

• regions (iterable) – A list of tuples in the form of (start address, end address) describing
memory regions that the CFG should cover.

• pickle_intermediate_results (bool) – If we want to store the intermediate results
or not.

• symbols (bool) – Get function beginnings from symbols in the binary.

• function_prologues (bool) – Scan the binary for function prologues, and use those
positions as function beginnings

• resolve_indirect_jumps (bool) – Try to resolve indirect jumps. This is necessary to
resolve jump targets from jump tables, etc.

• force_segment (bool) – Force CFGFast to rely on binary segments instead of sections.

• force_complete_scan (bool) – Perform a complete scan on the binary and maximize
the number of identified code blocks.

10.15. Analysis 639

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• data_references (bool) – Enables the collection of references to data used by individ-
ual instructions. This does not collect ‘cross-references’, particularly those that involve
multiple instructions. For that, see cross_references

• cross_references (bool) – Whether CFGFast should collect “cross-references” from
the entire program or not. This will populate the knowledge base with references to and
from each recognizable address constant found in the code. Note that, because this per-
forms constant propagation on the entire program, it may be much slower and consume
more memory. This option implies data_references=True.

• normalize (bool) – Normalize the CFG as well as all function graphs after CFG recovery.

• start_at_entry (bool) – Begin CFG recovery at the entry point of this project. Setting
it to False prevents CFGFast from viewing the entry point as one of the starting points of
code scanning.

• function_starts (list) – A list of extra function starting points. CFGFast will try to
resume scanning from each address in the list.

• extra_memory_regions (list) – A list of 2-tuple (start-address, end-address) that shows
extra memory regions. Integers falling inside will be considered as pointers.

• indirect_jump_resolvers (list) – A custom list of indirect jump resolvers. If this list
is None or empty, default indirect jump resolvers specific to this architecture and binary
types will be loaded.

• base_state – A state to use as a backer for all memory loads

• detect_tail_calls (bool) – Enable aggressive tail-call optimization detection.

• elf_eh_frame (bool) – Retrieve function starts (and maybe sizes later) from the
.eh_frame of ELF binaries.

• skip_unmapped_addrs – Ignore all branches into unmapped regions. True by default.
You may want to set it to False if you are analyzing manually patched binaries or malware
samples.

• indirect_calls_always_return – Should CFG assume indirect calls must return or
not. Assuming indirect calls must return will significantly reduce the number of constant
propagation runs, but may reduce the overall CFG recovery precision when facing non-
returning indirect calls. By default, we only assume indirect calls always return for large
binaries (region > 50KB).

• jumptable_resolver_resolves_calls – Whether JumpTableResolver should resolve
indirect calls or not. Most indirect calls in C++ binaries or UEFI binaries cannot be resolved
using jump table resolver and must be resolved using their specific resolvers. By default, we
will only disable JumpTableResolver from resolving indirect calls for large binaries (region
> 50 KB).

• start (int) – (Deprecated) The beginning address of CFG recovery.

• end (int) – (Deprecated) The end address of CFG recovery.

• arch_options (CFGArchOptions) – Architecture-specific options.

• extra_arch_options (dict) – Any key-value pair in kwargs will be seen as an arch-
specific option and will be used to set the option value in self._arch_options.

Extra parameters that angr.Analysis takes:

Parameters

640 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

angr

• progress_callback – Specify a callback function to get the progress during CFG recov-
ery.

• show_progressbar (bool) – Should CFGFast show a progressbar during CFG recovery
or not.

Returns
None

class angr.analyses.cfg.cfg_emulated.CFGJob(*args, **kwargs)
Bases: CFGJobBase

The job class that CFGEmulated uses.

__init__(*args, **kwargs)

property block_id

property is_syscall

class angr.analyses.cfg.cfg_emulated.PendingJob(caller_func_addr, returning_source, state,
src_block_id, src_exit_stmt_idx, src_exit_ins_addr,
call_stack)

Bases: object

A PendingJob is whatever will be put into our pending_exit list. A pending exit is an entry that created by the
returning of a call or syscall. It is “pending” since we cannot immediately figure out whether this entry will
be executed or not. If the corresponding call/syscall intentially doesn’t return, then the pending exit will be
removed. If the corresponding call/syscall returns, then the pending exit will be removed as well (since a real
entry is created from the returning and will be analyzed later). If the corresponding call/syscall might return, but
for some reason (for example, an unsupported instruction is met during the analysis) our analysis does not return
properly, then the pending exit will be picked up and put into remaining_jobs list.

__init__(caller_func_addr, returning_source, state, src_block_id, src_exit_stmt_idx, src_exit_ins_addr,
call_stack)

Parameters
• returning_source – Address of the callee function. It might be None if address of the

callee is not resolvable.

• state – The state after returning from the callee function. Of course there is no way to get
a precise state without emulating the execution of the callee, but at least we can properly
adjust the stack and registers to imitate the real returned state.

• call_stack – A callstack.

10.15. Analysis 641

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

class angr.analyses.cfg.cfg_emulated.CFGEmulated(context_sensitivity_level=1, start=None,
avoid_runs=None, enable_function_hints=False,
call_depth=None, call_tracing_filter=None,
initial_state=None, starts=None, keep_state=False,
indirect_jump_target_limit=100000,
resolve_indirect_jumps=True,
enable_advanced_backward_slicing=False,
enable_symbolic_back_traversal=False,
indirect_jump_resolvers=None,
additional_edges=None, no_construct=False,
normalize=False, max_iterations=1,
address_whitelist=None, base_graph=None,
iropt_level=None, max_steps=None,
state_add_options=None,
state_remove_options=None, model=None)

Bases: ForwardAnalysis, CFGBase

This class represents a control-flow graph.

tag: Optional[str] = 'CFGEmulated'

__init__(context_sensitivity_level=1, start=None, avoid_runs=None, enable_function_hints=False,
call_depth=None, call_tracing_filter=None, initial_state=None, starts=None, keep_state=False,
indirect_jump_target_limit=100000, resolve_indirect_jumps=True,
enable_advanced_backward_slicing=False, enable_symbolic_back_traversal=False,
indirect_jump_resolvers=None, additional_edges=None, no_construct=False, normalize=False,
max_iterations=1, address_whitelist=None, base_graph=None, iropt_level=None,
max_steps=None, state_add_options=None, state_remove_options=None, model=None)

All parameters are optional.

Parameters
• context_sensitivity_level – The level of context-sensitivity of this CFG (see docu-

mentation for further details). It ranges from 0 to infinity. Default 1.

• avoid_runs – A list of runs to avoid.

• enable_function_hints – Whether to use function hints (constants that might be used
as exit targets) or not.

• call_depth – How deep in the call stack to trace.

• call_tracing_filter – Filter to apply on a given path and jumpkind to determine if it
should be skipped when call_depth is reached.

• initial_state – An initial state to use to begin analysis.

• starts (iterable) – A collection of starting points to begin analysis. It can contain the
following three different types of entries: an address specified as an integer, a 2-tuple that
includes an integer address and a jumpkind, or a SimState instance. Unsupported entries
in starts will lead to an AngrCFGError being raised.

• keep_state – Whether to keep the SimStates for each CFGNode.

• resolve_indirect_jumps – Whether to enable the indirect jump resolvers for resolving
indirect jumps

• enable_advanced_backward_slicing – Whether to enable an intensive technique for
resolving indirect jumps

642 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

angr

• enable_symbolic_back_traversal – Whether to enable an intensive technique for re-
solving indirect jumps

• indirect_jump_resolvers (list) – A custom list of indirect jump resolvers. If this list
is None or empty, default indirect jump resolvers specific to this architecture and binary
types will be loaded.

• additional_edges – A dict mapping addresses of basic blocks to addresses of successors
to manually include and analyze forward from.

• no_construct (bool) – Skip the construction procedure. Only used in unit-testing.

• normalize (bool) – If the CFG as well as all Function graphs should be normalized or
not.

• max_iterations (int) – The maximum number of iterations that each basic block should
be “executed”. 1 by default. Larger numbers of iterations are usually required for complex
analyses like loop analysis.

• address_whitelist (iterable) – A list of allowed addresses. Any basic blocks outside
of this collection of addresses will be ignored.

• base_graph (networkx.DiGraph) – A basic control flow graph to follow. Each node
inside this graph must have the following properties: addr and size. CFG recovery will
strictly follow nodes and edges shown in the graph, and discard any contorl flow that does
not follow an existing edge in the base graph. For example, you can pass in a Function
local transition graph as the base graph, and CFGEmulated will traverse nodes and edges
and extract useful information.

• iropt_level (int) – The optimization level of VEX IR (0, 1, 2). The default level will
be used if iropt_level is None.

• max_steps (int) – The maximum number of basic blocks to recover forthe longest path
from each start before pausing the recovery procedure.

• state_add_options – State options that will be added to the initial state.

• state_remove_options – State options that will be removed from the initial state.

copy()

Make a copy of the CFG.

Return type
CFGEmulated

Returns
A copy of the CFG instance.

resume(starts=None, max_steps=None)
Resume a paused or terminated control flow graph recovery.

Parameters
• starts (iterable) – A collection of new starts to resume from. If starts is None, we will

resume CFG recovery from where it was paused before.

• max_steps (int) – The maximum number of blocks on the longest path starting from each
start before pausing the recovery.

Returns
None

10.15. Analysis 643

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

remove_cycles()

Forces graph to become acyclic, removes all loop back edges and edges between overlapped loop headers
and their successors.

downsize()

Remove saved states from all CFGNodes to reduce memory usage.

Returns
None

unroll_loops(max_loop_unrolling_times)
Unroll loops for each function. The resulting CFG may still contain loops due to recursion, function calls,
etc.

Parameters
max_loop_unrolling_times (int) – The maximum iterations of unrolling.

Returns
None

force_unroll_loops(max_loop_unrolling_times)
Unroll loops globally. The resulting CFG does not contain any loop, but this method is slow on large graphs.

Parameters
max_loop_unrolling_times (int) – The maximum iterations of unrolling.

Returns
None

immediate_dominators(start, target_graph=None)
Get all immediate dominators of sub graph from given node upwards.

Parameters
• start (str) – id of the node to navigate forwards from.

• target_graph (networkx.classes.digraph.DiGraph) – graph to analyse, default is
self.graph.

Returns
each node of graph as index values, with element as respective node’s immediate dominator.

Return type
dict

immediate_postdominators(end, target_graph=None)
Get all immediate postdominators of sub graph from given node upwards.

Parameters
• start (str) – id of the node to navigate forwards from.

• target_graph (networkx.classes.digraph.DiGraph) – graph to analyse, default is
self.graph.

Returns
each node of graph as index values, with element as respective node’s immediate dominator.

Return type
dict

644 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

angr

remove_fakerets()

Get rid of fake returns (i.e., Ijk_FakeRet edges) from this CFG

Returns
None

get_topological_order(cfg_node)
Get the topological order of a CFG Node.

Parameters
cfg_node – A CFGNode instance.

Returns
An integer representing its order, or None if the CFGNode does not exist in the graph.

get_subgraph(starting_node, block_addresses)
Get a sub-graph out of a bunch of basic block addresses.

Parameters
• starting_node (CFGNode) – The beginning of the subgraph

• block_addresses (iterable) – A collection of block addresses that should be included
in the subgraph if there is a path between starting_node and a CFGNode with the specified
address, and all nodes on the path should also be included in the subgraph.

Returns
A new CFG that only contain the specific subgraph.

Return type
CFGEmulated

get_function_subgraph(start, max_call_depth=None)
Get a sub-graph of a certain function.

Parameters
• start – The function start. Currently it should be an integer.

• max_call_depth – Call depth limit. None indicates no limit.

Returns
A CFG instance which is a sub-graph of self.graph

property context_sensitivity_level

property graph

property unresolvables

Get those SimRuns that have non-resolvable exits.

Returns
A set of SimRuns

Return type
set

property deadends

Get all CFGNodes that has an out-degree of 0

Returns
A list of CFGNode instances

10.15. Analysis 645

https://docs.python.org/3/library/stdtypes.html#set

angr

Return type
list

class angr.analyses.cfg.cfg_base.CFGBase(sort, context_sensitivity_level, normalize=False, binary=None,
objects=None, regions=None, exclude_sparse_regions=True,
skip_specific_regions=True, force_segment=False,
base_state=None, resolve_indirect_jumps=True,
indirect_jump_resolvers=None,
indirect_jump_target_limit=100000, detect_tail_calls=False,
low_priority=False, skip_unmapped_addrs=True,
sp_tracking_track_memory=True, model=None)

Bases: Analysis

The base class for control flow graphs.

tag: Optional[str] = None

__init__(sort, context_sensitivity_level, normalize=False, binary=None, objects=None, regions=None,
exclude_sparse_regions=True, skip_specific_regions=True, force_segment=False,
base_state=None, resolve_indirect_jumps=True, indirect_jump_resolvers=None,
indirect_jump_target_limit=100000, detect_tail_calls=False, low_priority=False,
skip_unmapped_addrs=True, sp_tracking_track_memory=True, model=None)

Parameters
• sort (str) – ‘fast’ or ‘emulated’.

• context_sensitivity_level (int) – The level of context-sensitivity of this CFG (see
documentation for further details). It ranges from 0 to infinity.

• normalize (bool) – Whether the CFG as well as all Function graphs should be normal-
ized.

• binary (cle.backends.Backend) – The binary to recover CFG on. By default, the main
binary is used.

• objects – A list of objects to recover the CFG on. By default, it will recover the CFG of
all loaded objects.

• regions (iterable) – A list of tuples in the form of (start address, end address) describing
memory regions that the CFG should cover.

• force_segment (bool) – Force CFGFast to rely on binary segments instead of sections.

• base_state (angr.SimState) – A state to use as a backer for all memory loads.

• resolve_indirect_jumps (bool) – Whether to try to resolve indirect jumps. This is
necessary to resolve jump targets from jump tables, etc.

• indirect_jump_resolvers (list) – A custom list of indirect jump resolvers. If this list
is None or empty, default indirect jump resolvers specific to this architecture and binary
types will be loaded.

• indirect_jump_target_limit (int) – Maximum indirect jump targets to be recovered.

• skip_unmapped_addrs – Ignore all branches into unmapped regions. True by default.
You may want to set it to False if you are analyzing manually patched binaries or malware
samples.

• detect_tail_calls (bool) – Aggressive tail-call optimization detection. This option is
only respected in make_functions().

646 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

• sp_tracking_track_memory (bool) – Whether or not to track memory writes if track-
ing the stack pointer. This increases the accuracy of stack pointer tracking, especially for
architectures without a base pointer. Only used if detect_tail_calls is enabled.

• model (None or CFGModel) – The CFGModel instance to write to. A new CFGModel
instance will be created and registered with the knowledge base if model is None.

Returns
None

property model: CFGModel

Get the CFGModel instance. :return: The CFGModel instance that this analysis currently uses.

property normalized

property context_sensitivity_level

property functions

A reference to the FunctionManager in the current knowledge base.

Returns
FunctionManager with all functions

Return type
angr.knowledge_plugins.FunctionManager

make_copy(copy_to)
Copy self attributes to the new object.

Parameters
copy_to (CFGBase) – The target to copy to.

Returns
None

copy()

output()

generate_index()

Generate an index of all nodes in the graph in order to speed up get_any_node() with anyaddr=True.

Returns
None

get_predecessors(**kwargs)

get_successors(**kwargs)

get_successors_and_jumpkind(**kwargs)

get_all_predecessors(**kwargs)

get_all_successors(**kwargs)

get_node(**kwargs)

get_any_node(**kwargs)

get_all_nodes(**kwargs)

10.15. Analysis 647

https://docs.python.org/3/library/functions.html#bool

angr

nodes(**kwargs)

nodes_iter(**kwargs)

get_loop_back_edges()

get_branching_nodes(**kwargs)

get_exit_stmt_idx(**kwargs)

property graph: networkx.DiGraph[CFGNode]

remove_edge(block_from, block_to)

is_thumb_addr(addr)

normalize()

Normalize the CFG, making sure that there are no overlapping basic blocks.

Note that this method will not alter transition graphs of each function in self.kb.functions. You may call
normalize() on each Function object to normalize their transition graphs.

Returns
None

mark_function_alignments()

Find all potential function alignments and mark them.

Note that it is not always correct to simply remove them, because these functions may not be actual align-
ments but part of an actual function, and is incorrectly marked as an individual function because of failures
in resolving indirect jumps. An example is in the test binary x86_64/dir_gcc_-O0 0x40541d (indirect
jump at 0x4051b0). If the indirect jump cannot be correctly resolved, removing function 0x40541d will
cause a missing label failure in reassembler.

Returns
None

make_functions()

Revisit the entire control flow graph, create Function instances accordingly, and correctly put blocks into
each function.

Although Function objects are crated during the CFG recovery, they are neither sound nor accurate. With
a pre-constructed CFG, this method rebuilds all functions bearing the following rules:

• A block may only belong to one function.

• Small functions lying inside the startpoint and the endpoint of another function will be merged with
the other function

• Tail call optimizations are detected.

• PLT stubs are aligned by 16.

Returns
None

exception angr.analyses.cfg.cfg_fast.ContinueScanningNotification

Bases: RuntimeError

A notification raised by _next_code_addr_core() to indicate no code address is found and
_next_code_addr_core() should be invoked again.

648 Chapter 10. API Reference

https://docs.python.org/3/library/exceptions.html#RuntimeError

angr

class angr.analyses.cfg.cfg_fast.ARMDecodingMode

Bases: object

Enums indicating decoding mode for ARM code.

ARM = 0

THUMB = 1

class angr.analyses.cfg.cfg_fast.DecodingAssumption(addr, size, mode)
Bases: object

Describes the decoding mode (ARM/THUMB) for a given basic block identified by its address.

Parameters
• addr (int) –

• size (int) –

• mode (int) –

__init__(addr, size, mode)

Parameters
• addr (int) –

• size (int) –

• mode (int) –

add_data_seg(addr, size)

Return type
None

Parameters
• addr (int) –

• size (int) –

class angr.analyses.cfg.cfg_fast.FunctionReturn(callee_func_addr, caller_func_addr, call_site_addr,
return_to)

Bases: object

FunctionReturn describes a function call in a specific location and its return location. Hashable and equatable

__init__(callee_func_addr, caller_func_addr, call_site_addr, return_to)

callee_func_addr

caller_func_addr

call_site_addr

return_to

class angr.analyses.cfg.cfg_fast.PendingJobs(functions, deregister_job_callback)
Bases: object

A collection of pending jobs during CFG recovery.

10.15. Analysis 649

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

__init__(functions, deregister_job_callback)

add_job(job)

pop_job(returning=True)
Pop a job from the pending jobs list.

When returning == True, we prioritize the jobs whose functions are known to be returning (func-
tion.returning is True). As an optimization, we are sorting the pending jobs list according to
job.function.returning.

Parameters
returning (bool) – Only pop a pending job if the corresponding function returns.

Returns
A pending job if we can find one, or None if we cannot find any that satisfies the requirement.

Return type
angr.analyses.cfg.cfg_fast.CFGJob

cleanup()

Remove those pending exits if: a) they are the return exits of non-returning SimProcedures b) they are the
return exits of non-returning syscalls b) they are the return exits of non-returning functions

Returns
None

add_returning_function(func_addr)
Mark a function as returning.

Parameters
func_addr (int) – Address of the function that returns.

Returns
None

add_nonreturning_function(func_addr)
Mark a function as not returning.

Parameters
func_addr (int) – Address of the function that does not return.

Returns
None

clear_updated_functions()

Clear the updated_functions set.

Returns
None

class angr.analyses.cfg.cfg_fast.FunctionEdge

Bases: object

Describes an edge in functions’ transition graphs. Base class for all types of edges.

apply(cfg)

src_func_addr

stmt_idx

650 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

ins_addr

class angr.analyses.cfg.cfg_fast.FunctionTransitionEdge(src_node, dst_addr, src_func_addr,
to_outside=False, dst_func_addr=None,
stmt_idx=None, ins_addr=None,
is_exception=False)

Bases: FunctionEdge

Describes a transition edge in functions’ transition graphs.

__init__(src_node, dst_addr, src_func_addr, to_outside=False, dst_func_addr=None, stmt_idx=None,
ins_addr=None, is_exception=False)

src_node

dst_addr

to_outside

dst_func_addr

is_exception

apply(cfg)

class angr.analyses.cfg.cfg_fast.FunctionCallEdge(src_node, dst_addr, ret_addr, src_func_addr,
syscall=False, stmt_idx=None, ins_addr=None)

Bases: FunctionEdge

Describes a call edge in functions’ transition graphs.

__init__(src_node, dst_addr, ret_addr, src_func_addr, syscall=False, stmt_idx=None, ins_addr=None)

src_node

dst_addr

ret_addr

syscall

apply(cfg)

class angr.analyses.cfg.cfg_fast.FunctionFakeRetEdge(src_node, dst_addr, src_func_addr,
confirmed=None)

Bases: FunctionEdge

Describes a FakeReturn (also called fall-through) edge in functions’ transition graphs.

__init__(src_node, dst_addr, src_func_addr, confirmed=None)

src_node

dst_addr

confirmed

apply(cfg)

10.15. Analysis 651

angr

class angr.analyses.cfg.cfg_fast.FunctionReturnEdge(ret_from_addr, ret_to_addr, dst_func_addr)
Bases: FunctionEdge

Describes a return (from a function call or a syscall) edge in functions’ transition graphs.

__init__(ret_from_addr, ret_to_addr, dst_func_addr)

ret_from_addr

ret_to_addr

dst_func_addr

apply(cfg)

class angr.analyses.cfg.cfg_fast.CFGJobType(value)
Bases: Enum

Defines the type of work of a CFGJob

NORMAL = 0

FUNCTION_PROLOGUE = 1

COMPLETE_SCANNING = 2

IFUNC_HINTS = 3

DATAREF_HINTS = 4

class angr.analyses.cfg.cfg_fast.CFGJob(addr, func_addr, jumpkind, ret_target=None, last_addr=None,
src_node=None, src_ins_addr=None, src_stmt_idx=None,
returning_source=None, syscall=False, func_edges=None,
job_type=CFGJobType.NORMAL, gp=None)

Bases: object

Defines a job to work on during the CFG recovery

Parameters
• addr (int) –

• func_addr (int) –

• jumpkind (str) –

• ret_target (int | None) –

• last_addr (int | None) –

• src_node (CFGNode | None) –

• src_ins_addr (int | None) –

• src_stmt_idx (int | None) –

• syscall (bool) –

• func_edges (List | None) –

• job_type (CFGJobType) –

• gp (int | None) –

652 Chapter 10. API Reference

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

angr

__init__(addr, func_addr, jumpkind, ret_target=None, last_addr=None, src_node=None,
src_ins_addr=None, src_stmt_idx=None, returning_source=None, syscall=False,
func_edges=None, job_type=CFGJobType.NORMAL, gp=None)

Parameters
• addr (int) –

• func_addr (int) –

• jumpkind (str) –

• ret_target (int | None) –

• last_addr (int | None) –

• src_node (CFGNode | None) –

• src_ins_addr (int | None) –

• src_stmt_idx (int | None) –

• syscall (bool) –

• func_edges (List | None) –

• job_type (CFGJobType) –

• gp (int | None) –

addr

func_addr

jumpkind

ret_target

last_addr

src_node

src_ins_addr

src_stmt_idx

returning_source

syscall

job_type

gp

add_function_edge(edge)

apply_function_edges(cfg, clear=False)

10.15. Analysis 653

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

angr

class angr.analyses.cfg.cfg_fast.CFGFast(binary=None, objects=None, regions=None,
pickle_intermediate_results=False, symbols=True,
function_prologues=True, resolve_indirect_jumps=True,
force_segment=False, force_smart_scan=True,
force_complete_scan=False,
indirect_jump_target_limit=100000, data_references=True,
cross_references=False, normalize=False,
start_at_entry=True, function_starts=None,
extra_memory_regions=None,
data_type_guessing_handlers=None, arch_options=None,
indirect_jump_resolvers=None, base_state=None,
exclude_sparse_regions=True, skip_specific_regions=True,
heuristic_plt_resolving=None, detect_tail_calls=False,
low_priority=False, cfb=None, model=None,
elf_eh_frame=True, exceptions=True,
skip_unmapped_addrs=True, nodecode_window_size=512,
nodecode_threshold=0.3, nodecode_step=16483,
indirect_calls_always_return=None,
jumptable_resolver_resolves_calls=None, start=None,
end=None, collect_data_references=None,
extra_cross_references=None, **extra_arch_options)

Bases: ForwardAnalysis[CFGNode, CFGNode, CFGJob, int], CFGBase

We find functions inside the given binary, and build a control-flow graph in very fast manners: instead of sim-
ulating program executions, keeping track of states, and performing expensive data-flow analysis, CFGFast will
only perform light-weight analyses combined with some heuristics, and with some strong assumptions.

In order to identify as many functions as possible, and as accurate as possible, the following operation sequence
is followed:

Active scanning

• If the binary has “function symbols” (TODO: this term is not accurate enough), they are starting points of
the code scanning

• If the binary does not have any “function symbol”, we will first perform a function prologue scanning on
the entire binary, and start from those places that look like function beginnings

• Otherwise, the binary’s entry point will be the starting point for scanning

Passive scanning

• After all active scans are done, we will go through the whole image and scan all code pieces

Due to the nature of those techniques that are used here, a base address is often not required to use this analysis
routine. However, with a correct base address, CFG recovery will almost always yield a much better result. A
custom analysis, called GirlScout, is specifically made to recover the base address of a binary blob. After the base
address is determined, you may want to reload the binary with the new base address by creating a new Project
object, and then re-recover the CFG.

PRINTABLES = b'0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\
'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r'

SPECIAL_THUNKS = {'AMD64':
{b'\xe8\x07\x00\x00\x00\xf3\x90\x0f\xae\xe8\xeb\xf9H\x89\x04$\xc3': ('jmp', 'rax'),
b'\xe8\x07\x00\x00\x00\xf3\x90\x0f\xae\xe8\xeb\xf9H\x8dd$\x08\xc3': ('ret',)}}

tag: Optional[str] = 'CFGFast'

654 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

angr

__init__(binary=None, objects=None, regions=None, pickle_intermediate_results=False, symbols=True,
function_prologues=True, resolve_indirect_jumps=True, force_segment=False,
force_smart_scan=True, force_complete_scan=False, indirect_jump_target_limit=100000,
data_references=True, cross_references=False, normalize=False, start_at_entry=True,
function_starts=None, extra_memory_regions=None, data_type_guessing_handlers=None,
arch_options=None, indirect_jump_resolvers=None, base_state=None,
exclude_sparse_regions=True, skip_specific_regions=True, heuristic_plt_resolving=None,
detect_tail_calls=False, low_priority=False, cfb=None, model=None, elf_eh_frame=True,
exceptions=True, skip_unmapped_addrs=True, nodecode_window_size=512,
nodecode_threshold=0.3, nodecode_step=16483, indirect_calls_always_return=None,
jumptable_resolver_resolves_calls=None, start=None, end=None, collect_data_references=None,
extra_cross_references=None, **extra_arch_options)

Parameters
• binary – The binary to recover CFG on. By default the main binary is used.

• objects – A list of objects to recover the CFG on. By default it will recover the CFG of
all loaded objects.

• regions (iterable) – A list of tuples in the form of (start address, end address) describing
memory regions that the CFG should cover.

• pickle_intermediate_results (bool) – If we want to store the intermediate results
or not.

• symbols (bool) – Get function beginnings from symbols in the binary.

• function_prologues (bool) – Scan the binary for function prologues, and use those
positions as function beginnings

• resolve_indirect_jumps (bool) – Try to resolve indirect jumps. This is necessary to
resolve jump targets from jump tables, etc.

• force_segment (bool) – Force CFGFast to rely on binary segments instead of sections.

• force_complete_scan (bool) – Perform a complete scan on the binary and maximize
the number of identified code blocks.

• data_references (bool) – Enables the collection of references to data used by individ-
ual instructions. This does not collect ‘cross-references’, particularly those that involve
multiple instructions. For that, see cross_references

• cross_references (bool) – Whether CFGFast should collect “cross-references” from
the entire program or not. This will populate the knowledge base with references to and
from each recognizable address constant found in the code. Note that, because this per-
forms constant propagation on the entire program, it may be much slower and consume
more memory. This option implies data_references=True.

• normalize (bool) – Normalize the CFG as well as all function graphs after CFG recovery.

• start_at_entry (bool) – Begin CFG recovery at the entry point of this project. Setting
it to False prevents CFGFast from viewing the entry point as one of the starting points of
code scanning.

• function_starts (list) – A list of extra function starting points. CFGFast will try to
resume scanning from each address in the list.

• extra_memory_regions (list) – A list of 2-tuple (start-address, end-address) that shows
extra memory regions. Integers falling inside will be considered as pointers.

10.15. Analysis 655

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

angr

• indirect_jump_resolvers (list) – A custom list of indirect jump resolvers. If this list
is None or empty, default indirect jump resolvers specific to this architecture and binary
types will be loaded.

• base_state – A state to use as a backer for all memory loads

• detect_tail_calls (bool) – Enable aggressive tail-call optimization detection.

• elf_eh_frame (bool) – Retrieve function starts (and maybe sizes later) from the
.eh_frame of ELF binaries.

• skip_unmapped_addrs – Ignore all branches into unmapped regions. True by default.
You may want to set it to False if you are analyzing manually patched binaries or malware
samples.

• indirect_calls_always_return (Optional[bool]) – Should CFG assume indirect
calls must return or not. Assuming indirect calls must return will significantly reduce the
number of constant propagation runs, but may reduce the overall CFG recovery precision
when facing non-returning indirect calls. By default, we only assume indirect calls always
return for large binaries (region > 50KB).

• jumptable_resolver_resolves_calls (Optional[bool]) – Whether JumpTableRe-
solver should resolve indirect calls or not. Most indirect calls in C++ binaries or UEFI
binaries cannot be resolved using jump table resolver and must be resolved using their spe-
cific resolvers. By default, we will only disable JumpTableResolver from resolving indirect
calls for large binaries (region > 50 KB).

• start (int) – (Deprecated) The beginning address of CFG recovery.

• end (int) – (Deprecated) The end address of CFG recovery.

• arch_options (CFGArchOptions) – Architecture-specific options.

• extra_arch_options (dict) – Any key-value pair in kwargs will be seen as an arch-
specific option and will be used to set the option value in self._arch_options.

Extra parameters that angr.Analysis takes:

Parameters
• progress_callback – Specify a callback function to get the progress during CFG recov-

ery.

• show_progressbar (bool) – Should CFGFast show a progressbar during CFG recovery
or not.

• indirect_calls_always_return (bool | None) –

• jumptable_resolver_resolves_calls (bool | None) –

Returns
None

property graph

property memory_data

property jump_tables

property insn_addr_to_memory_data

656 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

do_full_xrefs(overlay_state=None)
Perform xref recovery on all functions.

Parameters
overlay (SimState) – An overlay state for loading constant data.

Returns
None

copy()

indirect_jumps: Dict[int, IndirectJump]

project: Project

kb: KnowledgeBase

output()

generate_code_cover(**kwargs)

class angr.analyses.cfg.cfg_arch_options.CFGArchOptions(arch, **options)
Bases: object

Stores architecture-specific options and settings, as well as the detailed explanation of those options and settings.

Suppose ao is the CFGArchOptions object, and there is an option called ret_jumpkind_heuristics, you can access
it by ao.ret_jumpkind_heuristics and set its value via ao.ret_jumpkind_heuristics = True

Variables
• OPTIONS (dict) – A dict of all default options for different architectures.

• arch (archinfo.Arch) – The architecture object.

• _options (dict) – Values of all CFG options that are specific to the current architecture.

OPTIONS = {'ARMCortexM': {'pattern_match_ifuncs': (<class 'bool'>, True),
'ret_jumpkind_heuristics': (<class 'bool'>, True), 'switch_mode_on_nodecode':
(<class 'bool'>, False)}, 'ARMEL': {'pattern_match_ifuncs': (<class 'bool'>, True),
'ret_jumpkind_heuristics': (<class 'bool'>, True), 'switch_mode_on_nodecode':
(<class 'bool'>, True)}, 'ARMHF': {'pattern_match_ifuncs': (<class 'bool'>, True),
'ret_jumpkind_heuristics': (<class 'bool'>, True), 'switch_mode_on_nodecode':
(<class 'bool'>, True)}}

__init__(arch, **options)
Constructor.

Parameters
• arch (archinfo.Arch) – The architecture instance.

• options (dict) – Architecture-specific options, which will be used to initialize this object.

arch = None

class angr.analyses.cfg.cfg_job_base.BlockID(addr, callsite_tuples, jump_type)
Bases: object

A context-sensitive key for a SimRun object.

__init__(addr, callsite_tuples, jump_type)

10.15. Analysis 657

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.Arch
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.Arch
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

angr

callsite_repr()

static new(addr, callstack_suffix, jumpkind)

property func_addr

class angr.analyses.cfg.cfg_job_base.FunctionKey(addr, callsite_tuples)
Bases: object

A context-sensitive key for a function.

__init__(addr, callsite_tuples)

callsite_repr()

static new(addr, callsite_tuples)

class angr.analyses.cfg.cfg_job_base.CFGJobBase(addr, state, context_sensitivity_level, block_id=None,
src_block_id=None, src_exit_stmt_idx=None,
src_ins_addr=None, jumpkind=None,
call_stack=None, is_narrowing=False, skip=False,
final_return_address=None)

Bases: object

Describes an entry in CFG or VFG. Only used internally by the analysis.

Parameters
• state (SimState) –

• jumpkind (str | None) –

__init__(addr, state, context_sensitivity_level, block_id=None, src_block_id=None,
src_exit_stmt_idx=None, src_ins_addr=None, jumpkind=None, call_stack=None,
is_narrowing=False, skip=False, final_return_address=None)

Parameters
• state (SimState) –

• jumpkind (str | None) –

property call_stack

call_stack_copy()

get_call_stack_suffix()

property func_addr

property current_stack_pointer

class angr.analyses.cfg.indirect_jump_resolvers.amd64_elf_got.AMD64ElfGotResolver(project)
Bases: IndirectJumpResolver

A timeless indirect jump resolver that resolves GOT entries on AMD64 ELF binaries.

__init__(project)

658 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

filter(cfg, addr, func_addr, block, jumpkind)
Check if this resolution method may be able to resolve the indirect jump or not.

Parameters
• addr (int) – Basic block address of this indirect jump.

• func_addr (int) – Address of the function that this indirect jump belongs to.

• block – The basic block. The type is determined by the backend being used. It’s
pyvex.IRSB if pyvex is used as the backend.

• jumpkind (str) – The jumpkind.

Returns
True if it is possible for this resolution method to resolve the specific indirect jump, False
otherwise.

Return type
bool

resolve(cfg, addr, func_addr, block, jumpkind, func_graph_complete=True, **kwargs)
Resolve an indirect jump.

Parameters
• cfg – The CFG analysis object.

• addr (int) – Basic block address of this indirect jump.

• func_addr (int) – Address of the function that this indirect jump belongs to.

• block – The basic block. The type is determined by the backend being used. It’s
pyvex.IRSB if pyvex is used as the backend.

• jumpkind (str) – The jumpkind.

• func_graph_complete (bool) – True if the function graph is complete at this point (ex-
cept for nodes that this indirect jump node dominates).

Returns
A tuple of a boolean indicating whether the resolution is successful or not, and a list of re-
solved targets (ints).

Return type
tuple

class angr.analyses.cfg.indirect_jump_resolvers.arm_elf_fast.ArmElfFastResolver(project)
Bases: IndirectJumpResolver

Resolves the indirect jump in ARM ELF binaries where all internal function calls are performed in the following
manner:

ldr r3, [pc+#0x124] ; load a constant from the constant_pool
blx r3

__init__(project)

filter(cfg, addr, func_addr, block, jumpkind)
Check if this resolution method may be able to resolve the indirect jump or not.

Parameters
• addr (int) – Basic block address of this indirect jump.

10.15. Analysis 659

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

angr

• func_addr (int) – Address of the function that this indirect jump belongs to.

• block – The basic block. The type is determined by the backend being used. It’s
pyvex.IRSB if pyvex is used as the backend.

• jumpkind (str) – The jumpkind.

Returns
True if it is possible for this resolution method to resolve the specific indirect jump, False
otherwise.

Return type
bool

resolve(cfg, addr, func_addr, block, jumpkind, func_graph_complete=True, **kwargs)
The main resolving function.

Parameters
• cfg – A CFG instance.

• addr (int) – Address of the IRSB.

• func_addr (int) – Address of the function.

• block – The IRSB.

• jumpkind (str) – The jumpkind.

• func_graph_complete (bool) –

Returns
Return type

tuple

class angr.analyses.cfg.indirect_jump_resolvers.x86_pe_iat.X86PeIatResolver(project)
Bases: IndirectJumpResolver

A timeless indirect jump resolver for IAT in x86 PEs.

__init__(project)

filter(cfg, addr, func_addr, block, jumpkind)
Check if this resolution method may be able to resolve the indirect jump or not.

Parameters
• addr (int) – Basic block address of this indirect jump.

• func_addr (int) – Address of the function that this indirect jump belongs to.

• block – The basic block. The type is determined by the backend being used. It’s
pyvex.IRSB if pyvex is used as the backend.

• jumpkind (str) – The jumpkind.

Returns
True if it is possible for this resolution method to resolve the specific indirect jump, False
otherwise.

Return type
bool

660 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

angr

resolve(cfg, addr, func_addr, block, jumpkind, func_graph_complete=True, **kwargs)
Resolve an indirect jump.

Parameters
• cfg – The CFG analysis object.

• addr (int) – Basic block address of this indirect jump.

• func_addr (int) – Address of the function that this indirect jump belongs to.

• block – The basic block. The type is determined by the backend being used. It’s
pyvex.IRSB if pyvex is used as the backend.

• jumpkind (str) – The jumpkind.

• func_graph_complete (bool) – True if the function graph is complete at this point (ex-
cept for nodes that this indirect jump node dominates).

Returns
A tuple of a boolean indicating whether the resolution is successful or not, and a list of re-
solved targets (ints).

Return type
tuple

angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast.enable_profiling()

angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast.disable_profiling()

class angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast.OverwriteTmpValueCallback(gp_value)
Bases: object

Overwrites temporary values during resolution

__init__(gp_value)

overwrite_tmp_value(state)

class angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast.MipsElfFastResolver(project)
Bases: IndirectJumpResolver

A timeless indirect jump resolver for R9-based indirect function calls in MIPS ELFs.

__init__(project)

filter(cfg, addr, func_addr, block, jumpkind)
Check if this resolution method may be able to resolve the indirect jump or not.

Parameters
• addr (int) – Basic block address of this indirect jump.

• func_addr (int) – Address of the function that this indirect jump belongs to.

• block – The basic block. The type is determined by the backend being used. It’s
pyvex.IRSB if pyvex is used as the backend.

• jumpkind (str) – The jumpkind.

Returns
True if it is possible for this resolution method to resolve the specific indirect jump, False
otherwise.

10.15. Analysis 661

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

Return type
bool

resolve(cfg, addr, func_addr, block, jumpkind, func_graph_complete=True, **kwargs)
Wrapper for _resolve that slowly increments the max_depth used by Blade for finding sources until we can
resolve the addr or we reach the default max_depth

Parameters
• cfg – A CFG instance.

• addr (int) – IRSB address.

• func_addr (int) – The function address.

• block (pyvex.IRSB) – The IRSB.

• jumpkind (str) – The jumpkind.

• func_graph_complete (bool) –

Returns
If it was resolved and targets alongside it

Return type
tuple

class angr.analyses.cfg.indirect_jump_resolvers.x86_elf_pic_plt.X86ElfPicPltResolver(project)
Bases: IndirectJumpResolver

In X86 ELF position-independent code, PLT stubs uses ebx to resolve library calls, where ebx stores the address
to the beginning of the GOT. We resolve the target by forcing ebx to be the beginning of the GOT and simulate
the execution in fast path mode.

__init__(project)

filter(cfg, addr, func_addr, block, jumpkind)
Check if this resolution method may be able to resolve the indirect jump or not.

Parameters
• addr (int) – Basic block address of this indirect jump.

• func_addr (int) – Address of the function that this indirect jump belongs to.

• block – The basic block. The type is determined by the backend being used. It’s
pyvex.IRSB if pyvex is used as the backend.

• jumpkind (str) – The jumpkind.

Returns
True if it is possible for this resolution method to resolve the specific indirect jump, False
otherwise.

Return type
bool

resolve(cfg, addr, func_addr, block, jumpkind, func_graph_complete=True, **kwargs)
Resolve an indirect jump.

Parameters
• cfg – The CFG analysis object.

• addr (int) – Basic block address of this indirect jump.

662 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.IRSB
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

• func_addr (int) – Address of the function that this indirect jump belongs to.

• block – The basic block. The type is determined by the backend being used. It’s
pyvex.IRSB if pyvex is used as the backend.

• jumpkind (str) – The jumpkind.

• func_graph_complete (bool) – True if the function graph is complete at this point (ex-
cept for nodes that this indirect jump node dominates).

Returns
A tuple of a boolean indicating whether the resolution is successful or not, and a list of re-
solved targets (ints).

Return type
tuple

angr.analyses.cfg.indirect_jump_resolvers.default_resolvers.default_indirect_jump_resolvers(obj,
project)

exception angr.analyses.cfg.indirect_jump_resolvers.jumptable.NotAJumpTableNotification

Bases: AngrError

Exception raised to indicate this is not (or does not appear to be) a jump table.

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.UninitReadMeta

Bases: object

Uninitialized read remapping details.

uninit_read_base = 201326592

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.AddressTransferringTypes

Bases: object

Types of address transfer.

Assignment = 0

SignedExtension = 1

UnsignedExtension = 2

Truncation = 3

Or1 = 4

ShiftLeft = 5

ShiftRight = 6

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTargetBaseAddr(stmt_loc, stmt,
tmp,
base_addr=None,
tmp_1=None)

Bases: object

Model for jump targets and their data origin.

__init__(stmt_loc, stmt, tmp, base_addr=None, tmp_1=None)

property base_addr_available

10.15. Analysis 663

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.ConstantValueManager(project, kb,
func)

Bases: object

Manages the loading of registers who hold constant values.

Parameters
func (Function) –

__init__(project, kb, func)

Parameters
func (Function) –

project

kb

func

mapping

reg_read_callback(state)

Parameters
state (SimState) –

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTableProcessorState(arch)
Bases: object

The state used in JumpTableProcessor.

__init__(arch)

arch

is_jumptable

stmts_to_instrument

regs_to_initialize

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.RegOffsetAnnotation(reg_offset)
Bases: Annotation

Register Offset annotation.

Parameters
reg_offset (RegisterOffset) –

__init__(reg_offset)

Parameters
reg_offset (RegisterOffset) –

reg_offset

property relocatable

Returns whether this annotation can be relocated in a simplification.

Returns
True if it can be relocated, false otherwise.

664 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.Annotation

angr

property eliminatable

Returns whether this annotation can be eliminated in a simplification.

Returns
True if eliminatable, False otherwise

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTableProcessor(project, indi-
rect_jump_node_pred_addrs,
bp_sp_diff=256)

Bases: SimEngineLightVEXMixin, SimEngineLight

Implements a simple and stupid data dependency tracking for stack and register variables.

Also determines which statements to instrument during static execution of the slice later. For example, the
following example is not uncommon in non-optimized binaries:

mov [rbp+var_54], 1
loc_4051a6:

cmp [rbp+var_54], 6
ja loc_405412 (default)

loc_4051b0:
mov eax, [rbp+var_54]
mov rax, qword [rax*8+0x223a01]
jmp rax

We want to instrument the first instruction and replace the constant 1 with a symbolic variable, otherwise we will
not be able to recover all jump targets later in block 0x4051b0.

Parameters
indirect_jump_node_pred_addrs (Set[int]) –

__init__(project, indirect_jump_node_pred_addrs, bp_sp_diff=256)

Parameters
indirect_jump_node_pred_addrs (Set[int]) –

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.StoreHook

Bases: object

Hook for memory stores.

static hook(state)

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.LoadHook

Bases: object

Hook for memory loads.

__init__()

hook_before(state)

hook_after(state)

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.PutHook

Bases: object

Hook for register writes.

static hook(state)

10.15. Analysis 665

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.RegisterInitializerHook(reg_offset,
reg_bits,
value)

Bases: object

Hook for register init.

__init__(reg_offset, reg_bits, value)

hook(state)

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.BSSHook(project, bss_regions)
Bases: object

Hook for BSS read/write.

__init__(project, bss_regions)

bss_memory_read_hook(state)

bss_memory_write_hook(state)

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.MIPSGPHook(gp_offset, gp)
Bases: object

Hooks all reads from and writes into the gp register for MIPS32 binaries.

Parameters
• gp_offset (int) –

• gp (int) –

__init__(gp_offset, gp)

Parameters
• gp_offset (int) –

• gp (int) –

gp_register_read_hook(state)

gp_register_write_hook(state)

class angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTableResolver(project, re-
solve_calls=True)

Bases: IndirectJumpResolver

A generic jump table resolver.

This is a fast jump table resolution. For performance concerns, we made the following assumptions:
• The final jump target comes from the memory.

• The final jump target must be directly read out of the memory, without any further modification or
altering.

Progressively larger program slices will be analyzed to determine jump table location and size. If the size of the
table cannot be determined, a guess will be made based on how many entries in the table appear valid.

Parameters
resolve_calls (bool) –

666 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

__init__(project, resolve_calls=True)

Parameters
resolve_calls (bool) –

filter(cfg, addr, func_addr, block, jumpkind)
Check if this resolution method may be able to resolve the indirect jump or not.

Parameters
• addr (int) – Basic block address of this indirect jump.

• func_addr (int) – Address of the function that this indirect jump belongs to.

• block – The basic block. The type is determined by the backend being used. It’s
pyvex.IRSB if pyvex is used as the backend.

• jumpkind (str) – The jumpkind.

Returns
True if it is possible for this resolution method to resolve the specific indirect jump, False
otherwise.

Return type
bool

resolve(cfg, addr, func_addr, block, jumpkind, func_graph_complete=True, **kwargs)
Resolves jump tables.

Parameters
• cfg – A CFG instance.

• addr (int) – IRSB address.

• func_addr (int) – The function address.

• block (pyvex.IRSB) – The IRSB.

• func_graph_complete (bool) –

Returns
A bool indicating whether the indirect jump is resolved successfully, and a list of resolved
targets

Return type
tuple

angr.analyses.cfg.indirect_jump_resolvers.const_resolver.exists_in_replacements(replacements,
block_loc,
tmp_var)

class angr.analyses.cfg.indirect_jump_resolvers.const_resolver.ConstantResolver(project)
Bases: IndirectJumpResolver

Resolve an indirect jump by running a constant propagation on the entire function and check if the indirect jump
can be resolved to a constant value. This resolver must be run after all other more specific resolvers.

__init__(project)

filter(cfg, addr, func_addr, block, jumpkind)
Check if this resolution method may be able to resolve the indirect jump or not.

Parameters

10.15. Analysis 667

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.IRSB
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

angr

• addr (int) – Basic block address of this indirect jump.

• func_addr (int) – Address of the function that this indirect jump belongs to.

• block – The basic block. The type is determined by the backend being used. It’s
pyvex.IRSB if pyvex is used as the backend.

• jumpkind (str) – The jumpkind.

Returns
True if it is possible for this resolution method to resolve the specific indirect jump, False
otherwise.

Return type
bool

resolve(cfg, addr, func_addr, block, jumpkind, func_graph_complete=True, **kwargs)
This function does the actual resolve. Our process is easy: Propagate all values inside the function specified,
then extract the tmp_var used for the indirect jump from the basic block. Use the tmp var to locate the
constant value stored in the replacements. If not present, returns False tuple.

Parameters
• cfg – CFG with specified function

• addr (int) – Address of indirect jump

• func_addr (int) – Address of function of indirect jump

• block (Block) – Block of indirect jump (Block object)

• jumpkind (str) – VEX jumpkind (Ijk_Boring or Ijk_Call)

• func_graph_complete (bool) –

Returns
Bool tuple with replacement address

class angr.analyses.cfg.indirect_jump_resolvers.resolver.IndirectJumpResolver(project, time-
less=False,
base_state=None)

Bases: object

__init__(project, timeless=False, base_state=None)

filter(cfg, addr, func_addr, block, jumpkind)
Check if this resolution method may be able to resolve the indirect jump or not.

Parameters
• addr (int) – Basic block address of this indirect jump.

• func_addr (int) – Address of the function that this indirect jump belongs to.

• block – The basic block. The type is determined by the backend being used. It’s
pyvex.IRSB if pyvex is used as the backend.

• jumpkind (str) – The jumpkind.

Returns
True if it is possible for this resolution method to resolve the specific indirect jump, False
otherwise.

Return type
bool

668 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

angr

resolve(cfg, addr, func_addr, block, jumpkind, func_graph_complete=True, **kwargs)
Resolve an indirect jump.

Parameters
• cfg – The CFG analysis object.

• addr (int) – Basic block address of this indirect jump.

• func_addr (int) – Address of the function that this indirect jump belongs to.

• block – The basic block. The type is determined by the backend being used. It’s
pyvex.IRSB if pyvex is used as the backend.

• jumpkind (str) – The jumpkind.

• func_graph_complete (bool) – True if the function graph is complete at this point (ex-
cept for nodes that this indirect jump node dominates).

Returns
A tuple of a boolean indicating whether the resolution is successful or not, and a list of re-
solved targets (ints).

Return type
tuple

class angr.analyses.cfg.cfg_fast_soot.CFGFastSoot(support_jni=False, **kwargs)
Bases: CFGFast

__init__(support_jni=False, **kwargs)

Parameters
• binary – The binary to recover CFG on. By default the main binary is used.

• objects – A list of objects to recover the CFG on. By default it will recover the CFG of
all loaded objects.

• regions (iterable) – A list of tuples in the form of (start address, end address) describing
memory regions that the CFG should cover.

• pickle_intermediate_results (bool) – If we want to store the intermediate results
or not.

• symbols (bool) – Get function beginnings from symbols in the binary.

• function_prologues (bool) – Scan the binary for function prologues, and use those
positions as function beginnings

• resolve_indirect_jumps (bool) – Try to resolve indirect jumps. This is necessary to
resolve jump targets from jump tables, etc.

• force_segment (bool) – Force CFGFast to rely on binary segments instead of sections.

• force_complete_scan (bool) – Perform a complete scan on the binary and maximize
the number of identified code blocks.

• data_references (bool) – Enables the collection of references to data used by individ-
ual instructions. This does not collect ‘cross-references’, particularly those that involve
multiple instructions. For that, see cross_references

• cross_references (bool) – Whether CFGFast should collect “cross-references” from
the entire program or not. This will populate the knowledge base with references to and

10.15. Analysis 669

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

from each recognizable address constant found in the code. Note that, because this per-
forms constant propagation on the entire program, it may be much slower and consume
more memory. This option implies data_references=True.

• normalize (bool) – Normalize the CFG as well as all function graphs after CFG recovery.

• start_at_entry (bool) – Begin CFG recovery at the entry point of this project. Setting
it to False prevents CFGFast from viewing the entry point as one of the starting points of
code scanning.

• function_starts (list) – A list of extra function starting points. CFGFast will try to
resume scanning from each address in the list.

• extra_memory_regions (list) – A list of 2-tuple (start-address, end-address) that shows
extra memory regions. Integers falling inside will be considered as pointers.

• indirect_jump_resolvers (list) – A custom list of indirect jump resolvers. If this list
is None or empty, default indirect jump resolvers specific to this architecture and binary
types will be loaded.

• base_state – A state to use as a backer for all memory loads

• detect_tail_calls (bool) – Enable aggressive tail-call optimization detection.

• elf_eh_frame (bool) – Retrieve function starts (and maybe sizes later) from the
.eh_frame of ELF binaries.

• skip_unmapped_addrs – Ignore all branches into unmapped regions. True by default.
You may want to set it to False if you are analyzing manually patched binaries or malware
samples.

• indirect_calls_always_return – Should CFG assume indirect calls must return or
not. Assuming indirect calls must return will significantly reduce the number of constant
propagation runs, but may reduce the overall CFG recovery precision when facing non-
returning indirect calls. By default, we only assume indirect calls always return for large
binaries (region > 50KB).

• jumptable_resolver_resolves_calls – Whether JumpTableResolver should resolve
indirect calls or not. Most indirect calls in C++ binaries or UEFI binaries cannot be resolved
using jump table resolver and must be resolved using their specific resolvers. By default, we
will only disable JumpTableResolver from resolving indirect calls for large binaries (region
> 50 KB).

• start (int) – (Deprecated) The beginning address of CFG recovery.

• end (int) – (Deprecated) The end address of CFG recovery.

• arch_options (CFGArchOptions) – Architecture-specific options.

• extra_arch_options (dict) – Any key-value pair in kwargs will be seen as an arch-
specific option and will be used to set the option value in self._arch_options.

Extra parameters that angr.Analysis takes:

Parameters
• progress_callback – Specify a callback function to get the progress during CFG recov-

ery.

• show_progressbar (bool) – Should CFGFast show a progressbar during CFG recovery
or not.

Returns
None

670 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

angr

normalize()

Normalize the CFG, making sure that there are no overlapping basic blocks.

Note that this method will not alter transition graphs of each function in self.kb.functions. You may call
normalize() on each Function object to normalize their transition graphs.

Returns
None

make_functions()

Revisit the entire control flow graph, create Function instances accordingly, and correctly put blocks into
each function.

Although Function objects are crated during the CFG recovery, they are neither sound nor accurate. With
a pre-constructed CFG, this method rebuilds all functions bearing the following rules:

• A block may only belong to one function.

• Small functions lying inside the startpoint and the endpoint of another function will be merged with
the other function

• Tail call optimizations are detected.

• PLT stubs are aligned by 16.

Returns
None

indirect_jumps: Dict[int, IndirectJump]

project: Project

kb: KnowledgeBase

class angr.analyses.cfg.segment_list.Segment(start, end, sort)
Bases: object

Representing a memory block. This is not the “Segment” in ELF memory model

__init__(start, end, sort)

Parameters
• start (int) – Start address.

• end (int) – End address.

• sort (str) – Type of the segment, can be code, data, etc.

Returns
None

start

end

sort

property size

Calculate the size of the Segment.

Returns
Size of the Segment.

10.15. Analysis 671

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

Return type
int

copy()

Make a copy of the Segment.

Returns
A copy of the Segment instance.

Return type
angr.analyses.cfg_fast.Segment

class angr.analyses.cfg.segment_list.SegmentList

Bases: object

SegmentList describes a series of segmented memory blocks. You may query whether an address belongs to any
of the blocks or not, and obtain the exact block(segment) that the address belongs to.

__init__()

search(addr)
Checks which segment that the address addr should belong to, and, returns the offset of that segment. Note
that the address may not actually belong to the block.

Parameters
addr (int) – The address to search

Return type
int

Returns
The offset of the segment.

next_free_pos(address)
Returns the next free position with respect to an address, including that address itself

Parameters
address – The address to begin the search with (including itself)

Returns
The next free position

next_pos_with_sort_not_in(address, sorts, max_distance=None)
Returns the address of the next occupied block whose sort is not one of the specified ones.

Parameters
• address (int) – The address to begin the search with (including itself).

• sorts – A collection of sort strings.

• max_distance – The maximum distance between address and the next position. Search
will stop after we come across an occupied position that is beyond address + max_distance.
This check will be disabled if max_distance is set to None.

Returns
The next occupied position whose sort is not one of the specified ones, or None if no such
position exists.

Return type
int or None

672 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

is_occupied(address)
Check if an address belongs to any segment

Parameters
address – The address to check

Returns
True if this address belongs to a segment, False otherwise

occupied_by_sort(address)
Check if an address belongs to any segment, and if yes, returns the sort of the segment

Parameters
address (int) – The address to check

Return type
Optional[str]

Returns
Sort of the segment that occupies this address

occupied_by(address)
Check if an address belongs to any segment, and if yes, returns the beginning, the size, and the sort of the
segment.

Parameters
address (int) – The address to check

Return type
Optional[Tuple[int, int, str]]

occupy(address, size, sort)
Include a block, specified by (address, size), in this segment list.

Parameters
• address (int) – The starting address of the block.

• size (int) – Size of the block.

• sort (str) – Type of the block.

Returns
None

release(address, size)
Remove a block, specified by (address, size), in this segment list.

Parameters
• address (int) – The starting address of the block.

• size (int) – Size of the block.

Return type
None

copy()

Make a copy of the SegmentList.

Returns
A copy of the SegmentList instance.

10.15. Analysis 673

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

angr

Return type
angr.analyses.cfg_fast.SegmentList

property occupied_size

The sum of sizes of all blocks

Returns
An integer

property has_blocks

Returns if this segment list has any block or not. !is_empty

Returns
True if it’s not empty, False otherwise

class angr.analyses.cdg.CDG(cfg, start=None, no_construct=False)
Bases: Analysis

Implements a control dependence graph.

__init__(cfg, start=None, no_construct=False)
Constructor.

Parameters
• cfg – The control flow graph upon which this control dependence graph will build

• start – The starting point to begin constructing the control dependence graph

• no_construct – Skip the construction step. Only used in unit-testing.

property graph

get_post_dominators()

Return the post-dom tree

get_dependants(run)
Return a list of nodes that are control dependent on the given node in the control dependence graph

get_guardians(run)
Return a list of nodes on whom the specific node is control dependent in the control dependence graph

project: Project

kb: KnowledgeBase

exception angr.analyses.datagraph_meta.DataGraphError

Bases: Exception

class angr.analyses.datagraph_meta.DataGraphMeta

Bases: object

__init__()

get_irsb_at(addr)

pp(imarks=False)
Pretty print the graph. @imarks determine whether the printed graph represents instructions (coarse
grained) for easier navigation, or exact statements.

674 Chapter 10. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

angr

class angr.analyses.code_tagging.CodeTags

Bases: object

HAS_XOR = 'HAS_XOR'

HAS_BITSHIFTS = 'HAS_BITSHIFTS'

HAS_SQL = 'HAS_SQL'

LARGE_SWITCH = 'LARGE_SWITCH'

class angr.analyses.code_tagging.CodeTagging(func)
Bases: Analysis

__init__(func)

analyze()

has_xor()

Detects if there is any xor operation in the function.

Returns
Tags

has_bitshifts()

Detects if there is any bitwise operation in the function.

Returns
Tags.

has_sql()

Detects if there is any reference to strings that look like SQL queries.

project: Project

kb: KnowledgeBase

class angr.angrdb.db.AngrDB(project=None)
Bases: object

AngrDB provides a storage solution for an angr project, its knowledge bases, and some other types of data. It is
designed to use an SQL-based database as the storage backend.

ALL_TABLES = ['objects']

VERSION = 1

__init__(project=None)

static open_db(db_str='sqlite:///:memory:')

static session_scope(Session)

static save_info(session, key, value)
Save an information entry to the database.

Parameters
• session –

• key –

10.15. Analysis 675

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

• value –

Returns
static get_info(session, key)

Get an information entry from the database.

Parameters
• session –

• key –

Returns
update_dbinfo(session, extra_info=None)

Update the information in database.

Parameters
• session –

• extra_info (Dict[str, str] | None) –

Returns
get_dbinfo(session, extra_info=None)

Get database information.

Parameters
• session –

• extra_info (Dict[str, str] | None) –

Returns
A dict of information entries.

db_compatible(version)
Checks if the given database version is compatible with the current AngrDB class.

Parameters
version (int) – The version of the database.

Returns
True if compatible, False otherwise.

Return type
bool

dump(db_path, kbs=None, extra_info=None)

Parameters
• kbs (List[KnowledgeBase] | None) –

• extra_info (Dict[str, Any] | None) –

load(db_path, kb_names=None, other_kbs=None, extra_info=None)

Parameters
• db_path (str) –

• kb_names (List[str] | None) –

• other_kbs (Dict[str, KnowledgeBase] | None) –

676 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str

angr

• extra_info (Dict[str, Any] | None) –

class angr.angrdb.models.DbInformation(**kwargs)
Bases: Base

Stores information related to the current database. Basically a key-value store.

id

key

value

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

class angr.angrdb.models.DbObject(**kwargs)
Bases: Base

Models a binary object.

id

main_object

path

content

backend

backend_args

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

class angr.angrdb.models.DbKnowledgeBase(**kwargs)
Bases: Base

Models a knowledge base.

id

name

cfgs

funcs

xrefs

comments

10.15. Analysis 677

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

angr

labels

var_collections

structured_code

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

class angr.angrdb.models.DbCFGModel(**kwargs)
Bases: Base

Models a CFGFast instance.

id

kb_id

kb

ident

blob

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

class angr.angrdb.models.DbFunction(**kwargs)
Bases: Base

Models a Function instance.

id

kb_id

kb

addr

blob

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

678 Chapter 10. API Reference

angr

class angr.angrdb.models.DbVariableCollection(**kwargs)
Bases: Base

Models a VariableManagerInternal instance.

id

kb_id

kb

func_addr

ident

blob

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

class angr.angrdb.models.DbStructuredCode(**kwargs)
Bases: Base

Models a StructuredCode instance.

id

kb_id

kb

func_addr

flavor

expr_comments

stmt_comments

configuration

const_formats

ite_exprs

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

class angr.angrdb.models.DbXRefs(**kwargs)
Bases: Base

Models an XRefManager instance.

10.15. Analysis 679

angr

id

kb_id

kb

blob

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

class angr.angrdb.models.DbComment(**kwargs)
Bases: Base

Models a comment.

id

kb_id

kb

addr

comment

type

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

class angr.angrdb.models.DbLabel(**kwargs)
Bases: Base

Models a label.

id

kb_id

kb

addr

name

__init__(**kwargs)
A simple constructor that allows initialization from kwargs.

Sets attributes on the constructed instance using the names and values in kwargs.

Only keys that are present as attributes of the instance’s class are allowed. These could be, for example,
any mapped columns or relationships.

680 Chapter 10. API Reference

angr

class angr.angrdb.serializers.cfg_model.CFGModelSerializer

Bases: object

Serialize/unserialize a CFGModel.

static dump(session, db_kb, ident, cfg_model)

Parameters
• session –

• db_kb (DbKnowledgeBase) – The database object for KnowledgeBase.

• ident (str) – Identifier of the CFG model.

• cfg_model (CFGModel) – The CFG model to dump.

Returns
None

static load(session, db_kb, ident, cfg_manager, loader=None)

class angr.angrdb.serializers.comments.CommentsSerializer

Bases: object

Serialize/unserialize comments to/from a database session.

static dump(session, db_kb, comments)

Parameters
• session –

• db_kb (DbKnowledgeBase) –

• comments (Comments) –

Returns
None

static load(session, db_kb, kb)

Parameters
• session –

• db_kb (DbKnowledgeBase) –

• kb (KnowledgeBase) –

Returns
class angr.angrdb.serializers.funcs.FunctionManagerSerializer

Bases: object

Serialize/unserialize a function manager and its functions.

static dump(session, db_kb, func_manager)

Parameters
• session –

• db_kb (DbKnowledgeBase) –

• func_manager (FunctionManager) –

Returns

10.15. Analysis 681

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

static load(session, db_kb, kb)

Parameters
• session –

• db_kb (DbKnowledgeBase) –

• kb (KnowledgeBase) –

Returns
A loaded function manager.

class angr.angrdb.serializers.kb.KnowledgeBaseSerializer

Bases: object

Serialize/unserialize a KnowledgeBase object.

static dump(session, kb)

Parameters
• session – The database session object.

• kb (KnowledgeBase) – The KnowledgeBase instance to serialize.

Returns
None

static load(session, project, name)

Parameters
session –

Returns
class angr.angrdb.serializers.labels.LabelsSerializer

Bases: object

Serialize/unserialize labels to/from a database session.

static dump(session, db_kb, labels)

Parameters
• session –

• db_kb (DbKnowledgeBase) –

• labels (Labels) –

Returns
None

static load(session, db_kb, kb)

Parameters
• session –

• db_kb (DbKnowledgeBase) –

• kb (KnowledgeBase) –

Returns

682 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

class angr.angrdb.serializers.loader.LoaderSerializer

Bases: object

Serialize/unserialize a CLE Loader object into/from an angr DB.

backend2name = {<class 'cle.backends.blob.Blob'>: 'blob', <class
'cle.backends.elf.elf.ELF'>: 'elf', <class 'cle.backends.elf.elfcore.ELFCore'>:
'elfcore', <class 'cle.backends.cgc.cgc.CGC'>: 'cgc', <class
'cle.backends.cgc.backedcgc.BackedCGC'>: 'backedcgc', <class
'cle.backends.coff.Coff'>: 'COFF', <class 'cle.backends.ihex.Hex'>: 'hex', <class
'cle.backends.java.apk.Apk'>: 'apk', <class 'cle.backends.java.jar.Jar'>: 'jar',
<class 'cle.backends.macho.macho.MachO'>: 'mach-o', <class
'cle.backends.minidump.Minidump'>: 'minidump', <class
'cle.backends.named_region.NamedRegion'>: 'named_region', <class
'cle.backends.pe.pe.PE'>: 'pe', <class
'cle.backends.static_archive.StaticArchive'>: 'AR', <class 'cle.backends.te.TE'>:
'te', <class 'cle.backends.uefi_firmware.UefiFirmware'>: 'uefi', <class
'cle.backends.xbe.XBE'>: 'xbe'}

static dump(session, loader)

static load(session)

class angr.angrdb.serializers.xrefs.XRefsSerializer

Bases: object

Serialize/unserialize an XRefs object to/from a database session.

static dump(session, db_kb, xrefs)

Parameters
• session –

• db_kb (DbKnowledgeBase) –

• xrefs (XRefManager) –

Returns
static load(session, db_kb, kb, cfg_model=None)

Parameters
• session –

• db_kb (DbKnowledgeBase) –

• kb (KnowledgeBase) –

• cfg_model (CFGModel) –

Returns
class angr.angrdb.serializers.variables.VariableManagerSerializer

Bases: object

Serialize/unserialize a variable manager and its variables.

static dump(session, db_kb, var_manager)

Parameters
• db_kb (DbKnowledgeBase) –

10.15. Analysis 683

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

• var_manager (VariableManager) –

static dump_internal(session, db_kb, internal_manager, func_addr, ident=None)

Parameters
• db_kb (DbKnowledgeBase) –

• internal_manager (VariableManagerInternal) –

• func_addr (int) –

static load(session, db_kb, kb, ident=None)

Parameters
• db_kb (DbKnowledgeBase) –

• kb (KnowledgeBase) –

static load_internal(db_varcoll, variable_manager)

Return type
VariableManagerInternal

Parameters
variable_manager (VariableManager) –

class angr.angrdb.serializers.structured_code.StructuredCodeManagerSerializer

Bases: object

Serialize/unserialize a structured code manager.

static dump(session, db_kb, code_manager)

Parameters
• session –

• db_kb (DbKnowledgeBase) –

• code_manager (StructuredCodeManager) –

Returns
static dict_strkey_to_intkey(d)

Return type
Dict[int, Any]

Parameters
d (Dict[str, Any]) –

static load(session, db_kb, kb)

Parameters
• session –

• db_kb (DbKnowledgeBase) –

• kb (KnowledgeBase) –

Return type
StructuredCodeManager

684 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

angr

Returns
A loaded structured code manager

class angr.analyses.decompiler.structuring.recursive_structurer.RecursiveStructurer(region,
cond_proc=None,
func=None,
struc-
turer_cls=None,
im-
prove_structurer=True,
**kwargs)

Bases: Analysis

Recursively structure a region and all of its subregions.

Parameters
• func (Function | None) –

• structurer_cls (Type | None) –

__init__(region, cond_proc=None, func=None, structurer_cls=None, improve_structurer=True, **kwargs)

Parameters
• func (Function | None) –

• structurer_cls (Type | None) –

project: Project

kb: KnowledgeBase

angr.analyses.decompiler.structuring.structurer_class_from_name(name)

Return type
Optional[Type]

Parameters
name (str) –

class angr.analyses.decompiler.structuring.dream.DreamStructurer(region, parent_map=None,
condition_processor=None,
func=None,
case_entry_to_switch_head=None,
parent_region=None,
**kwargs)

Bases: StructurerBase

Structure a region using a structuring algorithm that is similar to the one in Dream decompiler (described in the
“no more gotos” paper). Note that this implementation has quite a few improvements over the original described
version and should not be used to evaluate the performance of the original algorithm described in that paper.

The current function graph is provided so that we can detect certain edge cases, for example, jump table entries
no longer exist due to empty node removal during structuring or prior steps.

Parameters
• func (Function | None) –

• case_entry_to_switch_head (Dict[int, int] | None) –

10.15. Analysis 685

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

NAME: str = 'dream'

__init__(region, parent_map=None, condition_processor=None, func=None,
case_entry_to_switch_head=None, parent_region=None, **kwargs)

Parameters
• func (Function | None) –

• case_entry_to_switch_head (Dict[int, int] | None) –

exception angr.analyses.decompiler.structuring.structurer_nodes.EmptyBlockNotice

Bases: Exception

class angr.analyses.decompiler.structuring.structurer_nodes.MultiNode(nodes, addr=None,
idx=None)

Bases: object

__init__(nodes, addr=None, idx=None)

nodes

addr

idx

copy()

dbg_repr(indent=0)

class angr.analyses.decompiler.structuring.structurer_nodes.BaseNode

Bases: object

static test_empty_node(node)

static test_empty_condition_node(cond_node)

addr: Optional[int]

dbg_repr(indent=0)

class angr.analyses.decompiler.structuring.structurer_nodes.SequenceNode(addr, nodes=None)
Bases: BaseNode

Parameters
addr (int | None) –

__init__(addr, nodes=None)

Parameters
addr (int | None) –

addr: Optional[int]

nodes

add_node(node)

insert_node(pos, node)

remove_node(node)

686 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

angr

node_position(node)

copy()

dbg_repr(indent=0)

class angr.analyses.decompiler.structuring.structurer_nodes.CodeNode(node, reaching_condition)
Bases: BaseNode

__init__(node, reaching_condition)

node

reaching_condition

property addr

property idx

dbg_repr(indent=0)

copy()

class angr.analyses.decompiler.structuring.structurer_nodes.ConditionNode(addr,
reaching_condition,
condition,
true_node,
false_node=None)

Bases: BaseNode

Parameters
addr (int | None) –

__init__(addr, reaching_condition, condition, true_node, false_node=None)

addr: Optional[int]

reaching_condition

condition

true_node

false_node

dbg_repr(indent=0)

node

class angr.analyses.decompiler.structuring.structurer_nodes.CascadingConditionNode(addr,
condi-
tion_and_nodes,
else_node=None)

Bases: BaseNode

Parameters
• addr (int | None) –

• condition_and_nodes (List[Tuple[Any, BaseNode]]) –

• else_node (BaseNode) –

10.15. Analysis 687

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any

angr

__init__(addr, condition_and_nodes, else_node=None)

Parameters
• condition_and_nodes (List[Tuple[Any, BaseNode]]) –

• else_node (BaseNode | None) –

addr: Optional[int]

condition_and_nodes

else_node

class angr.analyses.decompiler.structuring.structurer_nodes.LoopNode(sort, condition,
sequence_node,
addr=None,
continue_addr=None,
initializer=None,
iterator=None)

Bases: BaseNode

Parameters
addr (int | None) –

__init__(sort, condition, sequence_node, addr=None, continue_addr=None, initializer=None,
iterator=None)

sort

condition

sequence_node

initializer

iterator

copy()

property addr

property continue_addr

dbg_repr(indent=0)

class angr.analyses.decompiler.structuring.structurer_nodes.BreakNode(addr, target)
Bases: BaseNode

Parameters
addr (int | None) –

__init__(addr, target)

addr: Optional[int]

target

dbg_repr(indent=0)

688 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

angr

class angr.analyses.decompiler.structuring.structurer_nodes.ContinueNode(addr, target)
Bases: BaseNode

Parameters
addr (int | None) –

__init__(addr, target)

addr: Optional[int]

target

dbg_repr(indent=0)

class angr.analyses.decompiler.structuring.structurer_nodes.ConditionalBreakNode(addr,
condition,
target)

Bases: BreakNode

Parameters
addr (int | None) –

__init__(addr, condition, target)

condition

dbg_repr(indent=0)

class angr.analyses.decompiler.structuring.structurer_nodes.SwitchCaseNode(switch_expr,
cases,
default_node,
addr=None)

Bases: BaseNode

Parameters
• cases (OrderedDict[int | Tuple[int, ...], SequenceNode]) –

• addr (int | None) –

__init__(switch_expr, cases, default_node, addr=None)

Parameters
cases (OrderedDict[int | Tuple[int, ...], SequenceNode]) –

switch_expr

cases: OrderedDict[Union[int, Tuple[int, ...]], SequenceNode]

default_node

addr: Optional[int]

class angr.analyses.decompiler.structuring.structurer_nodes.IncompleteSwitchCaseNode(addr,
head,
cases)

Bases: BaseNode

Describes an incomplete set of switch-case nodes. Usually an intermediate result. Should always be restructured
into a SwitchCaseNode by the end of structuring. Only used in Phoenix structurer.

10.15. Analysis 689

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.OrderedDict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.OrderedDict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.OrderedDict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

angr

Parameters
• addr (int | None) –

• cases (List) –

__init__(addr, head, cases)

Parameters
cases (List) –

addr: Optional[int]

head

cases: List

class angr.analyses.decompiler.structuring.structurer_nodes.IncompleteSwitchCaseHeadStatement(*args,
**kwargs)

Bases: Statement

Describes a switch-case head. This is only created by LoweredSwitchSimplifier.

__init__(idx, switch_variable, case_addrs, **kwargs)

switch_variable

case_addrs: List[Tuple[Block, Union[int, str], int, Optional[int], int]]

addr

class angr.analyses.decompiler.structuring.structurer_base.StructurerBase(region,
parent_map=None,
condi-
tion_processor=None,
func=None,
case_entry_to_switch_head=None,
par-
ent_region=None,
im-
prove_structurer=True,
**kwargs)

Bases: Analysis

The base class for analysis passes that structures a region.

The current function graph is provided so that we can detect certain edge cases, for example, jump table entries
no longer exist due to empty node removal during structuring or prior steps.

Parameters
• func (Function | None) –

• case_entry_to_switch_head (Dict[int, int] | None) –

NAME: str = None

__init__(region, parent_map=None, condition_processor=None, func=None,
case_entry_to_switch_head=None, parent_region=None, improve_structurer=True, **kwargs)

Parameters

690 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.Statement
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

• func (Function | None) –

• case_entry_to_switch_head (Dict[int, int] | None) –

static replace_nodes(graph, old_node_0, new_node, old_node_1=None, self_loop=True)

static replace_node_in_node(parent_node, old_node, new_node)

Return type
None

Parameters
• parent_node (BaseNode) –

• old_node (BaseNode | Block) –

• new_node (BaseNode | Block) –

static is_a_jump_target(stmt, addr)

Return type
bool

Parameters
• stmt (ConditionalJump | Jump) –

• addr (int) –

exception angr.analyses.decompiler.structuring.phoenix.GraphChangedNotification

Bases: Exception

A notification for graph that is currently worked on being changed. Once this notification is caught, the graph
schema matching process for the current region restarts.

class angr.analyses.decompiler.structuring.phoenix.MultiStmtExprMode(value)
Bases: str, Enum

Mode of multi-statement expression creation during structuring.

NEVER = 'Never'

ALWAYS = 'Always'

MAX_ONE_CALL = 'Only when less than one call'

class angr.analyses.decompiler.structuring.phoenix.PhoenixStructurer(region,
parent_map=None, condi-
tion_processor=None,
func=None,
case_entry_to_switch_head=None,
parent_region=None,
improve_structurer=True,
use_multistmtexprs=MultiStmtExprMode.MAX_ONE_CALL,
**kwargs)

Bases: StructurerBase

Structure a region using a structuring algorithm that is similar to the one in Phoenix decompiler (described in
the “phoenix decompiler” paper). Note that this implementation has quite a few improvements over the original
described version and should not be used to evaluate the performance of the original algorithm described in that
paper.

10.15. Analysis 691

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.ConditionalJump
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.Jump
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum

angr

Parameters
• func (Function | None) –

• case_entry_to_switch_head (Dict[int, int] | None) –

• use_multistmtexprs (MultiStmtExprMode) –

NAME: str = 'phoenix'

__init__(region, parent_map=None, condition_processor=None, func=None,
case_entry_to_switch_head=None, parent_region=None, improve_structurer=True,
use_multistmtexprs=MultiStmtExprMode.MAX_ONE_CALL, **kwargs)

Parameters
• func (Function | None) –

• case_entry_to_switch_head (Dict[int, int] | None) –

• use_multistmtexprs (MultiStmtExprMode) –

static dump_graph(graph, path)

Return type
None

Parameters
• graph (DiGraph) –

• path (str) –

project: Project

kb: KnowledgeBase

exception angr.analyses.decompiler.ail_simplifier.HasCallNotification

Bases: Exception

Notifies the existence of a call statement.

class angr.analyses.decompiler.ail_simplifier.AILBlockTempCollector(**kwargs)
Bases: AILBlockWalker

Collects any temporaries used in a block.

__init__(**kwargs)

class angr.analyses.decompiler.ail_simplifier.AILSimplifier(func, func_graph=None,
remove_dead_memdefs=False,
stack_arg_offsets=None,
unify_variables=False,
ail_manager=None, gp=None,
narrow_expressions=False,
only_consts=False,
fold_callexprs_into_conditions=False,
use_callee_saved_regs_at_return=True)

Bases: Analysis

Perform function-level simplifications.

Parameters

692 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.AILBlockWalker

angr

• stack_arg_offsets (Set[Tuple[int, int]] | None) –

• ail_manager (Manager | None) –

• gp (int | None) –

__init__(func, func_graph=None, remove_dead_memdefs=False, stack_arg_offsets=None,
unify_variables=False, ail_manager=None, gp=None, narrow_expressions=False,
only_consts=False, fold_callexprs_into_conditions=False,
use_callee_saved_regs_at_return=True)

Parameters
• stack_arg_offsets (Set[Tuple[int, int]] | None) –

• ail_manager (Manager | None) –

• gp (int | None) –

project: Project

kb: KnowledgeBase

exception angr.analyses.decompiler.ailgraph_walker.RemoveNodeNotice

Bases: Exception

class angr.analyses.decompiler.ailgraph_walker.AILGraphWalker(graph, handler,
replace_nodes=False)

Bases: object

Walks an AIL graph and optionally replaces each node with a new node.

Parameters
replace_nodes (bool) –

__init__(graph, handler, replace_nodes=False)

Parameters
replace_nodes (bool) –

walk()

class angr.analyses.decompiler.block_simplifier.HasCallExprWalker

Bases: AILBlockWalkerBase

Test if an expression contains a call expression inside.

__init__()

class angr.analyses.decompiler.block_simplifier.BlockSimplifier(block, func_addr=None,
remove_dead_memdefs=False,
stack_pointer_tracker=None,
peephole_optimizations=None,
stack_arg_offsets=None,
cached_reaching_definitions=None,
cached_propagator=None)

Bases: Analysis

Simplify an AIL block.

Parameters
• block (Block | None) –

10.15. Analysis 693

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.manager.Manager
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.AILBlockWalkerBase

angr

• func_addr (int | None) –

• peephole_optimizations (Iterable[Type[PeepholeOptimizationStmtBase] |
Type[PeepholeOptimizationExprBase]] | None) –

• stack_arg_offsets (Set[Tuple[int, int]] | None) –

__init__(block, func_addr=None, remove_dead_memdefs=False, stack_pointer_tracker=None,
peephole_optimizations=None, stack_arg_offsets=None, cached_reaching_definitions=None,
cached_propagator=None)

Parameters
• block (Optional[Block]) – The AIL block to simplify. Setting it to None to skip calling

self._analyze(), which is useful in test cases.

• func_addr (int | None) –

• peephole_optimizations (Iterable[Type[PeepholeOptimizationStmtBase] |
Type[PeepholeOptimizationExprBase]] | None) –

• stack_arg_offsets (Set[Tuple[int, int]] | None) –

project: Project

kb: KnowledgeBase

class angr.analyses.decompiler.callsite_maker.CallSiteMaker(block, reaching_definitions=None,
stack_pointer_tracker=None,
ail_manager=None)

Bases: Analysis

Add calling convention, declaration, and args to a call site.

__init__(block, reaching_definitions=None, stack_pointer_tracker=None, ail_manager=None)

project: Project

kb: KnowledgeBase

class angr.analyses.decompiler.ccall_rewriters.rewriter_base.CCallRewriterBase(ccall, arch)
Bases: object

The base class for CCall rewriters.

Parameters
ccall (VEXCCallExpression) –

__init__(ccall, arch)

Parameters
ccall (VEXCCallExpression) –

arch

result: Optional[Expression]

class angr.analyses.decompiler.ccall_rewriters.amd64_ccalls.AMD64CCallRewriter(ccall, arch)
Bases: CCallRewriterBase

Implements ccall rewriter for AMD64.

Parameters
ccall (VEXCCallExpression) –

694 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.VEXCCallExpression
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.VEXCCallExpression
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.VEXCCallExpression

angr

class angr.analyses.decompiler.clinic.BlockCache(rd, prop)
Bases: tuple

prop

Alias for field number 1

rd

Alias for field number 0

class angr.analyses.decompiler.clinic.ClinicMode(value)
Bases: Enum

Analysis mode for Clinic.

DECOMPILE = 1

COLLECT_DATA_REFS = 2

class angr.analyses.decompiler.clinic.DataRefDesc(data_addr, data_size, block_addr, stmt_idx,
ins_addr, data_type_str)

Bases: object

The fields of this class is compatible with items inside IRSB.data_refs.

Parameters
• data_addr (int) –

• data_size (int) –

• block_addr (int) –

• stmt_idx (int) –

• ins_addr (int) –

• data_type_str (str) –

data_addr: int

data_size: int

block_addr: int

stmt_idx: int

ins_addr: int

data_type_str: str

__init__(data_addr, data_size, block_addr, stmt_idx, ins_addr, data_type_str)

Parameters
• data_addr (int) –

• data_size (int) –

• block_addr (int) –

• stmt_idx (int) –

• ins_addr (int) –

• data_type_str (str) –

10.15. Analysis 695

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

Return type
None

class angr.analyses.decompiler.clinic.Clinic(func, remove_dead_memdefs=False,
exception_edges=False, sp_tracker_track_memory=True,
fold_callexprs_into_conditions=False,
insert_labels=True, optimization_passes=None,
cfg=None, peephole_optimizations=None,
must_struct=None, variable_kb=None,
reset_variable_names=False,
rewrite_ites_to_diamonds=True, cache=None,
mode=ClinicMode.DECOMPILE)

Bases: Analysis

A Clinic deals with AILments.

Parameters
• peephole_optimizations (Iterable[Type[PeepholeOptimizationStmtBase] |
Type[PeepholeOptimizationExprBase]] | None) –

• must_struct (Set[str] | None) –

• cache (DecompilationCache | None) –

• mode (ClinicMode) –

__init__(func, remove_dead_memdefs=False, exception_edges=False, sp_tracker_track_memory=True,
fold_callexprs_into_conditions=False, insert_labels=True, optimization_passes=None, cfg=None,
peephole_optimizations=None, must_struct=None, variable_kb=None,
reset_variable_names=False, rewrite_ites_to_diamonds=True, cache=None,
mode=ClinicMode.DECOMPILE)

Parameters
• peephole_optimizations (Iterable[Type[PeepholeOptimizationStmtBase] |
Type[PeepholeOptimizationExprBase]] | None) –

• must_struct (Set[str] | None) –

• cache (DecompilationCache | None) –

• mode (ClinicMode) –

block(addr, size)
Get the converted block at the given specific address with the given size.

Parameters
• addr (int) –

• size (int) –

Returns
dbg_repr()

Returns
copy_graph()

Copy AIL Graph.

Return type
DiGraph

696 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

Returns
A copy of the AIl graph.

parse_variable_addr(addr)

Return type
Optional[Tuple[Any, Any]]

Parameters
addr (Expression) –

new_block_addr()

Return a block address that does not conflict with any existing blocks.

Return type
int

Returns
The block address.

static remove_empty_nodes(graph)

Return type
DiGraph

Parameters
graph (DiGraph) –

project: Project

kb: KnowledgeBase

class angr.analyses.decompiler.condition_processor.ConditionProcessor(arch, condi-
tion_mapping=None)

Bases: object

Convert between claripy AST and AIL expressions. Also calculates reaching conditions of all nodes on a graph.

__init__(arch, condition_mapping=None)

clear()

recover_edge_condition(graph, src, dst)

Parameters
graph (DiGraph) –

recover_edge_conditions(region, graph=None)

Return type
Dict

recover_reaching_conditions(region, graph=None, with_successors=False,
case_entry_to_switch_head=None)

Parameters
case_entry_to_switch_head (Dict[int, int] | None) –

remove_claripy_bool_asts(node, memo=None)

10.15. Analysis 697

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

classmethod get_last_statement(block)
This is the buggy version of get_last_statements, because, you know, there can always be more than
one last statement due to the existence of branching statements (like, If-then-else). All methods using
get_last_statement() should switch to get_last_statements() and properly handle multiple last statements.

classmethod get_last_statements(block)

Return type
List[Optional[Statement]]

EXC_COUNTER = 1000

convert_claripy_bool_ast(cond, memo=None)
Convert recovered reaching conditions from claripy ASTs to ailment Expressions

Returns
None

convert_claripy_bool_ast_core(cond, memo)

claripy_ast_from_ail_condition(condition, nobool=False)

Return type
Bool

Parameters
nobool (bool) –

static claripy_ast_to_sympy_expr(ast, memo=None)

static sympy_expr_to_claripy_ast(expr, memo)

Parameters
memo (Dict) –

static simplify_condition(cond, depth_limit=8, variables_limit=8)

static simplify_condition_deprecated(cond)

create_jump_target_var(jumptable_head_addr)

Parameters
jumptable_head_addr (int) –

class angr.analyses.decompiler.decompilation_options.DecompilationOption(name, description,
value_type, cls,
param,
value_range=None,
category='General',
default_value=None,
clears_cache=True,
candi-
date_values=None,
convert=None)

Bases: object

Describes a decompilation option.

Parameters
• candidate_values (List | None) –

698 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.Statement
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bool.Bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.List

angr

• convert (Callable | None) –

__init__(name, description, value_type, cls, param, value_range=None, category='General',
default_value=None, clears_cache=True, candidate_values=None, convert=None)

Parameters
• candidate_values (List | None) –

• convert (Callable | None) –

angr.analyses.decompiler.decompilation_options.O

alias of DecompilationOption

angr.analyses.decompiler.decompilation_options.get_structurer_option()

Return type
Optional[DecompilationOption]

class angr.analyses.decompiler.decompilation_cache.DecompilationCache(addr)
Bases: object

Caches key data structures that can be used later for refining decompilation results, such as retyping variables.

__init__(addr)

addr

type_constraints: Optional[Set]

var_to_typevar: Optional[Dict]

codegen: Optional[BaseStructuredCodeGenerator]

clinic: Optional[Clinic]

ite_exprs: Optional[Set[Tuple[int, Any]]]

binop_operators: Optional[Dict[OpDescriptor, str]]

property local_types

class angr.analyses.decompiler.decompiler.Decompiler(func, cfg=None, options=None,
optimization_passes=None,
sp_tracker_track_memory=True,
variable_kb=None,
peephole_optimizations=None,
vars_must_struct=None, flavor='pseudocode',
expr_comments=None, stmt_comments=None,
ite_exprs=None, binop_operators=None,
decompile=True, regen_clinic=True,
update_memory_data=True)

Bases: Analysis

The decompiler analysis.

Run this on a Function object for which a normalized CFG has been constructed. The fully processed output can
be found in result.codegen.text

Parameters
• func (Function | str | int) –

10.15. Analysis 699

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

angr

• cfg (CFGFast | CFGModel | None) –

• peephole_optimizations (Iterable[Type[PeepholeOptimizationStmtBase] |
Type[PeepholeOptimizationExprBase]] | None) –

• vars_must_struct (Set[str] | None) –

• update_memory_data (bool) –

__init__(func, cfg=None, options=None, optimization_passes=None, sp_tracker_track_memory=True,
variable_kb=None, peephole_optimizations=None, vars_must_struct=None, flavor='pseudocode',
expr_comments=None, stmt_comments=None, ite_exprs=None, binop_operators=None,
decompile=True, regen_clinic=True, update_memory_data=True)

Parameters
• func (Function | str | int) –

• cfg (CFGFast | CFGModel | None) –

• peephole_optimizations (Iterable[Type[PeepholeOptimizationStmtBase] |
Type[PeepholeOptimizationExprBase]] | None) –

• vars_must_struct (Set[str] | None) –

• update_memory_data (bool) –

reflow_variable_types(type_constraints, var_to_typevar, codegen)
Re-run type inference on an existing variable recovery result, then rerun codegen to generate new results.

Returns
Parameters

• type_constraints (Set) –

• var_to_typevar (Dict) –

find_data_references_and_update_memory_data(seq_node)

Parameters
seq_node (SequenceNode) –

static options_to_params(options)
Convert decompilation options to a dict of params.

Parameters
options (List[Tuple[DecompilationOption, Any]]) – The decompilation options.

Return type
Dict[str, Any]

Returns
A dict of keyword arguments.

project: Project

kb: KnowledgeBase

class angr.analyses.decompiler.empty_node_remover.EmptyNodeRemover(node, clar-
ipy_ast_conditions=True)

Bases: object

Rewrites a node and its children to remove empty nodes.

700 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object

angr

The following optimizations are performed at the same time: - Convert if (A) { } else { . . . } to if(!A) { . . . }
else { }

Variables
_claripy_ast_conditions – True if all node conditions are claripy ASTs. False if all node
conditions are AIL expressions.

Parameters
claripy_ast_conditions (bool) –

__init__(node, claripy_ast_conditions=True)

Parameters
claripy_ast_conditions (bool) –

class angr.analyses.decompiler.expression_narrower.ExpressionNarrowingWalker(target_expr)
Bases: AILBlockWalkerBase

Walks a statement or an expression and extracts the operations that are applied on the given expression.

For example, for target expression rax, (rax & 0xff) + 0x1 means the following operations are applied on rax: rax
& 0xff (rax & 0xff) + 0x1

The previous expression is always used in the succeeding expression.

Parameters
target_expr (Expression) –

__init__(target_expr)

Parameters
target_expr (Expression) –

class angr.analyses.decompiler.graph_region.GraphRegion(head, graph, successors,
graph_with_successors, cyclic, full_graph,
cyclic_ancestor=False)

Bases: object

GraphRegion represents a region of nodes.

Variables
• head – The head of the region.

• graph – The region graph.

• successors – A set of successors of nodes in the graph. These successors do not belong to
the current region.

• graph_with_successors – The region graph that includes successor nodes.

Parameters
• successors (Set | None) –

• graph_with_successors (DiGraph | None) –

• full_graph (DiGraph | None) –

• cyclic_ancestor (bool) –

__init__(head, graph, successors, graph_with_successors, cyclic, full_graph, cyclic_ancestor=False)

Parameters
• successors (Set | None) –

10.15. Analysis 701

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.AILBlockWalkerBase
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set

angr

• graph_with_successors (DiGraph | None) –

• full_graph (DiGraph | None) –

• cyclic_ancestor (bool) –

head

graph

successors

graph_with_successors

full_graph

cyclic

cyclic_ancestor

copy()

Return type
GraphRegion

recursive_copy(nodes_map=None)

property addr

static dbg_get_repr(obj, ident=0)

dbg_print(ident=0)

replace_region(sub_region, updated_sub_region, replace_with, virtualized_edges)

Parameters
• sub_region (GraphRegion) –

• updated_sub_region (GraphRegion) –

• virtualized_edges (Set[Tuple[Any, Any]]) –

replace_region_with_region(sub_region, replace_with)

Parameters
• sub_region (GraphRegion) –

• replace_with (GraphRegion) –

class angr.analyses.decompiler.jump_target_collector.JumpTargetCollector(node)
Bases: object

Collect all jump targets.

__init__(node)

class angr.analyses.decompiler.jumptable_entry_condition_rewriter.JumpTableEntryConditionRewriter(jumptable_entry_conds)
Bases: SequenceWalker

Remove artificial jump table entry conditions that ConditionProcessor introduced when dealing with jump tables.

702 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object

angr

__init__(jumptable_entry_conds)

angr.analyses.decompiler.optimization_passes.get_optimization_passes(arch, platform)

angr.analyses.decompiler.optimization_passes.get_default_optimization_passes(arch, platform)

Parameters
• arch (Arch | str) –

• platform (str | None) –

angr.analyses.decompiler.optimization_passes.register_optimization_pass(opt_pass,
enable_by_default)

Parameters
enable_by_default (bool) –

class angr.analyses.decompiler.optimization_passes.const_derefs.BlockWalker(project)
Bases: AILBlockWalker

Parameters
project (Project) –

__init__(project)

Parameters
project (Project) –

walk(block)

Parameters
block (Block) –

class angr.analyses.decompiler.optimization_passes.const_derefs.ConstantDereferencesSimplifier(func,
**kwargs)

Bases: OptimizationPass

Makes the following simplifications:

((const_addr)) ==> *(value) iff *const_addr == value

ARCHES = None

PLATFORMS = None

STAGE: int = 1

NAME = 'Simplify constant dereferences'

DESCRIPTION = 'Makes the following simplifications::\n\n *(*(const_addr)) ==>
*(value) iff *const_addr == value'

__init__(func, **kwargs)

exception
angr.analyses.decompiler.optimization_passes.optimization_pass.MultipleBlocksException

Bases: Exception

An exception that is raised in _get_block() where multiple blocks satisfy the criteria but only one block was
requested.

10.15. Analysis 703

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.AILBlockWalker
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception

angr

class angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPassStage(value)
Bases: Enum

Enums about optimization pass stages.

Note that the region identification pass (RegionIdentifier) may modify existing AIL blocks without updating the
topology of the original AIL graph. For example, loop successor refinement may modify create a new AIL block
with an artificial address, and alter existing jump targets of jump statements and conditional jump statements to
point to this new block. However, loop successor refinement does not update the topology of the original AIL
graph, which means this new AIL block does not exist in the original AIL graph. As a result, until this behavior
of RegionIdentifier changes in the future, DURING_REGION_IDENTIFICATION optimization passes should
not modify existing jump targets.

AFTER_AIL_GRAPH_CREATION = 0

AFTER_SINGLE_BLOCK_SIMPLIFICATION = 1

AFTER_MAKING_CALLSITES = 2

AFTER_GLOBAL_SIMPLIFICATION = 3

AFTER_VARIABLE_RECOVERY = 4

BEFORE_REGION_IDENTIFICATION = 5

DURING_REGION_IDENTIFICATION = 6

AFTER_STRUCTURING = 7

class angr.analyses.decompiler.optimization_passes.optimization_pass.BaseOptimizationPass(func)
Bases: object

The base class for any optimization pass.

ARCHES = []

PLATFORMS = []

STAGE: int = None

STRUCTURING: Optional[str] = None

NAME = 'N/A'

DESCRIPTION = 'N/A'

__init__(func)

property project

property kb

analyze()

704 Chapter 10. API Reference

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

angr

class angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPass(func,
blocks_by_addr=None,
blocks_by_addr_and_idx=None,
graph=None,
vari-
able_kb=None,
re-
gion_identifier=None,
reach-
ing_definitions=None,
**kwargs)

Bases: BaseOptimizationPass

The base class for any function-level graph optimization pass.

__init__(func, blocks_by_addr=None, blocks_by_addr_and_idx=None, graph=None, variable_kb=None,
region_identifier=None, reaching_definitions=None, **kwargs)

property blocks_by_addr: Dict[int, Set[Block]]

property blocks_by_addr_and_idx: Dict[Tuple[int, int | None], Block]

new_block_addr()

Return a block address that does not conflict with any existing blocks.

Return type
int

Returns
The block address.

class angr.analyses.decompiler.optimization_passes.optimization_pass.SequenceOptimizationPass(func,
seq=None,
**kwargs)

Bases: BaseOptimizationPass

The base class for any sequence node optimization pass.

ARCHES = []

PLATFORMS = []

STAGE: int = None

__init__(func, seq=None, **kwargs)

class angr.analyses.decompiler.optimization_passes.optimization_pass.StructuringOptimizationPass(func,
pre-
vent_new_gotos=True,
re-
cover_structure_fails=True,
max_opt_iters=1,
sim-
plify_ail=True,
**kwargs)

Bases: OptimizationPass

10.15. Analysis 705

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

The base class for any optimization pass that requires structuring. Optimization passes that inherit from this
class should directly depend on structuring artifacts, such as regions and gotos. Otherwise, they should use
OptimizationPass. This is the heaviest (computation time) optimization pass class.

ARCHES = None

PLATFORMS = None

STAGE: int = 6

__init__(func, prevent_new_gotos=True, recover_structure_fails=True, max_opt_iters=1,
simplify_ail=True, **kwargs)

analyze()

Wrapper for _analyze() that verifies the graph is structurable before and after the optimization.

angr.analyses.decompiler.optimization_passes.stack_canary_simplifier.s2u(s, bits)

class angr.analyses.decompiler.optimization_passes.stack_canary_simplifier.StackCanarySimplifier(func,
**kwargs)

Bases: OptimizationPass

Removes stack canary checks from decompilation results.

ARCHES = ['X86', 'AMD64']

PLATFORMS = ['cgc', 'linux']

STAGE: int = 3

NAME = 'Simplify stack canaries'

DESCRIPTION = 'Removes stack canary checks from decompilation results.'

__init__(func, **kwargs)

class angr.analyses.decompiler.optimization_passes.base_ptr_save_simplifier.BasePointerSaveSimplifier(func,
**kwargs)

Bases: OptimizationPass

Removes the effects of base pointer stack storage at function invocation and restoring at function return.

ARCHES = ['X86', 'AMD64', 'ARMEL', 'ARMHF', 'ARMCortexM', 'MIPS32', 'MIPS64']

PLATFORMS = ['cgc', 'linux']

STAGE: int = 3

NAME = 'Simplify base pointer saving'

DESCRIPTION = 'Removes the effects of base pointer stack storage at function
invocation and restoring at function return.'

__init__(func, **kwargs)

class angr.analyses.decompiler.optimization_passes.div_simplifier.DivSimplifierAILEngine

Bases: SimplifierAILEngine

An AIL pass for the div simplifier

706 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

class angr.analyses.decompiler.optimization_passes.div_simplifier.DivSimplifier(func,
**kwargs)

Bases: OptimizationPass

Simplifies various division optimizations back to “div”.

ARCHES = ['X86', 'AMD64', 'ARMCortexM', 'ARMHF', 'ARMEL']

PLATFORMS = None

STAGE: int = 3

NAME = 'Simplify arithmetic division'

DESCRIPTION = 'Simplifies various division optimizations back to "div".'

__init__(func, **kwargs)

exception
angr.analyses.decompiler.optimization_passes.ite_expr_converter.NodeFoundNotification

Bases: Exception

A notification that the target node has been found.

class angr.analyses.decompiler.optimization_passes.ite_expr_converter.BlockLocator(block)
Bases: RegionWalker

Recursively locate block in a GraphRegion instance.

It might be reasonable to move this class into its own file.

__init__(block)

walk_node(region, node)

class angr.analyses.decompiler.optimization_passes.ite_expr_converter.ExpressionReplacer(block_addr,
tar-
get_expr,
call-
back)

Bases: AILBlockWalker

Replace expressions.

__init__(block_addr, target_expr, callback)

class angr.analyses.decompiler.optimization_passes.ite_expr_converter.ITEExprConverter(func,
ite_exprs=None,
**kwargs)

Bases: OptimizationPass

Transform specific expressions into If-Then-Else expressions, or tertiary expressions in C when given a single-
use expression address. Requires outside analysis to provide the target expressions.

ARCHES = ['X86', 'AMD64', 'ARMEL', 'ARMHF', 'ARMCortexM', 'MIPS32', 'MIPS64']

PLATFORMS = ['windows', 'linux', 'cgc']

STAGE: int = 6

10.15. Analysis 707

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.AILBlockWalker
https://docs.python.org/3/library/functions.html#int

angr

NAME = 'Transform single-use expressions that were assigned to in different If-Else
branches into ternary expressions'

DESCRIPTION = 'Transform specific expressions into If-Then-Else expressions, or
tertiary expressions in C when\n given a single-use expression address. Requires
outside analysis to provide the target expressions.'

__init__(func, ite_exprs=None, **kwargs)

class angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.Case(original_node,
node_type,
vari-
able_hash,
expr,
value,
target,
tar-
get_idx,
next_addr)

Bases: object

Describes a case in a switch-case construct.

Parameters
• node_type (str | None) –

• value (int | str) –

• target_idx (int | None) –

__init__(original_node, node_type, variable_hash, expr, value, target, target_idx, next_addr)

Parameters
• node_type (str | None) –

• value (int | str) –

• target_idx (int | None) –

original_node

node_type

variable_hash

expr

value

target

target_idx

next_addr

class angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.StableVarExprHasher(expr)
Bases: AILBlockWalkerBase

Obtain a stable hash of an AIL expression with respect to all variables and all operations applied on variables.

708 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.AILBlockWalkerBase

angr

Parameters
expr (Expression) –

__init__(expr)

Parameters
expr (Expression) –

class angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.LoweredSwitchSimplifier(func,
blocks_by_addr=None,
blocks_by_addr_and_idx=None,
graph=None,
**kwargs)

Bases: OptimizationPass

Recognize and simplify lowered switch-case constructs.

ARCHES = ['AMD64']

PLATFORMS = ['linux', 'windows']

STAGE: int = 6

NAME = 'Convert lowered switch-cases (if-else) to switch-cases'

DESCRIPTION = 'Convert lowered switch-cases (if-else) to switch-cases. Only works
when the Phoenix structuring algorithm is in use.'

STRUCTURING: Optional[str] = ['phoenix']

__init__(func, blocks_by_addr=None, blocks_by_addr_and_idx=None, graph=None, **kwargs)

static restore_graph(node, last_stmt, graph, full_graph)

Parameters
• last_stmt (IncompleteSwitchCaseHeadStatement) –

• graph (DiGraph) –

• full_graph (DiGraph) –

static cases_issubset(cases_0, cases_1)
Test if cases_0 is a subset of cases_1.

Return type
bool

Parameters
• cases_0 (List[Case]) –

• cases_1 (List[Case]) –

class
angr.analyses.decompiler.optimization_passes.multi_simplifier.MultiSimplifierAILEngine

Bases: SimplifierAILEngine

An AIL pass for the multi simplifier

10.15. Analysis 709

https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

angr

class angr.analyses.decompiler.optimization_passes.multi_simplifier.MultiSimplifier(func,
**kwargs)

Bases: OptimizationPass

Implements several different arithmetic optimizations.

ARCHES = ['X86', 'AMD64']

PLATFORMS = ['linux', 'windows']

STAGE: int = 3

NAME = 'Simplify various arithmetic expressions'

DESCRIPTION = 'Implements several different arithmetic optimizations.'

__init__(func, **kwargs)

class angr.analyses.decompiler.optimization_passes.mod_simplifier.ModSimplifierAILEngine

Bases: SimplifierAILEngine

class angr.analyses.decompiler.optimization_passes.mod_simplifier.ModSimplifier(func,
**kwargs)

Bases: OptimizationPass

Simplifies optimized forms of modulo computation back to “mod”.

ARCHES = ['X86', 'AMD64', 'ARMCortexM', 'ARMHF', 'ARMEL']

PLATFORMS = ['linux', 'windows']

STAGE: int = 3

NAME = 'Simplify optimized mod forms'

DESCRIPTION = 'Simplifies optimized forms of modulo computation back to "mod".'

__init__(func, **kwargs)

class angr.analyses.decompiler.optimization_passes.engine_base.SimplifierAILState(arch,
vari-
ables=None)

Bases: object

The abstract state used in SimplifierAILEngine.

__init__(arch, variables=None)

copy()

merge(*others)

store_variable(old, new)

get_variable(old)

remove_variable(old)

filter_variables(atom)

710 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

class angr.analyses.decompiler.optimization_passes.engine_base.SimplifierAILEngine

Bases: SimEngineLightAILMixin, SimEngineLight

Essentially implements a peephole optimization engine for AIL statements (because we do not perform memory
or register loads).

__init__()

process(state, *args, **kwargs)
The main entry point for an engine. Should take a state and return a result.

Parameters
state – The state to proceed from

Returns
The result. Whatever you want ;)

class angr.analyses.decompiler.optimization_passes.expr_op_swapper.OuterWalker(desc)
Bases: SequenceWalker

A sequence walker that finds nodes and invokes expression replacer to replace expressions.

__init__(desc)

class angr.analyses.decompiler.optimization_passes.expr_op_swapper.ExpressionReplacer(block_addr,
tar-
get_expr_predicate,
call-
back)

Bases: AILBlockWalker

Replace expressions.

__init__(block_addr, target_expr_predicate, callback)

class angr.analyses.decompiler.optimization_passes.expr_op_swapper.OpDescriptor(block_addr,
stmt_idx,
ins_addr,
op)

Bases: object

Describes a specific operator.

Parameters
• block_addr (int) –

• stmt_idx (int) –

• ins_addr (int) –

• op (str) –

__init__(block_addr, stmt_idx, ins_addr, op)

Parameters
• block_addr (int) –

• stmt_idx (int) –

• ins_addr (int) –

• op (str) –

10.15. Analysis 711

https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.AILBlockWalker
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

class angr.analyses.decompiler.optimization_passes.expr_op_swapper.ExprOpSwapper(func,
binop_operators=None,
**kwargs)

Bases: SequenceOptimizationPass

Swap operands (and the operator accordingly) in a BinOp expression.

Parameters
binop_operators (Dict[OpDescriptor, str] | None) –

ARCHES = ['X86', 'AMD64', 'ARMEL', 'ARMHF', 'ARMCortexM', 'MIPS32', 'MIPS64']

PLATFORMS = ['windows', 'linux', 'cgc']

STAGE: int = 7

NAME = 'Swap operands of expressions as requested'

DESCRIPTION = 'Swap operands (and the operator accordingly) in a BinOp expression.'

__init__(func, binop_operators=None, **kwargs)

Parameters
binop_operators (Dict[OpDescriptor, str] | None) –

angr.analyses.decompiler.optimization_passes.register_save_area_simplifier.s2u(s, bits)

class angr.analyses.decompiler.optimization_passes.register_save_area_simplifier.RegisterSaveAreaSimplifier(func,
**kwargs)

Bases: OptimizationPass

Optimizes away register spilling effects, including callee-saved registers.

ARCHES = None

PLATFORMS = None

STAGE: int = 1

NAME = 'Simplify register save areas'

DESCRIPTION = 'Optimizes away register spilling effects, including callee-saved
registers.'

__init__(func, **kwargs)

class angr.analyses.decompiler.optimization_passes.ret_addr_save_simplifier.RetAddrSaveSimplifier(func,
**kwargs)

Bases: OptimizationPass

Removes code in function prologues and epilogues for saving and restoring return address registers (ra, lr, etc.),
generally seen in non-leaf functions.

ARCHES = ['MIPS32', 'MIPS64']

PLATFORMS = ['linux']

STAGE: int = 3

NAME = 'Simplify return address storage'

712 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

DESCRIPTION = 'Removes code in function prologues and epilogues for saving and
restoring return address registers (ra, lr, etc.),\n generally seen in non-leaf
functions.'

__init__(func, **kwargs)

class angr.analyses.decompiler.optimization_passes.x86_gcc_getpc_simplifier.X86GccGetPcSimplifier(func,
**kwargs)

Bases: OptimizationPass

Simplifies __x86.get_pc_thunk calls.

ARCHES = ['X86']

PLATFORMS = ['linux']

STAGE: int = 1

NAME = 'Simplify getpc()'

DESCRIPTION = 'Simplifies __x86.get_pc_thunk calls.'

__init__(func, **kwargs)

class angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationStmtBase(project,
kb,
func_addr=None)

Bases: object

The base class for all peephole optimizations that are applied on AIL statements.

Parameters
• project (Project | None) –

• kb (KnowledgeBase | None) –

• func_addr (int | None) –

NAME = 'Peephole Optimization - Statement'

DESCRIPTION = 'Peephole Optimization - Statement'

stmt_classes = None

__init__(project, kb, func_addr=None)

Parameters
• project (Project | None) –

• kb (KnowledgeBase | None) –

• func_addr (int | None) –

project: Optional[Project]

kb: Optional[KnowledgeBase]

func_addr: Optional[int]

10.15. Analysis 713

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

angr

optimize(stmt, stmt_idx=None, block=None, **kwargs)

Parameters
stmt_idx (int | None) –

class angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationMultiStmtBase(project,
kb,
func_addr=None)

Bases: object

The base class for all peephole optimizations that are applied on multiple AIL statements at once.

Parameters
• project (Project | None) –

• kb (KnowledgeBase | None) –

• func_addr (int | None) –

NAME = 'Peephole Optimization - Multi-statement'

DESCRIPTION = 'Peephole Optimization - Multi-statement'

stmt_classes = None

__init__(project, kb, func_addr=None)

Parameters
• project (Project | None) –

• kb (KnowledgeBase | None) –

• func_addr (int | None) –

project: Optional[Project]

kb: Optional[KnowledgeBase]

func_addr: Optional[int]

optimize(stmts, stmt_idx=None, block=None, **kwargs)

Parameters
• stmts (List[Statement]) –

• stmt_idx (int | None) –

class angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationExprBase(project,
kb,
func_addr=None)

Bases: object

The base class for all peephole optimizations that are applied on AIL expressions.

Parameters
• project (Project | None) –

• kb (KnowledgeBase | None) –

• func_addr (int | None) –

714 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.Statement
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

angr

NAME = 'Peephole Optimization - Expression'

DESCRIPTION = 'Peephole Optimization - Expression'

expr_classes = None

__init__(project, kb, func_addr=None)

Parameters
• project (Project | None) –

• kb (KnowledgeBase | None) –

• func_addr (int | None) –

project: Optional[Project]

kb: Optional[KnowledgeBase]

func_addr: Optional[int]

optimize(expr, **kwargs)

static find_definition(ail_expr, stmt_idx, block)

Return type
None

Parameters
• ail_expr (Expression) –

• stmt_idx (int) –

• block (Block) –

static is_bool_expr(ail_expr)

class angr.analyses.decompiler.region_identifier.RegionIdentifier(func, cond_proc=None,
graph=None,
update_graph=True,
largest_successor_tree_outside_loop=True,
force_loop_single_exit=True,
complete_successors=False)

Bases: Analysis

Identifies regions within a function graph and creates a recursive GraphRegion object. Note, that the analysis
may modify the graph in-place. If you want to keep the original graph, set the update_graph parameter to False.

__init__(func, cond_proc=None, graph=None, update_graph=True,
largest_successor_tree_outside_loop=True, force_loop_single_exit=True,
complete_successors=False)

static slice_graph(graph, node, frontier, include_frontier=False)
Generate a slice of the graph from the head node to the given frontier.

Parameters
• graph (networkx.DiGraph) – The graph to work on.

• node – The starting node in the graph.

10.15. Analysis 715

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block

angr

• frontier – A list of frontier nodes.

• include_frontier (bool) – Whether the frontier nodes are included in the slice or not.

Returns
A subgraph.

Return type
networkx.DiGraph

project: Project

kb: KnowledgeBase

class angr.analyses.decompiler.region_simplifiers.cascading_cond_transformer.CascadingConditionTransformer(node)
Bases: SequenceWalker

Identifies and transforms if { . . . } else { if { . . . } else { . . . } } to if { . . . } else if { . . . } else if { . . . }.

__init__(node)

class angr.analyses.decompiler.region_simplifiers.cascading_ifs.CascadingIfsRemover(node)
Bases: SequenceWalker

Coalesce cascading If constructs. Transforming the following construct:

if (cond_a) {
if (cond_b) {

true_body
} else { }

} else { }

into:

if (cond_a and cond_b) {
true_body

} else { }

__init__(node)

class angr.analyses.decompiler.region_simplifiers.expr_folding.LocationBase

Bases: object

class angr.analyses.decompiler.region_simplifiers.expr_folding.StatementLocation(block_addr,
block_idx,
stmt_idx)

Bases: LocationBase

__init__(block_addr, block_idx, stmt_idx)

block_addr

block_idx

stmt_idx

copy()

716 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

class angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionLocation(block_addr,
block_idx,
stmt_idx,
expr_idx)

Bases: LocationBase

__init__(block_addr, block_idx, stmt_idx, expr_idx)

block_addr

block_idx

stmt_idx

expr_idx

statement_location()

Return type
StatementLocation

class angr.analyses.decompiler.region_simplifiers.expr_folding.ConditionLocation(cond_node_addr,
case_idx=None)

Bases: LocationBase

Parameters
case_idx (int | None) –

__init__(cond_node_addr, case_idx=None)

Parameters
case_idx (int | None) –

node_addr

case_idx

class angr.analyses.decompiler.region_simplifiers.expr_folding.ConditionalBreakLocation(node_addr)
Bases: LocationBase

__init__(node_addr)

node_addr

class angr.analyses.decompiler.region_simplifiers.expr_folding.MultiStatementExpressionAssignmentFinder(stmt_handler)
Bases: AILBlockWalker

Process statements in MultiStatementExpression objects and find assignments.

__init__(stmt_handler)

class angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionUseFinder

Bases: AILBlockWalker

Find where each variable is used.

Additionally, determine if the expression being walked has load expressions inside. Such expressions can only
be safely folded if there are no Store statements between the expression defining location and its use sites. For
example, we can only safely fold variable assignments that use Load() when there are no Store()s between the
assignment and its use site. Otherwise, the loaded expression may get updated later by a Store() statement.

Here is a real AIL block:

10.15. Analysis 717

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.AILBlockWalker
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.AILBlockWalker

angr

v16 = ((int)v23->field_5) + 1 & 255;
v23->field_5 = ((char)(((int)v23->field_5) + 1 & 255));
v13 = printf("Recieved packet %d for connection with %d\n", v16, a0 & 255);

In this case, folding v16 into the last printf() expression would be incorrect, since v23->field_5 is updated by the
second statement.

__init__()

uses: DefaultDict[SimVariable, Set[Tuple[Expression,
Optional[ExpressionLocation]]]]

has_load

class angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionCounter(node, vari-
able_manager)

Bases: SequenceWalker

Find all expressions that are assigned once and only used once.

__init__(node, variable_manager)

class angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionReplacer(assignments,
uses,
vari-
able_manager)

Bases: AILBlockWalker

Parameters
• assignments (Dict) –

• uses (Dict) –

__init__(assignments, uses, variable_manager)

Parameters
• assignments (Dict) –

• uses (Dict) –

class angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionFolder(assignments,
uses, node,
vari-
able_manager)

Bases: SequenceWalker

Parameters
• assignments (Dict) –

• uses (Dict) –

__init__(assignments, uses, node, variable_manager)

Parameters
• assignments (Dict) –

• uses (Dict) –

718 Chapter 10. API Reference

https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.AILBlockWalker
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict

angr

class angr.analyses.decompiler.region_simplifiers.expr_folding.StoreStatementFinder(node,
inter-
vals)

Bases: SequenceWalker

Determine if there are any Store statements between two given statements.

This class overrides _handle_Sequence() and _handle_MultiNode() to ensure they traverse nodes from top to
bottom.

Parameters
intervals (Iterable[Tuple[StatementLocation, LocationBase]]) –

__init__(node, intervals)

Parameters
intervals (Iterable[Tuple[StatementLocation, LocationBase]]) –

has_store(start, end)

Return type
bool

Parameters
• start (StatementLocation) –

• end (StatementLocation) –

class angr.analyses.decompiler.region_simplifiers.goto.GotoSimplifier(node, function=None,
kb=None)

Bases: SequenceWalker

Remove unnecessary Jump statements. This simplifier also has the side effect of detecting Gotos that can’t be
reduced in the structuring and eventual decompilation output. Because of this, when this analysis is run, gotos
in decompilation will be detected and stored in the kb.gotos. See the _handle_irreducible_goto function below.

TODO: Move the recording of Gotos outside this function

__init__(node, function=None, kb=None)

class angr.analyses.decompiler.region_simplifiers.if_.IfSimplifier(node)
Bases: SequenceWalker

Remove unnecessary jump or conditional jump statements if they jump to the successor right afterwards.

__init__(node)

class angr.analyses.decompiler.region_simplifiers.ifelse.IfElseFlattener(node, functions)
Bases: SequenceWalker

Remove unnecessary else branches and make the else node a direct successor of the previous If node if the If
node always returns.

__init__(node, functions)

class angr.analyses.decompiler.region_simplifiers.loop.LoopSimplifier(node, functions)
Bases: SequenceWalker

Simplifies loops.

__init__(node, functions)

10.15. Analysis 719

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool

angr

class angr.analyses.decompiler.region_simplifiers.node_address_finder.NodeAddressFinder(node)
Bases: SequenceWalker

Walk the entire node and collect all addresses of nodes.

__init__(node)

class angr.analyses.decompiler.region_simplifiers.region_simplifier.RegionSimplifier(func,
re-
gion,
vari-
able_kb=None,
sim-
plify_switches=True,
sim-
plify_ifelse=True)

Bases: Analysis

Simplifies a given region.

Parameters
• simplify_switches (bool) –

• simplify_ifelse (bool) –

__init__(func, region, variable_kb=None, simplify_switches=True, simplify_ifelse=True)

Parameters
• simplify_switches (bool) –

• simplify_ifelse (bool) –

project: Project

kb: KnowledgeBase

class angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.CmpOp(value)
Bases: Enum

All supported comparison operators.

LT = 0

GT = 1

EQ = 2

NE = 3

class angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.ConditionalRegion(variable,
op,
value,
node,
par-
ent=None)

Bases: object

Describes a conditional region.

Parameters

720 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object

angr

• op (CmpOp) –

• value (int) –

• node (ConditionNode | Block) –

__init__(variable, op, value, node, parent=None)

Parameters
• op (CmpOp) –

• value (int) –

• node (ConditionNode | Block) –

variable

op

value

node

parent

class angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.SwitchCaseRegion(variable,
node,
par-
ent=None)

Bases: object

Describes an already-recovered switch region.

Parameters
node (SwitchCaseNode) –

__init__(variable, node, parent=None)

Parameters
node (SwitchCaseNode) –

variable

node

parent

class angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.SwitchClusterFinder(node)
Bases: SequenceWalker

Find comparisons and switches in order to identify switch clusters.

__init__(node)

class angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.SwitchClusterReplacer(region,
to_replace,
re-
place_with)

Bases: SequenceWalker

Replace an identified switch cluster with a newly created SwitchCase node.

10.15. Analysis 721

https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/functions.html#object

angr

__init__(region, to_replace, replace_with)

angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.is_simple_jump_node(node,
case_addrs,
tar-
gets=None)

Return type
bool

Parameters
targets (Set[int] | None) –

angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.filter_cond_regions(cond_regions,
case_addrs)

Remove all conditional regions that cannot be merged into switch(es).

Return type
List[ConditionalRegion]

Parameters
• cond_regions (List[ConditionalRegion]) –

• case_addrs (Set[int]) –

angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.update_switch_case_list(cases,
old_case_id,
new_case_id)

Update cases in-place. Make new_case_id directly jump to old_case_id.

Return type
None

Parameters
• cases (List[Tuple[int | Tuple[int, ...], SequenceNode]]) –

• old_case_id (int | Tuple[int, ...]) –

• new_case_id (int) –

angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.simplify_switch_clusters(region,
var2condnodes,
var2switches)

Identify switch clusters and simplify each of them.

Parameters
• region – The region to simplify.

• var2condnodes (Dict[Any, List[ConditionalRegion]]) – A dict that stores the map-
ping from (potential) switch variables to conditional regions.

• var2switches (Dict[Any, List[SwitchCaseRegion]]) – A dict that stores the mapping
from switch variables to switch-case regions.

Returns
None

angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.simplify_lowered_switches(region,
var2condnodes,
func-
tions)

722 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List

angr

Identify a lowered switch and simplify it into a switch-case if possible.

Parameters
• region (SequenceNode) – The region to simplify.

• var2condnodes (Dict[Any, List[ConditionalRegion]]) – A dict that stores the map-
ping from (potential) switch variables to conditional regions.

Returns
None

angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.simplify_lowered_switches_core(region,
var,
condnodes,
func-
tions)

Return type
bool

Parameters
region (SequenceNode) –

class angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.FindFirstNodeInSet(node_set)
Bases: SequenceWalker

Find the first node out of a set of node appearing in a SequenceNode (and its tree).

Parameters
node_set (Set[BaseNode]) –

__init__(node_set)

Parameters
node_set (Set[BaseNode]) –

class angr.analyses.decompiler.region_simplifiers.switch_expr_simplifier.SwitchExpressionSimplifier(node)
Bases: SequenceWalker

Identifies switch expressions that adds or minuses a constant, removes the constant from the switch expression,
and adjust all case expressions accordingly.

__init__(node)

class angr.analyses.decompiler.region_walker.RegionWalker

Bases: object

A simple traverser class that walks GraphRegion instances.

__init__()

walk(region)

Parameters
region (GraphRegion) –

walk_node(region, node)

10.15. Analysis 723

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#object

angr

class angr.analyses.decompiler.redundant_label_remover.RedundantLabelRemover(node,
jump_targets)

Bases: object

Remove redundant labels.

This optimization pass contains two separate passes. The first pass (self._walker0) finds all redundant labels
(e.g., two or more labels for the same location) and records the replacement label for redundant labels in
self._new_jump_target. The second pass (self._walker1) removes all redundant labels that (a) are not referenced
anywhere (determined by jump_targets), or (b) are deemed replaceable by the first pass.

Parameters
jump_targets (Set[Tuple[int, int | None]]) –

__init__(node, jump_targets)

Parameters
jump_targets (Set[Tuple[int, int | None]]) –

class angr.analyses.decompiler.sequence_walker.SequenceWalker(handlers=None,
exception_on_unsupported=False,
update_seqnode_in_place=True,
force_forward_scan=False)

Bases: object

Walks a SequenceNode and all its nodes, recursively.

Parameters
force_forward_scan (bool) –

__init__(handlers=None, exception_on_unsupported=False, update_seqnode_in_place=True,
force_forward_scan=False)

Parameters
force_forward_scan (bool) –

walk(sequence)

class angr.analyses.decompiler.structured_codegen.base.PositionMappingElement(start, length,
obj)

Bases: object

__init__(start, length, obj)

start: int

length: int

obj

class angr.analyses.decompiler.structured_codegen.base.PositionMapping

Bases: object

DUPLICATION_CHECK = True

__init__()

items()

add_mapping(start_pos, length, obj)

724 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

get_node(pos)

Parameters
pos (int) –

get_element(pos)

Return type
Optional[PositionMappingElement]

Parameters
pos (int) –

class angr.analyses.decompiler.structured_codegen.base.InstructionMappingElement(ins_addr,
posmap_pos)

Bases: object

__init__(ins_addr, posmap_pos)

ins_addr: int

posmap_pos: int

class angr.analyses.decompiler.structured_codegen.base.InstructionMapping

Bases: object

__init__()

items()

add_mapping(ins_addr, posmap_pos)

get_nearest_pos(ins_addr)

Return type
Optional[int]

Parameters
ins_addr (int) –

class angr.analyses.decompiler.structured_codegen.base.BaseStructuredCodeGenerator(flavor=None)
Bases: object

__init__(flavor=None)

reapply_options(options)

regenerate_text()

Return type
None

reload_variable_types()

Return type
None

angr.analyses.decompiler.structured_codegen.c.unpack_typeref(ty)

10.15. Analysis 725

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

angr

angr.analyses.decompiler.structured_codegen.c.unpack_pointer(ty)

Return type
Optional[SimType]

angr.analyses.decompiler.structured_codegen.c.unpack_array(ty)

Return type
Optional[SimType]

angr.analyses.decompiler.structured_codegen.c.squash_array_reference(ty)

angr.analyses.decompiler.structured_codegen.c.qualifies_for_simple_cast(ty1, ty2)

angr.analyses.decompiler.structured_codegen.c.qualifies_for_implicit_cast(ty1, ty2)

angr.analyses.decompiler.structured_codegen.c.extract_terms(expr)

Return type
Tuple[int, List[Tuple[int, CExpression]]]

Parameters
expr (CExpression) –

angr.analyses.decompiler.structured_codegen.c.is_machine_word_size_type(type_, arch)

Return type
bool

Parameters
• type_ (SimType) –

• arch (Arch) –

angr.analyses.decompiler.structured_codegen.c.guess_value_type(value, project)

Return type
Optional[SimType]

Parameters
• value (int) –

• project (Project) –

angr.analyses.decompiler.structured_codegen.c.type_to_c_repr_chunks(ty, name=None,
name_type=None,
full=False, indent_str='')

Helper generator function to turn a SimType into generated tuples of (C-string, AST node).

Parameters
ty (SimType) –

class angr.analyses.decompiler.structured_codegen.c.CConstruct(codegen)
Bases: object

Represents a program construct in C. Acts as the base class for all other representation constructions.

__init__(codegen)

codegen: StructuredCodeGenerator

726 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

c_repr(indent=0, pos_to_node=None, pos_to_addr=None, addr_to_pos=None)
Creates the C representation of the code and displays it by constructing a large string. This function is called
by each program function that needs to be decompiled. The map_pos_to_node and map_pos_to_addr act
as position maps for the location of each variable and statement to be tracked for later GUI operations. The
map_pos_to_addr also contains expressions that are nested inside of statements.

c_repr_chunks(indent=0, asexpr=False)

static indent_str(indent=0)

class angr.analyses.decompiler.structured_codegen.c.CFunction(addr, name, functy, arg_list,
statements, variables_in_use,
variable_manager,
demangled_name=None,
show_demangled_name=True,
**kwargs)

Bases: CConstruct

Represents a function in C.

Parameters
• functy (SimTypeFunction) –

• arg_list (List[CVariable]) –

__init__(addr, name, functy, arg_list, statements, variables_in_use, variable_manager,
demangled_name=None, show_demangled_name=True, **kwargs)

Parameters
• functy (SimTypeFunction) –

• arg_list (List[CVariable]) –

addr

name

functy

arg_list

statements

variables_in_use

variable_manager: VariableManagerInternal

demangled_name

unified_local_vars: Dict[SimVariable, Set[Tuple[CVariable, SimType]]]

show_demangled_name

get_unified_local_vars()

Return type
Dict[SimVariable, Set[Tuple[CVariable, SimType]]]

variable_list_repr_chunks(indent=0)

10.15. Analysis 727

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Tuple

angr

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CStatement(codegen)
Bases: CConstruct

Represents a statement in C.

Parameters
codegen (StructuredCodeGenerator) –

class angr.analyses.decompiler.structured_codegen.c.CExpression(collapsed=False, **kwargs)
Bases: CConstruct

Base class for C expressions.

__init__(collapsed=False, **kwargs)

collapsed

property type

set_type(v)

class angr.analyses.decompiler.structured_codegen.c.CStatements(statements, **kwargs)
Bases: CStatement

Represents a sequence of statements in C.

__init__(statements, **kwargs)

statements

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CAILBlock(block, **kwargs)
Bases: CStatement

Represents a block of AIL statements.

__init__(block, **kwargs)

block

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CLoop(codegen)
Bases: CStatement

Represents a loop in C.

Parameters
codegen (StructuredCodeGenerator) –

class angr.analyses.decompiler.structured_codegen.c.CWhileLoop(condition, body, tags=None,
**kwargs)

Bases: CLoop

Represents a while loop in C.

__init__(condition, body, tags=None, **kwargs)

condition

728 Chapter 10. API Reference

angr

body

tags

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CDoWhileLoop(condition, body, tags=None,
**kwargs)

Bases: CLoop

Represents a do-while loop in C.

__init__(condition, body, tags=None, **kwargs)

condition

body

tags

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CForLoop(initializer, condition, iterator, body,
tags=None, **kwargs)

Bases: CStatement

Represents a for-loop in C.

__init__(initializer, condition, iterator, body, tags=None, **kwargs)

initializer

condition

iterator

body

tags

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CIfElse(condition_and_nodes,
else_node=None,
simplify_else_scope=False,
cstyle_ifs=True, tags=None,
**kwargs)

Bases: CStatement

Represents an if-else construct in C.

Parameters
condition_and_nodes (List[Tuple[CExpression, CStatement | None]]) –

__init__(condition_and_nodes, else_node=None, simplify_else_scope=False, cstyle_ifs=True, tags=None,
**kwargs)

Parameters
condition_and_nodes (List[Tuple[CExpression, CStatement | None]]) –

10.15. Analysis 729

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple

angr

condition_and_nodes

else_node

simplify_else_scope

cstyle_ifs

tags

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CIfBreak(condition, cstyle_ifs=True,
tags=None, **kwargs)

Bases: CStatement

Represents an if-break statement in C.

__init__(condition, cstyle_ifs=True, tags=None, **kwargs)

condition

cstyle_ifs

tags

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CBreak(tags=None, **kwargs)
Bases: CStatement

Represents a break statement in C.

__init__(tags=None, **kwargs)

tags

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CContinue(tags=None, **kwargs)
Bases: CStatement

Represents a continue statement in C.

__init__(tags=None, **kwargs)

tags

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CSwitchCase(switch, cases, default,
tags=None, **kwargs)

Bases: CStatement

Represents a switch-case statement in C.

__init__(switch, cases, default, tags=None, **kwargs)

switch

cases: List[Tuple[Union[int, Tuple[int]], CStatements]]

730 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int

angr

default

tags

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CAssignment(lhs, rhs, tags=None, **kwargs)
Bases: CStatement

a = b

__init__(lhs, rhs, tags=None, **kwargs)

lhs

rhs

tags

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CFunctionCall(callee_target, callee_func,
args, returning=True,
ret_expr=None, tags=None,
is_expr=False,
show_demangled_name=True,
show_disambiguated_name=True,
**kwargs)

Bases: CStatement, CExpression

func(arg0, arg1)

Variables
• callee_func (Function) – The function getting called.

• is_expr – True if the return value of the function is written to ret_expr; Essentially, ret_expr
= call().

Parameters
• is_expr (bool) –

• show_disambiguated_name (bool) –

__init__(callee_target, callee_func, args, returning=True, ret_expr=None, tags=None, is_expr=False,
show_demangled_name=True, show_disambiguated_name=True, **kwargs)

Parameters
• is_expr (bool) –

• show_disambiguated_name (bool) –

callee_target

callee_func: Optional[Function]

args

returning

10.15. Analysis 731

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional

angr

ret_expr

tags

is_expr

show_demangled_name

show_disambiguated_name

property prototype: SimTypeFunction | None

property type

c_repr_chunks(indent=0, asexpr=False)

Parameters
• indent – Number of whitespace indentation characters.

• asexpr (bool) – True if this call is used as an expression (which means we will skip the
generation of semicolons and newlines at the end of the call).

class angr.analyses.decompiler.structured_codegen.c.CReturn(retval, tags=None, **kwargs)
Bases: CStatement

__init__(retval, tags=None, **kwargs)

retval

tags

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CGoto(target, target_idx, tags=None,
**kwargs)

Bases: CStatement

__init__(target, target_idx, tags=None, **kwargs)

target: Union[int, CExpression]

target_idx

tags

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CUnsupportedStatement(stmt, **kwargs)
Bases: CStatement

A wrapper for unsupported AIL statement.

__init__(stmt, **kwargs)

stmt

c_repr_chunks(indent=0, asexpr=False)

732 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int

angr

class angr.analyses.decompiler.structured_codegen.c.CLabel(name, ins_addr, block_idx, tags=None,
**kwargs)

Bases: CStatement

Represents a label in C code.

Parameters
• name (str) –

• ins_addr (int) –

• block_idx (int | None) –

__init__(name, ins_addr, block_idx, tags=None, **kwargs)

Parameters
• name (str) –

• ins_addr (int) –

• block_idx (int | None) –

name

ins_addr

block_idx

tags

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CStructField(struct_type, offset, field,
tags=None, **kwargs)

Bases: CExpression

Parameters
struct_type (SimStruct) –

__init__(struct_type, offset, field, tags=None, **kwargs)

Parameters
struct_type (SimStruct) –

struct_type

offset

field

tags

property type

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CFakeVariable(name, ty, tags=None,
**kwargs)

Bases: CExpression

An uninterpreted name to display in the decompilation output. Pretty much always represents an error?

10.15. Analysis 733

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

Parameters
• name (str) –

• ty (SimType) –

__init__(name, ty, tags=None, **kwargs)

Parameters
• name (str) –

• ty (SimType) –

name

tags

property type

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CVariable(variable, unified_variable=None,
variable_type=None, tags=None,
**kwargs)

Bases: CExpression

CVariable represents access to a variable with the specified type (variable_type).

variable must be a SimVariable.

Parameters
variable (SimVariable) –

__init__(variable, unified_variable=None, variable_type=None, tags=None, **kwargs)

Parameters
variable (SimVariable) –

variable: SimVariable

unified_variable: Optional[SimVariable]

variable_type: SimType

tags

property type

property name

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CIndexedVariable(variable, index,
variable_type=None,
tags=None, **kwargs)

Bases: CExpression

Represent a variable (an array) that is indexed.

Parameters
• variable (CExpression) –

734 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

angr

• index (CExpression) –

__init__(variable, index, variable_type=None, tags=None, **kwargs)

Parameters
• variable (CExpression) –

• index (CExpression) –

property type

c_repr_chunks(indent=0, asexpr=False)

collapsed

class angr.analyses.decompiler.structured_codegen.c.CVariableField(variable, field,
var_is_ptr=False,
tags=None, **kwargs)

Bases: CExpression

Represent a field of a variable.

Parameters
• variable (CExpression) –

• field (CStructField) –

• var_is_ptr (bool) –

__init__(variable, field, var_is_ptr=False, tags=None, **kwargs)

Parameters
• variable (CExpression) –

• field (CStructField) –

• var_is_ptr (bool) –

property type

c_repr_chunks(indent=0, asexpr=False)

collapsed

class angr.analyses.decompiler.structured_codegen.c.CUnaryOp(op, operand, tags=None, **kwargs)
Bases: CExpression

Unary operations.

Parameters
operand (CExpression) –

__init__(op, operand, tags=None, **kwargs)

Parameters
operand (CExpression) –

op

operand

10.15. Analysis 735

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

tags

property type

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CBinaryOp(op, lhs, rhs, tags=None, **kwargs)
Bases: CExpression

Binary operations.

Parameters
tags (dict | None) –

__init__(op, lhs, rhs, tags=None, **kwargs)

Parameters
tags (dict | None) –

op

lhs

rhs

tags

common_type

static compute_common_type(op, lhs_ty, rhs_ty)

Return type
SimType

Parameters
• op (str) –

• lhs_ty (SimType) –

• rhs_ty (SimType) –

property type

property op_precedence

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CTypeCast(src_type, dst_type, expr,
tags=None, **kwargs)

Bases: CExpression

Parameters
• src_type (SimType | None) –

• dst_type (SimType) –

• expr (CExpression) –

736 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

angr

__init__(src_type, dst_type, expr, tags=None, **kwargs)

Parameters
• src_type (SimType | None) –

• dst_type (SimType) –

• expr (CExpression) –

src_type

dst_type

expr

tags

property type

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CConstant(value, type_,
reference_values=None,
tags=None, **kwargs)

Bases: CExpression

Parameters
• type_ (SimType) –

• tags (Dict | None) –

__init__(value, type_, reference_values=None, tags=None, **kwargs)

Parameters
• type_ (SimType) –

• tags (Dict | None) –

value

reference_values

tags

property fmt

property fmt_hex

property fmt_neg

property fmt_char

property fmt_float

property type

static str_to_c_str(_str, prefix='')

Parameters
prefix (str) –

10.15. Analysis 737

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str

angr

c_repr_chunks(indent=0, asexpr=False)

fmt_int(value)
Format an integer using the format setup of the current node.

Parameters
value (int) – The integer value to format.

Return type
str

Returns
The formatted string.

class angr.analyses.decompiler.structured_codegen.c.CRegister(reg, tags=None, **kwargs)
Bases: CExpression

__init__(reg, tags=None, **kwargs)

reg

tags

property type

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CITE(cond, iftrue, iffalse, tags=None,
**kwargs)

Bases: CExpression

__init__(cond, iftrue, iffalse, tags=None, **kwargs)

cond

iftrue

iffalse

tags

property type

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CMultiStatementExpression(stmts, expr,
tags=None,
**kwargs)

Bases: CExpression

(stmt0, stmt1, stmt2, expr)

Parameters
• stmts (CStatements) –

• expr (CExpression) –

738 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

__init__(stmts, expr, tags=None, **kwargs)

Parameters
• stmts (CStatements) –

• expr (CExpression) –

stmts

expr

tags

property type

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CDirtyExpression(dirty, **kwargs)
Bases: CExpression

Ideally all dirty expressions should be handled and converted to proper conversions during conversion from VEX
to AIL. Eventually this class should not be used at all.

__init__(dirty, **kwargs)

dirty

property type

c_repr_chunks(indent=0, asexpr=False)

class angr.analyses.decompiler.structured_codegen.c.CClosingObject(opening_symbol)
Bases: object

A class to represent all objects that can be closed by it’s correspodning character. Examples: (), {}, []

__init__(opening_symbol)

opening_symbol

class angr.analyses.decompiler.structured_codegen.c.CArrayTypeLength(text)
Bases: object

A class to represent the type information of fixed-size array lengths. Examples: In “char foo[20]”, this would be
the “[20]”.

__init__(text)

text

class angr.analyses.decompiler.structured_codegen.c.CStructFieldNameDef(name)
Bases: object

A class to represent the name of a defined field in a struct. Needed because it’s not a CVariable or a CStructField
(because CStructField is the access of a CStructField). Example: In “struct foo { int bar; }, this would be “bar”.

__init__(name)

name

10.15. Analysis 739

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

class angr.analyses.decompiler.structured_codegen.c.CStructuredCodeGenerator(func, sequence,
indent=0,
cfg=None, vari-
able_kb=None,
func_args=None,
binop_depth_cutoff=16,
show_casts=True,
braces_on_own_lines=True,
use_compound_assignments=True,
show_local_types=True,
com-
ment_gotos=False,
cstyle_null_cmp=True,
flavor=None,
stmt_comments=None,
expr_comments=None,
show_externs=True,
externs=None,
const_formats=None,
show_demangled_name=True,
show_disambiguated_name=True,
ail_graph=None,
sim-
plify_else_scope=True,
cstyle_ifs=True)

Bases: BaseStructuredCodeGenerator, Analysis

Parameters
• func_args (List[SimVariable] | None) –

• binop_depth_cutoff (int) –

__init__(func, sequence, indent=0, cfg=None, variable_kb=None, func_args=None,
binop_depth_cutoff=16, show_casts=True, braces_on_own_lines=True,
use_compound_assignments=True, show_local_types=True, comment_gotos=False,
cstyle_null_cmp=True, flavor=None, stmt_comments=None, expr_comments=None,
show_externs=True, externs=None, const_formats=None, show_demangled_name=True,
show_disambiguated_name=True, ail_graph=None, simplify_else_scope=True, cstyle_ifs=True)

Parameters
• func_args (List[SimVariable] | None) –

• binop_depth_cutoff (int) –

reapply_options(options)

cleanup()

Remove existing rendering results.

regenerate_text()

Re-render text and re-generate all sorts of mapping information.

Return type
None

740 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

angr

RENDER_TYPE

alias of Tuple[str, PositionMapping, PositionMapping, InstructionMapping, Dict[Any,
Set[Any]]]

render_text(cfunc)

Return type
Tuple[str, PositionMapping, PositionMapping, InstructionMapping, Dict[Any,
Set[Any]]]

Parameters
cfunc (CFunction) –

reload_variable_types()

Return type
None

default_simtype_from_size(n, signed=True)

Return type
SimType

Parameters
• n (int) –

• signed (bool) –

project: Project

kb: KnowledgeBase

class angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker

Bases: object

classmethod handle(obj)

classmethod handle_default(obj)

classmethod handle_CFunction(obj)

classmethod handle_CStatements(obj)

classmethod handle_CWhileLoop(obj)

classmethod handle_CDoWhileLoop(obj)

classmethod handle_CForLoop(obj)

classmethod handle_CIfElse(obj)

classmethod handle_CIfBreak(obj)

classmethod handle_CSwitchCase(obj)

classmethod handle_CAssignment(obj)

classmethod handle_CFunctionCall(obj)

classmethod handle_CReturn(obj)

10.15. Analysis 741

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

classmethod handle_CGoto(obj)

classmethod handle_CIndexedVariable(obj)

classmethod handle_CVariableField(obj)

classmethod handle_CUnaryOp(obj)

classmethod handle_CBinaryOp(obj)

classmethod handle_CTypeCast(obj)

classmethod handle_CITE(obj)

class angr.analyses.decompiler.structured_codegen.c.MakeTypecastsImplicit

Bases: CStructuredCodeWalker

classmethod collapse(dst_ty, child)

Return type
CExpression

Parameters
• dst_ty (SimType) –

• child (CExpression) –

classmethod handle_CAssignment(obj)

classmethod handle_CFunctionCall(obj)

Parameters
obj (CFunctionCall) –

classmethod handle_CReturn(obj)

Parameters
obj (CReturn) –

classmethod handle_CBinaryOp(obj)

Parameters
obj (CBinaryOp) –

classmethod handle_CTypeCast(obj)

Parameters
obj (CTypeCast) –

class angr.analyses.decompiler.structured_codegen.c.FieldReferenceCleanup

Bases: CStructuredCodeWalker

classmethod handle_CTypeCast(obj)

class angr.analyses.decompiler.structured_codegen.c.PointerArithmeticFixer

Bases: CStructuredCodeWalker

Before calling this fixer class, pointer arithmetics are purely integer-based and ignoring the pointer type.

For example, in the following case:

struct A* a_ptr; // assume struct A is 24 bytes in size a_ptr = a_ptr + 24;

742 Chapter 10. API Reference

angr

It means adding 24 to the address of a_ptr, without considering the size of struct A. This fixer class will make
pointer arithmetics aware of the pointer type. In this case, the fixer class will convert the code to a_ptr = a_ptr +
1.

classmethod handle_CBinaryOp(obj)

angr.analyses.decompiler.structured_codegen.c.StructuredCodeGenerator

alias of CStructuredCodeGenerator

class angr.analyses.decompiler.structured_codegen.dwarf_import.ImportedLine(addr)
Bases: object

__init__(addr)

class angr.analyses.decompiler.structured_codegen.dwarf_import.ImportSourceCode(function,
fla-
vor='source',
source_root=None,
encoding='utf-
8')

Bases: BaseStructuredCodeGenerator, Analysis

__init__(function, flavor='source', source_root=None, encoding='utf-8')

regenerate_text()

project: Project

kb: KnowledgeBase

class angr.analyses.decompiler.structured_codegen.dummy.DummyStructuredCodeGenerator(flavor,
expr_comments=None,
stmt_comments=None,
con-
figu-
ra-
tion=None,
const_formats=None)

Bases: BaseStructuredCodeGenerator

A dummy structured code generator that only stores user-specified information.

Parameters
flavor (str) –

__init__(flavor, expr_comments=None, stmt_comments=None, configuration=None, const_formats=None)

Parameters
flavor (str) –

angr.analyses.decompiler.utils.remove_last_statement(node)

angr.analyses.decompiler.utils.append_statement(node, stmt)

angr.analyses.decompiler.utils.replace_last_statement(node, old_stmt, new_stmt)

angr.analyses.decompiler.utils.extract_jump_targets(stmt)
Extract concrete goto targets from a Jump or a ConditionalJump statement.

10.15. Analysis 743

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

Parameters
stmt – The statement to analyze.

Returns
A list of known concrete jump targets.

Return type
list

angr.analyses.decompiler.utils.switch_extract_cmp_bounds(last_stmt)
Check the last statement of the switch-case header node, and extract lower+upper bounds for the comparison.

Parameters
last_stmt (ConditionalJump) – The last statement of the switch-case header node.

Return type
Optional[Tuple[Any, int, int]]

Returns
A tuple of (comparison expression, lower bound, upper bound), or None

angr.analyses.decompiler.utils.get_ast_subexprs(claripy_ast)

angr.analyses.decompiler.utils.insert_node(parent, insert_location, node, node_idx, label=None)

Parameters
• insert_location (str) –

• node_idx (int | Tuple[int] | None) –

angr.analyses.decompiler.utils.to_ail_supergraph(transition_graph)
Takes an AIL graph and converts it into a AIL graph that treats calls and redundant jumps as parts of a bigger
block instead of transitions. Calls to returning functions do not terminate basic blocks.

Based on region_identifier super_graph

Return type
DiGraph

Returns
A converted super transition graph

Parameters
transition_graph (DiGraph) –

angr.analyses.decompiler.utils.is_empty_node(node)

Return type
bool

angr.analyses.decompiler.utils.is_empty_or_label_only_node(node)

Return type
bool

angr.analyses.decompiler.utils.has_nonlabel_statements(block)

Return type
bool

Parameters
block (Block) –

744 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.ConditionalJump
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block

angr

angr.analyses.decompiler.utils.first_nonlabel_statement(block)

Return type
Optional[Statement]

Parameters
block (Block | MultiNode) –

angr.analyses.decompiler.utils.last_nonlabel_statement(block)

Return type
Optional[Statement]

Parameters
block (Block) –

angr.analyses.decompiler.utils.first_nonlabel_node(seq)

Return type
Union[BaseNode, Block, None]

Parameters
seq (SequenceNode) –

angr.analyses.decompiler.utils.remove_labels(graph)

Parameters
graph (DiGraph) –

angr.analyses.decompiler.utils.add_labels(graph)

Parameters
graph (DiGraph) –

angr.analyses.decompiler.utils.update_labels(graph)
A utility function to recreate the labels for every node in an AIL graph. This useful when you are working with
a graph where only _some_ of the nodes have labels.

Parameters
graph (DiGraph) –

angr.analyses.decompiler.utils.structured_node_is_simple_return(node, graph)

Return type
bool

Parameters
• node (SequenceNode | MultiNode) –

• graph (DiGraph) –

Will check if a “simple return” is contained within the node a simple returns looks like this: if (cond) {

// simple return . . . return 0;

10.15. Analysis 745

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.Statement
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.Statement
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

angr

10.15.1 }

Returns true on any block ending in linear statements and a return.

angr.analyses.decompiler.utils.is_statement_terminating(stmt, functions)

Return type
bool

Parameters
stmt (Statement) –

angr.analyses.decompiler.utils.peephole_optimize_exprs(block, expr_opts)

angr.analyses.decompiler.utils.peephole_optimize_expr(expr, expr_opts)

angr.analyses.decompiler.utils.copy_graph(graph)
Copy AIL Graph.

Returns
A copy of the AIl graph.

Parameters
graph (DiGraph) –

angr.analyses.decompiler.utils.peephole_optimize_stmts(block, stmt_opts)

angr.analyses.decompiler.utils.match_stmt_classes(all_stmts, idx, stmt_class_seq)

Return type
bool

Parameters
• all_stmts (List) –

• idx (int) –

• stmt_class_seq (Iterable[type]) –

angr.analyses.decompiler.utils.peephole_optimize_multistmts(block, stmt_opts)

angr.analyses.decompiler.utils.decompile_functions(path, functions=None, structurer=None,
catch_errors=False)

Decompile a binary into a set of functions.

Parameters
• path – The path to the binary to decompile.

• functions – The functions to decompile. If None, all functions will be decompiled.

• structurer – The structuring algorithms to use.

• catch_errors – The structuring algorithms to use.

Return type
Optional[str]

Returns
The decompilation of all functions appended in order.

746 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.Statement
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

angr

class angr.analyses.ddg.AST(op, *operands)
Bases: object

A mini implementation for AST

__init__(op, *operands)

class angr.analyses.ddg.ProgramVariable(variable, location, initial=False, arch=None)
Bases: object

Describes a variable in the program at a specific location.

Variables
• variable (SimVariable) – The variable.

• location (CodeLocation) – Location of the variable.

__init__(variable, location, initial=False, arch=None)

property short_repr

class angr.analyses.ddg.DDGJob(cfg_node, call_depth)
Bases: object

__init__(cfg_node, call_depth)

class angr.analyses.ddg.LiveDefinitions

Bases: object

A collection of live definitions with some handy interfaces for definition killing and lookups.

__init__()

Constructor.

branch()

Create a branch of the current live definition collection.

Returns
A new LiveDefinition instance.

Return type
angr.analyses.ddg.LiveDefinitions

copy()

Make a hard copy of self.

Returns
A new LiveDefinition instance.

Return type
angr.analyses.ddg.LiveDefinitions

add_def(variable, location, size_threshold=32)
Add a new definition of variable.

Parameters
• variable (SimVariable) – The variable being defined.

• location (CodeLocation) – Location of the varaible being defined.

• size_threshold (int) – The maximum bytes to consider for the variable.

10.15. Analysis 747

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

angr

Returns
True if the definition was new, False otherwise

Return type
bool

add_defs(variable, locations, size_threshold=32)
Add a collection of new definitions of a variable.

Parameters
• variable (SimVariable) – The variable being defined.

• locations (iterable) – A collection of locations where the variable was defined.

• size_threshold (int) – The maximum bytes to consider for the variable.

Returns
True if any of the definition was new, False otherwise

Return type
bool

kill_def(variable, location, size_threshold=32)
Add a new definition for variable and kill all previous definitions.

Parameters
• variable (SimVariable) – The variable to kill.

• location (CodeLocation) – The location where this variable is defined.

• size_threshold (int) – The maximum bytes to consider for the variable.

Returns
None

lookup_defs(variable, size_threshold=32)
Find all definitions of the variable.

Parameters
• variable (SimVariable) – The variable to lookup for.

• size_threshold (int) – The maximum bytes to consider for the variable. For example,
if the variable is 100 byte long, only the first size_threshold bytes are considered.

Returns
A set of code locations where the variable is defined.

Return type
set

items()

An iterator that returns all live definitions.

Returns
The iterator.

Return type
iter

748 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#set

angr

itervariables()

An iterator that returns all live variables.

Returns
The iterator.

Return type
iter

class angr.analyses.ddg.DDGViewItem(ddg, variable, simplified=False)
Bases: object

__init__(ddg, variable, simplified=False)

property depends_on

property dependents

class angr.analyses.ddg.DDGViewInstruction(cfg, ddg, insn_addr, simplified=False)
Bases: object

__init__(cfg, ddg, insn_addr, simplified=False)

property definitions: List[DDGViewItem]

Get all definitions located at the current instruction address.

Returns
A list of ProgramVariable instances.

class angr.analyses.ddg.DDGView(cfg, ddg, simplified=False)
Bases: object

A view of the data dependence graph.

__init__(cfg, ddg, simplified=False)

class angr.analyses.ddg.DDG(cfg, start=None, call_depth=None, block_addrs=None)
Bases: Analysis

This is a fast data dependence graph directly generated from our CFG analysis result. The only reason for its
existence is the speed. There is zero guarantee for being sound or accurate. You are supposed to use it only when
you want to track the simplest data dependence, and you do not care about soundness or accuracy.

For a better data dependence graph, please consider performing a better static analysis first (like Value-set Anal-
ysis), and then construct a dependence graph on top of the analysis result (for example, the VFG in angr).

The DDG is based on a CFG, which should ideally be a CFGEmulated generated with the following options:

• keep_state=True to keep all input states

• state_add_options=angr.options.refs to store memory, register, and temporary value accesses

You may want to consider a high value for context_sensitivity_level as well when generating the CFG.

Also note that since we are using states from CFG, any improvement in analysis performed on CFG (like a
points-to analysis) will directly benefit the DDG.

__init__(cfg, start=None, call_depth=None, block_addrs=None)

Parameters

10.15. Analysis 749

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#object

angr

• cfg – Control flow graph. Please make sure each node has an associated state with it,
e.g. by passing the keep_state=True and state_add_options=angr.options.refs arguments to
CFGEmulated.

• start – An address, Specifies where we start the generation of this data dependence graph.

• call_depth – None or integers. A non-negative integer specifies how deep we would like
to track in the call tree. None disables call_depth limit.

• block_addrs (iterable or None) – A collection of block addresses that the DDG anal-
ysis should be performed on.

property graph

A networkx DiGraph instance representing the dependence relations between statements. :rtype: net-
workx.DiGraph

Type
returns

property data_graph

Get the data dependence graph.

Returns
A networkx DiGraph instance representing data dependence.

Return type
networkx.DiGraph

property simplified_data_graph

return:

property ast_graph

pp()

Pretty printing.

dbg_repr()

Representation for debugging.

get_predecessors(code_location)
Returns all predecessors of the code location.

Parameters
code_location – A CodeLocation instance.

Returns
A list of all predecessors.

function_dependency_graph(func)
Get a dependency graph for the function func.

Parameters
func – The Function object in CFG.function_manager.

Returns
A networkx.DiGraph instance.

data_sub_graph(pv, simplified=True, killing_edges=False, excluding_types=None)
Get a subgraph from the data graph or the simplified data graph that starts from node pv.

Parameters

750 Chapter 10. API Reference

angr

• pv (ProgramVariable) – The starting point of the subgraph.

• simplified (bool) – When True, the simplified data graph is used, otherwise the data
graph is used.

• killing_edges (bool) – Are killing edges included or not.

• excluding_types (iterable) – Excluding edges whose types are among those excluded
types.

Returns
A subgraph.

Return type
networkx.MultiDiGraph

find_definitions(variable, location=None, simplified_graph=True)
Find all definitions of the given variable.

Parameters
• variable (SimVariable) –

• simplified_graph (bool) – True if you just want to search in the simplified graph instead
of the normal graph. Usually the simplified graph suffices for finding definitions of register
or memory variables.

Returns
A collection of all variable definitions to the specific variable.

Return type
list

find_consumers(var_def , simplified_graph=True)
Find all consumers to the specified variable definition.

Parameters
• var_def (ProgramVariable) – The variable definition.

• simplified_graph (bool) – True if we want to search in the simplified graph, False
otherwise.

Returns
A collection of all consumers to the specified variable definition.

Return type
list

find_killers(var_def , simplified_graph=True)
Find all killers to the specified variable definition.

Parameters
• var_def (ProgramVariable) – The variable definition.

• simplified_graph (bool) – True if we want to search in the simplified graph, False
otherwise.

Returns
A collection of all killers to the specified variable definition.

Return type
list

10.15. Analysis 751

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

angr

find_sources(var_def , simplified_graph=True)
Find all sources to the specified variable definition.

Parameters
• var_def (ProgramVariable) – The variable definition.

• simplified_graph (bool) – True if we want to search in the simplified graph, False
otherwise.

Returns
A collection of all sources to the specified variable definition.

Return type
list

project: Project

kb: KnowledgeBase

class angr.analyses.flirt.FlirtAnalysis(sig=None)
Bases: Analysis

FlirtAnalysis accomplishes two purposes:

• If a FLIRT signature file is specified, it will match the given signature file against the current binary and
rename recognized functions accordingly.

• If no FLIRT signature file is specified, it will use strings to determine possible libraries embedded in the
current binary, and then match all possible signatures for the architecture.

Parameters
sig (FlirtSignature | str | None) –

__init__(sig=None)

Parameters
sig (FlirtSignature | str | None) –

project: Project

kb: KnowledgeBase

class angr.engines.light.data.ArithmeticExpression(op, operands)
Bases: object

Add = 0

Sub = 1

Or = 2

And = 4

RShift = 8

LShift = 16

Mul = 32

Xor = 64

752 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

angr

CONST_TYPES = (<class 'int'>, <class 'ailment.expression.Const'>)

__init__(op, operands)

op

operands

static try_unpack_const(expr)

class angr.engines.light.data.RegisterOffset(bits, reg, offset)
Bases: object

__init__(bits, reg, offset)

reg

offset

property bits

property symbolic

class angr.engines.light.data.SpOffset(bits, offset, is_base=False)
Bases: RegisterOffset

__init__(bits, offset, is_base=False)

is_base

class angr.engines.light.engine.SimEngineLightMixin(*args, logger=None, **kwargs)
Bases: object

A mixin base class for engines meant to perform static analysis

__init__(*args, logger=None, **kwargs)

static sp_offset(bits, offset)

Parameters
• bits (int) –

• offset (int) –

static extract_offset_to_sp(spoffset_expr)
Extract the offset to the original stack pointer.

Parameters
spoffset_expr (Base) – The claripy AST to parse.

Return type
Optional[int]

Returns
The offset to the original stack pointer, or None if spoffset_expr is not a supported type of
SpOffset expression.

class angr.engines.light.engine.SimEngineLight

Bases: SimEngineLightMixin, SimEngine

A full-featured engine base class, suitable for static analysis

10.15. Analysis 753

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

angr

__init__()

process(state, *args, **kwargs)
The main entry point for an engine. Should take a state and return a result.

Parameters
state – The state to proceed from

Returns
The result. Whatever you want ;)

class angr.engines.light.engine.SimEngineLightVEXMixin(*args, logger=None, **kwargs)
Bases: SimEngineLightMixin

A mixin for doing static analysis on VEX

class angr.engines.light.engine.SimEngineLightAILMixin(*args, logger=None, **kwargs)
Bases: SimEngineLightMixin

A mixin for doing static analysis on AIL

angr.engines.light.engine.SimEngineLightVEX

alias of SimEngineLightVEXMixin

angr.engines.light.engine.SimEngineLightAIL

alias of SimEngineLightAILMixin

class angr.analyses.propagator.values.Top(size)
Bases: object

__init__(size)

size

property bits

class angr.analyses.propagator.values.Bottom

Bases: object

class angr.analyses.propagator.vex_vars.VEXVariable

Bases: object

class angr.analyses.propagator.vex_vars.VEXMemVar(addr, size)
Bases: object

__init__(addr, size)

addr

size

class angr.analyses.propagator.vex_vars.VEXReg(offset, size)
Bases: VEXVariable

__init__(offset, size)

offset

size

754 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

class angr.analyses.propagator.vex_vars.VEXTmp(tmp)
Bases: VEXVariable

__init__(tmp)

tmp

class angr.analyses.propagator.engine_base.SimEnginePropagatorBase(stack_pointer_tracker=None,
project=None,
propagate_tmps=True,
arch=None,
reaching_definitions=None,
immedi-
ate_stmt_removal=False,
bp_as_gpr=False)

Bases: SimEngineLight

Parameters
• reaching_definitions (ReachingDefinitionsModel | None) –

• immediate_stmt_removal (bool) –

• bp_as_gpr (bool) –

__init__(stack_pointer_tracker=None, project=None, propagate_tmps=True, arch=None,
reaching_definitions=None, immediate_stmt_removal=False, bp_as_gpr=False)

Parameters
• reaching_definitions (ReachingDefinitionsModel | None) –

• immediate_stmt_removal (bool) –

• bp_as_gpr (bool) –

process(state, *args, **kwargs)
The main entry point for an engine. Should take a state and return a result.

Parameters
state – The state to proceed from

Returns
The result. Whatever you want ;)

class angr.analyses.propagator.engine_vex.SimEnginePropagatorVEX(stack_pointer_tracker=None,
project=None,
propagate_tmps=True,
arch=None,
reaching_definitions=None, im-
mediate_stmt_removal=False,
bp_as_gpr=False)

Bases: TopCheckerMixin, SimEngineLightVEXMixin, SimEnginePropagatorBase

Parameters
• reaching_definitions (ReachingDefinitionsModel | None) –

• immediate_stmt_removal (bool) –

• bp_as_gpr (bool) –

10.15. Analysis 755

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

state: PropagatorVEXState

class angr.analyses.propagator.engine_ail.SimEnginePropagatorAIL(stack_pointer_tracker=None,
project=None,
propagate_tmps=True,
arch=None,
reaching_definitions=None, im-
mediate_stmt_removal=False,
bp_as_gpr=False)

Bases: SimEngineLightAILMixin, SimEnginePropagatorBase

The AIl engine for Propagator.

Parameters
• reaching_definitions (ReachingDefinitionsModel | None) –

• immediate_stmt_removal (bool) –

• bp_as_gpr (bool) –

state: PropagatorAILState

extract_offset_to_sp(expr)
Extract the offset to the original stack pointer.

Parameters
• spoffset_expr – The claripy AST to parse.

• expr (Base | StackBaseOffset) –

Return type
Optional[int]

Returns
The offset to the original stack pointer, or None if spoffset_expr is not a supported type of
SpOffset expression.

is_using_outdated_def(expr, expr_defat, current_loc, avoid=None)

Return type
Tuple[bool, bool]

Parameters
• expr (Expression) –

• expr_defat (CodeLocation | None) –

• current_loc (CodeLocation) –

• avoid (Expression | None) –

should_force_replace(stmt, new_expr)
Determine if the expression should be replaced.

We always replace the expression if:

• the current statement is an indirect jump. this is to ensure the dynamically calculated jump targets are
always using the originally defined expressions, which usually leads to better decompilation output.

• the current statement is a return to make void functions (even when we incorrectly determine that they
return something) look better in general.

756 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.StackBaseOffset
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression

angr

• the current statement has a shift-right operation and the source expression has a shift-right operation.
this is to support the peephole optimizations for division and modulo.

Parameters
• stmt (Statement) –

• new_expr (Expression) –

Return type
bool

Returns

static has_tmpexpr(expr)

Return type
bool

Parameters
expr (Expression) –

class angr.analyses.propagator.outdated_definition_walker.OutdatedDefinitionWalker(expr,
expr_defat,
cur-
rent_loc,
state,
arch,
avoid=None,
ex-
tract_offset_to_sp=None,
rda=None)

Bases: AILBlockWalker

Walks an AIL expression to find outdated definitions.

Parameters
• expr_defat (CodeLocation) –

• current_loc (CodeLocation) –

• state (PropagatorAILState) –

• arch (Arch) –

• avoid (Expression | None) –

• extract_offset_to_sp (Callable) –

• rda (ReachingDefinitionsModel) –

__init__(expr, expr_defat, current_loc, state, arch, avoid=None, extract_offset_to_sp=None, rda=None)

Parameters
• expr_defat (CodeLocation) –

• current_loc (CodeLocation) –

• state (PropagatorAILState) –

• arch (Arch) –

• avoid (Expression | None) –

10.15. Analysis 757

https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.Statement
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.AILBlockWalker
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression

angr

• extract_offset_to_sp (Callable | None) –

• rda (ReachingDefinitionsModel | None) –

class angr.analyses.propagator.tmpvar_finder.TmpvarFinder(expr)
Bases: AILBlockWalkerBase

Walks an AIL expression to find Tmp expressions.

Parameters
expr (Expression) –

__init__(expr)

Parameters
expr (Expression) –

class angr.analyses.propagator.propagator.PropagatorAnalysis(func=None, block=None,
func_graph=None,
base_state=None, max_iterations=3,
load_callback=None,
stack_pointer_tracker=None,
only_consts=False,
completed_funcs=None,
do_binops=True, store_tops=True,
vex_cross_insn_opt=False,
func_addr=None, gp=None,
cache_results=False,
key_prefix=None,
reaching_definitions=None,
immediate_stmt_removal=False,
profiling=False)

Bases: ForwardAnalysis, Analysis

PropagatorAnalysis implements copy propagation. It propagates values (either constant values or variables) and
expressions inside a block or across a function.

PropagatorAnalysis supports both VEX and AIL. The VEX propagator only performs constant propagation. The
AIL propagator performs both constant propagation and copy propagation of depth-N expressions.

PropagatorAnalysis performs certain arithmetic operations between constants, including but are not limited to:

• addition

• subtraction

• multiplication

• division

• xor

It also performs the following memory operations:

• Loading values from a known address

• Writing values to a stack variable

__init__(func=None, block=None, func_graph=None, base_state=None, max_iterations=3,
load_callback=None, stack_pointer_tracker=None, only_consts=False, completed_funcs=None,
do_binops=True, store_tops=True, vex_cross_insn_opt=False, func_addr=None, gp=None,
cache_results=False, key_prefix=None, reaching_definitions=None,
immediate_stmt_removal=False, profiling=False)

758 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.AILBlockWalkerBase
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression

angr

Constructor

Parameters
• order_jobs (bool) – If all jobs should be ordered or not.

• allow_merging (bool) – If job merging is allowed.

• allow_widening (bool) – If job widening is allowed.

• graph_visitor (GraphVisitor or None) – A graph visitor to provide successors.

• func_addr (int | None) –

• gp (int | None) –

• cache_results (bool) –

• key_prefix (str | None) –

• reaching_definitions (ReachingDefinitionsModel | None) –

• immediate_stmt_removal (bool) –

• profiling (bool) –

Returns
None

property prop_key: Tuple[str | None, str, int, bool, bool, bool]

Gets a key that represents the function and the “flavor” of the propagation result.

property replacements

project: Project

kb: KnowledgeBase

class angr.analyses.propagator.top_checker_mixin.TopCheckerMixin(*args, logger=None,
**kwargs)

Bases: SimEngineLightMixin

class angr.analyses.reaching_definitions.LiveDefinitions(arch, track_tmps=False,
canonical_size=8, registers=None,
stack=None, memory=None, heap=None,
tmps=None, others=None,
register_uses=None, stack_uses=None,
heap_uses=None, memory_uses=None,
tmp_uses=None, other_uses=None)

Bases: object

A LiveDefinitions instance contains definitions and uses for register, stack, memory, and temporary variables,
uncovered during the analysis.

Parameters
• arch (Arch) –

• track_tmps (bool) –

• registers (MultiValuedMemory) –

• stack (MultiValuedMemory) –

10.15. Analysis 759

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool

angr

• memory (MultiValuedMemory) –

• heap (MultiValuedMemory) –

• tmps (Dict[int, Set[Definition]]) –

• others (Dict[Atom, MultiValues]) –

• tmp_uses (Dict[int, Set[CodeLocation]]) –

INITIAL_SP_32BIT = 2147418112

INITIAL_SP_64BIT = 140737488289792

__init__(arch, track_tmps=False, canonical_size=8, registers=None, stack=None, memory=None,
heap=None, tmps=None, others=None, register_uses=None, stack_uses=None, heap_uses=None,
memory_uses=None, tmp_uses=None, other_uses=None)

Parameters
• arch (Arch) –

• track_tmps (bool) –

project: Optional[Project]

arch

track_tmps

registers: MultiValuedMemory

stack: MultiValuedMemory

memory: MultiValuedMemory

heap: MultiValuedMemory

tmps: Dict[int, Set[Definition]]

others: Dict[Atom, MultiValues]

register_uses

stack_uses

heap_uses

memory_uses

tmp_uses: Dict[int, Set[CodeLocation]]

other_uses

uses_by_codeloc: Dict[CodeLocation, Set[Definition]]

property register_definitions

property stack_definitions

property memory_definitions

property heap_definitions

760 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Set

angr

copy(discard_tmpdefs=False)

Return type
LiveDefinitions

reset_uses()

static top(bits)
Get a TOP value.

Parameters
bits (int) – Width of the TOP value (in bits).

Returns
The TOP value.

static is_top(expr)
Check if the given expression is a TOP value.

Parameters
expr – The given expression.

Return type
bool

Returns
True if the expression is TOP, False otherwise.

stack_address(offset)

Return type
Optional[BV]

Parameters
offset (int) –

static is_stack_address(addr)

Return type
bool

Parameters
addr (Base) –

static get_stack_offset(addr, had_stack_base=False)

Return type
Optional[int]

Parameters
addr (Base) –

static annotate_with_def(symvar, definition)

Parameters
• symvar (BV) –

• definition (Definition) –

Return type
BV

Returns

10.15. Analysis 761

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV

angr

static extract_defs(symvar)

Return type
Generator[Definition, None, None]

Parameters
symvar (Base) –

static extract_defs_from_annotations(annos)

Return type
Set[Definition]

Parameters
annos (Iterable[Annotation]) –

static extract_defs_from_mv(mv)

Return type
Generator[Definition, None, None]

Parameters
mv (MultiValues) –

get_sp()

Return the concrete value contained by the stack pointer.

Return type
int

get_sp_offset()

Return the offset of the stack pointer.

Return type
Optional[int]

get_stack_address(offset)

Return type
Optional[int]

Parameters
offset (Base) –

stack_offset_to_stack_addr(offset)

Return type
int

merge(*others)

Return type
Tuple[LiveDefinitions, bool]

Parameters
others (LiveDefinitions) –

kill_definitions(atom)

Overwrite existing definitions w.r.t ‘atom’ with a dummy definition instance. A dummy definition will not
be removed during simplification.

Parameters
atom (Atom) –

762 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.Annotation
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool

angr

Return type
None

Returns
None

kill_and_add_definition(atom, code_loc, data, dummy=False, tags=None, endness=None,
annotated=False)

Return type
Optional[MultiValues]

Parameters
• atom (Atom) –

• code_loc (CodeLocation) –

• data (MultiValues) –

• tags (Set[Tag] | None) –

add_use(atom, code_loc, expr=None)

Return type
None

Parameters
• atom (Atom) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_use_by_def(definition, code_loc, expr=None)

Return type
None

Parameters
• definition (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

get_definitions(thing)

Return type
Set[Definition[Atom]]

Parameters
thing (Atom | Definition[Atom] | Iterable[Atom] |
Iterable[Definition[Atom]] | MultiValues) –

get_tmp_definitions(tmp_idx)

Return type
Set[Definition]

Parameters
tmp_idx (int) –

10.15. Analysis 763

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int

angr

get_register_definitions(reg_offset, size)

Return type
Set[Definition]

Parameters
• reg_offset (int) –

• size (int) –

get_stack_values(stack_offset, size, endness)

Return type
Optional[MultiValues]

Parameters
• stack_offset (int) –

• size (int) –

• endness (str) –

get_stack_definitions(stack_offset, size)

Return type
Set[Definition]

Parameters
• stack_offset (int) –

• size (int) –

get_heap_definitions(heap_addr, size)

Return type
Set[Definition]

Parameters
• heap_addr (int) –

• size (int) –

get_memory_definitions(addr, size)

Return type
Set[Definition]

Parameters
• addr (int) –

• size (int) –

get_definitions_from_atoms(**kwargs)

get_value_from_definition(**kwargs)

get_one_value_from_definition(**kwargs)

get_concrete_value_from_definition(**kwargs)

get_value_from_atom(**kwargs)

764 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

get_one_value_from_atom(**kwargs)

get_concrete_value_from_atom(**kwargs)

get_values(spec)

Return type
Optional[MultiValues]

Parameters
spec (Atom | Definition[Atom] | Iterable[Atom] |
Iterable[Definition[Atom]]) –

get_one_value(spec, strip_annotations=False)

Return type
Optional[BV]

Parameters
• spec (Atom | Definition | Iterable[Atom] | Iterable[Definition[Atom]])

–

• strip_annotations (bool) –

get_concrete_value(spec, cast_to=<class 'int'>)

Return type
Union[int, bytes, None]

Parameters
• spec (Atom | Definition[Atom] | Iterable[Atom] |
Iterable[Definition[Atom]]) –

• cast_to (Type[int] | Type[bytes]) –

add_register_use(reg_offset, size, code_loc, expr=None)

Return type
None

Parameters
• reg_offset (int) –

• size (int) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_register_use_by_def(def_, code_loc, expr=None)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

10.15. Analysis 765

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any

angr

add_stack_use(atom, code_loc, expr=None)

Return type
None

Parameters
• atom (MemoryLocation) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_stack_use_by_def(def_, code_loc, expr=None)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_heap_use(atom, code_loc, expr=None)

Return type
None

Parameters
• atom (MemoryLocation) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_heap_use_by_def(def_, code_loc, expr=None)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_memory_use(atom, code_loc, expr=None)

Return type
None

Parameters
• atom (MemoryLocation) –

• code_loc (CodeLocation) –

• expr (Any | None) –

766 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any

angr

add_memory_use_by_def(def_, code_loc, expr=None)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

• expr (Any | None) –

add_tmp_use(atom, code_loc)

Return type
None

Parameters
• atom (Tmp) –

• code_loc (CodeLocation) –

add_tmp_use_by_def(def_, code_loc)

Return type
None

Parameters
• def_ (Definition) –

• code_loc (CodeLocation) –

deref(pointer, size, endness=Endness.BE)

static is_heap_address(addr)

Return type
bool

Parameters
addr (Base) –

static get_heap_offset(addr)

Return type
Optional[int]

Parameters
addr (Base) –

heap_address(offset)

Return type
BV

Parameters
offset (int | HeapAddress) –

class angr.analyses.reaching_definitions.ObservationPointType(value)
Bases: IntEnum

Enum to replace the previously generic constants This makes it possible to annotate where they are expected by
typing something as ObservationPointType instead of Literal[0,1]

10.15. Analysis 767

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/enum.html#enum.IntEnum

angr

OP_BEFORE = 0

OP_AFTER = 1

class angr.analyses.reaching_definitions.AtomKind(value)
Bases: Enum

An enum indicating the class of an atom

REGISTER = 1

MEMORY = 2

TMP = 3

GUARD = 4

CONSTANT = 5

class angr.analyses.reaching_definitions.Atom(size)
Bases: object

This class represents a data storage location manipulated by IR instructions.

It could either be a Tmp (temporary variable), a Register, a MemoryLocation.

__init__(size)

Parameters
size – The size of the atom in bytes

size

property bits: int

static from_ail_expr(expr, arch, full_reg=False)

Return type
Register

Parameters
• expr (Expression) –

• arch (Arch) –

• full_reg (bool) –

static from_argument(argument, arch, full_reg=False, sp=None)
Instanciate an Atom from a given argument.

Parameters
• argument (SimFunctionArgument) – The argument to create a new atom from.

• registers – A mapping representing the registers of a given architecture.

• full_reg – Whether to return an atom indicating the entire register if the argument only
specifies a slice of the register.

• sp (Optional[int]) – The current stack offset. Optional. Only used when argument is a
SimStackArg.

• arch (Arch) –

768 Chapter 10. API Reference

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.expression.Expression
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch

angr

Return type
Union[Register, MemoryLocation]

static reg(thing, size=None, arch=None)
Create a Register atom.

Parameters
• thing (Union[str, RegisterOffset]) – The register offset (e.g.,

project.arch.registers[“rax”][0]) or the register name (e.g., “rax”).

• size (Optional[int]) – Size of the register atom. Must be provided when creating the
atom using a register offset.

• arch (Optional[Arch]) – The architecture. Must be provided when creating the atom
using a register name.

Return type
Register

Returns
The Register Atom object.

static register(thing, size=None, arch=None)
Create a Register atom.

Parameters
• thing (Union[str, RegisterOffset]) – The register offset (e.g.,

project.arch.registers[“rax”][0]) or the register name (e.g., “rax”).

• size (Optional[int]) – Size of the register atom. Must be provided when creating the
atom using a register offset.

• arch (Optional[Arch]) – The architecture. Must be provided when creating the atom
using a register name.

Return type
Register

Returns
The Register Atom object.

static mem(addr, size, endness=None)
Create a MemoryLocation atom,

Parameters
• addr (Union[SpOffset, HeapAddress, int]) – The memory location. Can be an SpOff-

set for stack variables, an int for global memory variables, or a HeapAddress for items on
the heap.

• size (int) – Size of the atom.

• endness (Optional[str]) – Optional, either “Iend_LE” or “Iend_BE”.

Return type
MemoryLocation

Returns
The MemoryLocation Atom object.

10.15. Analysis 769

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.types.RegisterOffset
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.types.RegisterOffset
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

angr

static memory(addr, size, endness=None)
Create a MemoryLocation atom,

Parameters
• addr (Union[SpOffset, HeapAddress, int]) – The memory location. Can be an SpOff-

set for stack variables, an int for global memory variables, or a HeapAddress for items on
the heap.

• size (int) – Size of the atom.

• endness (Optional[str]) – Optional, either “Iend_LE” or “Iend_BE”.

Return type
MemoryLocation

Returns
The MemoryLocation Atom object.

class angr.analyses.reaching_definitions.Register(reg_offset, size, arch=None)
Bases: Atom

Represents a given CPU register.

As an IR abstracts the CPU design to target different architectures, registers are represented as a separated mem-
ory space. Thus a register is defined by its offset from the base of this memory and its size.

Variables
• reg_offset (int) – The offset from the base to define its place in the memory bloc.

• size (int) – The size, in number of bytes.

Parameters
• reg_offset (RegisterOffset) –

• size (int) –

• arch (Arch | None) –

__init__(reg_offset, size, arch=None)

Parameters
• size (int) – The size of the atom in bytes

• reg_offset (RegisterOffset) –

• arch (Arch | None) –

reg_offset

arch

property name: str

class angr.analyses.reaching_definitions.MemoryLocation(addr, size, endness=None)
Bases: Atom

Represents a memory slice.

It is characterized by its address and its size.

Parameters
• addr (SpOffset | int | BV) –

770 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.types.RegisterOffset
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.types.RegisterOffset
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV

angr

• size (int) –

• endness (str | None) –

__init__(addr, size, endness=None)

Parameters
• addr (int) – The address of the beginning memory location slice.

• size (int) – The size of the represented memory location, in bytes.

• endness (str | None) –

addr: Union[SpOffset, int, BV]

endness

property is_on_stack: bool

True if this memory location is located on the stack.

property symbolic: bool

class angr.analyses.reaching_definitions.Tmp(tmp_idx, size)
Bases: Atom

Represents a variable used by the IR to store intermediate values.

Parameters
• tmp_idx (int) –

• size (int) –

__init__(tmp_idx, size)

Parameters
• size (int) – The size of the atom in bytes

• tmp_idx (int) –

tmp_idx

class angr.analyses.reaching_definitions.GuardUse(target)
Bases: Atom

Implements a guard use.

__init__(target)

Parameters
size – The size of the atom in bytes

target

class angr.analyses.reaching_definitions.ConstantSrc(value, size)
Bases: Atom

Represents a constant.

Parameters
• value (int) –

• size (int) –

10.15. Analysis 771

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

__init__(value, size)

Parameters
• size (int) – The size of the atom in bytes

• value (int) –

value: int

class angr.analyses.reaching_definitions.Definition(atom, codeloc, dummy=False, tags=None)
Bases: Generic[A]

An atom definition.

Variables
• atom – The atom being defined.

• codeloc – Where this definition is created in the original binary code.

• dummy – Tell whether the definition should be considered dummy or not. During simplifica-
tion by AILment, definitions marked as dummy will not be removed.

• tags – A set of tags containing information about the definition gathered during analyses.

__init__(atom, codeloc, dummy=False, tags=None)

Parameters
• atom (A) –

• codeloc (CodeLocation) –

• dummy (bool) –

• tags (Set[Tag] | None) –

atom: TypeVar(A, bound= Atom)

codeloc: CodeLocation

dummy: bool

tags

property offset: int

property size: int

matches(**kwargs)
Return whether this definition has certain characteristics.

Return type
bool

772 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

class angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis(subject=None,
func_graph=None,
max_iterations=3,
track_tmps=False,
track_consts=True,
observation_points=None,
init_state=None,
init_context=None,
state_initializer=None,
cc=None,
function_handler=None,
observe_all=False,
visited_blocks=None,
dep_graph=True,
observe_callback=None,
canonical_size=8,
stack_pointer_tracker=None,
use_callee_saved_regs_at_return=True,
interfunction_level=0,
track_liveness=True,
func_addr=None)

Bases: ForwardAnalysis[ReachingDefinitionsState, NodeType, object, object], Analysis

ReachingDefinitionsAnalysis is a text-book implementation of a static data-flow analysis that works on either a
function or a block. It supports both VEX and AIL. By registering observers to observation points, users may use
this analysis to generate use-def chains, def-use chains, and reaching definitions, and perform other traditional
data-flow analyses such as liveness analysis.

• I’ve always wanted to find a better name for this analysis. Now I gave up and decided to live with this name
for the foreseeable future (until a better name is proposed by someone else).

• Aliasing is definitely a problem, and I forgot how aliasing is resolved in this implementation. I’ll leave this
as a post-graduation TODO.

• Some more documentation and examples would be nice.

__init__(subject=None, func_graph=None, max_iterations=3, track_tmps=False, track_consts=True,
observation_points=None, init_state=None, init_context=None, state_initializer=None, cc=None,
function_handler=None, observe_all=False, visited_blocks=None, dep_graph=True,
observe_callback=None, canonical_size=8, stack_pointer_tracker=None,
use_callee_saved_regs_at_return=True, interfunction_level=0, track_liveness=True,
func_addr=None)

Parameters
• subject (Union[Subject, Block, Block , Function, str, None]) – The subject of the

analysis: a function, or a single basic block

• func_graph – Alternative graph for function.graph.

• max_iterations – The maximum number of iterations before the analysis is terminated.

• track_tmps – Whether or not temporary variables should be taken into consideration
during the analysis.

• observation_points (iterable) – A collection of tuples of (“node”|”insn”, ins_addr,
OP_TYPE) defining where reaching definitions should be copied and stored. OP_TYPE
can be OP_BEFORE or OP_AFTER.

10.15. Analysis 773

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

angr

• init_state (Optional[ReachingDefinitionsState]) – An optional initialization
state. The analysis creates and works on a copy. Default to None: the analysis then initialize
its own abstract state, based on the given <Subject>.

• init_context – If init_state is not given, this is used to initialize the context field of the
initial state’s CodeLocation. The only default-supported type which may go here is a tuple
of integers, i.e. a callstack. Anything else requires a custom FunctionHandler.

• cc – Calling convention of the function.

• function_handler (Optional[FunctionHandler]) – The function handler to update
the analysis state and results on function calls.

• observe_all – Observe every statement, both before and after.

• visited_blocks – A set of previously visited blocks.

• dep_graph (Union[DepGraph , bool, None]) – An initial dependency graph to add the
result of the analysis to. Set it to None to skip dependency graph generation.

• canonical_size – The sizes (in bytes) that objects with an UNKNOWN_SIZE are treated
as for operations where sizes are necessary.

• dep_graph – Set this to True to generate a dependency graph for the subject. It will be
available as result.dep_graph.

• interfunction_level (int) – The number of functions we should recurse into. This
parameter is only used if function_handler is not provided.

• track_liveness (bool) – Whether to track liveness information. This can consume size-
able amounts of RAM on large functions. (e.g. ~15GB for a function with 4k nodes)

• state_initializer (RDAStateInitializer | None) –

• func_addr (int | None) –

property observed_results: Dict[Tuple[str, int, int], LiveDefinitions]

property all_definitions

property all_uses

property one_result

property dep_graph: DepGraph

property visited_blocks

get_reaching_definitions(**kwargs)

get_reaching_definitions_by_insn(ins_addr, op_type)

get_reaching_definitions_by_node(node_addr, op_type)

node_observe(node_addr, state, op_type, node_idx=None)

Parameters
• node_addr (int) – Address of the node.

• state (ReachingDefinitionsState) – The analysis state.

• op_type (ObservationPointType) – Type of the observation point. Must be one of the
following: OP_BEFORE, OP_AFTER.

774 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

• node_idx (Optional[int]) – ID of the node. Used in AIL to differentiate blocks with the
same address.

Return type
None

insn_observe(insn_addr, stmt, block, state, op_type)

Parameters
• insn_addr (int) – Address of the instruction.

• stmt (Union[Statement, IRStmt]) – The statement.

• block (Union[Block , Block]) – The current block.

• state (ReachingDefinitionsState) – The abstract analysis state.

• op_type (ObservationPointType) – Type of the observation point. Must be one of the
following: OP_BEORE, OP_AFTER.

Return type
None

stmt_observe(stmt_idx, stmt, block, state, op_type)

Parameters
• stmt_idx (int) –

• stmt (Union[Statement, IRStmt]) –

• block (Union[Block , Block]) –

• state (ReachingDefinitionsState) –

• op_type (ObservationPointType) –

Return type
None

Returns
exit_observe(node_addr, exit_stmt_idx, block, state, node_idx=None)

Parameters
• node_addr (int) –

• exit_stmt_idx (int) –

• block (Block | Block) –

• state (ReachingDefinitionsState) –

• node_idx (int | None) –

property subject

project: Project

kb: KnowledgeBase

10.15. Analysis 775

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.Statement
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.stmt.IRStmt
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.Statement
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.stmt.IRStmt
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/functions.html#int

angr

callsites_to(target)

Return type
Iterable[FunctionCallRelationships]

Parameters
target (int | str | Function) –

class angr.analyses.reaching_definitions.ReachingDefinitionsModel(func_addr=None,
track_liveness=True)

Bases: object

Models the definitions, uses, and memory of a ReachingDefinitionState object

Parameters
• func_addr (int | None) –

• track_liveness (bool) –

__init__(func_addr=None, track_liveness=True)

Parameters
• func_addr (int | None) –

• track_liveness (bool) –

add_def(d)

Return type
None

Parameters
d (Definition) –

kill_def(d)

Return type
None

Parameters
d (Definition) –

at_new_stmt(codeloc)

Return type
None

Parameters
codeloc (CodeLocation) –

at_new_block(code_loc, pred_codelocs)

Return type
None

Parameters
• code_loc (CodeLocation) –

• pred_codelocs (List[CodeLocation]) –

776 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List

angr

make_liveness_snapshot()

Return type
None

find_defs_at(code_loc, op=ObservationPointType.OP_BEFORE)

Return type
Set[Definition]

Parameters
• code_loc (CodeLocation) –

• op (int) –

get_defs(atom, code_loc, op)

Return type
Set[Definition]

Parameters
• atom (Atom) –

• code_loc (CodeLocation) –

• op (int) –

copy()

Return type
ReachingDefinitionsModel

merge(model)

Parameters
model (ReachingDefinitionsModel) –

get_observation_by_insn(ins_addr, kind)

Return type
Optional[LiveDefinitions]

Parameters
• ins_addr (int | CodeLocation) –

• kind (ObservationPointType) –

get_observation_by_node(node_addr, kind, node_idx=None)

Return type
Optional[LiveDefinitions]

Parameters
• node_addr (int | CodeLocation) –

• kind (ObservationPointType) –

• node_idx (int | None) –

get_observation_by_stmt(arg1, arg2, arg3=None, *, block_idx=None)

10.15. Analysis 777

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

get_observation_by_exit(node_addr, stmt_idx, src_node_idx=None)

Return type
Optional[LiveDefinitions]

Parameters
• node_addr (int) –

• stmt_idx (int) –

• src_node_idx (int | None) –

class angr.analyses.reaching_definitions.ReachingDefinitionsState(codeloc, arch, subject,
track_tmps=False,
track_consts=False,
analysis=None,
rtoc_value=None,
live_definitions=None,
canonical_size=8,
heap_allocator=None,
environment=None,
sp_adjusted=False,
all_definitions=None,
initializer=None)

Bases: object

Represents the internal state of the ReachingDefinitionsAnalysis.

It contains a data class LiveDefinitions, which stores both definitions and uses for register, stack, memory, and
temporary variables, uncovered during the analysis.

Parameters
• subject (Subject) – The subject being analyzed.

• track_tmps (bool) – Only tells whether or not temporary variables should be taken into
consideration when representing the state of the analysis. Should be set to true when the
analysis has counted uses and definitions for temporary variables, false otherwise.

• analysis (Optional[ReachingDefinitionsAnalysis]) – The analysis that generated
the state represented by this object.

• rtoc_value – When the targeted architecture is ppc64, the initial function needs to know
the rtoc_value.

• live_definitions (Optional[LiveDefinitions]) –

• canonical_size (int) – The sizes (in bytes) that objects with an UNKNOWN_SIZE are
treated as for operations where sizes are necessary.

• heap_allocator (Optional[HeapAllocator]) – Mechanism to model the management
of heap memory.

• environment (Optional[Environment]) – Representation of the environment of the an-
alyzed program.

• codeloc (CodeLocation) –

• arch (Arch) –

• track_consts (bool) –

• sp_adjusted (bool) –

778 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• all_definitions (Set[Definition] | None) –

• initializer (RDAStateInitializer | None) –

Variables
arch – The architecture targeted by the program.

__init__(codeloc, arch, subject, track_tmps=False, track_consts=False, analysis=None, rtoc_value=None,
live_definitions=None, canonical_size=8, heap_allocator=None, environment=None,
sp_adjusted=False, all_definitions=None, initializer=None)

Parameters
• codeloc (CodeLocation) –

• arch (Arch) –

• subject (Subject) –

• track_tmps (bool) –

• track_consts (bool) –

• analysis (ReachingDefinitionsAnalysis | None) –

• live_definitions (LiveDefinitions | None) –

• canonical_size (int) –

• heap_allocator (HeapAllocator | None) –

• environment (Environment | None) –

• sp_adjusted (bool) –

• all_definitions (Set[Definition] | None) –

• initializer (RDAStateInitializer | None) –

codeloc

arch: Arch

analysis

all_definitions: Set[Definition]

heap_allocator

codeloc_uses: Set[Definition]

exit_observed: bool

live_definitions

top(bits)

Parameters
bits (int) –

is_top(*args)

10.15. Analysis 779

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

heap_address(offset)

Return type
BV

Parameters
offset (int | HeapAddress) –

static is_heap_address(addr)

Return type
bool

Parameters
addr (Base) –

static get_heap_offset(addr)

Return type
Optional[int]

Parameters
addr (Base) –

stack_address(offset)

Return type
BV

Parameters
offset (int) –

is_stack_address(addr)

Return type
bool

Parameters
addr (Base) –

get_stack_offset(addr)

Return type
Optional[int]

Parameters
addr (Base) –

annotate_with_def(symvar, definition)

Parameters
• symvar (Base) –

• definition (Definition) –

Return type
Base

Returns

780 Chapter 10. API Reference

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base

angr

annotate_mv_with_def(mv, definition)

Return type
MultiValues

Parameters
• mv (MultiValues) –

• definition (Definition) –

extract_defs(symvar)

Return type
Iterator[Definition]

Parameters
symvar (Base) –

property tmps

property tmp_uses

property register_uses

property registers: MultiValuedMemory

property stack: MultiValuedMemory

property stack_uses

property heap: MultiValuedMemory

property heap_uses

property memory_uses

property memory: MultiValuedMemory

property uses_by_codeloc

get_sp()

Return type
int

get_stack_address(offset)

Return type
int

Parameters
offset (Base) –

property environment

property dep_graph

copy(discard_tmpdefs=False)

Return type
ReachingDefinitionsState

10.15. Analysis 781

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base

angr

merge(*others)

Return type
Tuple[ReachingDefinitionsState, bool]

move_codelocs(new_codeloc)

Return type
None

Parameters
new_codeloc (CodeLocation) –

kill_definitions(atom)

Overwrite existing definitions w.r.t ‘atom’ with a dummy definition instance. A dummy definition will not
be removed during simplification.

Return type
None

Parameters
atom (Atom) –

kill_and_add_definition(atom, data, dummy=False, tags=None, endness=None, annotated=False,
uses=None, override_codeloc=None)

Return type
Tuple[Optional[MultiValues], Set[Definition]]

Parameters
• atom (Atom) –

• data (MultiValues) –

• tags (Set[Tag] | None) –

• annotated (bool) –

• uses (Set[Definition] | None) –

• override_codeloc (CodeLocation | None) –

add_use(atom, expr=None)

Return type
None

Parameters
• atom (Atom) –

• expr (Any | None) –

add_use_by_def(definition, expr=None)

Return type
None

Parameters
• definition (Definition) –

• expr (Any | None) –

782 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any

angr

add_tmp_use(tmp, expr=None)

Return type
None

Parameters
• tmp (int) –

• expr (Any | None) –

add_tmp_use_by_defs(defs, expr=None)

Return type
None

Parameters
• defs (Iterable[Definition]) –

• expr (Any | None) –

add_register_use(reg_offset, size, expr=None)

Return type
None

Parameters
• reg_offset (int) –

• size (int) –

• expr (Any | None) –

add_register_use_by_defs(defs, expr=None)

Return type
None

Parameters
• defs (Iterable[Definition]) –

• expr (Any | None) –

add_stack_use(stack_offset, size, expr=None)

Return type
None

Parameters
• stack_offset (int) –

• size (int) –

• expr (Any | None) –

add_stack_use_by_defs(defs, expr=None)

Parameters
• defs (Iterable[Definition]) –

• expr (Any | None) –

10.15. Analysis 783

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any

angr

add_heap_use(heap_offset, size, expr=None)

Return type
None

Parameters
• heap_offset (int) –

• size (int) –

• expr (Any | None) –

add_heap_use_by_defs(defs, expr=None)

Parameters
• defs (Iterable[Definition]) –

• expr (Any | None) –

add_memory_use_by_def(definition, expr=None)

Parameters
• definition (Definition) –

• expr (Any | None) –

add_memory_use_by_defs(defs, expr=None)

Parameters
• defs (Iterable[Definition]) –

• expr (Any | None) –

get_definitions(atom)

Return type
Set[Definition]

Parameters
atom (Atom | Definition | Iterable[Atom] | Iterable[Definition]) –

get_values(spec)

Return type
Optional[MultiValues]

Parameters
spec (Atom | Definition | Iterable[Atom]) –

get_one_value(spec, strip_annotations=False)

Return type
Optional[BV]

Parameters
• spec (Atom | Definition) –

• strip_annotations (bool) –

784 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#bool

angr

get_concrete_value(spec, cast_to=<class 'int'>)

Return type
Union[int, bytes, None]

Parameters
• spec (Atom | Definition[Atom] | Iterable[Atom]) –

• cast_to (Type[int] | Type[bytes]) –

mark_guard(target)

mark_const(value, size)

Parameters
• value (int) –

• size (int) –

downsize()

pointer_to_atoms(**kwargs)

pointer_to_atom(**kwargs)

deref(pointer, size, endness=Endness.BE)

Parameters
• pointer (MultiValues | Atom | Definition | Iterable[Atom] |
Iterable[Definition] | int | BV | HeapAddress | SpOffset) –

• size (int | DerefSize) –

• endness (str) –

class angr.analyses.reaching_definitions.FunctionHandler(interfunction_level=0)
Bases: object

A mechanism for summarizing a function call’s effect on a program for ReachingDefinitionsAnalysis.

Parameters
interfunction_level (int) –

__init__(interfunction_level=0)

Parameters
interfunction_level (int) –

hook(analysis)
Attach this instance of the function handler to an instance of RDA.

Return type
FunctionHandler

Parameters
analysis (ReachingDefinitionsAnalysis) –

make_function_codeloc(target, callsite, callsite_func_addr)
The RDA engine will call this function to transform a callsite CodeLocation into a callee CodeLocation.

Parameters

10.15. Analysis 785

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

• target (None | int | MultiValues) –

• callsite (CodeLocation) –

• callsite_func_addr (int | None) –

handle_function(state, data)
The main entry point for the function handler. Called with a RDA state and a FunctionCallData, it is
expected to update the state and the data as per the contracts described on FunctionCallData.

You can override this method to take full control over how data is processed, or override any of the following
to use the higher-level interface (data.depends()):

• handle_impl_<function name> - used for <function name>.

• handle_local_function - used for any function (excluding plt stubs) whose address is inside the main
binary.

• handle_external_function - used for any function or plt stub whose address is outside the main binary.

• handle_indirect_function - used for any function whose target cannot be resolved.

• handle_generic_function - used as a default if none of the above are overridden.

Each of them take the same signature as handle_function.

Parameters
• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

handle_generic_function(state, data)

Parameters
• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

handle_indirect_function(state, data)

Return type
None

Parameters
• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

handle_local_function(state, data)

Return type
None

Parameters
• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

handle_external_function(state, data)

Return type
None

Parameters

786 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

angr

• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

recurse_analysis(state, data)
Precondition: data.function MUST NOT BE NONE in order to call this method.

Return type
None

Parameters
• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

static c_args_as_atoms(state, cc, prototype)

Return type
List[Set[Atom]]

Parameters
• state (ReachingDefinitionsState) –

• cc (SimCC) –

• prototype (SimTypeFunction) –

static c_return_as_atoms(state, cc, prototype)

Return type
Set[Atom]

Parameters
• state (ReachingDefinitionsState) –

• cc (SimCC) –

• prototype (SimTypeFunction) –

static caller_saved_regs_as_atoms(state, cc)

Return type
Set[Register]

Parameters
• state (ReachingDefinitionsState) –

• cc (SimCC) –

static stack_pointer_as_atom(state)

Return type
Register

10.15. Analysis 787

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set

angr

class angr.analyses.reaching_definitions.FunctionCallData(callsite_codeloc, function_codeloc,
address_multi, address=None,
symbol=None, function=None,
name=None, cc=None, prototype=None,
args_atoms=None, args_values=None,
ret_atoms=None, redefine_locals=True,
visited_blocks=None, effects=<factory>,
ret_values=None,
ret_values_deps=None,
caller_will_handle_single_ret=False,
guessed_cc=False,
guessed_prototype=False,
retaddr_popped=False)

Bases: object

A bundle of intermediate data used when computing the sum effect of a function during ReachingDefinitions-
Analysis.

RDA engine contract:

• Construct one of these before calling FunctionHandler.handle_function. Fill it with as many fields as you
can realistically provide without duplicating effort.

• Provide callsite_codeloc as either the call statement (AIL) or the default exit of the default statement of the
calling block (VEX)

• Provide function_codeloc as the callee address with stmt_idx=0`.

Function handler contract:

• If redefine_locals is unset, do not adjust any artifacts of the function call abstraction, such as the stack
pointer, the caller saved registers, etc.

• If caller_will_handle_single_ret is set, and there is a single entry in ret_atoms, do not apply to the state
effects modifying this atom. Instead, set ret_values and ret_values_deps to the values and deps which are
used constructing these values.

Parameters
• callsite_codeloc (CodeLocation) –

• function_codeloc (CodeLocation) –

• address_multi (MultiValues | None) –

• address (int | None) –

• symbol (Symbol | None) –

• function (Function | None) –

• name (str | None) –

• cc (SimCC | None) –

• prototype (SimTypeFunction | None) –

• args_atoms (List[Set[Atom]] | None) –

• args_values (List[MultiValues] | None) –

• ret_atoms (Set[Atom] | None) –

• redefine_locals (bool) –

788 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/cle/en/latest/api/backend.html#cle.backends.symbol.Symbol
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool

angr

• visited_blocks (Set[int] | None) –

• effects (List[FunctionEffect]) –

• ret_values (MultiValues | None) –

• ret_values_deps (Set[Definition] | None) –

• caller_will_handle_single_ret (bool) –

• guessed_cc (bool) –

• guessed_prototype (bool) –

• retaddr_popped (bool) –

callsite_codeloc: CodeLocation

function_codeloc: CodeLocation

address_multi: Optional[MultiValues]

address: Optional[int] = None

symbol: Optional[Symbol] = None

function: Optional[Function] = None

name: Optional[str] = None

cc: Optional[SimCC] = None

prototype: Optional[SimTypeFunction] = None

args_atoms: Optional[List[Set[Atom]]] = None

args_values: Optional[List[MultiValues]] = None

ret_atoms: Optional[Set[Atom]] = None

redefine_locals: bool = True

visited_blocks: Optional[Set[int]] = None

effects: List[FunctionEffect]

ret_values: Optional[MultiValues] = None

ret_values_deps: Optional[Set[Definition]] = None

caller_will_handle_single_ret: bool = False

guessed_cc: bool = False

guessed_prototype: bool = False

retaddr_popped: bool = False

10.15. Analysis 789

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/cle/en/latest/api/backend.html#cle.backends.symbol.Symbol
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

has_clobbered(dest)
Determines whether the given atom already has effects applied

Return type
bool

Parameters
dest (Atom) –

depends(dest, *sources, value=None, apply_at_callsite=False, tags=None)
Mark a single effect of the current function, including the atom being modified, the input atoms on which
that output atom depends, the precise (or imprecise!) value to store, and whether the effect should be
applied during the function or afterwards, at the callsite.

The tags are used to annotate the Definition of the Atom that will be created, when the function effects are
applied to the state.

The atom being modified may be None to mark uses of the source atoms which do not have any explicit
sinks.

Parameters
• dest (Atom | Iterable[Atom] | None) –

• sources (Atom | Iterable[Atom]) –

• value (MultiValues | BV | bytes | int | None) –

• apply_at_callsite (bool) –

• tags (Set[Tag] | None) –

reset_prototype(prototype, state, soft_reset=False)

Return type
Set[Atom]

Parameters
• prototype (SimTypeFunction) –

• state (ReachingDefinitionsState) –

• soft_reset (bool) –

__init__(callsite_codeloc, function_codeloc, address_multi, address=None, symbol=None, function=None,
name=None, cc=None, prototype=None, args_atoms=None, args_values=None, ret_atoms=None,
redefine_locals=True, visited_blocks=None, effects=<factory>, ret_values=None,
ret_values_deps=None, caller_will_handle_single_ret=False, guessed_cc=False,
guessed_prototype=False, retaddr_popped=False)

Parameters
• callsite_codeloc (CodeLocation) –

• function_codeloc (CodeLocation) –

• address_multi (MultiValues | None) –

• address (int | None) –

• symbol (Symbol | None) –

• function (Function | None) –

• name (str | None) –

790 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/cle/en/latest/api/backend.html#cle.backends.symbol.Symbol
https://docs.python.org/3/library/stdtypes.html#str

angr

• cc (SimCC | None) –

• prototype (SimTypeFunction | None) –

• args_atoms (List[Set[Atom]] | None) –

• args_values (List[MultiValues] | None) –

• ret_atoms (Set[Atom] | None) –

• redefine_locals (bool) –

• visited_blocks (Set[int] | None) –

• effects (List[FunctionEffect]) –

• ret_values (MultiValues | None) –

• ret_values_deps (Set[Definition] | None) –

• caller_will_handle_single_ret (bool) –

• guessed_cc (bool) –

• guessed_prototype (bool) –

• retaddr_popped (bool) –

Return type
None

angr.analyses.reaching_definitions.get_all_definitions(region)

Return type
Set[Definition]

Parameters
region (MultiValuedMemory) –

class angr.analyses.reaching_definitions.call_trace.CallSite(caller_func_addr, block_addr,
callee_func_addr)

Bases: object

Describes a call site on a CFG.

Parameters
• caller_func_addr (int) –

• block_addr (int | None) –

• callee_func_addr (int) –

__init__(caller_func_addr, block_addr, callee_func_addr)

Parameters
• caller_func_addr (int) –

• block_addr (int | None) –

• callee_func_addr (int) –

caller_func_addr

callee_func_addr

10.15. Analysis 791

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

block_addr

class angr.analyses.reaching_definitions.call_trace.CallTrace(target)
Bases: object

Describes a series of functions calls to get from one function (current_function_address()) to another function
or a basic block (self.target).

Parameters
target (int) –

__init__(target)

Parameters
target (int) –

target

callsites: List[CallSite]

current_function_address()

Return type
int

step_back(caller_func_addr, block_addr, callee_func_addr)

Return type
CallTrace

Parameters
• caller_func_addr (int) –

• block_addr (int | None) –

includes_function(func_addr)

Return type
bool

Parameters
func_addr (int) –

copy()

Return type
CallTrace

class angr.analyses.reaching_definitions.engine_vex.SimEngineRDVEX(project, functions=None,
function_handler=None)

Bases: SimEngineLightVEXMixin, SimEngineLight

Implements the VEX execution engine for reaching definition analysis.

__init__(project, functions=None, function_handler=None)

process(state, *args, block=None, fail_fast=False, visited_blocks=None, dep_graph=None, **kwargs)
The main entry point for an engine. Should take a state and return a result.

Parameters
state – The state to proceed from

792 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

Returns
The result. Whatever you want ;)

class angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis(subject=None,
func_graph=None,
max_iterations=3,
track_tmps=False,
track_consts=True,
ob-
ser-
va-
tion_points=None,
init_state=None,
init_context=None,
state_initializer=None,
cc=None,
func-
tion_handler=None,
ob-
serve_all=False,
vis-
ited_blocks=None,
dep_graph=True,
ob-
serve_callback=None,
canon-
i-
cal_size=8,
stack_pointer_tracker=None,
use_callee_saved_regs_at_return=True,
in-
ter-
func-
tion_level=0,
track_liveness=True,
func_addr=None)

Bases: ForwardAnalysis[ReachingDefinitionsState, NodeType, object, object], Analysis

ReachingDefinitionsAnalysis is a text-book implementation of a static data-flow analysis that works on either a
function or a block. It supports both VEX and AIL. By registering observers to observation points, users may use
this analysis to generate use-def chains, def-use chains, and reaching definitions, and perform other traditional
data-flow analyses such as liveness analysis.

• I’ve always wanted to find a better name for this analysis. Now I gave up and decided to live with this name
for the foreseeable future (until a better name is proposed by someone else).

• Aliasing is definitely a problem, and I forgot how aliasing is resolved in this implementation. I’ll leave this
as a post-graduation TODO.

• Some more documentation and examples would be nice.

__init__(subject=None, func_graph=None, max_iterations=3, track_tmps=False, track_consts=True,
observation_points=None, init_state=None, init_context=None, state_initializer=None, cc=None,
function_handler=None, observe_all=False, visited_blocks=None, dep_graph=True,
observe_callback=None, canonical_size=8, stack_pointer_tracker=None,
use_callee_saved_regs_at_return=True, interfunction_level=0, track_liveness=True,
func_addr=None)

10.15. Analysis 793

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

Parameters
• subject (Union[Subject, Block, Block , Function, str, None]) – The subject of the

analysis: a function, or a single basic block

• func_graph – Alternative graph for function.graph.

• max_iterations – The maximum number of iterations before the analysis is terminated.

• track_tmps – Whether or not temporary variables should be taken into consideration
during the analysis.

• observation_points (iterable) – A collection of tuples of (“node”|”insn”, ins_addr,
OP_TYPE) defining where reaching definitions should be copied and stored. OP_TYPE
can be OP_BEFORE or OP_AFTER.

• init_state (Optional[ReachingDefinitionsState]) – An optional initialization
state. The analysis creates and works on a copy. Default to None: the analysis then initialize
its own abstract state, based on the given <Subject>.

• init_context – If init_state is not given, this is used to initialize the context field of the
initial state’s CodeLocation. The only default-supported type which may go here is a tuple
of integers, i.e. a callstack. Anything else requires a custom FunctionHandler.

• cc – Calling convention of the function.

• function_handler (Optional[FunctionHandler]) – The function handler to update
the analysis state and results on function calls.

• observe_all – Observe every statement, both before and after.

• visited_blocks – A set of previously visited blocks.

• dep_graph (Union[DepGraph , bool, None]) – An initial dependency graph to add the
result of the analysis to. Set it to None to skip dependency graph generation.

• canonical_size – The sizes (in bytes) that objects with an UNKNOWN_SIZE are treated
as for operations where sizes are necessary.

• dep_graph – Set this to True to generate a dependency graph for the subject. It will be
available as result.dep_graph.

• interfunction_level (int) – The number of functions we should recurse into. This
parameter is only used if function_handler is not provided.

• track_liveness (bool) – Whether to track liveness information. This can consume size-
able amounts of RAM on large functions. (e.g. ~15GB for a function with 4k nodes)

• state_initializer (RDAStateInitializer | None) –

• func_addr (int | None) –

model: ReachingDefinitionsModel

function_calls: Dict[CodeLocation, FunctionCallRelationships]

property observed_results: Dict[Tuple[str, int, int], LiveDefinitions]

property all_definitions

property all_uses

794 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

property one_result

property dep_graph: DepGraph

property visited_blocks

get_reaching_definitions(**kwargs)

get_reaching_definitions_by_insn(ins_addr, op_type)

get_reaching_definitions_by_node(node_addr, op_type)

node_observe(node_addr, state, op_type, node_idx=None)

Parameters
• node_addr (int) – Address of the node.

• state (ReachingDefinitionsState) – The analysis state.

• op_type (ObservationPointType) – Type of the observation point. Must be one of the
following: OP_BEFORE, OP_AFTER.

• node_idx (Optional[int]) – ID of the node. Used in AIL to differentiate blocks with the
same address.

Return type
None

insn_observe(insn_addr, stmt, block, state, op_type)

Parameters
• insn_addr (int) – Address of the instruction.

• stmt (Union[Statement, IRStmt]) – The statement.

• block (Union[Block , Block]) – The current block.

• state (ReachingDefinitionsState) – The abstract analysis state.

• op_type (ObservationPointType) – Type of the observation point. Must be one of the
following: OP_BEORE, OP_AFTER.

Return type
None

stmt_observe(stmt_idx, stmt, block, state, op_type)

Parameters
• stmt_idx (int) –

• stmt (Union[Statement, IRStmt]) –

• block (Union[Block , Block]) –

• state (ReachingDefinitionsState) –

• op_type (ObservationPointType) –

Return type
None

Returns

10.15. Analysis 795

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.Statement
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.stmt.IRStmt
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.statement.Statement
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.stmt.IRStmt
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/constants.html#None

angr

exit_observe(node_addr, exit_stmt_idx, block, state, node_idx=None)

Parameters
• node_addr (int) –

• exit_stmt_idx (int) –

• block (Block | Block) –

• state (ReachingDefinitionsState) –

• node_idx (int | None) –

property subject

project: Project

kb: KnowledgeBase

callsites_to(target)

Return type
Iterable[FunctionCallRelationships]

Parameters
target (int | str | Function) –

class angr.analyses.reaching_definitions.dep_graph.FunctionCallRelationships(callsite, target,
args_defns,
other_input_defns,
ret_defns,
other_output_defns)

Bases: object

Parameters
• callsite (CodeLocation) –

• target (int | None) –

• args_defns (List[Set[Definition]]) –

• other_input_defns (Set[Definition]) –

• ret_defns (Set[Definition]) –

• other_output_defns (Set[Definition]) –

callsite: CodeLocation

target: Optional[int]

args_defns: List[Set[Definition]]

other_input_defns: Set[Definition]

ret_defns: Set[Definition]

other_output_defns: Set[Definition]

796 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set

angr

__init__(callsite, target, args_defns, other_input_defns, ret_defns, other_output_defns)

Parameters
• callsite (CodeLocation) –

• target (int | None) –

• args_defns (List[Set[Definition]]) –

• other_input_defns (Set[Definition]) –

• ret_defns (Set[Definition]) –

• other_output_defns (Set[Definition]) –

Return type
None

class angr.analyses.reaching_definitions.dep_graph.DepGraph(graph=None)
Bases: object

The representation of a dependency graph: a directed graph, where nodes are definitions, and edges represent
uses.

Mostly a wrapper around a <networkx.DiGraph>.

Parameters
graph (networkx.DiGraph[Definition] | None) –

__init__(graph=None)

Parameters
graph – A graph where nodes are definitions, and edges represent uses.

property graph: networkx.DiGraph[Definition]

add_node(node)

Parameters
node (Definition) – The definition to add to the definition-use graph.

Return type
None

add_edge(source, destination, **labels)
The edge to add to the definition-use graph. Will create nodes that are not yet present.

Parameters
• source (Definition) – The “source” definition, used by the “destination”.

• destination (Definition) – The “destination” definition, using the variable defined by
“source”.

• labels – Optional keyword arguments to represent edge labels.

Return type
None

nodes()

Return type
networkx.classes.reportviews.NodeView[Definition]

10.15. Analysis 797

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

angr

predecessors(node)

Parameters
node (Definition) – The definition to get the predecessors of.

Return type
Iterator[Definition]

transitive_closure(definition)
Compute the “transitive closure” of a given definition. Obtained by transitively aggregating the ancestors
of this definition in the graph.

Note: Each definition is memoized to avoid any kind of recomputation across the lifetime of this object.

Parameters
definition – The Definition to get transitive closure for.

Returns
A graph of the transitive closure of the given definition.

Return type
networkx.DiGraph[Definition[Atom]]

contains_atom(atom)

Return type
bool

Parameters
atom (Atom) –

add_dependencies_for_concrete_pointers_of(values, definition, cfg, loader)
When a given definition holds concrete pointers, make sure the <MemoryLocation>s they point to are
present in the dependency graph; Adds them if necessary.

Parameters
• values (Iterable[Union[Base, int]]) –

• definition (Definition) – The definition which has data that can contain concrete
pointers.

• cfg (CFGModel) – The CFG, containing information about memory data.

• loader (Loader) –

find_definitions(**kwargs)
Filter the definitions present in the graph based on various criteria. Parameters can be any valid keyword
args to DefinitionMatchPredicate

Return type
List[Definition]

find_all_predecessors(starts, **kwargs)
Filter the ancestors of the given start node or nodes that match various criteria. Parameters can be any valid
keyword args to DefinitionMatchPredicate

find_all_successors(starts, **kwargs)
Filter the descendents of the given start node or nodes that match various criteria. Parameters can be any
valid keyword args to DefinitionMatchPredicate

Return type
List[Definition]

798 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/cle/en/latest/api/loader.html#cle.Loader
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

angr

Parameters
starts (Definition | Iterable[Definition]) –

find_path(starts, ends, **kwargs)
Find a path between the given start node or nodes and the given end node or nodes. All the intermediate
steps in the path must match the criteria given in kwargs. The kwargs can be any valid parameters to
DefinitionMatchPredicate.

This algorithm has exponential time and space complexity. Use at your own risk. Want to do better? Do it
yourself or use networkx and eat the cost of indirection and/or cloning.

Return type
Optional[Tuple[Definition, ...]]

Parameters
• starts (Definition | Iterable[Definition]) –

• ends (Definition | Iterable[Definition]) –

find_paths(starts, ends, **kwargs)
Find all non-overlapping simple paths between the given start node or nodes and the given end node or
nodes. All the intermediate steps in the path must match the criteria given in kwargs. The kwargs can be
any valid parameters to DefinitionMatchPredicate.

This algorithm has exponential time and space complexity. Use at your own risk. Want to do better? Do it
yourself or use networkx and eat the cost of indirection and/or cloning.

Return type
Iterator[Tuple[Definition, ...]]

Parameters
• starts (Definition | Iterable[Definition]) –

• ends (Definition | Iterable[Definition]) –

class angr.analyses.reaching_definitions.heap_allocator.HeapAllocator(canonical_size)
Bases: object

A simple modelisation to help represent heap memory management during a <ReachingDefinitionsAnalysis>:
- Act as if allocations were always done in consecutive memory segments; - Take care of the size not to screw
potential pointer arithmetic (avoid overlapping segments).

The content of the heap itself is modeled using a <KeyedRegion> attribute in the <LiveDefinitions> state; This
class serves to generate consistent heap addresses to be used by the aforementionned.

Note: This has NOT been made to help detect heap vulnerabilities.

Parameters
canonical_size (int) –

__init__(canonical_size)

Parameters
canonical_size (int) – The concrete size an <UNKNOWN_SIZE> defaults to.

allocate(size)
Gives an address for a new memory chunck of <size> bytes.

Parameters
size (Union[int, UnknownSize]) – The requested size for the chunck, in number of bytes.

10.15. Analysis 799

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int

angr

Return type
HeapAddress

Returns
The address of the chunck.

free(address)
Mark the chunck pointed by <address> as freed.

Parameters
address (Union[Undefined , HeapAddress]) – The address of the chunck to free.

property allocated_addresses

The list of addresses that are currently allocated on the heap.

Type
return

angr.analyses.reaching_definitions.function_handler.get_exit_livedefinitions(func,
rda_model)

Get LiveDefinitions at all exits of a function, merge them, and return.

Parameters
• func (Function) –

• rda_model (ReachingDefinitionsModel) –

class angr.analyses.reaching_definitions.function_handler.FunctionEffect(dest,
sources, value=None,
sources_defns=None,
ap-
ply_at_callsite=False,
tags=None)

Bases: object

A single effect that a function summary may apply to the state. This is largely an implementation detail; use
FunctionCallData.depends instead.

Parameters
• dest (Atom | None) –

• sources (Set[Atom]) –

• value (MultiValues | None) –

• sources_defns (Set[Definition] | None) –

• apply_at_callsite (bool) –

• tags (Set[Tag] | None) –

dest: Optional[Atom]

sources: Set[Atom]

value: Optional[MultiValues] = None

sources_defns: Optional[Set[Definition]] = None

apply_at_callsite: bool = False

800 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool

angr

tags: Optional[Set[Tag]] = None

__init__(dest, sources, value=None, sources_defns=None, apply_at_callsite=False, tags=None)

Parameters
• dest (Atom | None) –

• sources (Set[Atom]) –

• value (MultiValues | None) –

• sources_defns (Set[Definition] | None) –

• apply_at_callsite (bool) –

• tags (Set[Tag] | None) –

Return type
None

class angr.analyses.reaching_definitions.function_handler.FunctionCallData(callsite_codeloc,
function_codeloc,
address_multi,
address=None,
symbol=None,
function=None,
name=None,
cc=None,
prototype=None,
args_atoms=None,
args_values=None,
ret_atoms=None,
rede-
fine_locals=True,
vis-
ited_blocks=None,
ef-
fects=<factory>,
ret_values=None,
ret_values_deps=None,
caller_will_handle_single_ret=False,
guessed_cc=False,
guessed_prototype=False,
re-
taddr_popped=False)

Bases: object

A bundle of intermediate data used when computing the sum effect of a function during ReachingDefinitions-
Analysis.

RDA engine contract:

• Construct one of these before calling FunctionHandler.handle_function. Fill it with as many fields as you
can realistically provide without duplicating effort.

• Provide callsite_codeloc as either the call statement (AIL) or the default exit of the default statement of the
calling block (VEX)

• Provide function_codeloc as the callee address with stmt_idx=0`.

10.15. Analysis 801

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#object

angr

Function handler contract:

• If redefine_locals is unset, do not adjust any artifacts of the function call abstraction, such as the stack
pointer, the caller saved registers, etc.

• If caller_will_handle_single_ret is set, and there is a single entry in ret_atoms, do not apply to the state
effects modifying this atom. Instead, set ret_values and ret_values_deps to the values and deps which are
used constructing these values.

Parameters
• callsite_codeloc (CodeLocation) –

• function_codeloc (CodeLocation) –

• address_multi (MultiValues | None) –

• address (int | None) –

• symbol (Symbol | None) –

• function (Function | None) –

• name (str | None) –

• cc (SimCC | None) –

• prototype (SimTypeFunction | None) –

• args_atoms (List[Set[Atom]] | None) –

• args_values (List[MultiValues] | None) –

• ret_atoms (Set[Atom] | None) –

• redefine_locals (bool) –

• visited_blocks (Set[int] | None) –

• effects (List[FunctionEffect]) –

• ret_values (MultiValues | None) –

• ret_values_deps (Set[Definition] | None) –

• caller_will_handle_single_ret (bool) –

• guessed_cc (bool) –

• guessed_prototype (bool) –

• retaddr_popped (bool) –

callsite_codeloc: CodeLocation

function_codeloc: CodeLocation

address_multi: Optional[MultiValues]

address: Optional[int] = None

symbol: Optional[Symbol] = None

function: Optional[Function] = None

name: Optional[str] = None

802 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/cle/en/latest/api/backend.html#cle.backends.symbol.Symbol
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/cle/en/latest/api/backend.html#cle.backends.symbol.Symbol
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

angr

cc: Optional[SimCC] = None

prototype: Optional[SimTypeFunction] = None

args_atoms: Optional[List[Set[Atom]]] = None

args_values: Optional[List[MultiValues]] = None

ret_atoms: Optional[Set[Atom]] = None

redefine_locals: bool = True

visited_blocks: Optional[Set[int]] = None

effects: List[FunctionEffect]

ret_values: Optional[MultiValues] = None

ret_values_deps: Optional[Set[Definition]] = None

caller_will_handle_single_ret: bool = False

guessed_cc: bool = False

guessed_prototype: bool = False

retaddr_popped: bool = False

has_clobbered(dest)
Determines whether the given atom already has effects applied

Return type
bool

Parameters
dest (Atom) –

depends(dest, *sources, value=None, apply_at_callsite=False, tags=None)
Mark a single effect of the current function, including the atom being modified, the input atoms on which
that output atom depends, the precise (or imprecise!) value to store, and whether the effect should be
applied during the function or afterwards, at the callsite.

The tags are used to annotate the Definition of the Atom that will be created, when the function effects are
applied to the state.

The atom being modified may be None to mark uses of the source atoms which do not have any explicit
sinks.

Parameters
• dest (Atom | Iterable[Atom] | None) –

• sources (Atom | Iterable[Atom]) –

• value (MultiValues | BV | bytes | int | None) –

• apply_at_callsite (bool) –

• tags (Set[Tag] | None) –

10.15. Analysis 803

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set

angr

reset_prototype(prototype, state, soft_reset=False)

Return type
Set[Atom]

Parameters
• prototype (SimTypeFunction) –

• state (ReachingDefinitionsState) –

• soft_reset (bool) –

__init__(callsite_codeloc, function_codeloc, address_multi, address=None, symbol=None, function=None,
name=None, cc=None, prototype=None, args_atoms=None, args_values=None, ret_atoms=None,
redefine_locals=True, visited_blocks=None, effects=<factory>, ret_values=None,
ret_values_deps=None, caller_will_handle_single_ret=False, guessed_cc=False,
guessed_prototype=False, retaddr_popped=False)

Parameters
• callsite_codeloc (CodeLocation) –

• function_codeloc (CodeLocation) –

• address_multi (MultiValues | None) –

• address (int | None) –

• symbol (Symbol | None) –

• function (Function | None) –

• name (str | None) –

• cc (SimCC | None) –

• prototype (SimTypeFunction | None) –

• args_atoms (List[Set[Atom]] | None) –

• args_values (List[MultiValues] | None) –

• ret_atoms (Set[Atom] | None) –

• redefine_locals (bool) –

• visited_blocks (Set[int] | None) –

• effects (List[FunctionEffect]) –

• ret_values (MultiValues | None) –

• ret_values_deps (Set[Definition] | None) –

• caller_will_handle_single_ret (bool) –

• guessed_cc (bool) –

• guessed_prototype (bool) –

• retaddr_popped (bool) –

Return type
None

804 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/cle/en/latest/api/backend.html#cle.backends.symbol.Symbol
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.analyses.reaching_definitions.function_handler.FunctionCallDataUnwrapped(inner)
Bases: FunctionCallData

A subclass of FunctionCallData which asserts that many of its members are non-None at construction time.
Typechecks be gone!

Parameters
inner (FunctionCallData) –

address_multi: MultiValues

__init__(inner)

Parameters
inner (FunctionCallData) –

static decorate(wrapper, *, wrapped=<function FunctionCallDataUnwrapped.decorate>,
assigned=('__module__', '__name__', '__qualname__', '__doc__', '__annotations__'),
updated=('__dict__',))

Update a wrapper function to look like the wrapped function

wrapper is the function to be updated wrapped is the original function assigned is a tuple nam-
ing the attributes assigned directly from the wrapped function to the wrapper function (defaults
to functools.WRAPPER_ASSIGNMENTS) updated is a tuple naming the attributes of the wrap-
per that are updated with the corresponding attribute from the wrapped function (defaults to func-
tools.WRAPPER_UPDATES)

class angr.analyses.reaching_definitions.function_handler.FunctionHandler(interfunction_level=0)
Bases: object

A mechanism for summarizing a function call’s effect on a program for ReachingDefinitionsAnalysis.

Parameters
interfunction_level (int) –

__init__(interfunction_level=0)

Parameters
interfunction_level (int) –

hook(analysis)
Attach this instance of the function handler to an instance of RDA.

Return type
FunctionHandler

Parameters
analysis (ReachingDefinitionsAnalysis) –

make_function_codeloc(target, callsite, callsite_func_addr)
The RDA engine will call this function to transform a callsite CodeLocation into a callee CodeLocation.

Parameters
• target (None | int | MultiValues) –

• callsite (CodeLocation) –

• callsite_func_addr (int | None) –

10.15. Analysis 805

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

handle_function(state, data)
The main entry point for the function handler. Called with a RDA state and a FunctionCallData, it is
expected to update the state and the data as per the contracts described on FunctionCallData.

You can override this method to take full control over how data is processed, or override any of the following
to use the higher-level interface (data.depends()):

• handle_impl_<function name> - used for <function name>.

• handle_local_function - used for any function (excluding plt stubs) whose address is inside the main
binary.

• handle_external_function - used for any function or plt stub whose address is outside the main binary.

• handle_indirect_function - used for any function whose target cannot be resolved.

• handle_generic_function - used as a default if none of the above are overridden.

Each of them take the same signature as handle_function.

Parameters
• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

handle_generic_function(state, data)

Parameters
• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

handle_indirect_function(state, data)

Return type
None

Parameters
• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

handle_local_function(state, data)

Return type
None

Parameters
• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

handle_external_function(state, data)

Return type
None

Parameters
• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

806 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

angr

recurse_analysis(state, data)
Precondition: data.function MUST NOT BE NONE in order to call this method.

Return type
None

Parameters
• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

static c_args_as_atoms(state, cc, prototype)

Return type
List[Set[Atom]]

Parameters
• state (ReachingDefinitionsState) –

• cc (SimCC) –

• prototype (SimTypeFunction) –

static c_return_as_atoms(state, cc, prototype)

Return type
Set[Atom]

Parameters
• state (ReachingDefinitionsState) –

• cc (SimCC) –

• prototype (SimTypeFunction) –

static caller_saved_regs_as_atoms(state, cc)

Return type
Set[Register]

Parameters
• state (ReachingDefinitionsState) –

• cc (SimCC) –

static stack_pointer_as_atom(state)

Return type
Register

10.15. Analysis 807

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set

angr

class angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState(codeloc, arch,
subject,
track_tmps=False,
track_consts=False,
analysis=None,
rtoc_value=None,
live_definitions=None,
canonical_size=8,
heap_allocator=None,
environ-
ment=None,
sp_adjusted=False,
all_definitions=None,
initializer=None)

Bases: object

Represents the internal state of the ReachingDefinitionsAnalysis.

It contains a data class LiveDefinitions, which stores both definitions and uses for register, stack, memory, and
temporary variables, uncovered during the analysis.

Parameters
• subject (Subject) – The subject being analyzed.

• track_tmps (bool) – Only tells whether or not temporary variables should be taken into
consideration when representing the state of the analysis. Should be set to true when the
analysis has counted uses and definitions for temporary variables, false otherwise.

• analysis (Optional[ReachingDefinitionsAnalysis]) – The analysis that generated
the state represented by this object.

• rtoc_value – When the targeted architecture is ppc64, the initial function needs to know
the rtoc_value.

• live_definitions (Optional[LiveDefinitions]) –

• canonical_size (int) – The sizes (in bytes) that objects with an UNKNOWN_SIZE are
treated as for operations where sizes are necessary.

• heap_allocator (Optional[HeapAllocator]) – Mechanism to model the management
of heap memory.

• environment (Optional[Environment]) – Representation of the environment of the an-
alyzed program.

• codeloc (CodeLocation) –

• arch (Arch) –

• track_consts (bool) –

• sp_adjusted (bool) –

• all_definitions (Set[Definition]) –

• initializer (RDAStateInitializer | None) –

Variables
arch – The architecture targeted by the program.

808 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set

angr

__init__(codeloc, arch, subject, track_tmps=False, track_consts=False, analysis=None, rtoc_value=None,
live_definitions=None, canonical_size=8, heap_allocator=None, environment=None,
sp_adjusted=False, all_definitions=None, initializer=None)

Parameters
• codeloc (CodeLocation) –

• arch (Arch) –

• subject (Subject) –

• track_tmps (bool) –

• track_consts (bool) –

• analysis (ReachingDefinitionsAnalysis | None) –

• live_definitions (LiveDefinitions | None) –

• canonical_size (int) –

• heap_allocator (HeapAllocator | None) –

• environment (Environment | None) –

• sp_adjusted (bool) –

• all_definitions (Set[Definition] | None) –

• initializer (RDAStateInitializer | None) –

codeloc

arch: Arch

analysis

all_definitions: Set[Definition]

heap_allocator

codeloc_uses: Set[Definition]

exit_observed: bool

live_definitions

top(bits)

Parameters
bits (int) –

is_top(*args)

heap_address(offset)

Return type
BV

Parameters
offset (int | HeapAddress) –

10.15. Analysis 809

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int

angr

static is_heap_address(addr)

Return type
bool

Parameters
addr (Base) –

static get_heap_offset(addr)

Return type
Optional[int]

Parameters
addr (Base) –

stack_address(offset)

Return type
BV

Parameters
offset (int) –

is_stack_address(addr)

Return type
bool

Parameters
addr (Base) –

get_stack_offset(addr)

Return type
Optional[int]

Parameters
addr (Base) –

annotate_with_def(symvar, definition)

Parameters
• symvar (Base) –

• definition (Definition) –

Return type
Base

Returns
annotate_mv_with_def(mv, definition)

Return type
MultiValues

Parameters
• mv (MultiValues) –

• definition (Definition) –

810 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base

angr

extract_defs(symvar)

Return type
Iterator[Definition]

Parameters
symvar (Base) –

property tmps

property tmp_uses

property register_uses

property registers: MultiValuedMemory

property stack: MultiValuedMemory

property stack_uses

property heap: MultiValuedMemory

property heap_uses

property memory_uses

property memory: MultiValuedMemory

property uses_by_codeloc

get_sp()

Return type
int

get_stack_address(offset)

Return type
int

Parameters
offset (Base) –

property environment

property dep_graph

copy(discard_tmpdefs=False)

Return type
ReachingDefinitionsState

merge(*others)

Return type
Tuple[ReachingDefinitionsState, bool]

move_codelocs(new_codeloc)

Return type
None

10.15. Analysis 811

https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

angr

Parameters
new_codeloc (CodeLocation) –

kill_definitions(atom)

Overwrite existing definitions w.r.t ‘atom’ with a dummy definition instance. A dummy definition will not
be removed during simplification.

Return type
None

Parameters
atom (Atom) –

kill_and_add_definition(atom, data, dummy=False, tags=None, endness=None, annotated=False,
uses=None, override_codeloc=None)

Return type
Tuple[Optional[MultiValues], Set[Definition]]

Parameters
• atom (Atom) –

• data (MultiValues) –

• tags (Set[Tag] | None) –

• annotated (bool) –

• uses (Set[Definition] | None) –

• override_codeloc (CodeLocation | None) –

add_use(atom, expr=None)

Return type
None

Parameters
• atom (Atom) –

• expr (Any | None) –

add_use_by_def(definition, expr=None)

Return type
None

Parameters
• definition (Definition) –

• expr (Any | None) –

add_tmp_use(tmp, expr=None)

Return type
None

Parameters
• tmp (int) –

• expr (Any | None) –

812 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any

angr

add_tmp_use_by_defs(defs, expr=None)

Return type
None

Parameters
• defs (Iterable[Definition]) –

• expr (Any | None) –

add_register_use(reg_offset, size, expr=None)

Return type
None

Parameters
• reg_offset (int) –

• size (int) –

• expr (Any | None) –

add_register_use_by_defs(defs, expr=None)

Return type
None

Parameters
• defs (Iterable[Definition]) –

• expr (Any | None) –

add_stack_use(stack_offset, size, expr=None)

Return type
None

Parameters
• stack_offset (int) –

• size (int) –

• expr (Any | None) –

add_stack_use_by_defs(defs, expr=None)

Parameters
• defs (Iterable[Definition]) –

• expr (Any | None) –

add_heap_use(heap_offset, size, expr=None)

Return type
None

Parameters
• heap_offset (int) –

• size (int) –

• expr (Any | None) –

10.15. Analysis 813

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any

angr

add_heap_use_by_defs(defs, expr=None)

Parameters
• defs (Iterable[Definition]) –

• expr (Any | None) –

add_memory_use_by_def(definition, expr=None)

Parameters
• definition (Definition) –

• expr (Any | None) –

add_memory_use_by_defs(defs, expr=None)

Parameters
• defs (Iterable[Definition]) –

• expr (Any | None) –

get_definitions(atom)

Return type
Set[Definition]

Parameters
atom (Atom | Definition | Iterable[Atom] | Iterable[Definition]) –

get_values(spec)

Return type
Optional[MultiValues]

Parameters
spec (Atom | Definition | Iterable[Atom]) –

get_one_value(spec, strip_annotations=False)

Return type
Optional[BV]

Parameters
• spec (Atom | Definition) –

• strip_annotations (bool) –

get_concrete_value(spec, cast_to=<class 'int'>)

Return type
Union[int, bytes, None]

Parameters
• spec (Atom | Definition[Atom] | Iterable[Atom]) –

• cast_to (Type[int] | Type[bytes]) –

mark_guard(target)

814 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/stdtypes.html#bytes

angr

mark_const(value, size)

Parameters
• value (int) –

• size (int) –

downsize()

pointer_to_atoms(**kwargs)

pointer_to_atom(**kwargs)

deref(pointer, size, endness=Endness.BE)

Parameters
• pointer (MultiValues | Atom | Definition | Iterable[Atom] |
Iterable[Definition] | int | BV | HeapAddress | SpOffset) –

• size (int | DerefSize) –

• endness (str) –

class angr.analyses.reaching_definitions.subject.SubjectType(value)
Bases: Enum

An enumeration.

Function = 1

Block = 2

CallTrace = 3

class angr.analyses.reaching_definitions.subject.Subject(content, func_graph=None, cc=None)
Bases: object

__init__(content, func_graph=None, cc=None)
The thing being analysed, and the way (visitor) to analyse it.

Parameters
• content (Union[ailment.Block, angr.Block, Function]) – Thing to be anal-

ysed.

• func_graph (networkx.DiGraph) – Alternative graph for function.graph.

• cc (SimCC) – Calling convention of the function.

property cc

property content

property func_graph

property type

property visitor: FunctionGraphVisitor | SingleNodeGraphVisitor

10.15. Analysis 815

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.Block

angr

class angr.analyses.reaching_definitions.engine_ail.SimEngineRDAIL(project,
function_handler=None,
stack_pointer_tracker=None,
use_callee_saved_regs_at_return=True,
bp_as_gpr=False)

Bases: SimEngineLightAILMixin, SimEngineLight

Parameters
• function_handler (FunctionHandler | None) –

• bp_as_gpr (bool) –

arch: Arch

state: ReachingDefinitionsState

__init__(project, function_handler=None, stack_pointer_tracker=None,
use_callee_saved_regs_at_return=True, bp_as_gpr=False)

Parameters
• function_handler (FunctionHandler | None) –

• bp_as_gpr (bool) –

process(state, *args, dep_graph=None, visited_blocks=None, block=None, fail_fast=False, **kwargs)
The main entry point for an engine. Should take a state and return a result.

Parameters
state – The state to proceed from

Returns
The result. Whatever you want ;)

class angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink.CFGSliceToSink(target,
transitions=None)

Bases: object

The representation of a slice of a CFG.

__init__(target, transitions=None)

Parameters
• target (angr.knowledge_plugins.functions.function.Function) – The tar-

geted sink, to which every path in the slice leads.

• transitions (Dict[int,List[int]]) – A mapping representing transitions in the
graph. Indexes are source addresses and values a list of destination addresses, for which
there exists a transition in the slice from source to destination.

property transitions

The transitions in the slice.

Type
return Dict[int,List[int]]

property transitions_as_tuples

The list of transitions as pairs of (source, destination).

Type
return List[Tuple[int,int]]

816 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

property target

return angr.knowledge_plugins.functions.function.Function: The targeted sink function, from which the
slice is constructed.

property nodes: List[int]

The complete list of addresses present in the slice.

Type
return

property entrypoints

Entrypoints are all source addresses that are not the destination address of any transition.

Return List[int]
The list of entrypoints addresses.

add_transitions(transitions)
Add the given transitions to the current slice.

Parameters
transitions (Dict[int,List[int]]) – The list of transitions to be added to
self.transitions.

Return Dict[int,List[int]]
Return the updated list of transitions.

is_empty()

Test if a given slice does not contain any transition.

Return bool
True if the <CFGSliceToSink> instance does not contain any transitions. False otherwise.

path_between(source, destination, visited=None)
Check the existence of a path in the slice between two given node adresses.

Parameters
• source (int) – The source address.

• destination (int) – The destination address.

• visited (Optional[Set[Any]]) – Used to avoid infinite recursion if loops are present in
the slice.

Return type
bool

Returns
True if there is a path between the source and the destination in the CFG, False if not, or if
we have been unable to decide (because of loops).

angr.analyses.cfg_slice_to_sink.graph.slice_callgraph(callgraph, cfg_slice_to_sink)
Slice a callgraph, keeping only the nodes present in the <CFGSliceToSink> representation, and th transitions for
which a path exists.

Note that this function mutates the graph passed as an argument.

Parameters
• callgraph (networkx.MultiDiGraph) – The callgraph to update.

• cfg_slice_to_sink (CFGSliceToSink) – The representation of the slice, containing the
data to update the callgraph from.

10.15. Analysis 817

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

angr

angr.analyses.cfg_slice_to_sink.graph.slice_cfg_graph(graph, cfg_slice_to_sink)
Slice a CFG graph, keeping only the transitions and nodes present in the <CFGSliceToSink> representation.

Note that this function mutates the graph passed as an argument.

Parameters
• graph (networkx.DiGraph) – The graph to slice.

• cfg_slice_to_sink (CFGSliceToSink) – The representation of the slice, containing the
data to update the CFG from.

Return networkx.DiGraph
The sliced graph.

angr.analyses.cfg_slice_to_sink.graph.slice_function_graph(function_graph, cfg_slice_to_sink)
Slice a function graph, keeping only the nodes present in the <CFGSliceToSink> representation.

Because the <CFGSliceToSink> is build from the CFG, and the function graph is NOT a subgraph of the CFG,
edges of the function graph will no be present in the <CFGSliceToSink> transitions. However, we use the fact
that if there is an edge between two nodes in the function graph, then there must exist a path between these two
nodes in the slice; Proof idea: - The <CFGSliceToSink> is backward and recursively constructed; - If a node is
in the slice, then all its predecessors will be (transitively); - If there is an edge between two nodes in the function
graph, there is a path between them in the CFG; - So: The origin node is a transitive predecessor of the destination
one, hence if destination is in the slice, then origin will be too.

In consequence, in the end, removing the only nodes not present in the slice, and their related transitions gives
us the expected result: a function graph representing (a higher view of) the flow in the slice.

Note that this function mutates the graph passed as an argument.

Parameters
• graph (networkx.DiGraph) – The graph to slice.

• cfg_slice_to_sink (CFGSliceToSink) – The representation of the slice, containing the
data to update the CFG from.

Return networkx.DiGraph
The sliced graph.

Some utilitary functions to manage our representation of transitions:
A dictionary, indexed by int (source addresses), which values are list of ints (target addresses).

angr.analyses.cfg_slice_to_sink.transitions.merge_transitions(transitions, existing_transitions)
Merge two dictionaries of transitions together.

Parameters
• transitions (Dict[int,List[int]]) – Some transitions.

• existing_transitions (Dict[int,List[int]]) – Other transitions.

Return Dict[int,List[int]]
The merge of the two parameters.

class angr.analyses.stack_pointer_tracker.BottomType

Bases: object

The bottom value for register values.

818 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

class angr.analyses.stack_pointer_tracker.Constant(val)
Bases: object

Represents a constant value.

__init__(val)

val

class angr.analyses.stack_pointer_tracker.Register(offset, bitlen)
Bases: object

Represent a register.

__init__(offset, bitlen)

offset

bitlen

class angr.analyses.stack_pointer_tracker.OffsetVal(reg, offset)
Bases: object

Represent a value with an offset added.

__init__(reg, offset)

property reg

property offset

class angr.analyses.stack_pointer_tracker.FrozenStackPointerTrackerState(regs, memory,
is_tracking_memory)

Bases: object

Abstract state for StackPointerTracker analysis with registers and memory values being in frozensets.

__init__(regs, memory, is_tracking_memory)

regs

memory

is_tracking_memory

unfreeze()

merge(other)

class angr.analyses.stack_pointer_tracker.StackPointerTrackerState(regs, memory,
is_tracking_memory)

Bases: object

Abstract state for StackPointerTracker analysis.

__init__(regs, memory, is_tracking_memory)

regs

memory

10.15. Analysis 819

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

is_tracking_memory

give_up_on_memory_tracking()

store(addr, val)

load(addr)

get(reg)

put(reg, val)

copy()

freeze()

merge(other)

exception angr.analyses.stack_pointer_tracker.CouldNotResolveException

Bases: Exception

An exception used in StackPointerTracker analysis to represent internal resolving failures.

class angr.analyses.stack_pointer_tracker.StackPointerTracker(func, reg_offsets, block=None,
track_memory=True)

Bases: Analysis, ForwardAnalysis

Track the offset of stack pointer at the end of each basic block of a function.

__init__(func, reg_offsets, block=None, track_memory=True)

Parameters
• func (Function | None) –

• reg_offsets (Set[int]) –

• block (Block | None) –

offset_after(addr, reg)

offset_before(addr, reg)

offset_after_block(block_addr, reg)

offset_before_block(block_addr, reg)

constant_after(addr, reg)

constant_before(addr, reg)

constant_after_block(block_addr, reg)

constant_before_block(block_addr, reg)

property inconsistent

inconsistent_for(reg)

project: Project

kb: KnowledgeBase

820 Chapter 10. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int

angr

class angr.analyses.variable_recovery.annotations.StackLocationAnnotation(offset)
Bases: Annotation

__init__(offset)

property eliminatable

Returns whether this annotation can be eliminated in a simplification.

Returns
True if eliminatable, False otherwise

property relocatable

Returns whether this annotation can be relocated in a simplification.

Returns
True if it can be relocated, false otherwise.

class angr.analyses.variable_recovery.annotations.VariableSourceAnnotation(block_addr,
stmt_idx,
ins_addr)

Bases: Annotation

__init__(block_addr, stmt_idx, ins_addr)

property eliminatable

Returns whether this annotation can be eliminated in a simplification.

Returns
True if eliminatable, False otherwise

property relocatable

Returns whether this annotation can be relocated in a simplification.

Returns
True if it can be relocated, false otherwise.

static from_state(state)

angr.analyses.variable_recovery.variable_recovery_base.parse_stack_pointer(sp)
Convert multiple supported forms of stack pointer representations into stack offsets.

Parameters
sp – A stack pointer representation.

Returns
A stack pointer offset.

Return type
int

class angr.analyses.variable_recovery.variable_recovery_base.VariableAnnotation(addr_and_variables)
Bases: Annotation

Parameters
addr_and_variables (List[Tuple[int, SimVariable]]) –

__init__(addr_and_variables)

Parameters
addr_and_variables (List[Tuple[int, SimVariable]]) –

10.15. Analysis 821

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.Annotation
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.Annotation
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.Annotation
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int

angr

addr_and_variables

property relocatable

Returns whether this annotation can be relocated in a simplification.

Returns
True if it can be relocated, false otherwise.

property eliminatable

Returns whether this annotation can be eliminated in a simplification.

Returns
True if eliminatable, False otherwise

class angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryBase(func,
max_iterations,
store_live_variables)

Bases: Analysis

The base class for VariableRecovery and VariableRecoveryFast.

Parameters
store_live_variables (bool) –

__init__(func, max_iterations, store_live_variables)

Parameters
store_live_variables (bool) –

get_variable_definitions(block_addr)
Get variables that are defined at the specified block.

Parameters
block_addr (int) – Address of the block.

Returns
A set of variables.

initialize_dominance_frontiers()

project: Project

kb: KnowledgeBase

822 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

class angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase(block_addr,
anal-
y-
sis,
arch,
func,
stack_region=None,
reg-
is-
ter_region=None,
global_region=None,
type-
vars=None,
type_constraints=None,
de-
layed_type_constraints=None,
stack_offset_typevars=None,
project=None)

Bases: object

The base abstract state for variable recovery analysis.

__init__(block_addr, analysis, arch, func, stack_region=None, register_region=None, global_region=None,
typevars=None, type_constraints=None, delayed_type_constraints=None,
stack_offset_typevars=None, project=None)

static top(bits)

Return type
BV

static is_top(thing)

Return type
bool

static extract_variables(expr)

Return type
Generator[Tuple[int, Union[SimVariable, SpOffset]], None, None]

Parameters
expr (Base) –

static annotate_with_variables(expr, addr_and_variables)

Return type
Base

Parameters
• expr (Base) –

• addr_and_variables (Iterable[Tuple[int, SimVariable | SpOffset]]) –

stack_address(offset)

Return type
Base

10.15. Analysis 823

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base

angr

Parameters
offset (int) –

static is_stack_address(addr)

Return type
bool

Parameters
addr (Base) –

is_global_variable_address(addr)

Return type
bool

Parameters
addr (Base) –

static extract_stack_offset_from_addr(addr)

Return type
Optional[Base]

Parameters
addr (Base) –

get_stack_offset(addr)

Return type
Optional[int]

Parameters
addr (Base) –

stack_addr_from_offset(offset)

Return type
int

Parameters
offset (int) –

property func_addr

property dominance_frontiers

property variable_manager

property variables

get_variable_definitions(block_addr)
Get variables that are defined at the specified block.

Parameters
block_addr (int) – Address of the block.

Returns
A set of variables.

824 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

add_type_constraint(constraint)
Add a new type constraint.

Parameters
constraint –

Returns
downsize()

Remove unnecessary members.

Return type
None

Returns
None

static downsize_region(region)
Get rid of unnecessary references in region so that it won’t avoid garbage collection on those referenced
objects.

Parameters
region (MultiValuedMemory) – A MultiValuedMemory region.

Return type
MultiValuedMemory

Returns
None

class angr.analyses.variable_recovery.variable_recovery_fast.VariableRecoveryFastState(block_addr,
anal-
y-
sis,
arch,
func,
stack_region=None,
reg-
is-
ter_region=None,
global_region=None,
type-
vars=None,
type_constraints=None,
de-
layed_type_constraints=None,
stack_offset_typevars=None,
project=None,
ret_val_size=None)

Bases: VariableRecoveryStateBase

The abstract state of variable recovery analysis.

Variables
• stack_region (KeyedRegion) – The stack store.

• register_region (KeyedRegion) – The register store.

10.15. Analysis 825

https://docs.python.org/3/library/constants.html#None

angr

__init__(block_addr, analysis, arch, func, stack_region=None, register_region=None, global_region=None,
typevars=None, type_constraints=None, delayed_type_constraints=None,
stack_offset_typevars=None, project=None, ret_val_size=None)

copy()

merge(others, successor=None)
Merge two abstract states.

For any node A whose dominance frontier that the current node (at the current program location) belongs
to, we create a phi variable V’ for each variable V that is defined in A, and then replace all existence of V
with V’ in the merged abstract state.

Parameters
others (Tuple[VariableRecoveryFastState]) – Other abstract states to merge.

Return type
Tuple[VariableRecoveryFastState, bool]

Returns
The merged abstract state.

downsize()

Remove unnecessary members.

Return type
None

Returns
None

class angr.analyses.variable_recovery.variable_recovery_fast.VariableRecoveryFast(func,
func_graph=None,
max_iterations=2,
low_priority=False,
track_sp=True,
func_args=None,
store_live_variables=False,
unify_variables=True)

Bases: ForwardAnalysis, VariableRecoveryBase

Recover “variables” from a function by keeping track of stack pointer offsets and pattern matching VEX state-
ments.

If calling conventions are recovered prior to running VariableRecoveryFast, variables can be recognized more
accurately. However, it is not a requirement. In this case, the function graph you pass must contain information
indicating the call-out sites inside the analyzed function. These graph edges must be annotated with either
"type": "call" or "outside": True.

__init__(func, func_graph=None, max_iterations=2, low_priority=False, track_sp=True, func_args=None,
store_live_variables=False, unify_variables=True)

Constructor

Parameters
• order_jobs (bool) – If all jobs should be ordered or not.

• allow_merging (bool) – If job merging is allowed.

• allow_widening (bool) – If job widening is allowed.

826 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

• graph_visitor (GraphVisitor or None) – A graph visitor to provide successors.

• func (Function | str | int) –

• func_graph (DiGraph | None) –

• max_iterations (int) –

• func_args (List[SimVariable] | None) –

Returns
None

project: Project

kb: KnowledgeBase

class angr.analyses.variable_recovery.variable_recovery.VariableRecoveryState(block_addr,
analysis, arch,
func, con-
crete_states,
stack_region=None,
regis-
ter_region=None)

Bases: VariableRecoveryStateBase

The abstract state of variable recovery analysis.

Variables
variable_manager (angr.knowledge.variable_manager.VariableManager) – The
variable manager.

__init__(block_addr, analysis, arch, func, concrete_states, stack_region=None, register_region=None)

property concrete_states

get_concrete_state(addr)

Parameters
addr –

Returns
copy()

register_callbacks(concrete_states)

Parameters
concrete_states –

Returns
merge(others, successor=None)

Merge two abstract states.

Parameters
others (Tuple[VariableRecoveryState]) – Other abstract states to merge.

Returns
The merged abstract state.

Return type
VariableRecoveryState, and a boolean that indicates if any merge has happened.

10.15. Analysis 827

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple

angr

class angr.analyses.variable_recovery.variable_recovery.VariableRecovery(func,
max_iterations=20,
store_live_variables=False)

Bases: ForwardAnalysis, VariableRecoveryBase

Recover “variables” from a function using forced execution.

While variables play a very important role in programming, it does not really exist after compiling. However, we
can still identify and recovery their counterparts in binaries. It is worth noting that not every variable in source
code can be identified in binaries, and not every recognized variable in binaries have a corresponding variable
in the original source code. In short, there is no guarantee that the variables we identified/recognized in a binary
are the same variables in its source code.

This analysis uses heuristics to identify and recovers the following types of variables: - Register variables. -
Stack variables. - Heap variables. (not implemented yet) - Global variables. (not implemented yet)

This analysis takes a function as input, and performs a data-flow analysis on nodes. It runs concrete execution on
every statement and hooks all register/memory accesses to discover all places that are accessing variables. It is
slow, but has a more accurate analysis result. For a fast but inaccurate variable recovery, you may consider using
VariableRecoveryFast.

This analysis follows SSA, which means every write creates a new variable in registers or memory (statck, heap,
etc.). Things may get tricky when overlapping variable (in memory, as you cannot really have overlapping ac-
cesses to registers) accesses exist, and in such cases, a new variable will be created, and this new variable will
overlap with one or more existing varaibles. A decision procedure (which is pretty much TODO) is required at
the end of this analysis to resolve the conflicts between overlapping variables.

__init__(func, max_iterations=20, store_live_variables=False)

Parameters
func (knowledge.Function) – The function to analyze.

project: Project

kb: KnowledgeBase

class angr.analyses.variable_recovery.engine_ail.SimEngineVRAIL(*args, call_info=None,
**kwargs)

Bases: SimEngineLightAILMixin, SimEngineVRBase

The engine for variable recovery on AIL.

state: VariableRecoveryFastState

block: Block

__init__(*args, call_info=None, **kwargs)

class angr.analyses.variable_recovery.engine_vex.SimEngineVRVEX(*args, call_info=None,
**kwargs)

Bases: SimEngineLightVEXMixin, SimEngineVRBase

Implements the VEX engine for variable recovery analysis.

state: VariableRecoveryStateBase

__init__(*args, call_info=None, **kwargs)

828 Chapter 10. API Reference

https://docs.angr.io/projects/ailment/en/latest/api.html#ailment.block.Block

angr

class angr.analyses.variable_recovery.engine_base.RichR(data, variable=None, typevar=None,
type_constraints=None)

Bases: object

A rich representation of calculation results. The variable recovery data domain.

Parameters
• data (Base) –

• typevar (TypeVariable | None) –

__init__(data, variable=None, typevar=None, type_constraints=None)

Parameters
• data (Base) –

• typevar (TypeVariable | None) –

data: Base

variable

typevar

type_constraints

property bits

class angr.analyses.variable_recovery.engine_base.SimEngineVRBase(project, kb)
Bases: SimEngineLight

The base class for variable recovery analyses. Contains methods for basic interactions with the state, like loading
and storing data.

state: VariableRecoveryStateBase

__init__(project, kb)

property func_addr

process(state, *args, **kwargs)
The main entry point for an engine. Should take a state and return a result.

Parameters
state – The state to proceed from

Returns
The result. Whatever you want ;)

class angr.analyses.variable_recovery.irsb_scanner.VEXIRSBScanner(*args, **kwargs)
Bases: SimEngineLightVEXMixin

Scan the VEX IRSB to determine if any argument-passing registers should be narrowed by detecting cases of
loading the whole register and immediately narrowing the register before writing to the tmp.

__init__(*args, **kwargs)

10.15. Analysis 829

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base

angr

class angr.analyses.typehoon.lifter.TypeLifter(bits)
Bases: object

Lift SimTypes to type constants.

Parameters
bits (int) –

__init__(bits)

Parameters
bits (int) –

bits

lift(ty)

Parameters
ty (SimType) –

class angr.analyses.typehoon.simple_solver.RecursiveType(typevar, offset)
Bases: object

__init__(typevar, offset)

class angr.analyses.typehoon.simple_solver.SimpleSolver(bits, constraints)
Bases: object

SimpleSolver is, literally, a simple, unification-based type constraint solver.

Parameters
bits (int) –

__init__(bits, constraints)

Parameters
bits (int) –

solve()

determine()

class angr.analyses.typehoon.translator.SimTypeTempRef(typevar)
Bases: SimType

__init__(typevar)

Parameters
label – the type label.

c_repr()

class angr.analyses.typehoon.translator.TypeTranslator(arch=None)
Bases: object

Translate type variables to SimType equivalence.

__init__(arch=None)

struct_name()

tc2simtype(tc)

830 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

simtype2tc(simtype)

Return type
TypeConstant

Parameters
simtype (SimType) –

backpatch(st, translated)

Parameters
• st (sim_type.SimType) –

• translated (dict) –

Returns
class angr.analyses.typehoon.typevars.TypeConstraint

Bases: object

pp_str(mapping)

Return type
str

Parameters
mapping (Dict[TypeVariable, Any]) –

class angr.analyses.typehoon.typevars.Equivalence(type_a, type_b)
Bases: TypeConstraint

__init__(type_a, type_b)

type_a

type_b

pp_str(mapping)

Return type
str

Parameters
mapping (Dict[TypeVariable, Any]) –

class angr.analyses.typehoon.typevars.Existence(type_)
Bases: TypeConstraint

__init__(type_)

type_

pp_str(mapping)

Return type
str

Parameters
mapping (Dict[TypeVariable, Any]) –

replace(replacements)

10.15. Analysis 831

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any

angr

class angr.analyses.typehoon.typevars.Subtype(sub_type, super_type)
Bases: TypeConstraint

__init__(sub_type, super_type)

super_type

sub_type

pp_str(mapping)

Return type
str

Parameters
mapping (Dict[TypeVariable, Any]) –

replace(replacements)

class angr.analyses.typehoon.typevars.Add(type_0, type_1, type_r)
Bases: TypeConstraint

Describes the constraint that type_r == type0 + type1

__init__(type_0, type_1, type_r)

type_0

type_1

type_r

pp_str(mapping)

Return type
str

Parameters
mapping (Dict[TypeVariable, Any]) –

replace(replacements)

class angr.analyses.typehoon.typevars.Sub(type_0, type_1, type_r)
Bases: TypeConstraint

Describes the constraint that type_r == type0 - type1

__init__(type_0, type_1, type_r)

type_0

type_1

type_r

pp_str(mapping)

Return type
str

Parameters
mapping (Dict[TypeVariable, Any]) –

832 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any

angr

replace(replacements)

class angr.analyses.typehoon.typevars.TypeVariable(idx=None)
Bases: object

Parameters
idx (int | None) –

__init__(idx=None)

Parameters
idx (int | None) –

idx: int

pp_str(mapping)

Return type
str

Parameters
mapping (Dict[TypeVariable, Any]) –

class angr.analyses.typehoon.typevars.DerivedTypeVariable(type_var, label, idx=None)
Bases: TypeVariable

Parameters
idx (int) –

__init__(type_var, label, idx=None)

type_var

label

pp_str(mapping)

Return type
str

Parameters
mapping (Dict[TypeVariable, Any]) –

replace(replacements)

class angr.analyses.typehoon.typevars.TypeVariables

Bases: object

__init__()

copy()

add_type_variable(var, codeloc, typevar)

Parameters
• var (SimVariable) –

• typevar (TypeVariable) –

get_type_variable(var, codeloc)

10.15. Analysis 833

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object

angr

has_type_variable_for(var, codeloc)

Parameters
var (SimVariable) –

class angr.analyses.typehoon.typevars.BaseLabel

Bases: object

class angr.analyses.typehoon.typevars.FuncIn(loc)
Bases: BaseLabel

__init__(loc)

loc

class angr.analyses.typehoon.typevars.FuncOut(loc)
Bases: BaseLabel

__init__(loc)

loc

class angr.analyses.typehoon.typevars.Load

Bases: BaseLabel

class angr.analyses.typehoon.typevars.Store

Bases: BaseLabel

class angr.analyses.typehoon.typevars.AddN(n)
Bases: BaseLabel

__init__(n)

n

class angr.analyses.typehoon.typevars.SubN(n)
Bases: BaseLabel

__init__(n)

n

class angr.analyses.typehoon.typevars.ConvertTo(to_bits)
Bases: BaseLabel

__init__(to_bits)

to_bits

class angr.analyses.typehoon.typevars.ReinterpretAs(to_type, to_bits)
Bases: BaseLabel

__init__(to_type, to_bits)

to_type

to_bits

class angr.analyses.typehoon.typevars.HasField(bits, offset)
Bases: BaseLabel

834 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

__init__(bits, offset)

bits

offset

class angr.analyses.typehoon.typevars.IsArray

Bases: BaseLabel

class angr.analyses.typehoon.typehoon.Typehoon(constraints, ground_truth=None, var_mapping=None,
must_struct=None)

Bases: Analysis

A spiritual tribute to the long-standing typehoon project that @jmg (John Grosen) worked on during his days in
the angr team. Now I feel really bad of asking the poor guy to work directly on VEX IR without any fancy static
analysis support as we have right now. . .

Typehoon analysis implements a pushdown system that simplifies and solves type constraints. Our type con-
straints are largely an implementation of the paper Polymorphic Type Inference for Machine Code by Noonan,
Loginov, and Cok from GrammaTech (with missing functionality support and bugs, of course). Type constraints
are collected by running VariableRecoveryFast (maybe VariableRecovery later as well) on a function, and then
solved using this analysis.

User may specify ground truth, which will override all types at certain program points during constraint solving.

Parameters
• var_mapping (Dict[SimVariable, Set[TypeVariable]] | None) –

• must_struct (Set[TypeVariable] | None) –

__init__(constraints, ground_truth=None, var_mapping=None, must_struct=None)

Parameters
• constraints –

• ground_truth – A set of SimType-style solutions for some or all type variables. They
will be respected during type solving.

• var_mapping (Optional[Dict[SimVariable, Set[TypeVariable]]]) –

• must_struct (Optional[Set[TypeVariable]]) –

update_variable_types(func_addr, var_to_typevars)

Parameters
func_addr (int | str) –

pp_constraints()

Pretty-print constraints between variables using the variable mapping.

Return type
None

pp_solution()

Pretty-print solutions using the variable mapping.

Return type
None

project: Project

10.15. Analysis 835

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

angr

kb: KnowledgeBase

All type constants used in type inference. They can be mapped, translated, or rewritten to C-style types.

class angr.analyses.typehoon.typeconsts.TypeConstant

Bases: object

SIZE = None

pp_str(mapping)

Return type
str

property size: int

class angr.analyses.typehoon.typeconsts.TopType

Bases: TypeConstant

class angr.analyses.typehoon.typeconsts.BottomType

Bases: TypeConstant

class angr.analyses.typehoon.typeconsts.Int

Bases: TypeConstant

class angr.analyses.typehoon.typeconsts.Int1

Bases: Int

SIZE = 1

class angr.analyses.typehoon.typeconsts.Int8

Bases: Int

SIZE = 1

class angr.analyses.typehoon.typeconsts.Int16

Bases: Int

SIZE = 2

class angr.analyses.typehoon.typeconsts.Int32

Bases: Int

SIZE = 4

class angr.analyses.typehoon.typeconsts.Int64

Bases: Int

SIZE = 8

class angr.analyses.typehoon.typeconsts.Int128

Bases: Int

SIZE = 16

class angr.analyses.typehoon.typeconsts.FloatBase

Bases: TypeConstant

class angr.analyses.typehoon.typeconsts.Float

Bases: FloatBase

836 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

angr

SIZE = 4

class angr.analyses.typehoon.typeconsts.Double

Bases: FloatBase

SIZE = 8

class angr.analyses.typehoon.typeconsts.Pointer(basetype)
Bases: TypeConstant

__init__(basetype)

new(basetype)

class angr.analyses.typehoon.typeconsts.Pointer32(basetype)
Bases: Pointer, Int32

32-bit pointers.

__init__(basetype)

class angr.analyses.typehoon.typeconsts.Pointer64(basetype)
Bases: Pointer, Int64

64-bit pointers.

__init__(basetype)

class angr.analyses.typehoon.typeconsts.Array(element, count=None)
Bases: TypeConstant

__init__(element, count=None)

class angr.analyses.typehoon.typeconsts.Struct(fields=None)
Bases: TypeConstant

__init__(fields=None)

class angr.analyses.typehoon.typeconsts.TypeVariableReference(typevar)
Bases: TypeConstant

__init__(typevar)

angr.analyses.typehoon.typeconsts.int_type(bits)

Return type
Optional[Int]

Parameters
bits (int) –

angr.analyses.typehoon.typeconsts.float_type(bits)

Return type
Optional[FloatBase]

Parameters
bits (int) –

class angr.analyses.identifier.identify.FuncInfo

Bases: object

10.15. Analysis 837

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

__init__()

class angr.analyses.identifier.identify.Identifier(cfg=None, require_predecessors=True,
only_find=None)

Bases: Analysis

__init__(cfg=None, require_predecessors=True, only_find=None)

run(only_find=None)

can_call_same_name(addr, name)

get_func_info(func)

static constrain_all_zero(before_state, state, regs)

identify_func(function)

check_tests(cfg_func, match_func)

map_callsites()

do_trace(addr_trace, reverse_accesses, func_info)

get_call_args(func, callsite)

static get_reg_name(arch, reg_offset)

Parameters
• arch – the architecture

• reg_offset – Tries to find the name of a register given the offset in the registers.

Returns
The register name

find_stack_vars_x86(func)

static make_initial_state(project, stack_length)

Returns
an initial state with a symbolic stack and good options for rop

static make_symbolic_state(project, reg_list, stack_length=80)
converts an input state into a state with symbolic registers :return: the symbolic state

project: Project

kb: KnowledgeBase

class angr.analyses.loopfinder.Loop(entry, entry_edges, break_edges, continue_edges, body_nodes, graph,
subloops)

Bases: object

__init__(entry, entry_edges, break_edges, continue_edges, body_nodes, graph, subloops)

class angr.analyses.loopfinder.LoopFinder(functions=None, normalize=True)
Bases: Analysis

Extracts all the loops from all the functions in a binary.

838 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

__init__(functions=None, normalize=True)

project: Project

kb: KnowledgeBase

class angr.analyses.loop_analysis.VariableTypes

Bases: object

Iterator = 'Iterator'

HasNext = 'HasNext'

Next = 'Next'

class angr.analyses.loop_analysis.AnnotatedVariable(variable, type_)
Bases: object

__init__(variable, type_)

variable

type

class angr.analyses.loop_analysis.Condition(op, val0, val1)
Bases: object

Equal = '=='

NotEqual = '!='

__init__(op, val0, val1)

classmethod from_opstr(opstr)

class angr.analyses.loop_analysis.SootBlockProcessor(state, block, loop, defuse)
Bases: object

__init__(state, block, loop, defuse)

process()

class angr.analyses.loop_analysis.LoopAnalysisState(block)
Bases: object

__init__(block)

copy()

merge(state)

add_loop_exit_stmt(stmt_idx, condition=None)

class angr.analyses.loop_analysis.LoopAnalysis(loop, defuse)
Bases: ForwardAnalysis, Analysis

Analyze a loop and recover important information about the loop (e.g., invariants, induction variables) in a static
manner.

10.15. Analysis 839

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

__init__(loop, defuse)
Constructor

Parameters
• order_jobs (bool) – If all jobs should be ordered or not.

• allow_merging (bool) – If job merging is allowed.

• allow_widening (bool) – If job widening is allowed.

• graph_visitor (GraphVisitor or None) – A graph visitor to provide successors.

Returns
None

project: Project

kb: KnowledgeBase

exception angr.analyses.veritesting.VeritestingError

Bases: Exception

class angr.analyses.veritesting.CallTracingFilter(project, depth, blacklist=None)
Bases: object

Filter to apply during CFG creation on a given state and jumpkind to determine if it should be skipped at a certain
depth

whitelist = {<class 'angr.procedures.libc.strlen.strlen'>, <class
'angr.procedures.glibc.__ctype_b_loc.__ctype_b_loc'>, <class
'angr.procedures.cgc.transmit.transmit'>, <class
'angr.procedures.libc.fgetc.fgetc'>, <class 'angr.procedures.libc.atoi.atoi'>,
<class 'angr.procedures.posix.read.read'>, <class
'angr.procedures.cgc.receive.receive'>, <class
'angr.procedures.libc.strcmp.strcmp'>}

cfg_cache = {}

__init__(project, depth, blacklist=None)

filter(call_target_state, jumpkind)
The call will be skipped if it returns True.

Parameters
• call_target_state – The new state of the call target.

• jumpkind – The Jumpkind of this call.

Returns
True if we want to skip this call, False otherwise.

class angr.analyses.veritesting.Veritesting(input_state, boundaries=None, loop_unrolling_limit=10,
enable_function_inlining=False, terminator=None,
deviation_filter=None)

Bases: Analysis

An exploration technique made for condensing chunks of code to single (nested) if-then-else constraints via CFG
accurate to conduct Static Symbolic Execution SSE (conversion to single constraint)

840 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object

angr

cfg_cache = {}

all_stashes = ('successful', 'errored', 'deadended', 'deviated', 'unconstrained')

__init__(input_state, boundaries=None, loop_unrolling_limit=10, enable_function_inlining=False,
terminator=None, deviation_filter=None)

SSE stands for Static Symbolic Execution, and we also implemented an extended version of Veritesting
(Avgerinos, Thanassis, et al, ICSE 2014).

Parameters
• input_state – The initial state to begin the execution with.

• boundaries – Addresses where execution should stop.

• loop_unrolling_limit – The maximum times that Veritesting should unroll a loop for.

• enable_function_inlining – Whether we should enable function inlining and syscall
inlining.

• terminator – A callback function that takes a state as parameter. Veritesting will termi-
nate if this function returns True.

• deviation_filter – A callback function that takes a state as parameter. Veritesting will
put the state into “deviated” stash if this function returns True.

is_not_in_cfg(s)
Returns if s.addr is not a proper node in our CFG.

Parameters
s (SimState) – The SimState instance to test.

Returns bool
False if our CFG contains p.addr, True otherwise.

is_overbound(state)
Filter out all states that run out of boundaries or loop too many times.

param SimState state: SimState instance to check returns bool: True if outside of mem/loop_ctr boundary

project: Project

kb: KnowledgeBase

class angr.analyses.vfg.VFGJob(*args, **kwargs)
Bases: CFGJobBase

A job descriptor that contains local variables used during VFG analysis.

__init__(*args, **kwargs)

Return type
None

property block_id: BlockID | None

callstack_repr(kb)

Parameters
kb (KnowledgeBase) –

10.15. Analysis 841

https://docs.python.org/3/library/constants.html#None

angr

class angr.analyses.vfg.PendingJob(block_id, state, call_stack, src_block_id, src_stmt_idx, src_ins_addr)
Bases: object

Describes a pending job during VFG analysis.

Parameters
• block_id (BlockID) –

• state (SimState) –

• call_stack (CallStack) –

• src_block_id (BlockID) –

• src_stmt_idx (int) –

• src_ins_addr (int) –

__init__(block_id, state, call_stack, src_block_id, src_stmt_idx, src_ins_addr)

Parameters
• block_id (BlockID) –

• state (SimState) –

• call_stack (CallStack) –

• src_block_id (BlockID) –

• src_stmt_idx (int) –

• src_ins_addr (int) –

Return type
None

block_id

state

call_stack

src_block_id

src_stmt_idx

src_ins_addr

class angr.analyses.vfg.AnalysisTask

Bases: object

An analysis task describes a task that should be done before popping this task out of the task stack and discard it.

__init__()

Return type
None

property done

842 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

class angr.analyses.vfg.FunctionAnalysis(function_address, return_address)
Bases: AnalysisTask

Analyze a function, generate fix-point states from all endpoints of that function, and then merge them to one
state.

Parameters
• function_address (int) –

• return_address (int | None) –

__init__(function_address, return_address)

Parameters
• function_address (int) –

• return_address (int | None) –

Return type
None

property done: bool

class angr.analyses.vfg.CallAnalysis(address, return_address, function_analysis_tasks=None,
mergeable_plugins=None)

Bases: AnalysisTask

Analyze a call by analyze all functions this call might be calling, collect all final states generated by analyzing
those functions, and merge them into one state.

Parameters
• address (int) –

• return_address (None) –

• function_analysis_tasks (List[Any] | None) –

• mergeable_plugins (Tuple[str, str] | None) –

__init__(address, return_address, function_analysis_tasks=None, mergeable_plugins=None)

Parameters
• address (int) –

• return_address (None) –

• function_analysis_tasks (List[Any] | None) –

• mergeable_plugins (Tuple[str, str] | None) –

Return type
None

property done: bool

register_function_analysis(task)

Return type
None

Parameters
task (FunctionAnalysis) –

10.15. Analysis 843

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

angr

add_final_job(job)

Return type
None

Parameters
job (VFGJob) –

merge_jobs()

Return type
VFGJob

class angr.analyses.vfg.VFGNode(addr, key, state=None)
Bases: object

A descriptor of nodes in a Value-Flow Graph

Parameters
• addr (int) –

• key (BlockID) –

• state (SimState | None) –

__init__(addr, key, state=None)
Constructor.

Parameters
• addr (int) –

• key (BlockID) –

• state (SimState) –

Return type
None

append_state(s, is_widened_state=False)
Appended a new state to this VFGNode. :type s: :param s: The new state to append :type is_widened_state:
:param is_widened_state: Whether it is a widened state or not.

class angr.analyses.vfg.VFG(cfg=None, context_sensitivity_level=2, start=None, function_start=None,
interfunction_level=0, initial_state=None, avoid_runs=None,
remove_options=None, timeout=None, max_iterations_before_widening=8,
max_iterations=40, widening_interval=3, final_state_callback=None,
status_callback=None, record_function_final_states=False)

Bases: ForwardAnalysis[SimState, VFGNode, VFGJob, BlockID], Analysis

This class represents a control-flow graph with static analysis result.

Perform abstract interpretation analysis starting from the given function address. The output is an invariant at
the beginning (or the end) of each basic block.

Steps:

• Generate a CFG first if CFG is not provided.

• Identify all merge points (denote the set of merge points as Pw) in the CFG.

• Cut those loop back edges (can be derived from Pw) so that we gain an acyclic CFG.

844 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

• Identify all variables that are 1) from memory loading 2) from initial values, or 3) phi functions.
Denote

the set of those variables as S_{var}.

• Start real AI analysis and try to compute a fix point of each merge point. Perform
widening/narrowing only on

variables in S_{var}.

__init__(cfg=None, context_sensitivity_level=2, start=None, function_start=None, interfunction_level=0,
initial_state=None, avoid_runs=None, remove_options=None, timeout=None,
max_iterations_before_widening=8, max_iterations=40, widening_interval=3,
final_state_callback=None, status_callback=None, record_function_final_states=False)

Parameters
• cfg (Optional[CFGEmulated]) – The control-flow graph to base this analysis on. If none

is provided, we will construct a CFGEmulated.

• context_sensitivity_level (int) – The level of context-sensitivity of this VFG. It
ranges from 0 to infinity. Default 2.

• function_start (Optional[int]) – The address of the function to analyze.

• interfunction_level (int) – The level of interfunction-ness to be

• initial_state (Optional[SimState]) – A state to use as the initial one

• avoid_runs (Optional[List[int]]) – A list of runs to avoid

• remove_options (Optional[Set[str]]) – State options to remove from the initial state.
It only works when initial_state is None

• timeout (int) –

• final_state_callback (Optional[Callable[[SimState, CallStack], Any]]) – call-
back function when countering final state

• status_callback (Optional[Callable[[VFG], Any]]) – callback function used in
_analysis_core_baremetal

• start (int | None) –

• max_iterations_before_widening (int) –

• max_iterations (int) –

• widening_interval (int) –

• record_function_final_states (bool) –

Return type
None

property function_initial_states

property function_final_states

get_any_node(addr)
Get any VFG node corresponding to the basic block at @addr. Note that depending on the context sensitivity
level, there might be multiple nodes corresponding to different contexts. This function will return the first
one it encounters, which might not be what you want.

Return type
Optional[VFGNode]

10.15. Analysis 845

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional

angr

Parameters
addr (int) –

get_all_nodes(addr)

Return type
Generator[VFGNode, None, None]

irsb_from_node(node)

copy()

project: Project

kb: KnowledgeBase

class angr.analyses.vsa_ddg.DefUseChain(def_loc, use_loc, variable)
Bases: object

Stand for a def-use chain. it is generated by the DDG itself.

__init__(def_loc, use_loc, variable)
Constructor.

Parameters
• def_loc –

• use_loc –

• variable –

Returns
class angr.analyses.vsa_ddg.VSA_DDG(vfg=None, start_addr=None, interfunction_level=0,

context_sensitivity_level=2, keep_data=False)
Bases: Analysis

A Data dependency graph based on VSA states. That means we don’t (and shouldn’t) expect any symbolic
expressions.

__init__(vfg=None, start_addr=None, interfunction_level=0, context_sensitivity_level=2,
keep_data=False)

Constructor.

Parameters
• vfg – An already constructed VFG. If not specified, a new VFG will be created with other

specified parameters. vfg and start_addr cannot both be unspecified.

• start_addr – The address where to start the analysis (typically, a function’s entry point).

• interfunction_level – See VFG analysis.

• context_sensitivity_level – See VFG analysis.

• keep_data – Whether we keep set of addresses as edges in the graph, or just the cardinality
of the sets, which can be used as a “weight”.

get_predecessors(code_location)
Returns all predecessors of code_location.

Parameters
code_location – A CodeLocation instance.

846 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object

angr

Returns
A list of all predecessors.

get_all_nodes(simrun_addr, stmt_idx)
Get all DDG nodes matching the given basic block address and statement index.

project: Project

kb: KnowledgeBase

class angr.analyses.vtable.Vtable(vaddr, size, func_addrs=None)
Bases: object

This contains the addr, size and function addresses of a Vtable

__init__(vaddr, size, func_addrs=None)

class angr.analyses.vtable.VtableFinder

Bases: Analysis

This analysis locates Vtables in a binary based on heuristics taken from - “Reconstruction of Class Hierarchies
for Decompilation of C++ Programs”

__init__()

is_cross_referenced(addr)

is_function(addr)

analyze()

create_extract_vtable(start_addr, sec_size)

project: Project

kb: KnowledgeBase

class angr.analyses.find_objects_static.PossibleObject(size, addr, class_name=None)
Bases: object

This holds the address and class name of possible class instances. The address that it holds in mapped outside the
binary so it is only valid in this analysis. TO DO: map the address to its uses in the registers/memory locations
in the instructions

__init__(size, addr, class_name=None)

class angr.analyses.find_objects_static.NewFunctionHandler(max_addr=None,
new_func_addr=None, project=None)

Bases: FunctionHandler

This handles calls to the function new(), by recording the size parameter passed to it and also assigns a
new

address outside the mapped binary to the newly created space(possible object).

It also tracks if the function called right after new() is passed the same ‘this’ pointer and is a constructor, if
so we mark it as an instance of the class the constructor belongs to.(only for non stripped binaries)

__init__(max_addr=None, new_func_addr=None, project=None)

hook(analysis)
Attach this instance of the function handler to an instance of RDA.

10.15. Analysis 847

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

handle_local_function(state, data)

Parameters
• state (ReachingDefinitionsState) –

• data (FunctionCallData) –

class angr.analyses.find_objects_static.StaticObjectFinder

Bases: Analysis

This analysis tries to find objects on the heap based on calls to new(), and subsequent calls to
constructors with

the ‘this’ pointer

__init__()

project: Project

kb: KnowledgeBase

class angr.analyses.class_identifier.ClassIdentifier

Bases: Analysis

This is a class identifier for non stripped or partially stripped binaries, it identifies classes based on the demangled
function names, and also assigns functions to their respective classes based on their names. It also uses the results
from the VtableFinder analysis to assign the corresponding vtable to the classes.

self.classes contains a mapping between class names and SimCppClass objects

e.g. A::tool() and A::qux() belong to the class A

__init__()

project: Project

kb: KnowledgeBase

class angr.analyses.disassembly.DisassemblyPiece

Bases: object

addr = None

ident = nan

render(formatting=None)

getpiece(formatting, column)

width(formatting)

height(formatting)

static color(string, coloring, formatting)

highlight(string, formatting=None)

class angr.analyses.disassembly.FunctionStart(func)
Bases: DisassemblyPiece

848 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

__init__(func)
Constructor.

Parameters
func (angr.knowledge.Function) – The function instance.

height(formatting)

class angr.analyses.disassembly.Label(addr, name)
Bases: DisassemblyPiece

__init__(addr, name)

class angr.analyses.disassembly.IROp(addr, seq, obj, irsb)
Bases: DisassemblyPiece

Parameters
• addr (int) –

• seq (int) –

• obj (IRStmt | PcodeOp) –

• irsb (IRSB | IRSB) –

__init__(addr, seq, obj, irsb)

Parameters
• addr (int) –

• seq (int) –

• obj (IRStmt | PcodeOp) –

• irsb (IRSB | IRSB) –

addr: int

seq: int

obj: Union[IRStmt, PcodeOp]

irsb: Union[IRSB, IRSB]

class angr.analyses.disassembly.BlockStart(block, parentfunc, project)
Bases: DisassemblyPiece

__init__(block, parentfunc, project)

class angr.analyses.disassembly.Hook(block)
Bases: DisassemblyPiece

__init__(block)

class angr.analyses.disassembly.Instruction(insn, parentblock, project=None)
Bases: DisassemblyPiece

__init__(insn, parentblock, project=None)

property mnemonic

10.15. Analysis 849

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.stmt.IRStmt
https://docs.angr.io/projects/pypcode/en/latest/api.html#pypcode.PcodeOp
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.block.IRSB
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.stmt.IRStmt
https://docs.angr.io/projects/pypcode/en/latest/api.html#pypcode.PcodeOp
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.block.IRSB
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.stmt.IRStmt
https://docs.angr.io/projects/pypcode/en/latest/api.html#pypcode.PcodeOp
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.block.IRSB

angr

reload_format()

dissect_instruction()

dissect_instruction_for_arm()

static split_arm_op_string(op_str)

Parameters
op_str (str) –

dissect_instruction_by_default()

static split_op_string(insn_str)

class angr.analyses.disassembly.SootExpression(expr)
Bases: DisassemblyPiece

__init__(expr)

class angr.analyses.disassembly.SootExpressionTarget(target_stmt_idx)
Bases: SootExpression

__init__(target_stmt_idx)

class angr.analyses.disassembly.SootExpressionStaticFieldRef(field)
Bases: SootExpression

__init__(field)

class angr.analyses.disassembly.SootExpressionInvoke(invoke_type, expr)
Bases: SootExpression

Virtual = 'virtual'

Static = 'static'

Special = 'special'

__init__(invoke_type, expr)

class angr.analyses.disassembly.SootStatement(block_addr, raw_stmt)
Bases: DisassemblyPiece

__init__(block_addr, raw_stmt)

property stmt_idx

class angr.analyses.disassembly.Opcode(parentinsn)
Bases: DisassemblyPiece

__init__(parentinsn)

class angr.analyses.disassembly.Operand(op_num, children, parentinsn)
Bases: DisassemblyPiece

__init__(op_num, children, parentinsn)

property cs_operand

850 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str

angr

static build(operand_type, op_num, children, parentinsn)

class angr.analyses.disassembly.ConstantOperand(op_num, children, parentinsn)
Bases: Operand

class angr.analyses.disassembly.RegisterOperand(op_num, children, parentinsn)
Bases: Operand

property register

class angr.analyses.disassembly.MemoryOperand(op_num, children, parentinsn)
Bases: Operand

__init__(op_num, children, parentinsn)

class angr.analyses.disassembly.OperandPiece

Bases: DisassemblyPiece

addr = None

parentop = None

ident = None

class angr.analyses.disassembly.Register(reg, prefix='')
Bases: OperandPiece

__init__(reg, prefix='')

class angr.analyses.disassembly.Value(val, render_with_sign)
Bases: OperandPiece

__init__(val, render_with_sign)

property project

class angr.analyses.disassembly.Comment(addr, text)
Bases: DisassemblyPiece

__init__(addr, text)

height(formatting)

class angr.analyses.disassembly.FuncComment(func)
Bases: DisassemblyPiece

__init__(func)

class angr.analyses.disassembly.Disassembly(function=None, ranges=None, thumb=False,
include_ir=False, block_bytes=None)

Bases: Analysis

Produce formatted machine code disassembly.

Parameters
• function (Function | None) –

• ranges (Sequence[Tuple[int, int]] | None) –

• thumb (bool) –

10.15. Analysis 851

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

• include_ir (bool) –

• block_bytes (bytes | None) –

__init__(function=None, ranges=None, thumb=False, include_ir=False, block_bytes=None)

Parameters
• function (Function | None) –

• ranges (Sequence[Tuple[int, int]] | None) –

• thumb (bool) –

• include_ir (bool) –

• block_bytes (bytes | None) –

project: Project

kb: KnowledgeBase

func_lookup(block)

parse_block(block)
Parse instructions for a given block node

Return type
None

Parameters
block (BlockNode) –

render(formatting=None, show_edges=True, show_addresses=True, show_bytes=False, ascii_only=None,
color=True)

Render the disassembly to a string, with optional edges and addresses.

Color will be added by default, if enabled. To disable color pass an empty formatting dict.

Return type
str

Parameters
• show_edges (bool) –

• show_addresses (bool) –

• show_bytes (bool) –

• ascii_only (bool | None) –

• color (bool) –

angr.analyses.disassembly_utils.decode_instruction(arch, instr)

exception angr.analyses.reassembler.BinaryError

Bases: Exception

exception angr.analyses.reassembler.InstructionError

Bases: BinaryError

exception angr.analyses.reassembler.ReassemblerFailureNotice

Bases: BinaryError

852 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception

angr

angr.analyses.reassembler.string_escape(s)

angr.analyses.reassembler.fill_reg_map()

angr.analyses.reassembler.split_operands(s)

angr.analyses.reassembler.is_hex(s)

class angr.analyses.reassembler.Label(binary, name, original_addr=None)
Bases: object

g_label_ctr = count(0)

__init__(binary, name, original_addr=None)

property operand_str

property offset

static new_label(binary, name=None, function_name=None, original_addr=None, data_label=False)

class angr.analyses.reassembler.DataLabel(binary, original_addr, name=None)
Bases: Label

__init__(binary, original_addr, name=None)

property operand_str

class angr.analyses.reassembler.FunctionLabel(binary, function_name, original_addr, plt=False)
Bases: Label

__init__(binary, function_name, original_addr, plt=False)

property function_name

property operand_str

class angr.analyses.reassembler.ObjectLabel(binary, symbol_name, original_addr, plt=False)
Bases: Label

__init__(binary, symbol_name, original_addr, plt=False)

property symbol_name

property operand_str

class angr.analyses.reassembler.NotypeLabel(binary, symbol_name, original_addr, plt=False)
Bases: Label

__init__(binary, symbol_name, original_addr, plt=False)

property symbol_name

property operand_str

class angr.analyses.reassembler.SymbolManager(binary, cfg)
Bases: object

SymbolManager manages all symbols in the binary.

10.15. Analysis 853

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

__init__(binary, cfg)
Constructor.

Parameters
• binary (Reassembler) – The Binary analysis instance.

• cfg (angr.analyses.CFG) – The CFG analysis instance.

Returns
None

get_unique_symbol_name(symbol_name)

new_label(addr, name=None, is_function=None, force=False)

label_got(addr, label)
Mark a certain label as assigned (to an instruction or a block of data).

Parameters
• addr (int) – The address of the label.

• label (angr.analyses.reassembler.Label) – The label that is just assigned.

Returns
None

class angr.analyses.reassembler.Operand(binary, insn_addr, insn_size, capstone_operand, operand_str,
mnemonic, operand_offset, syntax=None)

Bases: object

__init__(binary, insn_addr, insn_size, capstone_operand, operand_str, mnemonic, operand_offset,
syntax=None)

Constructor.

Parameters
• binary (Reassembler) – The Binary analysis.

• insn_addr (int) – Address of the instruction.

• capstone_operand –

• operand_str (str) – the string representation of this operand

• mnemonic (str) – Mnemonic of the instruction that this operand belongs to.

• operand_offset (int) – offset of the operand into the instruction.

• syntax (str) – Provide a way to override the default syntax coming from binary.

Returns
None

assembly()

property is_immediate

property symbolized

class angr.analyses.reassembler.Instruction(binary, addr, size, insn_bytes, capstone_instr)
Bases: object

High-level representation of an instruction in the binary

854 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

angr

__init__(binary, addr, size, insn_bytes, capstone_instr)

Parameters
• binary (Reassembler) – The Binary analysis

• addr (int) – Address of the instruction

• size (int) – Size of the instruction

• insn_bytes (str) – Instruction bytes

• capstone_instr – Capstone Instr object.

Returns
None

assign_labels()

dbg_comments()

assembly(comments=False, symbolized=True)

Returns
class angr.analyses.reassembler.BasicBlock(binary, addr, size, x86_getpc_retsite=False)

Bases: object

BasicBlock represents a basic block in the binary.

Parameters
x86_getpc_retsite (bool) –

__init__(binary, addr, size, x86_getpc_retsite=False)
Constructor.

Parameters
• binary (Reassembler) – The Binary analysis.

• addr (int) – Address of the block

• size (int) – Size of the block

• x86_getpc_retsite (bool) –

Returns
None

assign_labels()

assembly(comments=False, symbolized=True)

instruction_addresses()

class angr.analyses.reassembler.Procedure(binary, function=None, addr=None, size=None, name=None,
section='.text', asm_code=None)

Bases: object

Procedure in the binary.

10.15. Analysis 855

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

__init__(binary, function=None, addr=None, size=None, name=None, section='.text', asm_code=None)
Constructor.

Parameters
• binary (Reassembler) – The Binary analysis.

• function (angr.knowledge.Function) – The function it represents

• addr (int) – Address of the function. Not required if function is provided.

• size (int) – Size of the function. Not required if function is provided.

• section (str) – Which section this function comes from.

Returns
None

property name

Get function name from the labels of the very first block. :return: Function name if there is any, None
otherwise :rtype: string

property is_plt

If this function is a PLT entry or not. :return: True if this function is a PLT entry, False otherwise :rtype:
bool

assign_labels()

assembly(comments=False, symbolized=True)
Get the assembly manifest of the procedure.

Parameters
• comments –

• symbolized –

Returns
A list of tuples (address, basic block assembly), ordered by basic block addresses

Return type
list

instruction_addresses()

Get all instruction addresses in the binary.

Returns
A list of sorted instruction addresses.

Return type
list

class angr.analyses.reassembler.ProcedureChunk(project, addr, size)
Bases: Procedure

Procedure chunk.

__init__(project, addr, size)
Constructor.

Parameters
• project –

• addr –

856 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

angr

• size –

Returns
class angr.analyses.reassembler.Data(binary, memory_data=None, section=None, section_name=None,

name=None, size=None, sort=None, addr=None,
initial_content=None)

Bases: object

__init__(binary, memory_data=None, section=None, section_name=None, name=None, size=None,
sort=None, addr=None, initial_content=None)

property content

shrink(new_size)
Reduce the size of this block

Parameters
new_size (int) – The new size

Returns
None

desymbolize()

We believe this was a pointer and symbolized it before. Now we want to desymbolize it.

The following actions are performed: - Reload content from memory - Mark the sort as ‘unknown’

Returns
None

assign_labels()

assembly(comments=False, symbolized=True)

class angr.analyses.reassembler.Relocation(addr, ref_addr, sort)
Bases: object

__init__(addr, ref_addr, sort)

class angr.analyses.reassembler.Reassembler(syntax='intel', remove_cgc_attachments=True,
log_relocations=True)

Bases: Analysis

High-level representation of a binary with a linear representation of all instructions and data regions. After
calling “symbolize”, it essentially acts as a binary reassembler.

Tested on CGC, x86 and x86-64 binaries.

Discliamer: The reassembler is an empirical solution. Don’t be surprised if it does not work on some binaries.

__init__(syntax='intel', remove_cgc_attachments=True, log_relocations=True)

property instructions

Get a list of all instructions in the binary

Returns
A list of (address, instruction)

Return type
tuple

10.15. Analysis 857

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#tuple

angr

property relocations

property inserted_asm_before_label

property inserted_asm_after_label

property main_executable_regions

return:

property main_nonexecutable_regions

return:

section_alignment(section_name)
Get the alignment for the specific section. If the section is not found, 16 is used as default.

Parameters
section_name (str) – The section.

Returns
The alignment in bytes.

Return type
int

main_executable_regions_contain(addr)

Parameters
addr –

Returns
main_executable_region_limbos_contain(addr)

Sometimes there exists a pointer that points to a few bytes before the beginning of a section, or a few bytes
after the beginning of the section. We take care of that here.

Parameters
addr (int) – The address to check.

Returns
A 2-tuple of (bool, the closest base address)

Return type
tuple

main_nonexecutable_regions_contain(addr)

Parameters
addr (int) – The address to check.

Returns
True if the address is inside a non-executable region, False otherwise.

Return type
bool

main_nonexecutable_region_limbos_contain(addr, tolerance_before=64, tolerance_after=64)
Sometimes there exists a pointer that points to a few bytes before the beginning of a section, or a few bytes
after the beginning of the section. We take care of that here.

Parameters
addr (int) – The address to check.

858 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

Returns
A 2-tuple of (bool, the closest base address)

Return type
tuple

register_instruction_reference(insn_addr, ref_addr, sort, operand_offset)

register_data_reference(data_addr, ref_addr)

add_label(name, addr)
Add a new label to the symbol manager.

Parameters
• name (str) – Name of the label.

• addr (int) – Address of the label.

Returns
None

insert_asm(addr, asm_code, before_label=False)
Insert some assembly code at the specific address. There must be an instruction starting at that address.

Parameters
• addr (int) – Address of insertion

• asm_code (str) – The assembly code to insert

Returns
None

append_procedure(name, asm_code)
Add a new procedure with specific name and assembly code.

Parameters
• name (str) – The name of the new procedure.

• asm_code (str) – The assembly code of the procedure

Returns
None

append_data(name, initial_content, size, readonly=False, sort='unknown')
Append a new data entry into the binary with specific name, content, and size.

Parameters
• name (str) – Name of the data entry. Will be used as the label.

• initial_content (bytes) – The initial content of the data entry.

• size (int) – Size of the data entry.

• readonly (bool) – If the data entry belongs to the readonly region.

• sort (str) – Type of the data.

Returns
None

10.15. Analysis 859

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

angr

remove_instruction(ins_addr)

Parameters
ins_addr –

Returns
randomize_procedures()

Returns
symbolize()

assembly(comments=False, symbolized=True)

remove_cgc_attachments()

Remove CGC attachments.

Returns
True if CGC attachments are found and removed, False otherwise

Return type
bool

remove_unnecessary_stuff()

Remove unnecessary functions and data

Returns
None

remove_unnecessary_stuff_glibc()

project: Project

kb: KnowledgeBase

fast_memory_load(addr, size, data_type, endness='Iend_LE')
Load memory bytes from loader’s memory backend.

Parameters
• addr (int) – The address to begin memory loading.

• size (int) – Size in bytes.

• data_type – Type of the data.

• endness (str) – Endianness of this memory load.

Returns
Data read out of the memory.

Return type
int or bytes or str or None

class angr.analyses.congruency_check.CongruencyCheck(throw=False)
Bases: Analysis

This is an analysis to ensure that angr executes things identically with different execution backends (i.e., unicorn
vs vex).

860 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str

angr

__init__(throw=False)
Initializes a CongruencyCheck analysis.

Parameters
throw – whether to raise an exception if an incongruency is found.

set_state_options(left_add_options=None, left_remove_options=None, right_add_options=None,
right_remove_options=None)

Checks that the specified state options result in the same states over the next depth states.

set_states(left_state, right_state)
Checks that the specified paths stay the same over the next depth states.

set_simgr(simgr)

run(depth=None)
Checks that the paths in the specified path group stay the same over the next depth bytes.

The path group should have a “left” and a “right” stash, each with a single path.

compare_path_group(pg)

compare_states(sl, sr)
Compares two states for similarity.

compare_paths(pl, pr)

project: Project

kb: KnowledgeBase

class angr.analyses.static_hooker.StaticHooker(library, binary=None)
Bases: Analysis

This analysis works on statically linked binaries - it finds the library functions statically linked into the binary
and hooks them with the appropriate simprocedures.

Right now it only works on unstripped binaries, but hey! There’s room to grow!

__init__(library, binary=None)

project: Project

kb: KnowledgeBase

class angr.analyses.binary_optimizer.ConstantPropagation(constant, constant_assignment_loc,
constant_consuming_loc)

Bases: object

__init__(constant, constant_assignment_loc, constant_consuming_loc)

class angr.analyses.binary_optimizer.RedundantStackVariable(argument, stack_variable,
stack_variable_consuming_locs)

Bases: object

__init__(argument, stack_variable, stack_variable_consuming_locs)

10.15. Analysis 861

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

class angr.analyses.binary_optimizer.RegisterReallocation(stack_variable, register_variable,
stack_variable_sources,
stack_variable_consumers,
prologue_addr, prologue_size,
epilogue_addr, epilogue_size)

Bases: object

__init__(stack_variable, register_variable, stack_variable_sources, stack_variable_consumers,
prologue_addr, prologue_size, epilogue_addr, epilogue_size)

Constructor.

Parameters
• stack_variable (SimStackVariable) –

• register_variable (SimRegisterVariable) –

• stack_variable_sources (list) –

• stack_variable_consumers (list) –

• prologue_addr (int) –

• prologue_size (int) –

• epilogue_addr (int) –

• epilogue_size (int) –

class angr.analyses.binary_optimizer.DeadAssignment(pv)
Bases: object

__init__(pv)
Constructor.

Parameters
pv (angr.analyses.ddg.ProgramVariable) – The assignment to remove.

class angr.analyses.binary_optimizer.BinaryOptimizer(cfg, techniques)
Bases: Analysis

This is a collection of binary optimization techniques we used in Mechanical Phish during the finals of Cyber
Grand Challange. It focuses on dealing with some serious speed-impacting code constructs, and sort of worked
on some CGC binaries compiled with O0. Use this analysis as a reference of how to use data dependency graph
and such.

There is no guarantee that BinaryOptimizer will ever work on non-CGC binaries. Feel free to give us PR or MR,
but please do not ask for support of non-CGC binaries.

BLOCKS_THRESHOLD = 500

__init__(cfg, techniques)

optimize()

project: Project

kb: KnowledgeBase

class angr.analyses.callee_cleanup_finder.CalleeCleanupFinder(starts=None, hook_all=False)
Bases: Analysis

862 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

__init__(starts=None, hook_all=False)

analyze(addr)

project: Project

kb: KnowledgeBase

class angr.analyses.dominance_frontier.DominanceFrontier(func, exception_edges=False)
Bases: Analysis

Computes the dominance frontier of all nodes in a function graph, and provides an easy-to-use interface for
querying the frontier information.

__init__(func, exception_edges=False)

project: Project

kb: KnowledgeBase

class angr.analyses.init_finder.SimEngineInitFinderVEX(project, replacements, overlay,
pointers_only=False)

Bases: SimEngineLightVEXMixin, SimEngineLight

The VEX engine class for InitFinder.

__init__(project, replacements, overlay, pointers_only=False)

static is_concrete(expr)

Return type
bool

class angr.analyses.init_finder.InitializationFinder(func=None, func_graph=None, block=None,
max_iterations=1, replacements=None,
overlay=None, pointers_only=False)

Bases: ForwardAnalysis, Analysis

Finds possible initializations for global data sections and generate an overlay to be used in other analyses later
on.

__init__(func=None, func_graph=None, block=None, max_iterations=1, replacements=None,
overlay=None, pointers_only=False)

Constructor

Parameters
• order_jobs (bool) – If all jobs should be ordered or not.

• allow_merging (bool) – If job merging is allowed.

• allow_widening (bool) – If job widening is allowed.

• graph_visitor (GraphVisitor or None) – A graph visitor to provide successors.

Returns
None

project: Project

kb: KnowledgeBase

10.15. Analysis 863

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.analyses.xrefs.SimEngineXRefsVEX(xref_manager, project=None, replacements=None)
Bases: SimEngineLightVEXMixin, SimEngineLight

The VEX engine class for XRefs analysis.

__init__(xref_manager, project=None, replacements=None)

add_xref(xref_type, from_loc, to_loc)

static extract_value_if_concrete(expr)
Extract the concrete value from expr if it is a concrete claripy AST.

Parameters
expr – A claripy AST.

Return type
Optional[int]

Returns
A concrete value or None if nothing concrete can be extracted.

class angr.analyses.xrefs.XRefsAnalysis(func=None, func_graph=None, block=None, max_iterations=1,
replacements=None)

Bases: ForwardAnalysis, Analysis

XRefsAnalysis recovers in-depth x-refs (cross-references) in disassembly code.

Here is an example:

.text:
000023C8 LDR R2, =time_now
000023CA LDR R3, [R2]
000023CC ADDS R3, #1
000023CE STR R3, [R2]
000023D0 BX LR

.bss:
1FFF36F4 time_now % 4

You will have the following x-refs for time_now:

23c8 - offset
23ca - read access
23ce - write access

__init__(func=None, func_graph=None, block=None, max_iterations=1, replacements=None)
Constructor

Parameters
• order_jobs (bool) – If all jobs should be ordered or not.

• allow_merging (bool) – If job merging is allowed.

• allow_widening (bool) – If job widening is allowed.

• graph_visitor (GraphVisitor or None) – A graph visitor to provide successors.

Returns
None

864 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

project: Project

kb: KnowledgeBase

class angr.analyses.proximity_graph.ProxiNodeTypes

Bases: object

Node Type Enums

Empty = 0

String = 1

Function = 2

FunctionCall = 3

Integer = 4

Unknown = 5

Variable = 6

class angr.analyses.proximity_graph.BaseProxiNode(type_, ref_at=None)
Bases: object

Base class for all nodes in a proximity graph.

Parameters
• type_ (int) –

• ref_at (Set[int] | None) –

__init__(type_, ref_at=None)

Parameters
• type_ (int) –

• ref_at (Set[int] | None) –

class angr.analyses.proximity_graph.FunctionProxiNode(func, ref_at=None)
Bases: BaseProxiNode

Proximity node showing current and expanded function calls in graph.

Parameters
ref_at (Set[int] | None) –

__init__(func, ref_at=None)

Parameters
ref_at (Set[int] | None) –

class angr.analyses.proximity_graph.VariableProxiNode(addr, name, ref_at=None)
Bases: BaseProxiNode

Variable arg node

Parameters
ref_at (Set[int] | None) –

10.15. Analysis 865

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int

angr

__init__(addr, name, ref_at=None)

Parameters
ref_at (Set[int] | None) –

class angr.analyses.proximity_graph.StringProxiNode(addr, content, ref_at=None)
Bases: BaseProxiNode

String arg node

Parameters
ref_at (Set[int] | None) –

__init__(addr, content, ref_at=None)

Parameters
ref_at (Set[int] | None) –

class angr.analyses.proximity_graph.CallProxiNode(callee, ref_at=None, args=None)
Bases: BaseProxiNode

Call node

Parameters
• ref_at (Set[int] | None) –

• args (Tuple[BaseProxiNode] | None) –

__init__(callee, ref_at=None, args=None)

Parameters
• ref_at (Set[int] | None) –

• args (Tuple[BaseProxiNode] | None) –

class angr.analyses.proximity_graph.IntegerProxiNode(value, ref_at=None)
Bases: BaseProxiNode

Int arg node

Parameters
• value (int) –

• ref_at (Set[int] | None) –

__init__(value, ref_at=None)

Parameters
• value (int) –

• ref_at (Set[int] | None) –

class angr.analyses.proximity_graph.UnknownProxiNode(dummy_value)
Bases: BaseProxiNode

Unknown arg node

Parameters
dummy_value (str) –

866 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

__init__(dummy_value)

Parameters
dummy_value (str) –

class angr.analyses.proximity_graph.ProximityGraphAnalysis(func, cfg_model, xrefs,
decompilation=None,
expand_funcs=None)

Bases: Analysis

Generate a proximity graph.

Parameters
• func (Function) –

• cfg_model (CFGModel) –

• xrefs (XRefManager) –

• decompilation (Decompiler | None) –

• expand_funcs (Set[int] | None) –

__init__(func, cfg_model, xrefs, decompilation=None, expand_funcs=None)

Parameters
• func (Function) –

• cfg_model (CFGModel) –

• xrefs (XRefManager) –

• decompilation (Decompiler | None) –

• expand_funcs (Set[int] | None) –

project: Project

kb: KnowledgeBase

Defines analysis that will generate a dynamic data-dependency graph

class angr.analyses.data_dep.data_dependency_analysis.NodalAnnotation(node)
Bases: Annotation

Allows a node to be stored as an annotation to a BV in a DefaultMemory instance

Parameters
node (BaseDepNode) –

__init__(node)

Parameters
node (BaseDepNode) –

property relocatable: bool

Can not be relocated in a simplification

property eliminatable

Can not be eliminated in a simplification

10.15. Analysis 867

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.Annotation
https://docs.python.org/3/library/functions.html#bool

angr

class angr.analyses.data_dep.data_dependency_analysis.DataDependencyGraphAnalysis(end_state,
start_from=None,
end_at=None,
block_addrs=None)

Bases: Analysis

This is a DYNAMIC data dependency graph that utilizes a given SimState to produce a DDG graph that is
accurate to the path the program took during execution.

This analysis utilizes the SimActionData objects present in the provided SimState’s action history to generate the
dependency graph.

Parameters
• end_state (SimState) –

• start_from (int | None) –

• end_at (int | None) –

• block_addrs (List[int] | None) –

__init__(end_state, start_from=None, end_at=None, block_addrs=None)

Parameters
• end_state (SimState) – Simulation state used to extract all SimActionData

• start_from (Optional[int]) – An address or None, Specifies where to start generation
of DDG

• end_at (Optional[int]) – An address or None, Specifies where to end generation of
DDG

• block_addrs (List[int] | None) – List of block addresses that the DDG analysis
should be run on

• block_addrs –

property graph: DiGraph | None

property simplified_graph: DiGraph | None

property sub_graph: DiGraph | None

get_data_dep(g_node, include_tmp_nodes, backwards)

Return type
Optional[DiGraph]

Parameters
• g_node (BaseDepNode) –

• include_tmp_nodes (bool) –

• backwards (bool) –

project: Project

kb: KnowledgeBase

868 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.analyses.data_dep.sim_act_location.SimActLocation(bbl_addr, ins_addr, stmt_idx)
Bases: object

Structure-like class used to bundle the instruction address and statement index of a given SimAction in order to
uniquely identify a given SimAction

Parameters
• bbl_addr (int) –

• ins_addr (int) –

• stmt_idx (int) –

__init__(bbl_addr, ins_addr, stmt_idx)

Parameters
• bbl_addr (int) –

• ins_addr (int) –

• stmt_idx (int) –

class angr.analyses.data_dep.sim_act_location.ParsedInstruction(ins_addr, min_stmt_idx,
max_stmt_idx)

Bases: object

Used by parser to facilitate linking with recent ancestors in an efficient manner

Parameters
• ins_addr (int) –

• min_stmt_idx (int) –

• max_stmt_idx (int) –

__init__(ins_addr, min_stmt_idx, max_stmt_idx)

Parameters
• ins_addr (int) –

• min_stmt_idx (int) –

• max_stmt_idx (int) –

class angr.analyses.data_dep.dep_nodes.DepNodeTypes

Bases: object

Enumeration of types of BaseDepNode supported by this analysis

Memory = 1

Register = 2

Tmp = 3

Constant = 4

class angr.analyses.data_dep.dep_nodes.BaseDepNode(type_, sim_act)
Bases: object

Base class for all nodes in a data-dependency graph

10.15. Analysis 869

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

Parameters
• type_ (int) –

• sim_act (SimActionData) –

__init__(type_, sim_act)

Parameters
• type_ (int) –

• sim_act (SimActionData) –

value_tuple()

Return type
Tuple[BV, int]

Returns
A tuple containing the node’s value as a BV and as an evaluated integer

property ast: BV

property type: int

Getter :return: An integer defined in DepNodeTypes, represents the subclass type of this DepNode.

class angr.analyses.data_dep.dep_nodes.ConstantDepNode(sim_act, value)
Bases: BaseDepNode

Used to create a DepNode that will hold a constant, numeric value Uniquely identified by its value

Parameters
• sim_act (SimActionData) –

• value (int) –

__init__(sim_act, value)

Parameters
• sim_act (SimActionData) –

• value (int) –

class angr.analyses.data_dep.dep_nodes.MemDepNode(sim_act, addr)
Bases: BaseDepNode

Used to represent SimActions of type MEM

Parameters
• sim_act (SimActionData) –

• addr (int) –

__init__(sim_act, addr)

Parameters
• sim_act (SimActionData) –

• addr (int) –

property width: int

870 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

classmethod cast_to_mem(base_dep_node)
Casts a BaseDepNode into a MemDepNode

Parameters
base_dep_node (BaseDepNode) –

class angr.analyses.data_dep.dep_nodes.VarDepNode(type_, sim_act, reg, arch_name='')
Bases: BaseDepNode

Abstract class for representing SimActions of TYPE reg or tmp

Parameters
• type_ (int) –

• sim_act (SimActionData) –

• reg (int) –

• arch_name (str) –

__init__(type_, sim_act, reg, arch_name='')

Parameters
• type_ (int) –

• sim_act (SimActionData) –

• reg (int) –

• arch_name (str) –

property display_name: str

class angr.analyses.data_dep.dep_nodes.TmpDepNode(sim_act, reg, arch_name='')
Bases: VarDepNode

Used to represent SimActions of type TMP

Parameters
• sim_act (SimActionData) –

• reg (int) –

• arch_name (str) –

__init__(sim_act, reg, arch_name='')

Parameters
• sim_act (SimActionData) –

• reg (int) –

• arch_name (str) –

class angr.analyses.data_dep.dep_nodes.RegDepNode(sim_act, reg, arch_name='')
Bases: VarDepNode

Base class for representing SimActions of TYPE reg

Parameters
• sim_act (SimActionData) –

• reg (int) –

10.15. Analysis 871

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

angr

• arch_name (str) –

__init__(sim_act, reg, arch_name='')

Parameters
• sim_act (SimActionData) –

• reg (int) –

• arch_name (str) –

property reg_size: int

exception angr.blade.BadJumpkindNotification

Bases: Exception

Notifies the caller that the jumpkind is bad (e.g., Ijk_NoDecode)

class angr.blade.Blade(graph, dst_run, dst_stmt_idx, direction='backward', project=None, cfg=None,
ignore_sp=False, ignore_bp=False, ignored_regs=None, max_level=3,
base_state=None, stop_at_calls=False, cross_insn_opt=False, max_predecessors=10,
include_imarks=True)

Bases: object

Blade is a light-weight program slicer that works with networkx DiGraph containing CFGNodes. It is meant to
be used in angr for small or on-the-fly analyses.

Parameters
• graph (DiGraph) –

• dst_run (int) –

• dst_stmt_idx (int) –

• direction (str) –

• ignore_sp (bool) –

• ignore_bp (bool) –

• max_level (int) –

• stop_at_calls (bool) –

• max_predecessors (int) –

• include_imarks (bool) –

__init__(graph, dst_run, dst_stmt_idx, direction='backward', project=None, cfg=None, ignore_sp=False,
ignore_bp=False, ignored_regs=None, max_level=3, base_state=None, stop_at_calls=False,
cross_insn_opt=False, max_predecessors=10, include_imarks=True)

Parameters
• graph (DiGraph) – A graph representing the control flow graph. Note that it does not take

angr.analyses.CFGEmulated or angr.analyses.CFGFast.

• dst_run (int) – An address specifying the target SimRun.

• dst_stmt_idx (int) – The target statement index. -1 means executing until the last state-
ment.

• direction (str) – ‘backward’ or ‘forward’ slicing. Forward slicing is not yet supported.

• project (angr.Project) – The project instance.

872 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

• cfg (angr.analyses.CFGBase) – the CFG instance. It will be made mandatory later.

• ignore_sp (bool) – Whether the stack pointer should be ignored in dependency tracking.
Any dependency from/to stack pointers will be ignored if this options is True.

• ignore_bp (bool) – Whether the base pointer should be ignored or not.

• max_level (int) – The maximum number of blocks that we trace back for.

• stop_at_calls (bool) – Limit slicing within a single function. Do not proceed when
encounters a call edge.

• include_imarks (bool) – Should IMarks (instruction boundaries) be included in the
slice.

• max_predecessors (int) –

Returns
None

property slice

dbg_repr(arch=None)

class angr.slicer.SimLightState(temps=None, regs=None, stack_offsets=None, options=None)
Bases: object

Represents a program state. Only used in SimSlicer.

__init__(temps=None, regs=None, stack_offsets=None, options=None)

temps

regs

stack_offsets

options

class angr.slicer.SimSlicer(arch, statements, target_tmps=None, target_regs=None,
target_stack_offsets=None, inslice_callback=None,
inslice_callback_infodict=None, include_imarks=True)

Bases: object

A super lightweight intra-IRSB slicing class.

Parameters
include_imarks (bool) –

__init__(arch, statements, target_tmps=None, target_regs=None, target_stack_offsets=None,
inslice_callback=None, inslice_callback_infodict=None, include_imarks=True)

Parameters
include_imarks (bool) –

class angr.annocfg.AnnotatedCFG(project, cfg=None, detect_loops=False)
Bases: object

AnnotatedCFG is a control flow graph with statement whitelists and exit whitelists to describe a slice of the
program.

10.15. Analysis 873

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

__init__(project, cfg=None, detect_loops=False)
Constructor.

Parameters
• project – The angr Project instance

• cfg – Control flow graph.

• detect_loops –

from_digraph(digraph)
Initialize this AnnotatedCFG object with a networkx.DiGraph consisting of the following form of nodes:

Tuples like (block address, statement ID)

Those nodes are connected by edges indicating the execution flow.

Parameters
digraph (networkx.DiGraph) – A networkx.DiGraph object

get_addr(run)

add_block_to_whitelist(block)

add_statements_to_whitelist(block, stmt_ids)

add_exit_to_whitelist(run_from, run_to)

set_last_statement(block_addr, stmt_id)

add_loop(loop_tuple)
A loop tuple contains a series of IRSB addresses that form a loop. Ideally it always starts with the first
IRSB that we meet during the execution.

should_take_exit(addr_from, addr_to)

should_execute_statement(addr, stmt_id)

get_run(addr)

get_whitelisted_statements(addr)

Returns
True if all statements are whitelisted

get_last_statement_index(addr)
Get the statement index of the last statement to execute in the basic block specified by addr.

Parameters
addr (int) – Address of the basic block.

Returns
The statement index of the last statement to be executed in the block. Usually if the default
exit is taken, it will be the last statement to execute. If the block is not in the slice or we should
never take any exit going to this block, None is returned.

Return type
int or None

get_loops()

874 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

get_targets(source_addr)

dbg_repr()

dbg_print_irsb(irsb_addr, project=None)
Pretty-print an IRSB with whitelist information

keep_path(path)
Given a path, returns True if the path should be kept, False if it should be cut.

merge_points(path)

successor_func(path)
Callback routine that takes in a path, and returns all feasible successors to path group. This callback routine
should be passed to the keyword argument “successor_func” of PathGroup.step().

Parameters
path – A Path instance.

Returns
A list of all feasible Path successors.

angr.codenode.repr_addr(addr)

class angr.codenode.CodeNode(addr, size, graph=None, thumb=False)
Bases: object

Parameters
• addr (int) –

• size (int) –

__init__(addr, size, graph=None, thumb=False)

Parameters
• addr (int) –

• size (int) –

addr: int

size: int

thumb

successors()

Return type
List[CodeNode]

predecessors()

is_hook = None

class angr.codenode.BlockNode(addr, size, bytestr=None, **kwargs)
Bases: CodeNode

Parameters
• addr (int) –

• size (int) –

10.15. Analysis 875

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

is_hook = False

__init__(addr, size, bytestr=None, **kwargs)

Parameters
addr (int) –

bytestr

class angr.codenode.SootBlockNode(addr, size, stmts, **kwargs)
Bases: BlockNode

Parameters
• addr (int) –

• size (int) –

__init__(addr, size, stmts, **kwargs)

stmts

class angr.codenode.HookNode(addr, size, sim_procedure, **kwargs)
Bases: CodeNode

Parameters
• addr (int) –

• size (int) –

is_hook = True

__init__(addr, size, sim_procedure, **kwargs)

Parameters
sim_procedure (type) – the the sim_procedure class

sim_procedure

class angr.codenode.SyscallNode(addr, size, sim_procedure, **kwargs)
Bases: HookNode

Parameters
• addr (int) –

• size (int) –

is_hook = False

sim_procedure

876 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

10.16 SimOS

Manage OS-level configuration.

angr.simos.register_simos(name, cls)

class angr.simos.simos.SimOS(project, name=None)
Bases: object

A class describing OS/arch-level configuration.

Parameters
project (angr.Project) –

__init__(project, name=None)

Parameters
project (Project) –

configure_project()

Configure the project to set up global settings (like SimProcedures).

state_blank(addr=None, initial_prefix=None, brk=None, stack_end=None, stack_size=8388608,
stdin=None, thread_idx=None, permissions_backer=None, **kwargs)

Initialize a blank state.

All parameters are optional.

Parameters
• addr – The execution start address.

• initial_prefix –

• stack_end – The end of the stack (i.e., the byte after the last valid stack address).

• stack_size – The number of bytes to allocate for stack space

• brk – The address of the process’ break.

Returns
The initialized SimState.

Any additional arguments will be passed to the SimState constructor

state_entry(**kwargs)

state_full_init(**kwargs)

state_call(addr, *args, **kwargs)

prepare_call_state(calling_state, initial_state=None, preserve_registers=(), preserve_memory=())
This function prepares a state that is executing a call instruction. If given an initial_state, it copies over all
of the critical registers to it from the calling_state. Otherwise, it prepares the calling_state for action.

This is mostly used to create minimalistic for CFG generation. Some ABIs, such as MIPS PIE and x86 PIE,
require certain information to be maintained in certain registers. For example, for PIE MIPS, this function
transfer t9, gp, and ra to the new state.

10.16. SimOS 877

https://docs.python.org/3/library/functions.html#object

angr

prepare_function_symbol(symbol_name, basic_addr=None)
Prepare the address space with the data necessary to perform relocations pointing to the given symbol

Returns a 2-tuple. The first item is the address of the function code, the second is the address of the
relocation target.

handle_exception(successors, engine, exception)
Perform exception handling. This method will be called when, during execution, a SimException is thrown.
Currently, this can only indicate a segfault, but in the future it could indicate any unexpected exceptional
behavior that can’t be handled by ordinary control flow.

The method may mutate the provided SimSuccessors object in any way it likes, or re-raise the exception.

Parameters
• successors – The SimSuccessors object currently being executed on

• engine – The engine that was processing this step

• exception – The actual exception object

syscall(state, allow_unsupported=True)

syscall_abi(state)

Return type
str

syscall_cc(state)

Return type
Optional[SimCCSyscall]

is_syscall_addr(addr)

syscall_from_addr(addr, allow_unsupported=True)

syscall_from_number(number, allow_unsupported=True, abi=None)

setup_gdt(state, gdt)
Write the GlobalDescriptorTable object in the current state memory

Parameters
• state – state in which to write the GDT

• gdt – GlobalDescriptorTable object

Returns
generate_gdt(fs, gs, fs_size=4294967295, gs_size=4294967295)

Generate a GlobalDescriptorTable object and populate it using the value of the gs and fs register

Parameters
• fs – value of the fs segment register

• gs – value of the gs segment register

• fs_size – size of the fs segment register

• gs_size – size of the gs segment register

Returns
gdt a GlobalDescriptorTable object

878 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

angr

class angr.simos.simos.GlobalDescriptorTable(addr, limit, table, gdt_sel, cs_sel, ds_sel, es_sel, ss_sel,
fs_sel, gs_sel)

Bases: object

__init__(addr, limit, table, gdt_sel, cs_sel, ds_sel, es_sel, ss_sel, fs_sel, gs_sel)

class angr.simos.linux.SimLinux(project, **kwargs)
Bases: SimUserland

OS-specific configuration for *nix-y OSes.

__init__(project, **kwargs)

configure_project()

Configure the project to set up global settings (like SimProcedures).

syscall_abi(state)
Optionally, override this function to determine which abi is being used for the state’s current syscall.

state_blank(fs=None, concrete_fs=False, chroot=None, cwd=None, pathsep=b'/', thread_idx=None,
init_libc=False, **kwargs)

Initialize a blank state.

All parameters are optional.

Parameters
• addr – The execution start address.

• initial_prefix –

• stack_end – The end of the stack (i.e., the byte after the last valid stack address).

• stack_size – The number of bytes to allocate for stack space

• brk – The address of the process’ break.

Returns
The initialized SimState.

Any additional arguments will be passed to the SimState constructor

state_entry(args=None, env=None, argc=None, **kwargs)

set_entry_register_values(state)

state_full_init(**kwargs)

prepare_function_symbol(symbol_name, basic_addr=None)
Prepare the address space with the data necessary to perform relocations pointing to the given symbol.

Returns a 2-tuple. The first item is the address of the function code, the second is the address of the
relocation target.

initialize_segment_register_x64(state, concrete_target)
Set the fs register in the angr to the value of the fs register in the concrete process

Parameters
• state – state which will be modified

• concrete_target – concrete target that will be used to read the fs register

10.16. SimOS 879

https://docs.python.org/3/library/functions.html#object

angr

Returns
None

initialize_gdt_x86(state, concrete_target)
Create a GDT in the state memory and populate the segment registers. Rehook the vsyscall address using
the real value in the concrete process memory

Parameters
• state – state which will be modified

• concrete_target – concrete target that will be used to read the fs register

Returns
get_segment_register_name()

class angr.simos.cgc.SimCGC(project, **kwargs)
Bases: SimUserland

Environment configuration for the CGC DECREE platform

__init__(project, **kwargs)

state_blank(flag_page=None, allocate_stack_page_count=256, **kwargs)

Parameters
• flag_page – Flag page content, either a string or a list of BV8s

• allocate_stack_page_count – Number of pages to pre-allocate for stack

state_entry(add_options=None, **kwargs)

class angr.simos.userland.SimUserland(project, syscall_library=None, syscall_addr_alignment=4,
**kwargs)

Bases: SimOS

This is a base class for any SimOS that wants to support syscalls.

It uses the CLE kernel object to provide addresses for syscalls. Syscalls will be emulated as a jump to one of
these addresses, where a SimProcedure from the syscall library provided at construction time will be executed.

__init__(project, syscall_library=None, syscall_addr_alignment=4, **kwargs)

configure_project(abi_list=None)
Configure the project to set up global settings (like SimProcedures).

syscall_cc(state)

Return type
SimCCSyscall

syscall(state, allow_unsupported=True)
Given a state, return the procedure corresponding to the current syscall. This procedure will have
.syscall_number, .display_name, and .addr set.

Parameters
• state – The state to get the syscall number from

• allow_unsupported – Whether to return a “dummy” sycall instead of raising an unsup-
ported exception

880 Chapter 10. API Reference

angr

syscall_abi(state)
Optionally, override this function to determine which abi is being used for the state’s current syscall.

is_syscall_addr(addr)
Return whether or not the given address corresponds to a syscall implementation.

syscall_from_addr(addr, allow_unsupported=True)
Get a syscall SimProcedure from an address.

Parameters
• addr – The address to convert to a syscall SimProcedure

• allow_unsupported – Whether to return a dummy procedure for an unsupported syscall
instead of raising an exception.

Returns
The SimProcedure for the syscall, or None if the address is not a syscall address.

syscall_from_number(number, allow_unsupported=True, abi=None)
Get a syscall SimProcedure from its number.

Parameters
• number – The syscall number

• allow_unsupported – Whether to return a “stub” syscall for unsupported numbers in-
stead of throwing an error

• abi – The name of the abi to use. If None, will assume that the abis have disjoint numbering
schemes and pick the right one.

Returns
The SimProcedure for the syscall

class angr.simos.windows.SecurityCookieInit(value)
Bases: Enum

An enumeration.

NONE = 0

RANDOM = 1

STATIC = 2

SYMBOLIC = 3

class angr.simos.windows.SimWindows(project)
Bases: SimOS

Environment for the Windows Win32 subsystem. Does not support syscalls currently.

__init__(project)

configure_project()

Configure the project to set up global settings (like SimProcedures).

state_entry(args=None, env=None, argc=None, **kwargs)

10.16. SimOS 881

https://docs.python.org/3/library/enum.html#enum.Enum

angr

state_blank(thread_idx=None, **kwargs)
Initialize a blank state.

All parameters are optional.

Parameters
• addr – The execution start address.

• initial_prefix –

• stack_end – The end of the stack (i.e., the byte after the last valid stack address).

• stack_size – The number of bytes to allocate for stack space

• brk – The address of the process’ break.

Returns
The initialized SimState.

Any additional arguments will be passed to the SimState constructor

handle_exception(successors, engine, exception)
Perform exception handling. This method will be called when, during execution, a SimException is thrown.
Currently, this can only indicate a segfault, but in the future it could indicate any unexpected exceptional
behavior that can’t be handled by ordinary control flow.

The method may mutate the provided SimSuccessors object in any way it likes, or re-raise the exception.

Parameters
• successors – The SimSuccessors object currently being executed on

• engine – The engine that was processing this step

• exception – The actual exception object

initialize_segment_register_x64(state, concrete_target)
Set the gs register in the angr to the value of the fs register in the concrete process

Parameters
• state – state which will be modified

• concrete_target – concrete target that will be used to read the fs register

Returns
None

initialize_gdt_x86(state, concrete_target)
Create a GDT in the state memory and populate the segment registers.

Parameters
• state – state which will be modified

• concrete_target – concrete target that will be used to read the fs register

Returns
the created GlobalDescriptorTable object

get_segment_register_name()

class angr.simos.javavm.SimJavaVM(*args, **kwargs)
Bases: SimOS

882 Chapter 10. API Reference

angr

__init__(*args, **kwargs)

state_blank(addr=None, **kwargs)
Initialize a blank state.

All parameters are optional.

Parameters
• addr – The execution start address.

• initial_prefix –

• stack_end – The end of the stack (i.e., the byte after the last valid stack address).

• stack_size – The number of bytes to allocate for stack space

• brk – The address of the process’ break.

Returns
The initialized SimState.

Any additional arguments will be passed to the SimState constructor

state_entry(args=None, **kwargs)
Create an entry state.

Parameters
args – List of SootArgument values (optional).

static generate_symbolic_cmd_line_arg(state, max_length=1000)
Generates a new symbolic cmd line argument string. :return: The string reference.

state_call(addr, *args, **kwargs)
Create a native or a Java call state.

Parameters
• addr – Soot or native addr of the invoke target.

• args – List of SootArgument values.

static get_default_value_by_type(type_, state)
Java specify defaults values for primitive and reference types. This method returns the default value for a
given type.

Parameters
• type (str) – Name of type.

• state (SimState) – Current SimState.

Returns
Default value for this type.

static cast_primitive(state, value, to_type)
Cast the value of primtive types.

Parameters
• value – Bitvector storing the primitive value.

• to_type – Name of the targeted type.

Returns
Resized value.

10.16. SimOS 883

https://docs.python.org/3/library/stdtypes.html#str

angr

static init_static_field(state, field_class_name, field_name, field_type)
Initialize the static field with an allocated, but not initialized, object of the given type.

Parameters
• state – State associated to the field.

• field_class_name – Class containing the field.

• field_name – Name of the field.

• field_type – Type of the field and the new object.

static get_cmd_line_args(state)

get_addr_of_native_method(soot_method)
Get address of the implementation from a native declared Java function.

Parameters
soot_method – Method descriptor of a native declared function.

Returns
CLE address of the given method.

get_native_type(java_type)
Maps the Java type to a SimTypeReg representation of its native counterpart. This type can be used to
indicate the (well-defined) size of native JNI types.

Returns
A SymTypeReg with the JNI size of the given type.

get_method_native_type(method)

property native_arch

Arch of the native simos.

Type
return

get_native_cc()

Returns
SimCC object for the native simos.

angr.simos.javavm.prepare_native_return_state(native_state)
Hook target for native function call returns.

Recovers and stores the return value from native memory and toggles the state, s.t. execution continues in the
Soot engine.

Note: Redirection needed for pickling.

884 Chapter 10. API Reference

angr

10.17 Function Signature Matching

class angr.flirt.FlirtSignature(arch, platform, sig_name, sig_path, unique_strings=None, compiler=None,
compiler_version=None, os_name=None, os_version=None)

Bases: object

This class describes a FLIRT signature.

Parameters
• arch (str) –

• platform (str) –

• sig_name (str) –

• sig_path (str) –

• unique_strings (Set[str] | None) –

• compiler (str | None) –

• compiler_version (str | None) –

• os_name (str | None) –

• os_version (str | None) –

__init__(arch, platform, sig_name, sig_path, unique_strings=None, compiler=None,
compiler_version=None, os_name=None, os_version=None)

Parameters
• arch (str) –

• platform (str) –

• sig_name (str) –

• sig_path (str) –

• unique_strings (Set[str] | None) –

• compiler (str | None) –

• compiler_version (str | None) –

• os_name (str | None) –

• os_version (str | None) –

angr.flirt.FS

alias of FlirtSignature

angr.flirt.load_signatures(path)
Recursively load all FLIRT signatures under a specific path.

Parameters
path (str) – Location of FLIRT signatures.

Return type
None

10.17. Function Signature Matching 885

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

angr

angr.flirt.build_sig.get_basic_info(ar_path)
Get basic information of the archive file.

Return type
Dict[str, str]

Parameters
ar_path (str) –

angr.flirt.build_sig.get_unique_strings(ar_path)
For Linux libraries, this method requires ar (from binutils), nm (from binutils), and strings.

Return type
List[str]

Parameters
ar_path (str) –

angr.flirt.build_sig.run_pelf(pelf_path, ar_path, output_path)

Parameters
• pelf_path (str) –

• ar_path (str) –

• output_path (str) –

angr.flirt.build_sig.run_sigmake(sigmake_path, sig_name, pat_path, sig_path)

Parameters
• sigmake_path (str) –

• sig_name (str) –

• pat_path (str) –

• sig_path (str) –

angr.flirt.build_sig.process_exc_file(exc_path)
We are doing the stupidest thing possible: For each batch of conflicts, we pick the most likely result baed on a
set of predefined rules.

TODO: Add caller-callee-based de-duplication.

Parameters
exc_path (str) –

angr.flirt.build_sig.main()

10.18 Utils

angr.utils.looks_like_sql(s)
Determine if string s looks like an SQL query.

Parameters
s (str) – The string to detect.

Return type
bool

886 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

angr

Returns
True if the string looks like an SQL, False otherwise.

angr.utils.algo.binary_insert(lst, elem, key, lo=0, hi=None)
Insert an element into a sorted list, and keep the list sorted.

The major difference from bisect.bisect_left is that this function supports a key method, so user doesn’t have to
create the key array for each insertion.

Parameters
• lst (list) – The list. Must be pre-ordered.

• element (object) – An element to insert into the list.

• key (func) – A method to get the key for each element in the list.

• lo (int) – Lower bound of the search.

• hi (int) – Upper bound of the search.

• elem (Any) –

Return type
None

Returns
None

angr.utils.constants.is_alignment_mask(n)

class angr.utils.cowdict.ChainMapCOW(*args, collapse_threshold=None)
Bases: ChainMap

Implements a copy-on-write version of ChainMap that supports auto-collapsing.

__init__(*args, collapse_threshold=None)
Initialize a ChainMap by setting maps to the given mappings. If no mappings are provided, a single empty
dictionary is used.

copy()

New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]

clean()

class angr.utils.cowdict.DefaultChainMapCOW(default_factory, *args, collapse_threshold=None)
Bases: ChainMapCOW

Implements a copy-on-write version of ChainMap with default values that supports auto-collapsing.

__init__(default_factory, *args, collapse_threshold=None)
Initialize a ChainMap by setting maps to the given mappings. If no mappings are provided, a single empty
dictionary is used.

clean()

class angr.utils.dynamic_dictlist.DynamicDictList(max_size=None, content=None)
Bases: Generic[VT]

A list-like container class that internally uses dicts to store values when the number of values is less than the
threshold LIST2DICT_THRESHOLD. Keys must be ints.

The default thresholds are determined according to experiments described at https://github.com/angr/angr/pull/
3471#issuecomment-1236515950.

10.18. Utils 887

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.html#collections.ChainMap
https://docs.python.org/3/library/typing.html#typing.Generic
https://github.com/angr/angr/pull/3471#issuecomment-1236515950
https://github.com/angr/angr/pull/3471#issuecomment-1236515950

angr

__init__(max_size=None, content=None)

Parameters
• max_size (int | None) –

• content (DynamicDictList | Dict[int, VT] | List[VT] | None) –

list_content: Optional[List[TypeVar(VT)]]

max_size

dict_content: Optional[Dict[int, TypeVar(VT)]]

real_length()

Return type
int

angr.utils.enums_conv.cfg_jumpkind_to_pb(jk)

angr.utils.enums_conv.func_edge_type_to_pb(jk)

angr.utils.enums_conv.cfg_jumpkind_from_pb(pb)

angr.utils.enums_conv.func_edge_type_from_pb(pb)

angr.utils.env.is_pyinstaller()

Detect if we are currently running as a PyInstaller-packaged program.

Return type
bool

Returns
True if we are running as a PyInstaller-packaged program. False if we are running in Python
directly (e.g., development mode).

angr.utils.graph.shallow_reverse(g)
Make a shallow copy of a directional graph and reverse the edges. This is a workaround to solve the issue that
one cannot easily make a shallow reversed copy of a graph in NetworkX 2, since networkx.reverse(copy=False)
now returns a GraphView, and GraphViews are always read-only.

Parameters
g (networkx.DiGraph) – The graph to reverse.

Return type
DiGraph

Returns
A new networkx.DiGraph that has all nodes and all edges of the original graph, with edges re-
versed.

angr.utils.graph.inverted_idoms(graph)
Invert the given graph and generate the immediate dominator tree on the inverted graph. This is useful for
computing post-dominators.

Parameters
graph (DiGraph) – The graph to invert and generate immediate dominator tree for.

Return type
Tuple[DiGraph, Optional[Dict]]

888 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict

angr

Returns
A tuple of the inverted graph and the immediate dominator tree.

angr.utils.graph.to_acyclic_graph(graph, ordered_nodes=None, loop_heads=None)
Convert a given DiGraph into an acyclic graph.

Parameters
• graph (DiGraph) – The graph to convert.

• ordered_nodes (Optional[List]) – A list of nodes sorted in a topological order.

• loop_heads (Optional[List]) – A list of known loop head nodes.

Return type
DiGraph

Returns
The converted acyclic graph.

angr.utils.graph.dfs_back_edges(graph, start_node)
Perform an iterative DFS traversal of the graph, returning back edges.

Parameters
• graph – The graph to traverse.

• start_node – The node where to start the traversal.

Returns
An iterator of ‘backward’ edges.

angr.utils.graph.subgraph_between_nodes(graph, source, frontier, include_frontier=False)
For a directed graph, return a subgraph that includes all nodes going from a source node to a target node.

Parameters
• graph (networkx.DiGraph) – The directed graph.

• source – The source node.

• frontier (list) – A collection of target nodes.

• include_frontier (bool) – Should nodes in frontier be included in the subgraph.

Returns
A subgraph.

Return type
networkx.DiGraph

angr.utils.graph.dominates(idom, dominator_node, node)

angr.utils.graph.compute_dominance_frontier(graph, domtree)
Compute a dominance frontier based on the given post-dominator tree.

This implementation is based on figure 2 of paper An Efficient Method of Computing Static Single Assignment
Form by Ron Cytron, etc.

Parameters
• graph – The graph where we want to compute the dominance frontier.

• domtree – The dominator tree

10.18. Utils 889

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

angr

Returns
A dict of dominance frontier

class angr.utils.graph.TemporaryNode(label)
Bases: object

A temporary node.

Used as the start node and end node in post-dominator tree generation. Also used in some test cases.

__init__(label)

class angr.utils.graph.ContainerNode(obj)
Bases: object

A container node.

Only used in dominator tree generation. We did this so we can set the index property without modifying the
original object.

__init__(obj)

index

property obj

class angr.utils.graph.Dominators(graph, entry_node, successors_func=None, reverse=False)
Bases: object

Describes dominators in a graph.

__init__(graph, entry_node, successors_func=None, reverse=False)

dom: DiGraph

class angr.utils.graph.PostDominators(graph, entry_node, successors_func=None)
Bases: Dominators

Describe post-dominators in a graph.

__init__(graph, entry_node, successors_func=None)

property post_dom: DiGraph

dom: DiGraph

class angr.utils.graph.SCCPlaceholder(scc_id)
Bases: object

Describes a placeholder for strongly-connected-components in a graph.

__init__(scc_id)

scc_id

class angr.utils.graph.GraphUtils

Bases: object

A helper class with some static methods and algorithms implemented, that in fact, might take more than just
normal CFGs.

890 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

static find_merge_points(function_addr, function_endpoints, graph)
Given a local transition graph of a function, find all merge points inside, and then perform a quasi-
topological sort of those merge points.

A merge point might be one of the following cases: - two or more paths come together, and ends at the
same address. - end of the current function

Parameters
• function_addr (int) – Address of the function.

• function_endpoints (list) – Endpoints of the function. They typically come from
Function.endpoints.

• graph (networkx.DiGraph) – A local transition graph of a function. Normally it comes
from Function.graph.

Returns
A list of ordered addresses of merge points.

Return type
list

static find_widening_points(function_addr, function_endpoints, graph)
Given a local transition graph of a function, find all widening points inside.

Correctly choosing widening points is very important in order to not lose too much information during static
analysis. We mainly consider merge points that has at least one loop back edges coming in as widening
points.

Parameters
• function_addr (int) – Address of the function.

• function_endpoints (list) – Endpoints of the function, typically coming from Func-
tion.endpoints.

• graph (networkx.DiGraph) – A local transition graph of a function, normally Func-
tion.graph.

Returns
A list of addresses of widening points.

Return type
list

static reverse_post_order_sort_nodes(graph, nodes=None)
Sort a given set of nodes in reverse post ordering.

Parameters
• graph (networkx.DiGraph) – A local transition graph of a function.

• nodes (iterable) – A collection of nodes to sort.

Returns
A list of sorted nodes.

Return type
list

10.18. Utils 891

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

angr

static quasi_topological_sort_nodes(graph, nodes=None, loop_heads=None)
Sort a given set of nodes from a graph based on the following rules:

- if A -> B and not B -> A, then we have A < B # - if A -> B and B -> A, then the ordering is undefined

Following the above rules gives us a quasi-topological sorting of nodes in the graph. It also works for cyclic
graphs.

Parameters
• graph (DiGraph) – A local transition graph of the function.

• nodes (Optional[List]) – A list of nodes to sort. None if you want to sort all nodes
inside the graph.

• loop_heads (Optional[List]) – A list of nodes that should be treated loop heads.

Return type
List

Returns
A list of ordered nodes.

angr.utils.lazy_import.lazy_import(name)

angr.utils.loader.is_pc(project, ins_addr, addr)
Check if the given address is program counter (PC) or not. This function is for handling the case on some bizarre
architectures where PC is always the currently executed instruction address plus a constant value.

Parameters
• project (Project) – An angr Project instance.

• ins_addr (int) – The address of an instruction. We calculate PC using this instruction
address.

• addr (int) – The address to check against.

Return type
bool

Returns
True if the given instruction address is the PC, False otherwise.

angr.utils.loader.is_in_readonly_section(project, addr)
Check if the specified address is inside a read-only section.

Parameters
• project (Project) – An angr Project instance.

• addr (int) – The address to check.

Return type
bool

Returns
True if the given address belongs to a read-only section, False otherwise.

angr.utils.loader.is_in_readonly_segment(project, addr)
Check if the specified address is inside a read-only segment.

Parameters
• project (Project) – An angr Project instance.

892 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

• addr (int) – The address to check.

Return type
bool

Returns
True if the given address belongs to a read-only segment, False otherwise.

angr.utils.library.get_function_name(s)
Get the function name from a C-style function declaration string.

Parameters
s (str) – A C-style function declaration string.

Returns
The function name.

Return type
str

angr.utils.library.register_kernel_types()

angr.utils.library.convert_cproto_to_py(c_decl)
Convert a C-style function declaration string to its corresponding SimTypes-based Python representation.

Parameters
c_decl (str) – The C-style function declaration string.

Return type
Tuple[str, SimTypeFunction, str]

Returns
A tuple of the function name, the prototype, and a string representing the SimType-based Python
representation.

angr.utils.library.convert_cppproto_to_py(cpp_decl, with_param_names=False)
Pre-process a C++-style function declaration string to its corresponding SimTypes-based Python representation.

Parameters
• cpp_decl (str) – The C++-style function declaration string.

• with_param_names (bool) –

Return type
Tuple[Optional[str], Optional[SimTypeCppFunction], Optional[str]]

Returns
A tuple of the function name, the prototype, and a string representing the SimType-based Python
representation.

angr.utils.library.parsedcprotos2py(parsed_cprotos, fd_spots=frozenset({}), remove_sys_prefix=False)
Parse a list of C function declarations and output to Python code that can be embedded into
angr.procedures.definitions.

>>> # parse the list of glibc C prototypes and output to a file
>>> from angr.procedures.definitions import glibc
>>> with open("glibc_protos", "w") as f: f.write(cprotos2py(glibc._libc_c_decls))

Parameters
parsed_cprotos (List[Tuple[str, SimTypeFunction, str]]) – A list of tuples where each
tuple is (function name, parsed C function prototype, the original function declaration).

10.18. Utils 893

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

Return type
str

Returns
A Python string.

angr.utils.library.cprotos2py(cprotos, fd_spots=frozenset({}), remove_sys_prefix=False)
Parse a list of C function declarations and output to Python code that can be embedded into
angr.procedures.definitions.

>>> # parse the list of glibc C prototypes and output to a file
>>> from angr.procedures.definitions import glibc
>>> with open("glibc_protos", "w") as f: f.write(cprotos2py(glibc._libc_c_decls))

Parameters
cprotos (List[str]) – A list of C prototype strings.

Return type
str

Returns
A Python string.

angr.utils.library.get_cpp_function_name(demangled_name, specialized=True, qualified=True)

angr.utils.timing.timethis(func)

angr.utils.formatting.setup_terminal()

Check if we are running in a TTY. If so, make sure the terminal supports ANSI escape sequences. If not, disable
colorized output. Sets global ansi_color_enabled to True if colorized output should be enabled by default.

angr.utils.formatting.ansi_color(s, color)
Colorize string s by wrapping in ANSI escape sequence for given color.

This function does not consider whether escape sequences are functional or not; it is up to the caller to determine
if its appropriate. Check global ansi_color_enabled value in this module.

Return type
str

Parameters
• s (str) –

• color (str | None) –

angr.utils.formatting.add_edge_to_buffer(buf , ref , start, end, formatter=None, dashed=False,
ascii_only=None)

Draw an edge by adding Unicode box and arrow glyphs to beginning of each line in a list of lines.

Parameters
• buf (Sequence[str]) – Output buffer, used to render formatted edges.

• ref (Sequence[str]) – Reference buffer, used to calculate edge depth.

• start (int) – Start line.

• end (int) – End line, where arrow points.

894 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

• formatter (Optional[Callable[[str], str]]) – Optional callback function used to for-
mat the edge before writing it to output buffer.

• dashed (bool) – Render edge line dashed instead of solid.

• ascii_only (Optional[bool]) – Render edge using ASCII characters only. If unspecified,
guess by stdout encoding.

Returns
class angr.utils.mp.Closure(f: Callable[[...], None], args: List[Any], kwargs: Dict[str, Any])

Bases: tuple

A pickle-able lambda; note that f, args, and kwargs must be pickleable

Parameters
• f (Callable[[...], None]) –

• args (List[Any]) –

• kwargs (Dict[str, Any]) –

f: Callable[..., None]

Alias for field number 0

args: List[Any]

Alias for field number 1

kwargs: Dict[str, Any]

Alias for field number 2

class angr.utils.mp.Initializer(*, _manual=True)
Bases: object

A singleton class with global state used to initialize a multiprocessing.Process

Parameters
_manual (bool) –

classmethod get()

A wrapper around init since this class is a singleton

Return type
Initializer

__init__(*, _manual=True)

Parameters
_manual (bool) –

register(f , *args, **kwargs)
A shortcut for adding Closures as initializers

Return type
None

Parameters
• f (Callable[[...], None]) –

• args (Any) –

• kwargs (Any) –

10.18. Utils 895

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

angr

initialize()

Initialize a multiprocessing.Process Set the current global initalizer to the same state as this initalizer, then
calls each initalizer

Return type
None

angr.utils.mp.mp_context()

10.19 Errors

exception angr.errors.AngrError

Bases: Exception

exception angr.errors.AngrValueError

Bases: AngrError, ValueError

exception angr.errors.AngrLifterError

Bases: AngrError

exception angr.errors.AngrExitError

Bases: AngrError

exception angr.errors.AngrPathError

Bases: AngrError

exception angr.errors.AngrVaultError

Bases: AngrError

exception angr.errors.PathUnreachableError

Bases: AngrPathError

exception angr.errors.SimulationManagerError

Bases: AngrError

exception angr.errors.AngrInvalidArgumentError

Bases: AngrError

exception angr.errors.AngrSurveyorError

Bases: AngrError

exception angr.errors.AngrAnalysisError

Bases: AngrError

exception angr.errors.AngrBladeError

Bases: AngrError

exception angr.errors.AngrBladeSimProcError

Bases: AngrBladeError

exception angr.errors.AngrAnnotatedCFGError

Bases: AngrError

exception angr.errors.AngrBackwardSlicingError

Bases: AngrError

896 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#ValueError

angr

exception angr.errors.AngrGirlScoutError

Bases: AngrError

exception angr.errors.AngrCallableError

Bases: AngrSurveyorError

exception angr.errors.AngrCallableMultistateError

Bases: AngrCallableError

exception angr.errors.AngrSyscallError

Bases: AngrError

exception angr.errors.AngrSimOSError

Bases: AngrError

exception angr.errors.AngrAssemblyError

Bases: AngrError

exception angr.errors.AngrTypeError

Bases: AngrError, TypeError

exception angr.errors.AngrIncongruencyError

Bases: AngrAnalysisError

exception angr.errors.AngrForwardAnalysisError

Bases: AngrError

exception angr.errors.AngrSkipJobNotice

Bases: AngrForwardAnalysisError

exception angr.errors.AngrDelayJobNotice

Bases: AngrForwardAnalysisError

exception angr.errors.AngrJobMergingFailureNotice

Bases: AngrForwardAnalysisError

exception angr.errors.AngrJobWideningFailureNotice

Bases: AngrForwardAnalysisError

exception angr.errors.AngrCFGError

Bases: AngrError

exception angr.errors.AngrVFGError

Bases: AngrError

exception angr.errors.AngrVFGRestartAnalysisNotice

Bases: AngrVFGError

exception angr.errors.AngrDataGraphError

Bases: AngrAnalysisError

exception angr.errors.AngrDDGError

Bases: AngrAnalysisError

exception angr.errors.AngrLoopAnalysisError

Bases: AngrAnalysisError

10.19. Errors 897

https://docs.python.org/3/library/exceptions.html#TypeError

angr

exception angr.errors.AngrExplorationTechniqueError

Bases: AngrError

exception angr.errors.AngrExplorerError

Bases: AngrExplorationTechniqueError

exception angr.errors.AngrDirectorError

Bases: AngrExplorationTechniqueError

exception angr.errors.AngrTracerError

Bases: AngrExplorationTechniqueError

exception angr.errors.AngrVariableRecoveryError

Bases: AngrAnalysisError

exception angr.errors.AngrDBError

Bases: AngrError

exception angr.errors.AngrCorruptDBError

Bases: AngrDBError

exception angr.errors.AngrIncompatibleDBError

Bases: AngrDBError

exception angr.errors.TracerEnvironmentError

Bases: AngrError

exception angr.errors.SimError

Bases: Exception

bbl_addr = None

stmt_idx = None

ins_addr = None

executed_instruction_count = None

guard = None

record_state(state)

exception angr.errors.SimStateError

Bases: SimError

exception angr.errors.SimMergeError

Bases: SimStateError

exception angr.errors.SimMemoryError

Bases: SimStateError

exception angr.errors.SimMemoryMissingError(missing_addr, missing_size, *args)
Bases: SimMemoryError

__init__(missing_addr, missing_size, *args)

exception angr.errors.SimAbstractMemoryError

Bases: SimMemoryError

898 Chapter 10. API Reference

https://docs.python.org/3/library/exceptions.html#Exception

angr

exception angr.errors.SimRegionMapError

Bases: SimMemoryError

exception angr.errors.SimMemoryLimitError

Bases: SimMemoryError

exception angr.errors.SimMemoryAddressError

Bases: SimMemoryError

exception angr.errors.SimFastMemoryError

Bases: SimMemoryError

exception angr.errors.SimEventError

Bases: SimStateError

exception angr.errors.SimPosixError

Bases: SimStateError

exception angr.errors.SimFilesystemError

Bases: SimError

exception angr.errors.SimSymbolicFilesystemError

Bases: SimFilesystemError

exception angr.errors.SimFileError

Bases: SimMemoryError, SimFilesystemError

exception angr.errors.SimHeapError

Bases: SimStateError

exception angr.errors.SimUnsupportedError

Bases: SimError

exception angr.errors.SimSolverError

Bases: SimError

exception angr.errors.SimSolverModeError

Bases: SimSolverError

exception angr.errors.SimSolverOptionError

Bases: SimSolverError

exception angr.errors.SimValueError

Bases: SimSolverError

exception angr.errors.SimUnsatError

Bases: SimValueError

exception angr.errors.SimOperationError

Bases: SimError

exception angr.errors.UnsupportedIROpError

Bases: SimOperationError, SimUnsupportedError

exception angr.errors.SimExpressionError

Bases: SimError

10.19. Errors 899

angr

exception angr.errors.UnsupportedIRExprError

Bases: SimExpressionError, SimUnsupportedError

exception angr.errors.SimCCallError

Bases: SimExpressionError

exception angr.errors.UnsupportedCCallError

Bases: SimCCallError, SimUnsupportedError

exception angr.errors.SimUninitializedAccessError(expr_type, expr)
Bases: SimExpressionError

__init__(expr_type, expr)

exception angr.errors.SimStatementError

Bases: SimError

exception angr.errors.UnsupportedIRStmtError

Bases: SimStatementError, SimUnsupportedError

exception angr.errors.UnsupportedDirtyError

Bases: UnsupportedIRStmtError, SimUnsupportedError

exception angr.errors.SimMissingTempError

Bases: SimValueError, IndexError

exception angr.errors.SimEngineError

Bases: SimError

exception angr.errors.SimIRSBError

Bases: SimEngineError

exception angr.errors.SimTranslationError

Bases: SimEngineError

exception angr.errors.SimProcedureError

Bases: SimEngineError

exception angr.errors.SimProcedureArgumentError

Bases: SimProcedureError

exception angr.errors.SimShadowStackError

Bases: SimProcedureError

exception angr.errors.SimFastPathError

Bases: SimEngineError

exception angr.errors.SimIRSBNoDecodeError

Bases: SimIRSBError

exception angr.errors.AngrUnsupportedSyscallError

Bases: AngrSyscallError, SimProcedureError, SimUnsupportedError

angr.errors.UnsupportedSyscallError

alias of AngrUnsupportedSyscallError

exception angr.errors.SimReliftException(state)
Bases: SimEngineError

900 Chapter 10. API Reference

https://docs.python.org/3/library/exceptions.html#IndexError

angr

__init__(state)

exception angr.errors.SimSlicerError

Bases: SimError

exception angr.errors.SimActionError

Bases: SimError

exception angr.errors.SimCCError

Bases: SimError

exception angr.errors.SimUCManagerError

Bases: SimError

exception angr.errors.SimUCManagerAllocationError

Bases: SimUCManagerError

exception angr.errors.SimUnicornUnsupport

Bases: SimError

exception angr.errors.SimUnicornError

Bases: SimError

exception angr.errors.SimUnicornSymbolic

Bases: SimError

exception angr.errors.SimEmptyCallStackError

Bases: SimError

exception angr.errors.SimStateOptionsError

Bases: SimError

exception angr.errors.SimException

Bases: SimError

exception angr.errors.SimSegfaultException(addr, reason, original_addr=None)
Bases: SimException, SimMemoryError

__init__(addr, reason, original_addr=None)

angr.errors.SimSegfaultError

alias of SimSegfaultException

exception angr.errors.SimZeroDivisionException

Bases: SimException, SimOperationError

exception angr.errors.AngrNoPluginError

Bases: AngrError

exception angr.errors.SimConcreteMemoryError

Bases: AngrError

exception angr.errors.SimConcreteRegisterError

Bases: AngrError

exception angr.errors.SimConcreteBreakpointError

Bases: AngrError

exception angr.errors.UnsupportedNodeTypeError

Bases: AngrError, NotImplementedError

10.19. Errors 901

https://docs.python.org/3/library/exceptions.html#NotImplementedError

angr

10.20 Distributed analysis

class angr.distributed.server.Server(project, spill_yard=None, db=None, max_workers=None,
max_states=10, staging_max=10, bucketizer=True,
recursion_limit=1000, worker_exit_callback=None,
techniques=None, add_options=None, remove_options=None)

Bases: object

Server implements the analysis server with a series of control interfaces exposed.

Variables
• project – An instance of angr.Project.

• spill_yard (str) – A directory to store spilled states.

• db (str) – Path of the database that stores information about spilled states.

• max_workers (int) – Maximum number of workers. Each worker starts a new process.

• max_states (int) – Maximum number of active states for each worker.

• staging_max (int) – Maximum number of inactive states that are kept into memory before
spilled onto the disk and potentially be picked up by another worker.

• bucketizer (bool) – Use the Bucketizer exploration strategy.

• _worker_exit_callback – A method that will be called upon the exit of each worker.

__init__(project, spill_yard=None, db=None, max_workers=None, max_states=10, staging_max=10,
bucketizer=True, recursion_limit=1000, worker_exit_callback=None, techniques=None,
add_options=None, remove_options=None)

inc_active_workers()

dec_active_workers()

stop()

property active_workers

property stopped

on_worker_exit(worker_id, stashes)

run()

class angr.distributed.worker.BadStatesDropper(vault, db)
Bases: ExplorationTechnique

Dumps and drops states that are not “active”.

__init__(vault, db)

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

902 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

angr

class angr.distributed.worker.ExplorationStatusNotifier(server_state)
Bases: ExplorationTechnique

Force the exploration to stop if the server.stop is True.

Parameters
server_state (Dict) –

__init__(server_state)

Parameters
server_state (Dict) –

step(simgr, stash='active', **kwargs)
Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
• simgr (angr.SimulationManager) –

• stash (str) –

class angr.distributed.worker.Worker(worker_id, server, server_state, recursion_limit=None,
techniques=None, add_options=None, remove_options=None)

Bases: object

Worker implements a worker thread/process for conducting a task.

__init__(worker_id, server, server_state, recursion_limit=None, techniques=None, add_options=None,
remove_options=None)

start()

run(initializer)

Parameters
initializer (Initializer) –

10.20. Distributed analysis 903

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

angr

904 Chapter 10. API Reference

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

905

angr

906 Chapter 11. Indices and tables

PYTHON MODULE INDEX

a
angr, 157
angr.analyses, 619
angr.analyses.analysis, 619
angr.analyses.backward_slice, 628
angr.analyses.binary_optimizer, 861
angr.analyses.bindiff, 630
angr.analyses.boyscout, 633
angr.analyses.callee_cleanup_finder, 862
angr.analyses.calling_convention, 633
angr.analyses.cdg, 674
angr.analyses.cfg, 637
angr.analyses.cfg.cfb, 637
angr.analyses.cfg.cfg, 639
angr.analyses.cfg.cfg_arch_options, 657
angr.analyses.cfg.cfg_base, 646
angr.analyses.cfg.cfg_emulated, 641
angr.analyses.cfg.cfg_fast, 648
angr.analyses.cfg.cfg_fast_soot, 669
angr.analyses.cfg.cfg_job_base, 657
angr.analyses.cfg.indirect_jump_resolvers,

669
angr.analyses.cfg.indirect_jump_resolvers.amd64_elf_got,

658
angr.analyses.cfg.indirect_jump_resolvers.arm_elf_fast,

659
angr.analyses.cfg.indirect_jump_resolvers.const_resolver,

667
angr.analyses.cfg.indirect_jump_resolvers.default_resolvers,

663
angr.analyses.cfg.indirect_jump_resolvers.jumptable,

663
angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast,

661
angr.analyses.cfg.indirect_jump_resolvers.resolver,

668
angr.analyses.cfg.indirect_jump_resolvers.x86_elf_pic_plt,

662
angr.analyses.cfg.indirect_jump_resolvers.x86_pe_iat,

660
angr.analyses.cfg.segment_list, 671
angr.analyses.cfg_slice_to_sink, 816

angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink,
816

angr.analyses.cfg_slice_to_sink.graph, 817
angr.analyses.cfg_slice_to_sink.transitions,

818
angr.analyses.class_identifier, 848
angr.analyses.code_tagging, 674
angr.analyses.complete_calling_conventions,

634
angr.analyses.congruency_check, 860
angr.analyses.data_dep, 872
angr.analyses.data_dep.data_dependency_analysis,

867
angr.analyses.data_dep.dep_nodes, 869
angr.analyses.data_dep.sim_act_location, 868
angr.analyses.datagraph_meta, 674
angr.analyses.ddg, 746
angr.analyses.decompiler, 692
angr.analyses.decompiler.ail_simplifier, 692
angr.analyses.decompiler.ailgraph_walker, 693
angr.analyses.decompiler.block_simplifier,

693
angr.analyses.decompiler.callsite_maker, 694
angr.analyses.decompiler.ccall_rewriters, 694
angr.analyses.decompiler.ccall_rewriters.amd64_ccalls,

694
angr.analyses.decompiler.ccall_rewriters.rewriter_base,

694
angr.analyses.decompiler.clinic, 695
angr.analyses.decompiler.condition_processor,

697
angr.analyses.decompiler.decompilation_cache,

699
angr.analyses.decompiler.decompilation_options,

698
angr.analyses.decompiler.decompiler, 699
angr.analyses.decompiler.empty_node_remover,

700
angr.analyses.decompiler.expression_narrower,

701
angr.analyses.decompiler.graph_region, 701
angr.analyses.decompiler.jump_target_collector,

907

angr

702
angr.analyses.decompiler.jumptable_entry_condition_rewriter,

702
angr.analyses.decompiler.optimization_passes,

703
angr.analyses.decompiler.optimization_passes.base_ptr_save_simplifier,

706
angr.analyses.decompiler.optimization_passes.const_derefs,

703
angr.analyses.decompiler.optimization_passes.div_simplifier,

706
angr.analyses.decompiler.optimization_passes.engine_base,

710
angr.analyses.decompiler.optimization_passes.expr_op_swapper,

711
angr.analyses.decompiler.optimization_passes.ite_expr_converter,

707
angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier,

708
angr.analyses.decompiler.optimization_passes.mod_simplifier,

710
angr.analyses.decompiler.optimization_passes.multi_simplifier,

709
angr.analyses.decompiler.optimization_passes.optimization_pass,

703
angr.analyses.decompiler.optimization_passes.register_save_area_simplifier,

712
angr.analyses.decompiler.optimization_passes.ret_addr_save_simplifier,

712
angr.analyses.decompiler.optimization_passes.stack_canary_simplifier,

706
angr.analyses.decompiler.optimization_passes.x86_gcc_getpc_simplifier,

713
angr.analyses.decompiler.peephole_optimizations,

713
angr.analyses.decompiler.peephole_optimizations.base,

713
angr.analyses.decompiler.redundant_label_remover,

723
angr.analyses.decompiler.region_identifier,

715
angr.analyses.decompiler.region_simplifiers,

716
angr.analyses.decompiler.region_simplifiers.cascading_cond_transformer,

716
angr.analyses.decompiler.region_simplifiers.cascading_ifs,

716
angr.analyses.decompiler.region_simplifiers.expr_folding,

716
angr.analyses.decompiler.region_simplifiers.goto,

719
angr.analyses.decompiler.region_simplifiers.if_,

719
angr.analyses.decompiler.region_simplifiers.ifelse,

719
angr.analyses.decompiler.region_simplifiers.loop,

719
angr.analyses.decompiler.region_simplifiers.node_address_finder,

719
angr.analyses.decompiler.region_simplifiers.region_simplifier,

720
angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier,

720
angr.analyses.decompiler.region_simplifiers.switch_expr_simplifier,

723
angr.analyses.decompiler.region_walker, 723
angr.analyses.decompiler.sequence_walker, 724
angr.analyses.decompiler.structured_codegen,

724
angr.analyses.decompiler.structured_codegen.base,

724
angr.analyses.decompiler.structured_codegen.c,

725
angr.analyses.decompiler.structured_codegen.dummy,

743
angr.analyses.decompiler.structured_codegen.dwarf_import,

743
angr.analyses.decompiler.structuring, 685
angr.analyses.decompiler.structuring.dream,

685
angr.analyses.decompiler.structuring.phoenix,

691
angr.analyses.decompiler.structuring.recursive_structurer,

685
angr.analyses.decompiler.structuring.structurer_base,

690
angr.analyses.decompiler.structuring.structurer_nodes,

686
angr.analyses.decompiler.utils, 743
angr.analyses.disassembly, 848
angr.analyses.disassembly_utils, 852
angr.analyses.dominance_frontier, 863
angr.analyses.find_objects_static, 847
angr.analyses.flirt, 752
angr.analyses.forward_analysis, 621
angr.analyses.forward_analysis.forward_analysis,

621
angr.analyses.forward_analysis.job_info, 622
angr.analyses.forward_analysis.visitors, 623
angr.analyses.forward_analysis.visitors.call_graph,

623
angr.analyses.forward_analysis.visitors.function_graph,

623
angr.analyses.forward_analysis.visitors.graph,

624
angr.analyses.forward_analysis.visitors.loop,

626
angr.analyses.forward_analysis.visitors.single_node_graph,

908 Python Module Index

angr

627
angr.analyses.identifier.identify, 837
angr.analyses.init_finder, 863
angr.analyses.loop_analysis, 839
angr.analyses.loopfinder, 838
angr.analyses.propagator, 754
angr.analyses.propagator.engine_ail, 756
angr.analyses.propagator.engine_base, 755
angr.analyses.propagator.engine_vex, 755
angr.analyses.propagator.outdated_definition_walker,

757
angr.analyses.propagator.propagator, 758
angr.analyses.propagator.tmpvar_finder, 758
angr.analyses.propagator.top_checker_mixin,

759
angr.analyses.propagator.values, 754
angr.analyses.propagator.vex_vars, 754
angr.analyses.proximity_graph, 865
angr.analyses.reaching_definitions, 759
angr.analyses.reaching_definitions.call_trace,

791
angr.analyses.reaching_definitions.dep_graph,

796
angr.analyses.reaching_definitions.engine_ail,

815
angr.analyses.reaching_definitions.engine_vex,

792
angr.analyses.reaching_definitions.function_handler,

800
angr.analyses.reaching_definitions.heap_allocator,

799
angr.analyses.reaching_definitions.rd_state,

807
angr.analyses.reaching_definitions.reaching_definitions,

793
angr.analyses.reaching_definitions.subject,

815
angr.analyses.reassembler, 852
angr.analyses.soot_class_hierarchy, 636
angr.analyses.stack_pointer_tracker, 818
angr.analyses.static_hooker, 861
angr.analyses.typehoon, 837
angr.analyses.typehoon.lifter, 829
angr.analyses.typehoon.simple_solver, 830
angr.analyses.typehoon.translator, 830
angr.analyses.typehoon.typeconsts, 836
angr.analyses.typehoon.typehoon, 835
angr.analyses.typehoon.typevars, 831
angr.analyses.variable_recovery, 829
angr.analyses.variable_recovery.annotations,

820
angr.analyses.variable_recovery.engine_ail,

828

angr.analyses.variable_recovery.engine_base,
828

angr.analyses.variable_recovery.engine_vex,
828

angr.analyses.variable_recovery.irsb_scanner,
829

angr.analyses.variable_recovery.variable_recovery,
827

angr.analyses.variable_recovery.variable_recovery_base,
821

angr.analyses.variable_recovery.variable_recovery_fast,
825

angr.analyses.veritesting, 840
angr.analyses.vfg, 841
angr.analyses.vsa_ddg, 846
angr.analyses.vtable, 847
angr.analyses.xrefs, 863
angr.angrdb, 675
angr.angrdb.db, 675
angr.angrdb.models, 677
angr.angrdb.serializers, 680
angr.angrdb.serializers.cfg_model, 680
angr.angrdb.serializers.comments, 681
angr.angrdb.serializers.funcs, 681
angr.angrdb.serializers.kb, 682
angr.angrdb.serializers.labels, 682
angr.angrdb.serializers.loader, 682
angr.angrdb.serializers.structured_code, 684
angr.angrdb.serializers.variables, 683
angr.angrdb.serializers.xrefs, 683
angr.annocfg, 873
angr.blade, 872
angr.block, 220
angr.callable, 519
angr.calling_conventions, 483
angr.code_location, 612
angr.codenode, 875
angr.concretization_strategies, 335
angr.concretization_strategies.any, 381
angr.concretization_strategies.controlled_data,

381
angr.concretization_strategies.eval, 379
angr.concretization_strategies.max, 380
angr.concretization_strategies.nonzero, 381
angr.concretization_strategies.nonzero_range,

380
angr.concretization_strategies.norepeats, 379
angr.concretization_strategies.norepeats_range,

381
angr.concretization_strategies.range, 380
angr.concretization_strategies.single, 379
angr.concretization_strategies.solutions, 379
angr.concretization_strategies.unlimited_range,

381

Python Module Index 909

angr

angr.distributed, 902
angr.distributed.server, 902
angr.distributed.worker, 902
angr.engines, 427
angr.engines.concrete, 433
angr.engines.engine, 427
angr.engines.failure, 431
angr.engines.hook, 430
angr.engines.light, 753
angr.engines.light.data, 752
angr.engines.light.engine, 753
angr.engines.pcode, 434
angr.engines.pcode.behavior, 444
angr.engines.pcode.cc, 464
angr.engines.pcode.emulate, 444
angr.engines.pcode.engine, 434
angr.engines.pcode.lifter, 435
angr.engines.procedure, 430
angr.engines.soot, 431
angr.engines.soot.engine, 431
angr.engines.successors, 428
angr.engines.syscall, 431
angr.engines.unicorn, 432
angr.engines.vex, 431
angr.errors, 896
angr.exploration_techniques, 390
angr.exploration_techniques.bucketizer, 426
angr.exploration_techniques.common, 424
angr.exploration_techniques.dfs, 408
angr.exploration_techniques.director, 418
angr.exploration_techniques.driller_core, 416
angr.exploration_techniques.explorer, 408
angr.exploration_techniques.lengthlimiter,

409
angr.exploration_techniques.local_loop_seer,

422
angr.exploration_techniques.loop_seer, 421
angr.exploration_techniques.manual_mergepoint,

410
angr.exploration_techniques.memory_watcher,

426
angr.exploration_techniques.oppologist, 420
angr.exploration_techniques.slicecutor, 417
angr.exploration_techniques.spiller, 410
angr.exploration_techniques.spiller_db, 412
angr.exploration_techniques.stochastic, 423
angr.exploration_techniques.suggestions, 426
angr.exploration_techniques.symbion, 424
angr.exploration_techniques.tech_builder, 424
angr.exploration_techniques.threading, 413
angr.exploration_techniques.timeout, 407
angr.exploration_techniques.tracer, 414
angr.exploration_techniques.unique, 423
angr.exploration_techniques.veritesting, 413

angr.factory, 216
angr.flirt, 885
angr.flirt.build_sig, 885
angr.keyed_region, 614
angr.knowledge_base, 520
angr.knowledge_base.knowledge_base, 520
angr.knowledge_plugins, 521
angr.knowledge_plugins.callsite_prototypes,

523
angr.knowledge_plugins.cfg, 524
angr.knowledge_plugins.cfg.cfg_manager, 544
angr.knowledge_plugins.cfg.cfg_model, 536
angr.knowledge_plugins.cfg.cfg_node, 544
angr.knowledge_plugins.cfg.indirect_jump, 547
angr.knowledge_plugins.cfg.memory_data, 542
angr.knowledge_plugins.comments, 549
angr.knowledge_plugins.data, 549
angr.knowledge_plugins.debug_variables, 568
angr.knowledge_plugins.functions, 550
angr.knowledge_plugins.functions.function,

552
angr.knowledge_plugins.functions.function_manager,

550
angr.knowledge_plugins.functions.function_parser,

560
angr.knowledge_plugins.functions.soot_function,

560
angr.knowledge_plugins.indirect_jumps, 549
angr.knowledge_plugins.key_definitions, 571
angr.knowledge_plugins.key_definitions.atoms,

584
angr.knowledge_plugins.key_definitions.constants,

588
angr.knowledge_plugins.key_definitions.definition,

589
angr.knowledge_plugins.key_definitions.environment,

591
angr.knowledge_plugins.key_definitions.heap_address,

592
angr.knowledge_plugins.key_definitions.key_definition_manager,

592
angr.knowledge_plugins.key_definitions.live_definitions,

593
angr.knowledge_plugins.key_definitions.rd_model,

602
angr.knowledge_plugins.key_definitions.tag,

604
angr.knowledge_plugins.key_definitions.undefined,

606
angr.knowledge_plugins.key_definitions.unknown_size,

606
angr.knowledge_plugins.key_definitions.uses,

606
angr.knowledge_plugins.labels, 549

910 Python Module Index

angr

angr.knowledge_plugins.patches, 521
angr.knowledge_plugins.plugin, 523
angr.knowledge_plugins.propagations, 549
angr.knowledge_plugins.structured_code, 571
angr.knowledge_plugins.structured_code.manager,

571
angr.knowledge_plugins.sync, 608
angr.knowledge_plugins.sync.sync_controller,

608
angr.knowledge_plugins.types, 549
angr.knowledge_plugins.variables, 561
angr.knowledge_plugins.variables.variable_access,

561
angr.knowledge_plugins.variables.variable_manager,

562
angr.knowledge_plugins.xrefs, 610
angr.knowledge_plugins.xrefs.xref, 610
angr.knowledge_plugins.xrefs.xref_manager,

612
angr.knowledge_plugins.xrefs.xref_types, 611
angr.misc.plugins, 222
angr.procedures, 473
angr.procedures.definitions, 475
angr.procedures.stubs.format_parser, 473
angr.project, 212
angr.protos, 617
angr.serializable, 617
angr.sim_manager, 382
angr.sim_options, 228
angr.sim_procedure, 469
angr.sim_state, 224
angr.sim_state_options, 228
angr.sim_type, 507
angr.sim_variable, 502
angr.simos, 877
angr.simos.cgc, 880
angr.simos.javavm, 882
angr.simos.linux, 879
angr.simos.simos, 877
angr.simos.userland, 880
angr.simos.windows, 881
angr.slicer, 873
angr.state_hierarchy, 389
angr.state_plugins, 231
angr.state_plugins.callstack, 263
angr.state_plugins.cgc, 271
angr.state_plugins.concrete, 292
angr.state_plugins.debug_variables, 307
angr.state_plugins.filesystem, 248
angr.state_plugins.gdb, 270
angr.state_plugins.globals, 278
angr.state_plugins.heap, 297
angr.state_plugins.heap.heap_base, 297
angr.state_plugins.heap.heap_brk, 298

angr.state_plugins.heap.heap_freelist, 300
angr.state_plugins.heap.heap_libc, 301
angr.state_plugins.heap.heap_ptmalloc, 302
angr.state_plugins.heap.utils, 306
angr.state_plugins.history, 267
angr.state_plugins.inspect, 233
angr.state_plugins.javavm_classloader, 294
angr.state_plugins.jni_references, 296
angr.state_plugins.libc, 236
angr.state_plugins.light_registers, 266
angr.state_plugins.log, 262
angr.state_plugins.loop_data, 291
angr.state_plugins.plugin, 231
angr.state_plugins.posix, 240
angr.state_plugins.preconstrainer, 282
angr.state_plugins.scratch, 280
angr.state_plugins.sim_action, 466
angr.state_plugins.sim_action_object, 468
angr.state_plugins.sim_event, 468
angr.state_plugins.solver, 254
angr.state_plugins.symbolizer, 307
angr.state_plugins.trace_additions, 273
angr.state_plugins.uc_manager, 279
angr.state_plugins.unicorn_engine, 284
angr.state_plugins.view, 309
angr.storage, 309
angr.storage.file, 314
angr.storage.memory_mixins, 336
angr.storage.memory_mixins.actions_mixin, 342
angr.storage.memory_mixins.address_concretization_mixin,

344
angr.storage.memory_mixins.bvv_conversion_mixin,

340
angr.storage.memory_mixins.clouseau_mixin,

346
angr.storage.memory_mixins.conditional_store_mixin,

346
angr.storage.memory_mixins.convenient_mappings_mixin,

348
angr.storage.memory_mixins.default_filler_mixin,

340
angr.storage.memory_mixins.dirty_addrs_mixin,

344
angr.storage.memory_mixins.hex_dumper_mixin,

341
angr.storage.memory_mixins.javavm_memory, 376
angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin,

376
angr.storage.memory_mixins.keyvalue_memory,

375
angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin,

375
angr.storage.memory_mixins.label_merger_mixin,

346

Python Module Index 911

angr

angr.storage.memory_mixins.multi_value_merger_mixin,
352

angr.storage.memory_mixins.name_resolution_mixin,
339

angr.storage.memory_mixins.paged_memory, 352
angr.storage.memory_mixins.paged_memory.page_backer_mixins,

357
angr.storage.memory_mixins.paged_memory.paged_memory_mixin,

352
angr.storage.memory_mixins.paged_memory.pages,

359
angr.storage.memory_mixins.paged_memory.pages.cooperation,

361
angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin,

360
angr.storage.memory_mixins.paged_memory.pages.ispo_mixin,

361
angr.storage.memory_mixins.paged_memory.pages.list_page,

362
angr.storage.memory_mixins.paged_memory.pages.multi_values,

350
angr.storage.memory_mixins.paged_memory.pages.mv_list_page,

348
angr.storage.memory_mixins.paged_memory.pages.permissions_mixin,

360
angr.storage.memory_mixins.paged_memory.pages.refcount_mixin,

359
angr.storage.memory_mixins.paged_memory.pages.ultra_page,

363
angr.storage.memory_mixins.paged_memory.privileged_mixin,

358
angr.storage.memory_mixins.paged_memory.stack_allocation_mixin,

358
angr.storage.memory_mixins.regioned_memory,

365
angr.storage.memory_mixins.regioned_memory.abstract_address_descriptor,

371
angr.storage.memory_mixins.regioned_memory.abstract_merger_mixin,

373
angr.storage.memory_mixins.regioned_memory.region_category_mixin,

370
angr.storage.memory_mixins.regioned_memory.region_data,

368
angr.storage.memory_mixins.regioned_memory.region_meta_mixin,

371
angr.storage.memory_mixins.regioned_memory.regioned_address_concretization_mixin,

373
angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin,

365
angr.storage.memory_mixins.regioned_memory.static_find_mixin,

370
angr.storage.memory_mixins.simple_interface_mixin,

342
angr.storage.memory_mixins.simplification_mixin,

347
angr.storage.memory_mixins.size_resolution_mixin,

343
angr.storage.memory_mixins.slotted_memory,

374
angr.storage.memory_mixins.smart_find_mixin,

339
angr.storage.memory_mixins.symbolic_merger_mixin,

342
angr.storage.memory_mixins.top_merger_mixin,

351
angr.storage.memory_mixins.underconstrained_mixin,

341
angr.storage.memory_mixins.unwrapper_mixin,

347
angr.storage.memory_object, 334
angr.storage.pcap, 335
angr.utils, 886
angr.utils.algo, 887
angr.utils.constants, 887
angr.utils.cowdict, 887
angr.utils.dynamic_dictlist, 887
angr.utils.enums_conv, 888
angr.utils.env, 888
angr.utils.formatting, 894
angr.utils.graph, 888
angr.utils.lazy_import, 892
angr.utils.library, 893
angr.utils.loader, 892
angr.utils.mp, 895
angr.utils.timing, 894
angr.vaults, 617

912 Python Module Index

INDEX

Symbols
__init__() (angr.BP method), 161
__init__() (angr.Blade method), 167
__init__() (angr.Block method), 170
__init__() (angr.ExplorationTechnique method), 178
__init__() (angr.KnowledgeBase method), 211
__init__() (angr.PTChunk method), 209
__init__() (angr.PointerWrapper method), 184
__init__() (angr.Project method), 164
__init__() (angr.Server method), 210
__init__() (angr.SimCC method), 185
__init__() (angr.SimCC.ArgSession method), 186
__init__() (angr.SimFile method), 190
__init__() (angr.SimFileBase method), 189
__init__() (angr.SimFileDescriptor method), 198
__init__() (angr.SimFileDescriptorDuplex method),

200
__init__() (angr.SimFileStream method), 194
__init__() (angr.SimHeapBrk method), 204
__init__() (angr.SimHeapPTMalloc method), 206
__init__() (angr.SimHostFilesystem method), 204
__init__() (angr.SimOS method), 168
__init__() (angr.SimPackets method), 192
__init__() (angr.SimPacketsStream method), 196
__init__() (angr.SimProcedure method), 159
__init__() (angr.SimState method), 182
__init__() (angr.SimStatePlugin method), 161
__init__() (angr.SimulationManager method), 172
__init__() (angr.StateHierarchy method), 180
__init__() (angr.analyses.analysis.AnalysesHub

method), 619
__init__() (angr.analyses.analysis.AnalysisFactory

method), 621
__init__() (angr.analyses.analysis.AnalysisLogEntry

method), 619
__init__() (angr.analyses.analysis.KnownAnalysesPlugin

method), 620
__init__() (angr.analyses.backward_slice.BackwardSlice

method), 628
__init__() (angr.analyses.binary_optimizer.BinaryOptimizer

method), 862
__init__() (angr.analyses.binary_optimizer.ConstantPropagation

method), 861
__init__() (angr.analyses.binary_optimizer.DeadAssignment

method), 862
__init__() (angr.analyses.binary_optimizer.RedundantStackVariable

method), 861
__init__() (angr.analyses.binary_optimizer.RegisterReallocation

method), 862
__init__() (angr.analyses.bindiff.BinDiff method), 632
__init__() (angr.analyses.bindiff.ConstantChange

method), 630
__init__() (angr.analyses.bindiff.Difference method),

630
__init__() (angr.analyses.bindiff.FunctionDiff

method), 630
__init__() (angr.analyses.bindiff.NormalizedBlock

method), 630
__init__() (angr.analyses.bindiff.NormalizedFunction

method), 630
__init__() (angr.analyses.boyscout.BoyScout method),

633
__init__() (angr.analyses.callee_cleanup_finder.CalleeCleanupFinder

method), 862
__init__() (angr.analyses.calling_convention.CallSiteFact

method), 633
__init__() (angr.analyses.calling_convention.CallingConventionAnalysis

method), 634
__init__() (angr.analyses.cdg.CDG method), 674
__init__() (angr.analyses.cfg.cfb.CFBlanket method),

638
__init__() (angr.analyses.cfg.cfb.CFBlanketView

method), 637
__init__() (angr.analyses.cfg.cfb.MemoryRegion

method), 637
__init__() (angr.analyses.cfg.cfb.Unknown method),

638
__init__() (angr.analyses.cfg.cfg.CFG method), 639
__init__() (angr.analyses.cfg.cfg_arch_options.CFGArchOptions

method), 657
__init__() (angr.analyses.cfg.cfg_base.CFGBase

method), 646
__init__() (angr.analyses.cfg.cfg_emulated.CFGEmulated

method), 642

913

angr

__init__() (angr.analyses.cfg.cfg_emulated.CFGJob
method), 641

__init__() (angr.analyses.cfg.cfg_emulated.PendingJob
method), 641

__init__() (angr.analyses.cfg.cfg_fast.CFGFast
method), 654

__init__() (angr.analyses.cfg.cfg_fast.CFGJob
method), 652

__init__() (angr.analyses.cfg.cfg_fast.DecodingAssumption
method), 649

__init__() (angr.analyses.cfg.cfg_fast.FunctionCallEdge
method), 651

__init__() (angr.analyses.cfg.cfg_fast.FunctionFakeRetEdge
method), 651

__init__() (angr.analyses.cfg.cfg_fast.FunctionReturn
method), 649

__init__() (angr.analyses.cfg.cfg_fast.FunctionReturnEdge
method), 652

__init__() (angr.analyses.cfg.cfg_fast.FunctionTransitionEdge
method), 651

__init__() (angr.analyses.cfg.cfg_fast.PendingJobs
method), 649

__init__() (angr.analyses.cfg.cfg_fast_soot.CFGFastSoot
method), 669

__init__() (angr.analyses.cfg.cfg_job_base.BlockID
method), 657

__init__() (angr.analyses.cfg.cfg_job_base.CFGJobBase
method), 658

__init__() (angr.analyses.cfg.cfg_job_base.FunctionKey
method), 658

__init__() (angr.analyses.cfg.indirect_jump_resolvers.amd64_elf_got.AMD64ElfGotResolver
method), 658

__init__() (angr.analyses.cfg.indirect_jump_resolvers.arm_elf_fast.ArmElfFastResolver
method), 659

__init__() (angr.analyses.cfg.indirect_jump_resolvers.const_resolver.ConstantResolver
method), 667

__init__() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.BSSHook
method), 666

__init__() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.ConstantValueManager
method), 664

__init__() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTableProcessor
method), 665

__init__() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTableProcessorState
method), 664

__init__() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTableResolver
method), 666

__init__() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTargetBaseAddr
method), 663

__init__() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.LoadHook
method), 665

__init__() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.MIPSGPHook
method), 666

__init__() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.RegOffsetAnnotation
method), 664

__init__() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.RegisterInitializerHook
method), 666

__init__() (angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast.MipsElfFastResolver
method), 661

__init__() (angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast.OverwriteTmpValueCallback
method), 661

__init__() (angr.analyses.cfg.indirect_jump_resolvers.resolver.IndirectJumpResolver
method), 668

__init__() (angr.analyses.cfg.indirect_jump_resolvers.x86_elf_pic_plt.X86ElfPicPltResolver
method), 662

__init__() (angr.analyses.cfg.indirect_jump_resolvers.x86_pe_iat.X86PeIatResolver
method), 660

__init__() (angr.analyses.cfg.segment_list.Segment
method), 671

__init__() (angr.analyses.cfg.segment_list.SegmentList
method), 672

__init__() (angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink.CFGSliceToSink
method), 816

__init__() (angr.analyses.class_identifier.ClassIdentifier
method), 848

__init__() (angr.analyses.code_tagging.CodeTagging
method), 675

__init__() (angr.analyses.complete_calling_conventions.CompleteCallingConventionsAnalysis
method), 635

__init__() (angr.analyses.congruency_check.CongruencyCheck
method), 860

__init__() (angr.analyses.data_dep.data_dependency_analysis.DataDependencyGraphAnalysis
method), 868

__init__() (angr.analyses.data_dep.data_dependency_analysis.NodalAnnotation
method), 867

__init__() (angr.analyses.data_dep.dep_nodes.BaseDepNode
method), 870

__init__() (angr.analyses.data_dep.dep_nodes.ConstantDepNode
method), 870

__init__() (angr.analyses.data_dep.dep_nodes.MemDepNode
method), 870

__init__() (angr.analyses.data_dep.dep_nodes.RegDepNode
method), 872

__init__() (angr.analyses.data_dep.dep_nodes.TmpDepNode
method), 871

__init__() (angr.analyses.data_dep.dep_nodes.VarDepNode
method), 871

__init__() (angr.analyses.data_dep.sim_act_location.ParsedInstruction
method), 869

__init__() (angr.analyses.data_dep.sim_act_location.SimActLocation
method), 869

__init__() (angr.analyses.datagraph_meta.DataGraphMeta
method), 674

__init__() (angr.analyses.ddg.AST method), 747
__init__() (angr.analyses.ddg.DDG method), 749
__init__() (angr.analyses.ddg.DDGJob method), 747
__init__() (angr.analyses.ddg.DDGView method), 749
__init__() (angr.analyses.ddg.DDGViewInstruction

method), 749

914 Index

angr

__init__() (angr.analyses.ddg.DDGViewItem method),
749

__init__() (angr.analyses.ddg.LiveDefinitions
method), 747

__init__() (angr.analyses.ddg.ProgramVariable
method), 747

__init__() (angr.analyses.decompiler.ail_simplifier.AILBlockTempCollector
method), 692

__init__() (angr.analyses.decompiler.ail_simplifier.AILSimplifier
method), 693

__init__() (angr.analyses.decompiler.ailgraph_walker.AILGraphWalker
method), 693

__init__() (angr.analyses.decompiler.block_simplifier.BlockSimplifier
method), 694

__init__() (angr.analyses.decompiler.block_simplifier.HasCallExprWalker
method), 693

__init__() (angr.analyses.decompiler.callsite_maker.CallSiteMaker
method), 694

__init__() (angr.analyses.decompiler.ccall_rewriters.rewriter_base.CCallRewriterBase
method), 694

__init__() (angr.analyses.decompiler.clinic.Clinic
method), 696

__init__() (angr.analyses.decompiler.clinic.DataRefDesc
method), 695

__init__() (angr.analyses.decompiler.condition_processor.ConditionProcessor
method), 697

__init__() (angr.analyses.decompiler.decompilation_cache.DecompilationCache
method), 699

__init__() (angr.analyses.decompiler.decompilation_options.DecompilationOption
method), 699

__init__() (angr.analyses.decompiler.decompiler.Decompiler
method), 700

__init__() (angr.analyses.decompiler.empty_node_remover.EmptyNodeRemover
method), 701

__init__() (angr.analyses.decompiler.expression_narrower.ExpressionNarrowingWalker
method), 701

__init__() (angr.analyses.decompiler.graph_region.GraphRegion
method), 701

__init__() (angr.analyses.decompiler.jump_target_collector.JumpTargetCollector
method), 702

__init__() (angr.analyses.decompiler.jumptable_entry_condition_rewriter.JumpTableEntryConditionRewriter
method), 702

__init__() (angr.analyses.decompiler.optimization_passes.base_ptr_save_simplifier.BasePointerSaveSimplifier
method), 706

__init__() (angr.analyses.decompiler.optimization_passes.const_derefs.BlockWalker
method), 703

__init__() (angr.analyses.decompiler.optimization_passes.const_derefs.ConstantDereferencesSimplifier
method), 703

__init__() (angr.analyses.decompiler.optimization_passes.div_simplifier.DivSimplifier
method), 707

__init__() (angr.analyses.decompiler.optimization_passes.engine_base.SimplifierAILEngine
method), 711

__init__() (angr.analyses.decompiler.optimization_passes.engine_base.SimplifierAILState
method), 710

__init__() (angr.analyses.decompiler.optimization_passes.expr_op_swapper.ExprOpSwapper
method), 712

__init__() (angr.analyses.decompiler.optimization_passes.expr_op_swapper.ExpressionReplacer
method), 711

__init__() (angr.analyses.decompiler.optimization_passes.expr_op_swapper.OpDescriptor
method), 711

__init__() (angr.analyses.decompiler.optimization_passes.expr_op_swapper.OuterWalker
method), 711

__init__() (angr.analyses.decompiler.optimization_passes.ite_expr_converter.BlockLocator
method), 707

__init__() (angr.analyses.decompiler.optimization_passes.ite_expr_converter.ExpressionReplacer
method), 707

__init__() (angr.analyses.decompiler.optimization_passes.ite_expr_converter.ITEExprConverter
method), 708

__init__() (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.Case
method), 708

__init__() (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.LoweredSwitchSimplifier
method), 709

__init__() (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.StableVarExprHasher
method), 709

__init__() (angr.analyses.decompiler.optimization_passes.mod_simplifier.ModSimplifier
method), 710

__init__() (angr.analyses.decompiler.optimization_passes.multi_simplifier.MultiSimplifier
method), 710

__init__() (angr.analyses.decompiler.optimization_passes.optimization_pass.BaseOptimizationPass
method), 704

__init__() (angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPass
method), 705

__init__() (angr.analyses.decompiler.optimization_passes.optimization_pass.SequenceOptimizationPass
method), 705

__init__() (angr.analyses.decompiler.optimization_passes.optimization_pass.StructuringOptimizationPass
method), 706

__init__() (angr.analyses.decompiler.optimization_passes.register_save_area_simplifier.RegisterSaveAreaSimplifier
method), 712

__init__() (angr.analyses.decompiler.optimization_passes.ret_addr_save_simplifier.RetAddrSaveSimplifier
method), 713

__init__() (angr.analyses.decompiler.optimization_passes.stack_canary_simplifier.StackCanarySimplifier
method), 706

__init__() (angr.analyses.decompiler.optimization_passes.x86_gcc_getpc_simplifier.X86GccGetPcSimplifier
method), 713

__init__() (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationExprBase
method), 715

__init__() (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationMultiStmtBase
method), 714

__init__() (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationStmtBase
method), 713

__init__() (angr.analyses.decompiler.redundant_label_remover.RedundantLabelRemover
method), 724

__init__() (angr.analyses.decompiler.region_identifier.RegionIdentifier
method), 715

__init__() (angr.analyses.decompiler.region_simplifiers.cascading_cond_transformer.CascadingConditionTransformer
method), 716

__init__() (angr.analyses.decompiler.region_simplifiers.cascading_ifs.CascadingIfsRemover
method), 716

Index 915

angr

__init__() (angr.analyses.decompiler.region_simplifiers.expr_folding.ConditionLocation
method), 717

__init__() (angr.analyses.decompiler.region_simplifiers.expr_folding.ConditionalBreakLocation
method), 717

__init__() (angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionCounter
method), 718

__init__() (angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionFolder
method), 718

__init__() (angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionLocation
method), 717

__init__() (angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionReplacer
method), 718

__init__() (angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionUseFinder
method), 718

__init__() (angr.analyses.decompiler.region_simplifiers.expr_folding.MultiStatementExpressionAssignmentFinder
method), 717

__init__() (angr.analyses.decompiler.region_simplifiers.expr_folding.StatementLocation
method), 716

__init__() (angr.analyses.decompiler.region_simplifiers.expr_folding.StoreStatementFinder
method), 719

__init__() (angr.analyses.decompiler.region_simplifiers.goto.GotoSimplifier
method), 719

__init__() (angr.analyses.decompiler.region_simplifiers.if_.IfSimplifier
method), 719

__init__() (angr.analyses.decompiler.region_simplifiers.ifelse.IfElseFlattener
method), 719

__init__() (angr.analyses.decompiler.region_simplifiers.loop.LoopSimplifier
method), 719

__init__() (angr.analyses.decompiler.region_simplifiers.node_address_finder.NodeAddressFinder
method), 720

__init__() (angr.analyses.decompiler.region_simplifiers.region_simplifier.RegionSimplifier
method), 720

__init__() (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.ConditionalRegion
method), 721

__init__() (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.FindFirstNodeInSet
method), 723

__init__() (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.SwitchCaseRegion
method), 721

__init__() (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.SwitchClusterFinder
method), 721

__init__() (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.SwitchClusterReplacer
method), 721

__init__() (angr.analyses.decompiler.region_simplifiers.switch_expr_simplifier.SwitchExpressionSimplifier
method), 723

__init__() (angr.analyses.decompiler.region_walker.RegionWalker
method), 723

__init__() (angr.analyses.decompiler.sequence_walker.SequenceWalker
method), 724

__init__() (angr.analyses.decompiler.structured_codegen.base.BaseStructuredCodeGenerator
method), 725

__init__() (angr.analyses.decompiler.structured_codegen.base.InstructionMapping
method), 725

__init__() (angr.analyses.decompiler.structured_codegen.base.InstructionMappingElement
method), 725

__init__() (angr.analyses.decompiler.structured_codegen.base.PositionMapping
method), 724

__init__() (angr.analyses.decompiler.structured_codegen.base.PositionMappingElement
method), 724

__init__() (angr.analyses.decompiler.structured_codegen.c.CAILBlock
method), 728

__init__() (angr.analyses.decompiler.structured_codegen.c.CArrayTypeLength
method), 739

__init__() (angr.analyses.decompiler.structured_codegen.c.CAssignment
method), 731

__init__() (angr.analyses.decompiler.structured_codegen.c.CBinaryOp
method), 736

__init__() (angr.analyses.decompiler.structured_codegen.c.CBreak
method), 730

__init__() (angr.analyses.decompiler.structured_codegen.c.CClosingObject
method), 739

__init__() (angr.analyses.decompiler.structured_codegen.c.CConstant
method), 737

__init__() (angr.analyses.decompiler.structured_codegen.c.CConstruct
method), 726

__init__() (angr.analyses.decompiler.structured_codegen.c.CContinue
method), 730

__init__() (angr.analyses.decompiler.structured_codegen.c.CDirtyExpression
method), 739

__init__() (angr.analyses.decompiler.structured_codegen.c.CDoWhileLoop
method), 729

__init__() (angr.analyses.decompiler.structured_codegen.c.CExpression
method), 728

__init__() (angr.analyses.decompiler.structured_codegen.c.CFakeVariable
method), 734

__init__() (angr.analyses.decompiler.structured_codegen.c.CForLoop
method), 729

__init__() (angr.analyses.decompiler.structured_codegen.c.CFunction
method), 727

__init__() (angr.analyses.decompiler.structured_codegen.c.CFunctionCall
method), 731

__init__() (angr.analyses.decompiler.structured_codegen.c.CGoto
method), 732

__init__() (angr.analyses.decompiler.structured_codegen.c.CITE
method), 738

__init__() (angr.analyses.decompiler.structured_codegen.c.CIfBreak
method), 730

__init__() (angr.analyses.decompiler.structured_codegen.c.CIfElse
method), 729

__init__() (angr.analyses.decompiler.structured_codegen.c.CIndexedVariable
method), 735

__init__() (angr.analyses.decompiler.structured_codegen.c.CLabel
method), 733

__init__() (angr.analyses.decompiler.structured_codegen.c.CMultiStatementExpression
method), 738

__init__() (angr.analyses.decompiler.structured_codegen.c.CRegister
method), 738

__init__() (angr.analyses.decompiler.structured_codegen.c.CReturn
method), 732

916 Index

angr

__init__() (angr.analyses.decompiler.structured_codegen.c.CStatements
method), 728

__init__() (angr.analyses.decompiler.structured_codegen.c.CStructField
method), 733

__init__() (angr.analyses.decompiler.structured_codegen.c.CStructFieldNameDef
method), 739

__init__() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeGenerator
method), 740

__init__() (angr.analyses.decompiler.structured_codegen.c.CSwitchCase
method), 730

__init__() (angr.analyses.decompiler.structured_codegen.c.CTypeCast
method), 736

__init__() (angr.analyses.decompiler.structured_codegen.c.CUnaryOp
method), 735

__init__() (angr.analyses.decompiler.structured_codegen.c.CUnsupportedStatement
method), 732

__init__() (angr.analyses.decompiler.structured_codegen.c.CVariable
method), 734

__init__() (angr.analyses.decompiler.structured_codegen.c.CVariableField
method), 735

__init__() (angr.analyses.decompiler.structured_codegen.c.CWhileLoop
method), 728

__init__() (angr.analyses.decompiler.structured_codegen.dummy.DummyStructuredCodeGenerator
method), 743

__init__() (angr.analyses.decompiler.structured_codegen.dwarf_import.ImportSourceCode
method), 743

__init__() (angr.analyses.decompiler.structured_codegen.dwarf_import.ImportedLine
method), 743

__init__() (angr.analyses.decompiler.structuring.dream.DreamStructurer
method), 686

__init__() (angr.analyses.decompiler.structuring.phoenix.PhoenixStructurer
method), 692

__init__() (angr.analyses.decompiler.structuring.recursive_structurer.RecursiveStructurer
method), 685

__init__() (angr.analyses.decompiler.structuring.structurer_base.StructurerBase
method), 690

__init__() (angr.analyses.decompiler.structuring.structurer_nodes.BreakNode
method), 688

__init__() (angr.analyses.decompiler.structuring.structurer_nodes.CascadingConditionNode
method), 687

__init__() (angr.analyses.decompiler.structuring.structurer_nodes.CodeNode
method), 687

__init__() (angr.analyses.decompiler.structuring.structurer_nodes.ConditionNode
method), 687

__init__() (angr.analyses.decompiler.structuring.structurer_nodes.ConditionalBreakNode
method), 689

__init__() (angr.analyses.decompiler.structuring.structurer_nodes.ContinueNode
method), 689

__init__() (angr.analyses.decompiler.structuring.structurer_nodes.IncompleteSwitchCaseHeadStatement
method), 690

__init__() (angr.analyses.decompiler.structuring.structurer_nodes.IncompleteSwitchCaseNode
method), 690

__init__() (angr.analyses.decompiler.structuring.structurer_nodes.LoopNode
method), 688

__init__() (angr.analyses.decompiler.structuring.structurer_nodes.MultiNode
method), 686

__init__() (angr.analyses.decompiler.structuring.structurer_nodes.SequenceNode
method), 686

__init__() (angr.analyses.decompiler.structuring.structurer_nodes.SwitchCaseNode
method), 689

__init__() (angr.analyses.disassembly.BlockStart
method), 849

__init__() (angr.analyses.disassembly.Comment
method), 851

__init__() (angr.analyses.disassembly.Disassembly
method), 852

__init__() (angr.analyses.disassembly.FuncComment
method), 851

__init__() (angr.analyses.disassembly.FunctionStart
method), 848

__init__() (angr.analyses.disassembly.Hook method),
849

__init__() (angr.analyses.disassembly.IROp method),
849

__init__() (angr.analyses.disassembly.Instruction
method), 849

__init__() (angr.analyses.disassembly.Label method),
849

__init__() (angr.analyses.disassembly.MemoryOperand
method), 851

__init__() (angr.analyses.disassembly.Opcode
method), 850

__init__() (angr.analyses.disassembly.Operand
method), 850

__init__() (angr.analyses.disassembly.Register
method), 851

__init__() (angr.analyses.disassembly.SootExpression
method), 850

__init__() (angr.analyses.disassembly.SootExpressionInvoke
method), 850

__init__() (angr.analyses.disassembly.SootExpressionStaticFieldRef
method), 850

__init__() (angr.analyses.disassembly.SootExpressionTarget
method), 850

__init__() (angr.analyses.disassembly.SootStatement
method), 850

__init__() (angr.analyses.disassembly.Value method),
851

__init__() (angr.analyses.dominance_frontier.DominanceFrontier
method), 863

__init__() (angr.analyses.find_objects_static.NewFunctionHandler
method), 847

__init__() (angr.analyses.find_objects_static.PossibleObject
method), 847

__init__() (angr.analyses.find_objects_static.StaticObjectFinder
method), 848

__init__() (angr.analyses.flirt.FlirtAnalysis method),
752

Index 917

angr

__init__() (angr.analyses.forward_analysis.forward_analysis.ForwardAnalysis
method), 622

__init__() (angr.analyses.forward_analysis.job_info.JobInfo
method), 622

__init__() (angr.analyses.forward_analysis.visitors.call_graph.CallGraphVisitor
method), 623

__init__() (angr.analyses.forward_analysis.visitors.function_graph.FunctionGraphVisitor
method), 623

__init__() (angr.analyses.forward_analysis.visitors.graph.GraphVisitor
method), 624

__init__() (angr.analyses.forward_analysis.visitors.loop.LoopVisitor
method), 627

__init__() (angr.analyses.forward_analysis.visitors.single_node_graph.SingleNodeGraphVisitor
method), 627

__init__() (angr.analyses.identifier.identify.FuncInfo
method), 837

__init__() (angr.analyses.identifier.identify.Identifier
method), 838

__init__() (angr.analyses.init_finder.InitializationFinder
method), 863

__init__() (angr.analyses.init_finder.SimEngineInitFinderVEX
method), 863

__init__() (angr.analyses.loop_analysis.AnnotatedVariable
method), 839

__init__() (angr.analyses.loop_analysis.Condition
method), 839

__init__() (angr.analyses.loop_analysis.LoopAnalysis
method), 839

__init__() (angr.analyses.loop_analysis.LoopAnalysisState
method), 839

__init__() (angr.analyses.loop_analysis.SootBlockProcessor
method), 839

__init__() (angr.analyses.loopfinder.Loop method),
838

__init__() (angr.analyses.loopfinder.LoopFinder
method), 838

__init__() (angr.analyses.propagator.engine_base.SimEnginePropagatorBase
method), 755

__init__() (angr.analyses.propagator.outdated_definition_walker.OutdatedDefinitionWalker
method), 757

__init__() (angr.analyses.propagator.propagator.PropagatorAnalysis
method), 758

__init__() (angr.analyses.propagator.tmpvar_finder.TmpvarFinder
method), 758

__init__() (angr.analyses.propagator.values.Top
method), 754

__init__() (angr.analyses.propagator.vex_vars.VEXMemVar
method), 754

__init__() (angr.analyses.propagator.vex_vars.VEXReg
method), 754

__init__() (angr.analyses.propagator.vex_vars.VEXTmp
method), 755

__init__() (angr.analyses.proximity_graph.BaseProxiNode
method), 865

__init__() (angr.analyses.proximity_graph.CallProxiNode
method), 866

__init__() (angr.analyses.proximity_graph.FunctionProxiNode
method), 865

__init__() (angr.analyses.proximity_graph.IntegerProxiNode
method), 866

__init__() (angr.analyses.proximity_graph.ProximityGraphAnalysis
method), 867

__init__() (angr.analyses.proximity_graph.StringProxiNode
method), 866

__init__() (angr.analyses.proximity_graph.UnknownProxiNode
method), 866

__init__() (angr.analyses.proximity_graph.VariableProxiNode
method), 865

__init__() (angr.analyses.reaching_definitions.Atom
method), 768

__init__() (angr.analyses.reaching_definitions.ConstantSrc
method), 771

__init__() (angr.analyses.reaching_definitions.Definition
method), 772

__init__() (angr.analyses.reaching_definitions.FunctionCallData
method), 790

__init__() (angr.analyses.reaching_definitions.FunctionHandler
method), 785

__init__() (angr.analyses.reaching_definitions.GuardUse
method), 771

__init__() (angr.analyses.reaching_definitions.LiveDefinitions
method), 760

__init__() (angr.analyses.reaching_definitions.MemoryLocation
method), 771

__init__() (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis
method), 773

__init__() (angr.analyses.reaching_definitions.ReachingDefinitionsModel
method), 776

__init__() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 779

__init__() (angr.analyses.reaching_definitions.Register
method), 770

__init__() (angr.analyses.reaching_definitions.Tmp
method), 771

__init__() (angr.analyses.reaching_definitions.call_trace.CallSite
method), 791

__init__() (angr.analyses.reaching_definitions.call_trace.CallTrace
method), 792

__init__() (angr.analyses.reaching_definitions.dep_graph.DepGraph
method), 797

__init__() (angr.analyses.reaching_definitions.dep_graph.FunctionCallRelationships
method), 796

__init__() (angr.analyses.reaching_definitions.engine_ail.SimEngineRDAIL
method), 816

__init__() (angr.analyses.reaching_definitions.engine_vex.SimEngineRDVEX
method), 792

__init__() (angr.analyses.reaching_definitions.function_handler.FunctionCallData
method), 804

918 Index

angr

__init__() (angr.analyses.reaching_definitions.function_handler.FunctionCallDataUnwrapped
method), 805

__init__() (angr.analyses.reaching_definitions.function_handler.FunctionEffect
method), 801

__init__() (angr.analyses.reaching_definitions.function_handler.FunctionHandler
method), 805

__init__() (angr.analyses.reaching_definitions.heap_allocator.HeapAllocator
method), 799

__init__() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 808

__init__() (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis
method), 793

__init__() (angr.analyses.reaching_definitions.subject.Subject
method), 815

__init__() (angr.analyses.reassembler.BasicBlock
method), 855

__init__() (angr.analyses.reassembler.Data method),
857

__init__() (angr.analyses.reassembler.DataLabel
method), 853

__init__() (angr.analyses.reassembler.FunctionLabel
method), 853

__init__() (angr.analyses.reassembler.Instruction
method), 854

__init__() (angr.analyses.reassembler.Label method),
853

__init__() (angr.analyses.reassembler.NotypeLabel
method), 853

__init__() (angr.analyses.reassembler.ObjectLabel
method), 853

__init__() (angr.analyses.reassembler.Operand
method), 854

__init__() (angr.analyses.reassembler.Procedure
method), 855

__init__() (angr.analyses.reassembler.ProcedureChunk
method), 856

__init__() (angr.analyses.reassembler.Reassembler
method), 857

__init__() (angr.analyses.reassembler.Relocation
method), 857

__init__() (angr.analyses.reassembler.SymbolManager
method), 853

__init__() (angr.analyses.soot_class_hierarchy.NoConcreteDispatch
method), 637

__init__() (angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

__init__() (angr.analyses.soot_class_hierarchy.SootClassHierarchyError
method), 636

__init__() (angr.analyses.stack_pointer_tracker.Constant
method), 819

__init__() (angr.analyses.stack_pointer_tracker.FrozenStackPointerTrackerState
method), 819

__init__() (angr.analyses.stack_pointer_tracker.OffsetVal
method), 819

__init__() (angr.analyses.stack_pointer_tracker.Register
method), 819

__init__() (angr.analyses.stack_pointer_tracker.StackPointerTracker
method), 820

__init__() (angr.analyses.stack_pointer_tracker.StackPointerTrackerState
method), 819

__init__() (angr.analyses.static_hooker.StaticHooker
method), 861

__init__() (angr.analyses.typehoon.lifter.TypeLifter
method), 830

__init__() (angr.analyses.typehoon.simple_solver.RecursiveType
method), 830

__init__() (angr.analyses.typehoon.simple_solver.SimpleSolver
method), 830

__init__() (angr.analyses.typehoon.translator.SimTypeTempRef
method), 830

__init__() (angr.analyses.typehoon.translator.TypeTranslator
method), 830

__init__() (angr.analyses.typehoon.typeconsts.Array
method), 837

__init__() (angr.analyses.typehoon.typeconsts.Pointer
method), 837

__init__() (angr.analyses.typehoon.typeconsts.Pointer32
method), 837

__init__() (angr.analyses.typehoon.typeconsts.Pointer64
method), 837

__init__() (angr.analyses.typehoon.typeconsts.Struct
method), 837

__init__() (angr.analyses.typehoon.typeconsts.TypeVariableReference
method), 837

__init__() (angr.analyses.typehoon.typehoon.Typehoon
method), 835

__init__() (angr.analyses.typehoon.typevars.Add
method), 832

__init__() (angr.analyses.typehoon.typevars.AddN
method), 834

__init__() (angr.analyses.typehoon.typevars.ConvertTo
method), 834

__init__() (angr.analyses.typehoon.typevars.DerivedTypeVariable
method), 833

__init__() (angr.analyses.typehoon.typevars.Equivalence
method), 831

__init__() (angr.analyses.typehoon.typevars.Existence
method), 831

__init__() (angr.analyses.typehoon.typevars.FuncIn
method), 834

__init__() (angr.analyses.typehoon.typevars.FuncOut
method), 834

__init__() (angr.analyses.typehoon.typevars.HasField
method), 834

__init__() (angr.analyses.typehoon.typevars.ReinterpretAs
method), 834

__init__() (angr.analyses.typehoon.typevars.Sub
method), 832

Index 919

angr

__init__() (angr.analyses.typehoon.typevars.SubN
method), 834

__init__() (angr.analyses.typehoon.typevars.Subtype
method), 832

__init__() (angr.analyses.typehoon.typevars.TypeVariable
method), 833

__init__() (angr.analyses.typehoon.typevars.TypeVariables
method), 833

__init__() (angr.analyses.variable_recovery.annotations.StackLocationAnnotation
method), 821

__init__() (angr.analyses.variable_recovery.annotations.VariableSourceAnnotation
method), 821

__init__() (angr.analyses.variable_recovery.engine_ail.SimEngineVRAIL
method), 828

__init__() (angr.analyses.variable_recovery.engine_base.RichR
method), 829

__init__() (angr.analyses.variable_recovery.engine_base.SimEngineVRBase
method), 829

__init__() (angr.analyses.variable_recovery.engine_vex.SimEngineVRVEX
method), 828

__init__() (angr.analyses.variable_recovery.irsb_scanner.VEXIRSBScanner
method), 829

__init__() (angr.analyses.variable_recovery.variable_recovery.VariableRecovery
method), 828

__init__() (angr.analyses.variable_recovery.variable_recovery.VariableRecoveryState
method), 827

__init__() (angr.analyses.variable_recovery.variable_recovery_base.VariableAnnotation
method), 821

__init__() (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryBase
method), 822

__init__() (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
method), 823

__init__() (angr.analyses.variable_recovery.variable_recovery_fast.VariableRecoveryFast
method), 826

__init__() (angr.analyses.variable_recovery.variable_recovery_fast.VariableRecoveryFastState
method), 825

__init__() (angr.analyses.veritesting.CallTracingFilter
method), 840

__init__() (angr.analyses.veritesting.Veritesting
method), 841

__init__() (angr.analyses.vfg.AnalysisTask method),
842

__init__() (angr.analyses.vfg.CallAnalysis method),
843

__init__() (angr.analyses.vfg.FunctionAnalysis
method), 843

__init__() (angr.analyses.vfg.PendingJob method),
842

__init__() (angr.analyses.vfg.VFG method), 845
__init__() (angr.analyses.vfg.VFGJob method), 841
__init__() (angr.analyses.vfg.VFGNode method), 844
__init__() (angr.analyses.vsa_ddg.DefUseChain

method), 846
__init__() (angr.analyses.vsa_ddg.VSA_DDG

method), 846
__init__() (angr.analyses.vtable.Vtable method), 847
__init__() (angr.analyses.vtable.VtableFinder

method), 847
__init__() (angr.analyses.xrefs.SimEngineXRefsVEX

method), 864
__init__() (angr.analyses.xrefs.XRefsAnalysis

method), 864
__init__() (angr.angrdb.db.AngrDB method), 675
__init__() (angr.angrdb.models.DbCFGModel

method), 678
__init__() (angr.angrdb.models.DbComment method),

680
__init__() (angr.angrdb.models.DbFunction method),

678
__init__() (angr.angrdb.models.DbInformation

method), 677
__init__() (angr.angrdb.models.DbKnowledgeBase

method), 678
__init__() (angr.angrdb.models.DbLabel method), 680
__init__() (angr.angrdb.models.DbObject method),

677
__init__() (angr.angrdb.models.DbStructuredCode

method), 679
__init__() (angr.angrdb.models.DbVariableCollection

method), 679
__init__() (angr.angrdb.models.DbXRefs method), 680
__init__() (angr.annocfg.AnnotatedCFG method), 873
__init__() (angr.blade.Blade method), 872
__init__() (angr.block.Block method), 221
__init__() (angr.block.CapstoneInsn method), 220
__init__() (angr.block.DisassemblerBlock method),

220
__init__() (angr.block.SootBlock method), 222
__init__() (angr.callable.Callable method), 519
__init__() (angr.calling_conventions.AllocHelper

method), 483
__init__() (angr.calling_conventions.ArgSession

method), 487
__init__() (angr.calling_conventions.MicrosoftAMD64ArgSession

method), 492
__init__() (angr.calling_conventions.PointerWrapper

method), 483
__init__() (angr.calling_conventions.SerializableCounter

method), 484
__init__() (angr.calling_conventions.SerializableListIterator

method), 484
__init__() (angr.calling_conventions.SimArrayArg

method), 486
__init__() (angr.calling_conventions.SimCC method),

487
__init__() (angr.calling_conventions.SimCC.ArgSession

method), 489
__init__() (angr.calling_conventions.SimCCUsercall

920 Index

angr

method), 491
__init__() (angr.calling_conventions.SimComboArg

method), 486
__init__() (angr.calling_conventions.SimFunctionArgument

method), 484
__init__() (angr.calling_conventions.SimLyingRegArg

method), 491
__init__() (angr.calling_conventions.SimReferenceArgument

method), 487
__init__() (angr.calling_conventions.SimRegArg

method), 485
__init__() (angr.calling_conventions.SimStackArg

method), 485
__init__() (angr.calling_conventions.SimStructArg

method), 486
__init__() (angr.calling_conventions.UsercallArgSession

method), 487
__init__() (angr.code_location.CodeLocation

method), 613
__init__() (angr.code_location.ExternalCodeLocation

method), 613
__init__() (angr.codenode.BlockNode method), 876
__init__() (angr.codenode.CodeNode method), 875
__init__() (angr.codenode.HookNode method), 876
__init__() (angr.codenode.SootBlockNode method),

876
__init__() (angr.concretization_strategies.SimConcretizationStrategy

method), 335
__init__() (angr.concretization_strategies.controlled_data.SimConcretizationStrategyControlledData

method), 381
__init__() (angr.concretization_strategies.eval.SimConcretizationStrategyEval

method), 379
__init__() (angr.concretization_strategies.max.SimConcretizationStrategyMax

method), 380
__init__() (angr.concretization_strategies.nonzero_range.SimConcretizationStrategyNonzeroRange

method), 380
__init__() (angr.concretization_strategies.norepeats.SimConcretizationStrategyNorepeats

method), 379
__init__() (angr.concretization_strategies.norepeats_range.SimConcretizationStrategyNorepeatsRange

method), 381
__init__() (angr.concretization_strategies.range.SimConcretizationStrategyRange

method), 380
__init__() (angr.concretization_strategies.solutions.SimConcretizationStrategySolutions

method), 379
__init__() (angr.concretization_strategies.unlimited_range.SimConcretizationStrategyUnlimitedRange

method), 382
__init__() (angr.distributed.server.Server method),

902
__init__() (angr.distributed.worker.BadStatesDropper

method), 902
__init__() (angr.distributed.worker.ExplorationStatusNotifier

method), 903
__init__() (angr.distributed.worker.Worker method),

903

__init__() (angr.engines.concrete.SimEngineConcrete
method), 433

__init__() (angr.engines.engine.SimEngineBase
method), 427

__init__() (angr.engines.engine.SuccessorsMixin
method), 428

__init__() (angr.engines.engine.TLSProperty method),
428

__init__() (angr.engines.light.data.ArithmeticExpression
method), 753

__init__() (angr.engines.light.data.RegisterOffset
method), 753

__init__() (angr.engines.light.data.SpOffset method),
753

__init__() (angr.engines.light.engine.SimEngineLight
method), 753

__init__() (angr.engines.light.engine.SimEngineLightMixin
method), 753

__init__() (angr.engines.pcode.behavior.BehaviorFactory
method), 464

__init__() (angr.engines.pcode.behavior.OpBehavior
method), 445

__init__() (angr.engines.pcode.behavior.OpBehaviorBoolAnd
method), 458

__init__() (angr.engines.pcode.behavior.OpBehaviorBoolNegate
method), 457

__init__() (angr.engines.pcode.behavior.OpBehaviorBoolOr
method), 459

__init__() (angr.engines.pcode.behavior.OpBehaviorBoolXor
method), 458

__init__() (angr.engines.pcode.behavior.OpBehaviorCopy
method), 446

__init__() (angr.engines.pcode.behavior.OpBehaviorEqual
method), 446

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatAbs
method), 461

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatAdd
method), 460

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatCeil
method), 462

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatDiv
method), 460

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatEqual
method), 459

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatFloat2Float
method), 462

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatFloor
method), 462

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatInt2Float
method), 462

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatLess
method), 460

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatLessEqual
method), 460

Index 921

angr

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatMult
method), 461

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatNan
method), 460

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatNeg
method), 461

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatNotEqual
method), 459

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatRound
method), 463

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatSqrt
method), 461

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatSub
method), 461

__init__() (angr.engines.pcode.behavior.OpBehaviorFloatTrunc
method), 462

__init__() (angr.engines.pcode.behavior.OpBehaviorInt2Comp
method), 452

__init__() (angr.engines.pcode.behavior.OpBehaviorIntAdd
method), 450

__init__() (angr.engines.pcode.behavior.OpBehaviorIntAnd
method), 453

__init__() (angr.engines.pcode.behavior.OpBehaviorIntCarry
method), 451

__init__() (angr.engines.pcode.behavior.OpBehaviorIntDiv
method), 456

__init__() (angr.engines.pcode.behavior.OpBehaviorIntLeft
method), 454

__init__() (angr.engines.pcode.behavior.OpBehaviorIntLess
method), 448

__init__() (angr.engines.pcode.behavior.OpBehaviorIntLessEqual
method), 448

__init__() (angr.engines.pcode.behavior.OpBehaviorIntMult
method), 455

__init__() (angr.engines.pcode.behavior.OpBehaviorIntNegate
method), 452

__init__() (angr.engines.pcode.behavior.OpBehaviorIntOr
method), 454

__init__() (angr.engines.pcode.behavior.OpBehaviorIntRem
method), 457

__init__() (angr.engines.pcode.behavior.OpBehaviorIntRight
method), 454

__init__() (angr.engines.pcode.behavior.OpBehaviorIntSborrow
method), 451

__init__() (angr.engines.pcode.behavior.OpBehaviorIntScarry
method), 451

__init__() (angr.engines.pcode.behavior.OpBehaviorIntSdiv
method), 456

__init__() (angr.engines.pcode.behavior.OpBehaviorIntSext
method), 449

__init__() (angr.engines.pcode.behavior.OpBehaviorIntSless
method), 447

__init__() (angr.engines.pcode.behavior.OpBehaviorIntSlessEqual
method), 448

__init__() (angr.engines.pcode.behavior.OpBehaviorIntSrem
method), 457

__init__() (angr.engines.pcode.behavior.OpBehaviorIntSright
method), 455

__init__() (angr.engines.pcode.behavior.OpBehaviorIntSub
method), 450

__init__() (angr.engines.pcode.behavior.OpBehaviorIntXor
method), 453

__init__() (angr.engines.pcode.behavior.OpBehaviorIntZext
method), 449

__init__() (angr.engines.pcode.behavior.OpBehaviorNotEqual
method), 447

__init__() (angr.engines.pcode.behavior.OpBehaviorPiece
method), 463

__init__() (angr.engines.pcode.behavior.OpBehaviorPopcount
method), 463

__init__() (angr.engines.pcode.behavior.OpBehaviorSubpiece
method), 463

__init__() (angr.engines.pcode.emulate.PcodeEmulatorMixin
method), 444

__init__() (angr.engines.pcode.engine.HeavyPcodeMixin
method), 434

__init__() (angr.engines.pcode.lifter.ExitStatement
method), 435

__init__() (angr.engines.pcode.lifter.IRSB method),
436

__init__() (angr.engines.pcode.lifter.Lifter method),
439

__init__() (angr.engines.pcode.lifter.PcodeBasicBlockLifter
method), 441

__init__() (angr.engines.pcode.lifter.PcodeDisassemblerInsn
method), 435

__init__() (angr.engines.pcode.lifter.PcodeLifterEngineMixin
method), 443

__init__() (angr.engines.successors.SimSuccessors
method), 429

__init__() (angr.engines.unicorn.SimEngineUnicorn
method), 432

__init__() (angr.errors.SimMemoryMissingError
method), 898

__init__() (angr.errors.SimReliftException method),
900

__init__() (angr.errors.SimSegfaultException method),
901

__init__() (angr.errors.SimUninitializedAccessError
method), 900

__init__() (angr.exploration_techniques.Bucketizer
method), 405

__init__() (angr.exploration_techniques.CallFunctionGoal
method), 401

__init__() (angr.exploration_techniques.DFS method),
398

__init__() (angr.exploration_techniques.Director
method), 400

922 Index

angr

__init__() (angr.exploration_techniques.DrillerCore
method), 393

__init__() (angr.exploration_techniques.ExecuteAddressGoal
method), 400

__init__() (angr.exploration_techniques.ExplorationTechnique
method), 390

__init__() (angr.exploration_techniques.Explorer
method), 396

__init__() (angr.exploration_techniques.LengthLimiter
method), 398

__init__() (angr.exploration_techniques.LocalLoopSeer
method), 406

__init__() (angr.exploration_techniques.LoopSeer
method), 393

__init__() (angr.exploration_techniques.ManualMergepoint
method), 402

__init__() (angr.exploration_techniques.MemoryWatcher
method), 405

__init__() (angr.exploration_techniques.Oppologist
method), 399

__init__() (angr.exploration_techniques.Slicecutor
method), 392

__init__() (angr.exploration_techniques.Spiller
method), 401

__init__() (angr.exploration_techniques.StochasticSearch
method), 403

__init__() (angr.exploration_techniques.Suggestions
method), 407

__init__() (angr.exploration_techniques.Symbion
method), 404

__init__() (angr.exploration_techniques.TechniqueBuilder
method), 403

__init__() (angr.exploration_techniques.Threading
method), 397

__init__() (angr.exploration_techniques.Timeout
method), 407

__init__() (angr.exploration_techniques.Tracer
method), 395

__init__() (angr.exploration_techniques.UniqueSearch
method), 403

__init__() (angr.exploration_techniques.Veritesting
method), 399

__init__() (angr.exploration_techniques.bucketizer.Bucketizer
method), 426

__init__() (angr.exploration_techniques.dfs.DFS
method), 408

__init__() (angr.exploration_techniques.director.BaseGoal
method), 418

__init__() (angr.exploration_techniques.director.CallFunctionGoal
method), 419

__init__() (angr.exploration_techniques.director.Director
method), 420

__init__() (angr.exploration_techniques.director.ExecuteAddressGoal
method), 418

__init__() (angr.exploration_techniques.driller_core.DrillerCore
method), 416

__init__() (angr.exploration_techniques.explorer.Explorer
method), 409

__init__() (angr.exploration_techniques.lengthlimiter.LengthLimiter
method), 409

__init__() (angr.exploration_techniques.local_loop_seer.LocalLoopSeer
method), 422

__init__() (angr.exploration_techniques.loop_seer.LoopSeer
method), 421

__init__() (angr.exploration_techniques.manual_mergepoint.ManualMergepoint
method), 410

__init__() (angr.exploration_techniques.memory_watcher.MemoryWatcher
method), 426

__init__() (angr.exploration_techniques.oppologist.Oppologist
method), 420

__init__() (angr.exploration_techniques.slicecutor.Slicecutor
method), 417

__init__() (angr.exploration_techniques.spiller.PickledStatesDb
method), 411

__init__() (angr.exploration_techniques.spiller.PickledStatesList
method), 410

__init__() (angr.exploration_techniques.spiller.Spiller
method), 412

__init__() (angr.exploration_techniques.spiller_db.PickledState
method), 412

__init__() (angr.exploration_techniques.stochastic.StochasticSearch
method), 423

__init__() (angr.exploration_techniques.suggestions.Suggestions
method), 427

__init__() (angr.exploration_techniques.symbion.Symbion
method), 425

__init__() (angr.exploration_techniques.tech_builder.TechniqueBuilder
method), 424

__init__() (angr.exploration_techniques.threading.Threading
method), 413

__init__() (angr.exploration_techniques.timeout.Timeout
method), 407

__init__() (angr.exploration_techniques.tracer.RepHook
method), 414

__init__() (angr.exploration_techniques.tracer.Tracer
method), 415

__init__() (angr.exploration_techniques.tracer.TracerDesyncError
method), 414

__init__() (angr.exploration_techniques.unique.UniqueSearch
method), 423

__init__() (angr.exploration_techniques.veritesting.Veritesting
method), 413

__init__() (angr.factory.AngrObjectFactory method),
216

__init__() (angr.flirt.FlirtSignature method), 885
__init__() (angr.keyed_region.KeyedRegion method),

615
__init__() (angr.keyed_region.RegionObject method),

Index 923

angr

614
__init__() (angr.keyed_region.StoredObject method),

614
__init__() (angr.knowledge_base.knowledge_base.KnowledgeBase

method), 520
__init__() (angr.knowledge_plugins.callsite_prototypes.CallsitePrototypes

method), 523
__init__() (angr.knowledge_plugins.cfg.CFGENode

method), 527
__init__() (angr.knowledge_plugins.cfg.CFGManager

method), 536
__init__() (angr.knowledge_plugins.cfg.CFGModel

method), 529
__init__() (angr.knowledge_plugins.cfg.CFGNode

method), 525
__init__() (angr.knowledge_plugins.cfg.IndirectJump

method), 528
__init__() (angr.knowledge_plugins.cfg.MemoryData

method), 524
__init__() (angr.knowledge_plugins.cfg.cfg_manager.CFGManager

method), 544
__init__() (angr.knowledge_plugins.cfg.cfg_model.CFGModel

method), 536
__init__() (angr.knowledge_plugins.cfg.cfg_node.CFGENode

method), 547
__init__() (angr.knowledge_plugins.cfg.cfg_node.CFGNode

method), 545
__init__() (angr.knowledge_plugins.cfg.cfg_node.CFGNodeCreationFailure

method), 544
__init__() (angr.knowledge_plugins.cfg.indirect_jump.IndirectJump

method), 548
__init__() (angr.knowledge_plugins.cfg.memory_data.MemoryData

method), 543
__init__() (angr.knowledge_plugins.comments.Comments

method), 549
__init__() (angr.knowledge_plugins.data.Data

method), 549
__init__() (angr.knowledge_plugins.debug_variables.DebugVariable

method), 569
__init__() (angr.knowledge_plugins.debug_variables.DebugVariableContainer

method), 568
__init__() (angr.knowledge_plugins.debug_variables.DebugVariableManager

method), 570
__init__() (angr.knowledge_plugins.functions.function.Function

method), 552
__init__() (angr.knowledge_plugins.functions.function_manager.FunctionDict

method), 550
__init__() (angr.knowledge_plugins.functions.function_manager.FunctionManager

method), 551
__init__() (angr.knowledge_plugins.functions.soot_function.SootFunction

method), 560
__init__() (angr.knowledge_plugins.indirect_jumps.IndirectJumps

method), 549
__init__() (angr.knowledge_plugins.key_definitions.Definition

method), 584
__init__() (angr.knowledge_plugins.key_definitions.KeyDefinitionManager

method), 573
__init__() (angr.knowledge_plugins.key_definitions.LiveDefinitions

method), 574
__init__() (angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel

method), 571
__init__() (angr.knowledge_plugins.key_definitions.Uses

method), 582
__init__() (angr.knowledge_plugins.key_definitions.atoms.Atom

method), 585
__init__() (angr.knowledge_plugins.key_definitions.atoms.ConstantSrc

method), 587
__init__() (angr.knowledge_plugins.key_definitions.atoms.GuardUse

method), 587
__init__() (angr.knowledge_plugins.key_definitions.atoms.MemoryLocation

method), 588
__init__() (angr.knowledge_plugins.key_definitions.atoms.Register

method), 588
__init__() (angr.knowledge_plugins.key_definitions.atoms.Tmp

method), 587
__init__() (angr.knowledge_plugins.key_definitions.definition.Definition

method), 591
__init__() (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate

method), 590
__init__() (angr.knowledge_plugins.key_definitions.environment.Environment

method), 591
__init__() (angr.knowledge_plugins.key_definitions.heap_address.HeapAddress

method), 592
__init__() (angr.knowledge_plugins.key_definitions.key_definition_manager.KeyDefinitionManager

method), 593
__init__() (angr.knowledge_plugins.key_definitions.key_definition_manager.RDAObserverControl

method), 592
__init__() (angr.knowledge_plugins.key_definitions.live_definitions.DefinitionAnnotation

method), 593
__init__() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

method), 594
__init__() (angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel

method), 602
__init__() (angr.knowledge_plugins.key_definitions.tag.FunctionTag

method), 605
__init__() (angr.knowledge_plugins.key_definitions.tag.Tag

method), 605
__init__() (angr.knowledge_plugins.key_definitions.uses.Uses

method), 606
__init__() (angr.knowledge_plugins.labels.Labels

method), 549
__init__() (angr.knowledge_plugins.patches.Patch

method), 521
__init__() (angr.knowledge_plugins.patches.PatchManager

method), 521
__init__() (angr.knowledge_plugins.structured_code.manager.StructuredCodeManager

method), 571
__init__() (angr.knowledge_plugins.sync.sync_controller.SyncController

924 Index

angr

method), 608
__init__() (angr.knowledge_plugins.types.TypesStore

method), 549
__init__() (angr.knowledge_plugins.variables.variable_access.VariableAccess

method), 562
__init__() (angr.knowledge_plugins.variables.variable_manager.LiveVariables

method), 562
__init__() (angr.knowledge_plugins.variables.variable_manager.VariableManager

method), 568
__init__() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal

method), 563
__init__() (angr.knowledge_plugins.xrefs.xref.XRef

method), 611
__init__() (angr.knowledge_plugins.xrefs.xref_manager.XRefManager

method), 612
__init__() (angr.misc.plugins.PluginHub method), 222
__init__() (angr.misc.plugins.PluginPreset method),

223
__init__() (angr.procedures.definitions.SimLibrary

method), 476
__init__() (angr.procedures.definitions.SimSyscallLibrary

method), 480
__init__() (angr.procedures.stubs.format_parser.FormatSpecifier

method), 474
__init__() (angr.procedures.stubs.format_parser.FormatString

method), 473
__init__() (angr.project.Project method), 213
__init__() (angr.sim_manager.ErrorRecord method),

389
__init__() (angr.sim_manager.SimulationManager

method), 383
__init__() (angr.sim_procedure.SimProcedure

method), 471
__init__() (angr.sim_state.SimState method), 225
__init__() (angr.sim_state_options.SimStateOptions

method), 230
__init__() (angr.sim_state_options.StateOption

method), 228
__init__() (angr.sim_type.NamedTypeMixin method),

508
__init__() (angr.sim_type.SimCppClass method), 517
__init__() (angr.sim_type.SimCppClassValue method),

518
__init__() (angr.sim_type.SimStruct method), 516
__init__() (angr.sim_type.SimStructValue method),

516
__init__() (angr.sim_type.SimType method), 507
__init__() (angr.sim_type.SimTypeArray method), 512
__init__() (angr.sim_type.SimTypeBottom method),

509
__init__() (angr.sim_type.SimTypeChar method), 510
__init__() (angr.sim_type.SimTypeCppFunction

method), 514
__init__() (angr.sim_type.SimTypeDouble method),

515
__init__() (angr.sim_type.SimTypeFd method), 511
__init__() (angr.sim_type.SimTypeFloat method), 515
__init__() (angr.sim_type.SimTypeFunction method),

513
__init__() (angr.sim_type.SimTypeInt method), 510
__init__() (angr.sim_type.SimTypeLength method),

515
__init__() (angr.sim_type.SimTypeNum method), 509
__init__() (angr.sim_type.SimTypeNumOffset method),

518
__init__() (angr.sim_type.SimTypePointer method),

511
__init__() (angr.sim_type.SimTypeReference method),

511
__init__() (angr.sim_type.SimTypeReg method), 509
__init__() (angr.sim_type.SimTypeString method), 512
__init__() (angr.sim_type.SimTypeTop method), 509
__init__() (angr.sim_type.SimTypeWString method),

513
__init__() (angr.sim_type.SimTypeWideChar method),

511
__init__() (angr.sim_type.SimUnion method), 516
__init__() (angr.sim_type.SimUnionValue method),

517
__init__() (angr.sim_type.TypeRef method), 508
__init__() (angr.sim_variable.SimConstantVariable

method), 503
__init__() (angr.sim_variable.SimMemoryVariable

method), 505
__init__() (angr.sim_variable.SimRegisterVariable

method), 504
__init__() (angr.sim_variable.SimStackVariable

method), 506
__init__() (angr.sim_variable.SimTemporaryVariable

method), 504
__init__() (angr.sim_variable.SimVariable method),

503
__init__() (angr.sim_variable.SimVariableSet

method), 507
__init__() (angr.simos.cgc.SimCGC method), 880
__init__() (angr.simos.javavm.SimJavaVM method),

882
__init__() (angr.simos.linux.SimLinux method), 879
__init__() (angr.simos.simos.GlobalDescriptorTable

method), 879
__init__() (angr.simos.simos.SimOS method), 877
__init__() (angr.simos.userland.SimUserland method),

880
__init__() (angr.simos.windows.SimWindows method),

881
__init__() (angr.slicer.SimLightState method), 873
__init__() (angr.slicer.SimSlicer method), 873
__init__() (angr.state_hierarchy.StateHierarchy

Index 925

angr

method), 389
__init__() (angr.state_plugins.callstack.CallStack

method), 263
__init__() (angr.state_plugins.callstack.CallStackAction

method), 266
__init__() (angr.state_plugins.cgc.SimStateCGC

method), 272
__init__() (angr.state_plugins.concrete.Concrete

method), 292
__init__() (angr.state_plugins.debug_variables.SimDebugVariable

method), 307
__init__() (angr.state_plugins.filesystem.SimConcreteFilesystem

method), 252
__init__() (angr.state_plugins.filesystem.SimFilesystem

method), 249
__init__() (angr.state_plugins.filesystem.SimHostFilesystem

method), 254
__init__() (angr.state_plugins.gdb.GDB method), 270
__init__() (angr.state_plugins.globals.SimStateGlobals

method), 278
__init__() (angr.state_plugins.heap.heap_base.SimHeapBase

method), 298
__init__() (angr.state_plugins.heap.heap_brk.SimHeapBrk

method), 298
__init__() (angr.state_plugins.heap.heap_freelist.Chunk

method), 300
__init__() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 302
__init__() (angr.state_plugins.heap.heap_ptmalloc.PTChunkIterator

method), 304
__init__() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

method), 304
__init__() (angr.state_plugins.history.LambdaAttrIter

method), 270
__init__() (angr.state_plugins.history.LambdaIterIter

method), 270
__init__() (angr.state_plugins.history.SimStateHistory

method), 267
__init__() (angr.state_plugins.history.TreeIter

method), 270
__init__() (angr.state_plugins.inspect.BP method),

233
__init__() (angr.state_plugins.inspect.SimInspector

method), 234
__init__() (angr.state_plugins.javavm_classloader.SimJavaVmClassloader

method), 294
__init__() (angr.state_plugins.jni_references.SimStateJNIReferences

method), 296
__init__() (angr.state_plugins.libc.SimStateLibc

method), 238
__init__() (angr.state_plugins.light_registers.SimLightRegisters

method), 266
__init__() (angr.state_plugins.log.SimStateLog

method), 262

__init__() (angr.state_plugins.loop_data.SimStateLoopData
method), 291

__init__() (angr.state_plugins.plugin.SimStatePlugin
method), 231

__init__() (angr.state_plugins.posix.SimSystemPosix
method), 245

__init__() (angr.state_plugins.preconstrainer.SimStatePreconstrainer
method), 282

__init__() (angr.state_plugins.scratch.SimStateScratch
method), 280

__init__() (angr.state_plugins.sim_action.SimAction
method), 466

__init__() (angr.state_plugins.sim_action.SimActionConstraint
method), 467

__init__() (angr.state_plugins.sim_action.SimActionData
method), 467

__init__() (angr.state_plugins.sim_action.SimActionExit
method), 467

__init__() (angr.state_plugins.sim_action.SimActionOperation
method), 467

__init__() (angr.state_plugins.sim_action_object.SimActionObject
method), 468

__init__() (angr.state_plugins.sim_event.SimEvent
method), 468

__init__() (angr.state_plugins.solver.SimSolver
method), 254

__init__() (angr.state_plugins.symbolizer.SimSymbolizer
method), 307

__init__() (angr.state_plugins.trace_additions.ChallRespInfo
method), 274

__init__() (angr.state_plugins.trace_additions.FormatInfoDontConstrain
method), 274

__init__() (angr.state_plugins.trace_additions.FormatInfoIntToStr
method), 274

__init__() (angr.state_plugins.trace_additions.FormatInfoStrToInt
method), 274

__init__() (angr.state_plugins.trace_additions.ZenPlugin
method), 276

__init__() (angr.state_plugins.uc_manager.SimUCManager
method), 279

__init__() (angr.state_plugins.unicorn_engine.AggressiveConcretizationAnnotation
method), 288

__init__() (angr.state_plugins.unicorn_engine.Unicorn
method), 289

__init__() (angr.state_plugins.unicorn_engine.Uniwrapper
method), 288

__init__() (angr.state_plugins.view.SimMemView
method), 311

__init__() (angr.state_plugins.view.StructMode
method), 314

__init__() (angr.storage.file.SimFile method), 317
__init__() (angr.storage.file.SimFileBase method), 316
__init__() (angr.storage.file.SimFileDescriptor

method), 327

926 Index

angr

__init__() (angr.storage.file.SimFileDescriptorDuplex
method), 329

__init__() (angr.storage.file.SimFileStream method),
319

__init__() (angr.storage.file.SimPackets method), 321
__init__() (angr.storage.file.SimPacketsSlots method),

332
__init__() (angr.storage.file.SimPacketsStream

method), 323
__init__() (angr.storage.memory_mixins.MemoryMixin

method), 336
__init__() (angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin

method), 344
__init__() (angr.storage.memory_mixins.convenient_mappings_mixin.ConvenientMappingsMixin

method), 348
__init__() (angr.storage.memory_mixins.default_filler_mixin.ExplicitFillerMixin

method), 340
__init__() (angr.storage.memory_mixins.default_filler_mixin.SpecialFillerMixin

method), 340
__init__() (angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin

method), 376
__init__() (angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin.KeyValueMemoryMixin

method), 375
__init__() (angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin.TypedVariable

method), 375
__init__() (angr.storage.memory_mixins.label_merger_mixin.LabelMergerMixin

method), 347
__init__() (angr.storage.memory_mixins.multi_value_merger_mixin.MultiValueMergerMixin

method), 352
__init__() (angr.storage.memory_mixins.paged_memory.page_backer_mixins.ClemoryBackerMixin

method), 357
__init__() (angr.storage.memory_mixins.paged_memory.page_backer_mixins.DictBackerMixin

method), 358
__init__() (angr.storage.memory_mixins.paged_memory.page_backer_mixins.NotMemoryview

method), 357
__init__() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.MVListPagesMixin

method), 356
__init__() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

method), 353
__init__() (angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin.HistoryTrackingMixin

method), 360
__init__() (angr.storage.memory_mixins.paged_memory.pages.list_page.ListPage

method), 362
__init__() (angr.storage.memory_mixins.paged_memory.pages.multi_values.MultiValues

method), 350
__init__() (angr.storage.memory_mixins.paged_memory.pages.mv_list_page.MVListPage

method), 348
__init__() (angr.storage.memory_mixins.paged_memory.pages.permissions_mixin.PermissionsMixin

method), 360
__init__() (angr.storage.memory_mixins.paged_memory.pages.refcount_mixin.RefcountMixin

method), 359
__init__() (angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage

method), 363
__init__() (angr.storage.memory_mixins.paged_memory.stack_allocation_mixin.StackAllocationMixin

method), 358
__init__() (angr.storage.memory_mixins.regioned_memory.abstract_address_descriptor.AbstractAddressDescriptor

method), 371
__init__() (angr.storage.memory_mixins.regioned_memory.region_data.AddressWrapper

method), 368
__init__() (angr.storage.memory_mixins.regioned_memory.region_data.RegionDescriptor

method), 369
__init__() (angr.storage.memory_mixins.regioned_memory.region_data.RegionMap

method), 369
__init__() (angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin

method), 371
__init__() (angr.storage.memory_mixins.regioned_memory.regioned_address_concretization_mixin.RegionedAddressConcretizationMixin

method), 373
__init__() (angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin

method), 366
__init__() (angr.storage.memory_mixins.size_resolution_mixin.SizeConcretizationMixin

method), 343
__init__() (angr.storage.memory_mixins.slotted_memory.SlottedMemoryMixin

method), 374
__init__() (angr.storage.memory_mixins.top_merger_mixin.TopMergerMixin

method), 352
__init__() (angr.storage.memory_mixins.underconstrained_mixin.UnderconstrainedMixin

method), 341
__init__() (angr.storage.memory_object.SimLabeledMemoryObject

method), 334
__init__() (angr.storage.memory_object.SimMemoryObject

method), 334
__init__() (angr.storage.pcap.PCAP method), 335
__init__() (angr.utils.cowdict.ChainMapCOW

method), 887
__init__() (angr.utils.cowdict.DefaultChainMapCOW

method), 887
__init__() (angr.utils.dynamic_dictlist.DynamicDictList

method), 887
__init__() (angr.utils.graph.ContainerNode method),

890
__init__() (angr.utils.graph.Dominators method), 890
__init__() (angr.utils.graph.PostDominators method),

890
__init__() (angr.utils.graph.SCCPlaceholder method),

890
__init__() (angr.utils.graph.TemporaryNode method),

890
__init__() (angr.utils.mp.Initializer method), 895
__init__() (angr.vaults.Vault method), 618
__init__() (angr.vaults.VaultDict method), 618
__init__() (angr.vaults.VaultDir method), 618
__init__() (angr.vaults.VaultDirShelf method), 619
__init__() (angr.vaults.VaultPickler method), 617
__init__() (angr.vaults.VaultShelf method), 619
__init__() (angr.vaults.VaultUnpickler method), 618

A
abort() (angr.analyses.forward_analysis.forward_analysis.ForwardAnalysis

Index 927

angr

method), 622
absolutize() (angr.storage.memory_mixins.regioned_memory.region_data.RegionMap

method), 370
absorb() (angr.sim_manager.SimulationManager

method), 386
absorb() (angr.SimulationManager method), 175
AbstractAddressDescriptor (class in

angr.storage.memory_mixins.regioned_memory.abstract_address_descriptor),
371

AbstractMemory (class in
angr.storage.memory_mixins), 338

AbstractMergerMixin (class in
angr.storage.memory_mixins.regioned_memory.abstract_merger_mixin),
373

access_type (angr.knowledge_plugins.variables.variable_access.VariableAccess
attribute), 562

accessed_data_references
(angr.knowledge_plugins.cfg.cfg_node.CFGNode
property), 545

accessed_data_references
(angr.knowledge_plugins.cfg.CFGNode prop-
erty), 526

AccessingZeroPageError, 288
acquire_shared() (angr.storage.memory_mixins.paged_memory.pages.refcount_mixin.RefcountMixin

method), 360
acquire_unique() (angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin.HistoryTrackingMixin

method), 361
acquire_unique() (angr.storage.memory_mixins.paged_memory.pages.refcount_mixin.RefcountMixin

method), 360
action() (angr.state_plugins.inspect.SimInspector

method), 234
actions (angr.state_plugins.history.SimStateHistory

property), 269
actions (angr.state_plugins.log.SimStateLog property),

262
actions_of_type() (angr.state_plugins.log.SimStateLog

method), 262
ActionsMixinHigh (class in

angr.storage.memory_mixins.actions_mixin),
342

ActionsMixinLow (class in
angr.storage.memory_mixins.actions_mixin),
342

activate() (angr.misc.plugins.PluginPreset method),
223

active (angr.sim_manager.SimulationManager at-
tribute), 383

active (angr.SimulationManager attribute), 172
active_workers (angr.distributed.server.Server prop-

erty), 902
active_workers (angr.Server property), 210
Add (angr.engines.light.data.ArithmeticExpression

attribute), 752
Add (class in angr.analyses.typehoon.typevars), 832

add() (angr.exploration_techniques.spiller.PickledStatesBase
method), 410

add() (angr.exploration_techniques.spiller.PickledStatesDb
method), 411

add() (angr.exploration_techniques.spiller.PickledStatesList
method), 411

add() (angr.procedures.definitions.SimLibrary method),
477

add() (angr.sim_state_options.SimStateOptions method),
230

add() (angr.sim_variable.SimVariableSet method), 507
add() (angr.state_plugins.solver.SimSolver method), 259
add_action() (angr.state_plugins.history.SimStateHistory

method), 269
add_action() (angr.state_plugins.log.SimStateLog

method), 262
add_alias() (angr.procedures.definitions.SimLibrary

method), 477
add_all_from_dict()

(angr.procedures.definitions.SimLibrary
method), 477

add_block_to_whitelist()
(angr.annocfg.AnnotatedCFG method), 874

add_breakpoint() (angr.state_plugins.inspect.SimInspector
method), 234

add_constraints() (angr.sim_state.SimState method),
226

add_constraints() (angr.SimState method), 182
add_data_seg() (angr.analyses.cfg.cfg_fast.DecodingAssumption

method), 649
add_def() (angr.analyses.ddg.LiveDefinitions method),

747
add_def() (angr.analyses.reaching_definitions.ReachingDefinitionsModel

method), 776
add_def() (angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel

method), 603
add_def() (angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel

method), 571
add_default_plugin()

(angr.misc.plugins.PluginPreset method),
223

add_defs() (angr.analyses.ddg.LiveDefinitions
method), 748

add_dependencies_for_concrete_pointers_of()
(angr.analyses.reaching_definitions.dep_graph.DepGraph
method), 798

add_edge() (angr.analyses.reaching_definitions.dep_graph.DepGraph
method), 797

add_edge_to_buffer() (in module
angr.utils.formatting), 894

add_event() (angr.state_plugins.history.SimStateHistory
method), 269

add_event() (angr.state_plugins.log.SimStateLog
method), 262

928 Index

angr

add_exit_to_whitelist()
(angr.annocfg.AnnotatedCFG method), 874

add_final_job() (angr.analyses.vfg.CallAnalysis
method), 843

add_function() (angr.analyses.cfg.cfb.CFBlanket
method), 638

add_function_edge()
(angr.analyses.cfg.cfg_fast.CFGJob method),
653

add_goal() (angr.exploration_techniques.Director
method), 400

add_goal() (angr.exploration_techniques.director.Director
method), 420

add_heap_use() (angr.analyses.reaching_definitions.LiveDefinitions
method), 766

add_heap_use() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 813

add_heap_use() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 783

add_heap_use() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 601

add_heap_use() (angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 580

add_heap_use_by_def()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 766

add_heap_use_by_def()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 601

add_heap_use_by_def()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 580

add_heap_use_by_defs()
(angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 813

add_heap_use_by_defs()
(angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 784

add_history() (angr.state_hierarchy.StateHierarchy
method), 389

add_history() (angr.StateHierarchy method), 180
add_job() (angr.analyses.cfg.cfg_fast.PendingJobs

method), 650
add_job() (angr.analyses.forward_analysis.job_info.JobInfo

method), 623
add_jumpout_site() (angr.knowledge_plugins.functions.function.Function

method), 556
add_label() (angr.analyses.reassembler.Reassembler

method), 859
add_labels() (in module

angr.analyses.decompiler.utils), 745
add_loop() (angr.annocfg.AnnotatedCFG method), 874
add_loop_exit_stmt()

(angr.analyses.loop_analysis.LoopAnalysisState

method), 839
add_mapping() (angr.analyses.decompiler.structured_codegen.base.InstructionMapping

method), 725
add_mapping() (angr.analyses.decompiler.structured_codegen.base.PositionMapping

method), 724
add_memory_data() (angr.knowledge_plugins.cfg.cfg_model.CFGModel

method), 540
add_memory_data() (angr.knowledge_plugins.cfg.CFGModel

method), 534
add_memory_use() (angr.analyses.reaching_definitions.LiveDefinitions

method), 766
add_memory_use() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

method), 601
add_memory_use() (angr.knowledge_plugins.key_definitions.LiveDefinitions

method), 580
add_memory_use_by_def()

(angr.analyses.reaching_definitions.LiveDefinitions
method), 766

add_memory_use_by_def()
(angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 814

add_memory_use_by_def()
(angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 784

add_memory_use_by_def()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 601

add_memory_use_by_def()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 581

add_memory_use_by_defs()
(angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 814

add_memory_use_by_defs()
(angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 784

add_memory_variable()
(angr.sim_variable.SimVariableSet method),
507

add_memory_variables()
(angr.sim_variable.SimVariableSet method),
507

add_node() (angr.analyses.decompiler.structuring.structurer_nodes.SequenceNode
method), 686

add_node() (angr.analyses.reaching_definitions.dep_graph.DepGraph
method), 797

add_node() (angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 537

add_node() (angr.knowledge_plugins.cfg.CFGModel
method), 530

add_nonreturning_function()
(angr.analyses.cfg.cfg_fast.PendingJobs
method), 650

add_number_mapping()

Index 929

angr

(angr.procedures.definitions.SimSyscallLibrary
method), 480

add_number_mapping_from_dict()
(angr.procedures.definitions.SimSyscallLibrary
method), 481

add_obj() (angr.analyses.cfg.cfb.CFBlanket method),
638

add_object() (angr.keyed_region.KeyedRegion
method), 615

add_object() (angr.keyed_region.RegionObject
method), 614

add_patch() (angr.knowledge_plugins.patches.PatchManager
method), 521

add_patch_obj() (angr.knowledge_plugins.patches.PatchManager
method), 522

add_regioned_address()
(angr.storage.memory_mixins.regioned_memory.abstract_address_descriptor.AbstractAddressDescriptor
method), 371

add_register_use() (angr.analyses.reaching_definitions.LiveDefinitions
method), 765

add_register_use() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 813

add_register_use() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 783

add_register_use() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 600

add_register_use() (angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 579

add_register_use_by_def()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 765

add_register_use_by_def()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 600

add_register_use_by_def()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 579

add_register_use_by_defs()
(angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 813

add_register_use_by_defs()
(angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 783

add_register_variable()
(angr.sim_variable.SimVariableSet method),
507

add_retout_site() (angr.knowledge_plugins.functions.function.Function
method), 556

add_returning_function()
(angr.analyses.cfg.cfg_fast.PendingJobs
method), 650

add_sinkhole() (angr.state_plugins.cgc.SimStateCGC
method), 273

add_stack_use() (angr.analyses.reaching_definitions.LiveDefinitions

method), 765
add_stack_use() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

method), 813
add_stack_use() (angr.analyses.reaching_definitions.ReachingDefinitionsState

method), 783
add_stack_use() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

method), 600
add_stack_use() (angr.knowledge_plugins.key_definitions.LiveDefinitions

method), 580
add_stack_use_by_def()

(angr.analyses.reaching_definitions.LiveDefinitions
method), 766

add_stack_use_by_def()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 601

add_stack_use_by_def()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 580

add_stack_use_by_defs()
(angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 813

add_stack_use_by_defs()
(angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 783

add_state() (angr.state_hierarchy.StateHierarchy
method), 389

add_state() (angr.StateHierarchy method), 180
add_statements_to_whitelist()

(angr.annocfg.AnnotatedCFG method), 874
add_successor() (angr.engines.successors.SimSuccessors

method), 429
add_tmp_use() (angr.analyses.reaching_definitions.LiveDefinitions

method), 767
add_tmp_use() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

method), 812
add_tmp_use() (angr.analyses.reaching_definitions.ReachingDefinitionsState

method), 782
add_tmp_use() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

method), 602
add_tmp_use() (angr.knowledge_plugins.key_definitions.LiveDefinitions

method), 581
add_tmp_use_by_def()

(angr.analyses.reaching_definitions.LiveDefinitions
method), 767

add_tmp_use_by_def()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 602

add_tmp_use_by_def()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 581

add_tmp_use_by_defs()
(angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 812

add_tmp_use_by_defs()

930 Index

angr

(angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 783

add_transitions() (angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink.CFGSliceToSink
method), 817

add_type_constraint()
(angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
method), 824

add_type_variable()
(angr.analyses.typehoon.typevars.TypeVariables
method), 833

add_use() (angr.analyses.reaching_definitions.LiveDefinitions
method), 763

add_use() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 812

add_use() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 782

add_use() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 598

add_use() (angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 577

add_use() (angr.knowledge_plugins.key_definitions.Uses
method), 582

add_use() (angr.knowledge_plugins.key_definitions.uses.Uses
method), 606

add_use_by_def() (angr.analyses.reaching_definitions.LiveDefinitions
method), 763

add_use_by_def() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 812

add_use_by_def() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 782

add_use_by_def() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 598

add_use_by_def() (angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 577

add_value() (angr.storage.memory_mixins.paged_memory.pages.multi_values.MultiValues
method), 350

add_variable() (angr.keyed_region.KeyedRegion
method), 615

add_variable() (angr.knowledge_plugins.debug_variables.DebugVariableManager
method), 570

add_variable() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 563

add_variable_list()
(angr.knowledge_plugins.debug_variables.DebugVariableManager
method), 570

add_xref() (angr.analyses.xrefs.SimEngineXRefsVEX
method), 864

add_xref() (angr.knowledge_plugins.xrefs.xref_manager.XRefManager
method), 612

add_xrefs() (angr.knowledge_plugins.xrefs.xref_manager.XRefManager
method), 612

AddN (class in angr.analyses.typehoon.typevars), 834
addr (angr.analyses.cfg.cfg_fast.CFGJob attribute), 653
addr (angr.analyses.decompiler.decompilation_cache.DecompilationCache

attribute), 699
addr (angr.analyses.decompiler.graph_region.GraphRegion

property), 702
addr (angr.analyses.decompiler.structured_codegen.c.CFunction

attribute), 727
addr (angr.analyses.decompiler.structuring.structurer_nodes.BaseNode

attribute), 686
addr (angr.analyses.decompiler.structuring.structurer_nodes.BreakNode

attribute), 688
addr (angr.analyses.decompiler.structuring.structurer_nodes.CascadingConditionNode

attribute), 688
addr (angr.analyses.decompiler.structuring.structurer_nodes.CodeNode

property), 687
addr (angr.analyses.decompiler.structuring.structurer_nodes.ConditionNode

attribute), 687
addr (angr.analyses.decompiler.structuring.structurer_nodes.ContinueNode

attribute), 689
addr (angr.analyses.decompiler.structuring.structurer_nodes.IncompleteSwitchCaseHeadStatement

attribute), 690
addr (angr.analyses.decompiler.structuring.structurer_nodes.IncompleteSwitchCaseNode

attribute), 690
addr (angr.analyses.decompiler.structuring.structurer_nodes.LoopNode

property), 688
addr (angr.analyses.decompiler.structuring.structurer_nodes.MultiNode

attribute), 686
addr (angr.analyses.decompiler.structuring.structurer_nodes.SequenceNode

attribute), 686
addr (angr.analyses.decompiler.structuring.structurer_nodes.SwitchCaseNode

attribute), 689
addr (angr.analyses.disassembly.DisassemblyPiece at-

tribute), 848
addr (angr.analyses.disassembly.IROp attribute), 849
addr (angr.analyses.disassembly.OperandPiece at-

tribute), 851
addr (angr.analyses.propagator.vex_vars.VEXMemVar

attribute), 754
addr (angr.analyses.reaching_definitions.MemoryLocation

attribute), 771
addr (angr.angrdb.models.DbComment attribute), 680
addr (angr.angrdb.models.DbFunction attribute), 678
addr (angr.angrdb.models.DbLabel attribute), 680
addr (angr.Block attribute), 170
addr (angr.block.Block attribute), 221
addr (angr.block.DisassemblerBlock attribute), 220
addr (angr.codenode.CodeNode attribute), 875
addr (angr.engines.pcode.lifter.IRSB attribute), 437
addr (angr.engines.pcode.lifter.Lifter attribute), 439
addr (angr.engines.pcode.lifter.PcodeDisassemblerBlock

attribute), 435
addr (angr.engines.pcode.lifter.PcodeLifter attribute),

442
addr (angr.knowledge_plugins.cfg.cfg_node.CFGNode

attribute), 545
addr (angr.knowledge_plugins.cfg.CFGNode attribute),

Index 931

angr

526
addr (angr.knowledge_plugins.cfg.indirect_jump.IndirectJump

attribute), 548
addr (angr.knowledge_plugins.cfg.IndirectJump at-

tribute), 529
addr (angr.knowledge_plugins.cfg.memory_data.MemoryData

attribute), 543
addr (angr.knowledge_plugins.cfg.MemoryData at-

tribute), 524
addr (angr.knowledge_plugins.functions.function.Function

attribute), 553
addr (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 560
addr (angr.knowledge_plugins.key_definitions.atoms.MemoryLocation

attribute), 588
addr (angr.sim_state.SimState property), 225
addr (angr.sim_variable.SimMemoryVariable attribute),

505
addr (angr.SimState property), 182
addr (angr.state_plugins.history.SimStateHistory prop-

erty), 267
addr_and_variables (angr.analyses.variable_recovery.variable_recovery_base.VariableAnnotation

attribute), 821
addr_invalid() (angr.state_plugins.cgc.SimStateCGC

method), 272
addr_to_instruction_addr()

(angr.knowledge_plugins.functions.function.Function
method), 558

address (angr.analyses.reaching_definitions.function_handler.FunctionCallData
attribute), 802

address (angr.analyses.reaching_definitions.FunctionCallData
attribute), 789

address (angr.block.CapstoneInsn property), 221
address (angr.block.DisassemblerInsn property), 220
address (angr.engines.pcode.lifter.PcodeDisassemblerInsn

property), 435
address (angr.knowledge_plugins.cfg.memory_data.MemoryData

property), 543
address (angr.knowledge_plugins.cfg.MemoryData

property), 525
address (angr.state_plugins.unicorn_engine.MEM_PATCH

attribute), 284
address (angr.state_plugins.unicorn_engine.MemoryValue

attribute), 284
address (angr.storage.memory_mixins.regioned_memory.region_data.AddressWrapper

attribute), 369
address_multi (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 802
address_multi (angr.analyses.reaching_definitions.function_handler.FunctionCallDataUnwrapped

attribute), 805
address_multi (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
AddressConcretizationMixin (class in

angr.storage.memory_mixins.address_concretization_mixin),

344
AddressTransferringTypes (class in

angr.analyses.cfg.indirect_jump_resolvers.jumptable),
663

AddressWrapper (class in
angr.storage.memory_mixins.regioned_memory.region_data),
368

addrs_for_hash() (angr.storage.memory_mixins.convenient_mappings_mixin.ConvenientMappingsMixin
method), 348

addrs_for_name() (angr.storage.memory_mixins.convenient_mappings_mixin.ConvenientMappingsMixin
method), 348

ADDS_EXITS (angr.sim_procedure.SimProcedure at-
tribute), 471

ADDS_EXITS (angr.SimProcedure attribute), 159
AFTER_AIL_GRAPH_CREATION

(angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPassStage
attribute), 704

AFTER_GLOBAL_SIMPLIFICATION
(angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPassStage
attribute), 704

AFTER_MAKING_CALLSITES
(angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPassStage
attribute), 704

AFTER_SINGLE_BLOCK_SIMPLIFICATION
(angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPassStage
attribute), 704

AFTER_STRUCTURING (angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPassStage
attribute), 704

AFTER_VARIABLE_RECOVERY
(angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPassStage
attribute), 704

AggressiveConcretizationAnnotation (class in
angr.state_plugins.unicorn_engine), 288

AILBlockTempCollector (class in
angr.analyses.decompiler.ail_simplifier),
692

AILGraphWalker (class in
angr.analyses.decompiler.ailgraph_walker),
693

AILSimplifier (class in
angr.analyses.decompiler.ail_simplifier),
692

alignment (angr.knowledge_plugins.functions.function.Function
property), 553

alignment (angr.sim_type.SimStruct property), 516
alignment (angr.sim_type.SimType property), 508
alignment (angr.sim_type.SimTypeArray property), 512
alignment (angr.sim_type.SimTypeDouble property),

515
alignment (angr.sim_type.SimTypeString property), 513
alignment (angr.sim_type.SimTypeWString property),

513
alignment (angr.sim_type.SimUnion property), 517
alignment (angr.sim_type.TypeRef property), 508

932 Index

angr

ALL (angr.sim_manager.SimulationManager attribute),
383

ALL (angr.SimulationManager attribute), 172
all_bytes_changed_in_history()

(angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin.HistoryTrackingMixin
method), 361

all_constants (angr.engines.pcode.lifter.IRSB prop-
erty), 438

all_definitions (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
attribute), 809

all_definitions (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis
property), 794

all_definitions (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis
property), 774

all_definitions (angr.analyses.reaching_definitions.ReachingDefinitionsState
attribute), 779

all_objects (angr.state_plugins.sim_action.SimAction
property), 466

all_objects (angr.state_plugins.sim_action.SimActionConstraint
property), 467

all_objects (angr.state_plugins.sim_action.SimActionData
property), 468

all_objects (angr.state_plugins.sim_action.SimActionExit
property), 467

all_objects (angr.state_plugins.sim_action.SimActionOperation
property), 467

all_stashes (angr.analyses.veritesting.Veritesting at-
tribute), 841

all_successors() (angr.analyses.forward_analysis.visitors.graph.GraphVisitor
method), 626

all_successors() (angr.state_hierarchy.StateHierarchy
method), 389

all_successors() (angr.StateHierarchy method), 180
ALL_TABLES (angr.angrdb.db.AngrDB attribute), 675
all_uses (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis

property), 794
all_uses (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis

property), 774
alloc() (angr.calling_conventions.AllocHelper

method), 483
allocate() (angr.analyses.reaching_definitions.heap_allocator.HeapAllocator

method), 799
allocate() (angr.SimHeapBrk method), 205
allocate() (angr.state_plugins.heap.heap_brk.SimHeapBrk

method), 298
allocate_stack_pages()

(angr.storage.memory_mixins.paged_memory.stack_allocation_mixin.StackAllocationMixin
method), 358

allocated_addresses
(angr.analyses.reaching_definitions.heap_allocator.HeapAllocator
property), 800

allocated_chunks() (angr.SimHeapPTMalloc
method), 206

allocated_chunks() (angr.state_plugins.heap.heap_freelist.SimHeapFreelist

method), 301
allocated_chunks() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

method), 304
AllocHelper (class in angr.calling_conventions), 483
allow_arch_optimizations

(angr.engines.pcode.lifter.Lifter attribute),
440

allow_arch_optimizations
(angr.engines.pcode.lifter.PcodeLifter at-
tribute), 442

ALT_NAMES (angr.sim_procedure.SimProcedure at-
tribute), 472

ALT_NAMES (angr.SimProcedure attribute), 159
ALWAYS (angr.analyses.decompiler.structuring.phoenix.MultiStmtExprMode

attribute), 691
AlwaysUpdate (angr.analyses.calling_convention.UpdateArgumentsOption

attribute), 633
AMD64CCallRewriter (class in

angr.analyses.decompiler.ccall_rewriters.amd64_ccalls),
694

AMD64ElfGotResolver (class in
angr.analyses.cfg.indirect_jump_resolvers.amd64_elf_got),
658

analyses (angr.Project property), 164
analyses (angr.project.Project property), 214
AnalysesHub (class in angr.analyses.analysis), 619
AnalysesHubWithDefault (class in

angr.analyses.analysis), 620
analysis (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

attribute), 809
analysis (angr.analyses.reaching_definitions.ReachingDefinitionsState

attribute), 779
Analysis (class in angr), 178
Analysis (class in angr.analyses.analysis), 621
AnalysisFactory (class in angr.analyses.analysis), 620
AnalysisLogEntry (class in angr.analyses.analysis),

619
AnalysisTask (class in angr.analyses.vfg), 842
analyze() (angr.analyses.callee_cleanup_finder.CalleeCleanupFinder

method), 863
analyze() (angr.analyses.code_tagging.CodeTagging

method), 675
analyze() (angr.analyses.decompiler.optimization_passes.optimization_pass.BaseOptimizationPass

method), 704
analyze() (angr.analyses.decompiler.optimization_passes.optimization_pass.StructuringOptimizationPass

method), 706
analyze() (angr.analyses.vtable.VtableFinder method),

847
analyze_transmit() (angr.state_plugins.trace_additions.ZenPlugin

method), 277
And (angr.engines.light.data.ArithmeticExpression

attribute), 752
angr

module, 157

Index 933

angr

angr.analyses
module, 619

angr.analyses.analysis
module, 619

angr.analyses.backward_slice
module, 628

angr.analyses.binary_optimizer
module, 861

angr.analyses.bindiff
module, 630

angr.analyses.boyscout
module, 633

angr.analyses.callee_cleanup_finder
module, 862

angr.analyses.calling_convention
module, 633

angr.analyses.cdg
module, 674

angr.analyses.cfg
module, 637

angr.analyses.cfg.cfb
module, 637

angr.analyses.cfg.cfg
module, 639

angr.analyses.cfg.cfg_arch_options
module, 657

angr.analyses.cfg.cfg_base
module, 646

angr.analyses.cfg.cfg_emulated
module, 641

angr.analyses.cfg.cfg_fast
module, 648

angr.analyses.cfg.cfg_fast_soot
module, 669

angr.analyses.cfg.cfg_job_base
module, 657

angr.analyses.cfg.indirect_jump_resolvers
module, 669

angr.analyses.cfg.indirect_jump_resolvers.amd64_elf_got
module, 658

angr.analyses.cfg.indirect_jump_resolvers.arm_elf_fast
module, 659

angr.analyses.cfg.indirect_jump_resolvers.const_resolver
module, 667

angr.analyses.cfg.indirect_jump_resolvers.default_resolvers
module, 663

angr.analyses.cfg.indirect_jump_resolvers.jumptable
module, 663

angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast
module, 661

angr.analyses.cfg.indirect_jump_resolvers.resolver
module, 668

angr.analyses.cfg.indirect_jump_resolvers.x86_elf_pic_plt
module, 662

angr.analyses.cfg.indirect_jump_resolvers.x86_pe_iat
module, 660

angr.analyses.cfg.segment_list
module, 671

angr.analyses.cfg_slice_to_sink
module, 816

angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink
module, 816

angr.analyses.cfg_slice_to_sink.graph
module, 817

angr.analyses.cfg_slice_to_sink.transitions
module, 818

angr.analyses.class_identifier
module, 848

angr.analyses.code_tagging
module, 674

angr.analyses.complete_calling_conventions
module, 634

angr.analyses.congruency_check
module, 860

angr.analyses.data_dep
module, 872

angr.analyses.data_dep.data_dependency_analysis
module, 867

angr.analyses.data_dep.dep_nodes
module, 869

angr.analyses.data_dep.sim_act_location
module, 868

angr.analyses.datagraph_meta
module, 674

angr.analyses.ddg
module, 746

angr.analyses.decompiler
module, 692

angr.analyses.decompiler.ail_simplifier
module, 692

angr.analyses.decompiler.ailgraph_walker
module, 693

angr.analyses.decompiler.block_simplifier
module, 693

angr.analyses.decompiler.callsite_maker
module, 694

angr.analyses.decompiler.ccall_rewriters
module, 694

angr.analyses.decompiler.ccall_rewriters.amd64_ccalls
module, 694

angr.analyses.decompiler.ccall_rewriters.rewriter_base
module, 694

angr.analyses.decompiler.clinic
module, 695

angr.analyses.decompiler.condition_processor
module, 697

angr.analyses.decompiler.decompilation_cache
module, 699

934 Index

angr

angr.analyses.decompiler.decompilation_options
module, 698

angr.analyses.decompiler.decompiler
module, 699

angr.analyses.decompiler.empty_node_remover
module, 700

angr.analyses.decompiler.expression_narrower
module, 701

angr.analyses.decompiler.graph_region
module, 701

angr.analyses.decompiler.jump_target_collector
module, 702

angr.analyses.decompiler.jumptable_entry_condition_rewriter
module, 702

angr.analyses.decompiler.optimization_passes
module, 703

angr.analyses.decompiler.optimization_passes.base_ptr_save_simplifier
module, 706

angr.analyses.decompiler.optimization_passes.const_derefs
module, 703

angr.analyses.decompiler.optimization_passes.div_simplifier
module, 706

angr.analyses.decompiler.optimization_passes.engine_base
module, 710

angr.analyses.decompiler.optimization_passes.expr_op_swapper
module, 711

angr.analyses.decompiler.optimization_passes.ite_expr_converter
module, 707

angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier
module, 708

angr.analyses.decompiler.optimization_passes.mod_simplifier
module, 710

angr.analyses.decompiler.optimization_passes.multi_simplifier
module, 709

angr.analyses.decompiler.optimization_passes.optimization_pass
module, 703

angr.analyses.decompiler.optimization_passes.register_save_area_simplifier
module, 712

angr.analyses.decompiler.optimization_passes.ret_addr_save_simplifier
module, 712

angr.analyses.decompiler.optimization_passes.stack_canary_simplifier
module, 706

angr.analyses.decompiler.optimization_passes.x86_gcc_getpc_simplifier
module, 713

angr.analyses.decompiler.peephole_optimizations
module, 713

angr.analyses.decompiler.peephole_optimizations.base
module, 713

angr.analyses.decompiler.redundant_label_remover
module, 723

angr.analyses.decompiler.region_identifier
module, 715

angr.analyses.decompiler.region_simplifiers
module, 716

angr.analyses.decompiler.region_simplifiers.cascading_cond_transformer
module, 716

angr.analyses.decompiler.region_simplifiers.cascading_ifs
module, 716

angr.analyses.decompiler.region_simplifiers.expr_folding
module, 716

angr.analyses.decompiler.region_simplifiers.goto
module, 719

angr.analyses.decompiler.region_simplifiers.if_
module, 719

angr.analyses.decompiler.region_simplifiers.ifelse
module, 719

angr.analyses.decompiler.region_simplifiers.loop
module, 719

angr.analyses.decompiler.region_simplifiers.node_address_finder
module, 719

angr.analyses.decompiler.region_simplifiers.region_simplifier
module, 720

angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier
module, 720

angr.analyses.decompiler.region_simplifiers.switch_expr_simplifier
module, 723

angr.analyses.decompiler.region_walker
module, 723

angr.analyses.decompiler.sequence_walker
module, 724

angr.analyses.decompiler.structured_codegen
module, 724

angr.analyses.decompiler.structured_codegen.base
module, 724

angr.analyses.decompiler.structured_codegen.c
module, 725

angr.analyses.decompiler.structured_codegen.dummy
module, 743

angr.analyses.decompiler.structured_codegen.dwarf_import
module, 743

angr.analyses.decompiler.structuring
module, 685

angr.analyses.decompiler.structuring.dream
module, 685

angr.analyses.decompiler.structuring.phoenix
module, 691

angr.analyses.decompiler.structuring.recursive_structurer
module, 685

angr.analyses.decompiler.structuring.structurer_base
module, 690

angr.analyses.decompiler.structuring.structurer_nodes
module, 686

angr.analyses.decompiler.utils
module, 743

angr.analyses.disassembly
module, 848

angr.analyses.disassembly_utils
module, 852

Index 935

angr

angr.analyses.dominance_frontier
module, 863

angr.analyses.find_objects_static
module, 847

angr.analyses.flirt
module, 752

angr.analyses.forward_analysis
module, 621

angr.analyses.forward_analysis.forward_analysis
module, 621

angr.analyses.forward_analysis.job_info
module, 622

angr.analyses.forward_analysis.visitors
module, 623

angr.analyses.forward_analysis.visitors.call_graph
module, 623

angr.analyses.forward_analysis.visitors.function_graph
module, 623

angr.analyses.forward_analysis.visitors.graph
module, 624

angr.analyses.forward_analysis.visitors.loop
module, 626

angr.analyses.forward_analysis.visitors.single_node_graph
module, 627

angr.analyses.identifier.identify
module, 837

angr.analyses.init_finder
module, 863

angr.analyses.loop_analysis
module, 839

angr.analyses.loopfinder
module, 838

angr.analyses.propagator
module, 754

angr.analyses.propagator.engine_ail
module, 756

angr.analyses.propagator.engine_base
module, 755

angr.analyses.propagator.engine_vex
module, 755

angr.analyses.propagator.outdated_definition_walker
module, 757

angr.analyses.propagator.propagator
module, 758

angr.analyses.propagator.tmpvar_finder
module, 758

angr.analyses.propagator.top_checker_mixin
module, 759

angr.analyses.propagator.values
module, 754

angr.analyses.propagator.vex_vars
module, 754

angr.analyses.proximity_graph
module, 865

angr.analyses.reaching_definitions
module, 759

angr.analyses.reaching_definitions.call_trace
module, 791

angr.analyses.reaching_definitions.dep_graph
module, 796

angr.analyses.reaching_definitions.engine_ail
module, 815

angr.analyses.reaching_definitions.engine_vex
module, 792

angr.analyses.reaching_definitions.function_handler
module, 800

angr.analyses.reaching_definitions.heap_allocator
module, 799

angr.analyses.reaching_definitions.rd_state
module, 807

angr.analyses.reaching_definitions.reaching_definitions
module, 793

angr.analyses.reaching_definitions.subject
module, 815

angr.analyses.reassembler
module, 852

angr.analyses.soot_class_hierarchy
module, 636

angr.analyses.stack_pointer_tracker
module, 818

angr.analyses.static_hooker
module, 861

angr.analyses.typehoon
module, 837

angr.analyses.typehoon.lifter
module, 829

angr.analyses.typehoon.simple_solver
module, 830

angr.analyses.typehoon.translator
module, 830

angr.analyses.typehoon.typeconsts
module, 836

angr.analyses.typehoon.typehoon
module, 835

angr.analyses.typehoon.typevars
module, 831

angr.analyses.variable_recovery
module, 829

angr.analyses.variable_recovery.annotations
module, 820

angr.analyses.variable_recovery.engine_ail
module, 828

angr.analyses.variable_recovery.engine_base
module, 828

angr.analyses.variable_recovery.engine_vex
module, 828

angr.analyses.variable_recovery.irsb_scanner
module, 829

936 Index

angr

angr.analyses.variable_recovery.variable_recovery
module, 827

angr.analyses.variable_recovery.variable_recovery_base
module, 821

angr.analyses.variable_recovery.variable_recovery_fast
module, 825

angr.analyses.veritesting
module, 840

angr.analyses.vfg
module, 841

angr.analyses.vsa_ddg
module, 846

angr.analyses.vtable
module, 847

angr.analyses.xrefs
module, 863

angr.angrdb
module, 675

angr.angrdb.db
module, 675

angr.angrdb.models
module, 677

angr.angrdb.serializers
module, 680

angr.angrdb.serializers.cfg_model
module, 680

angr.angrdb.serializers.comments
module, 681

angr.angrdb.serializers.funcs
module, 681

angr.angrdb.serializers.kb
module, 682

angr.angrdb.serializers.labels
module, 682

angr.angrdb.serializers.loader
module, 682

angr.angrdb.serializers.structured_code
module, 684

angr.angrdb.serializers.variables
module, 683

angr.angrdb.serializers.xrefs
module, 683

angr.annocfg
module, 873

angr.blade
module, 872

angr.block
module, 220

angr.callable
module, 519

angr.calling_conventions
module, 483

angr.code_location
module, 612

angr.codenode
module, 875

angr.concretization_strategies
module, 335

angr.concretization_strategies.any
module, 381

angr.concretization_strategies.controlled_data
module, 381

angr.concretization_strategies.eval
module, 379

angr.concretization_strategies.max
module, 380

angr.concretization_strategies.nonzero
module, 381

angr.concretization_strategies.nonzero_range
module, 380

angr.concretization_strategies.norepeats
module, 379

angr.concretization_strategies.norepeats_range
module, 381

angr.concretization_strategies.range
module, 380

angr.concretization_strategies.single
module, 379

angr.concretization_strategies.solutions
module, 379

angr.concretization_strategies.unlimited_range
module, 381

angr.distributed
module, 902

angr.distributed.server
module, 902

angr.distributed.worker
module, 902

angr.engines
module, 427

angr.engines.concrete
module, 433

angr.engines.engine
module, 427

angr.engines.failure
module, 431

angr.engines.hook
module, 430

angr.engines.light
module, 753

angr.engines.light.data
module, 752

angr.engines.light.engine
module, 753

angr.engines.pcode
module, 434

angr.engines.pcode.behavior
module, 444

Index 937

angr

angr.engines.pcode.cc
module, 464

angr.engines.pcode.emulate
module, 444

angr.engines.pcode.engine
module, 434

angr.engines.pcode.lifter
module, 435

angr.engines.procedure
module, 430

angr.engines.soot
module, 431

angr.engines.soot.engine
module, 431

angr.engines.successors
module, 428

angr.engines.syscall
module, 431

angr.engines.unicorn
module, 432

angr.engines.vex
module, 431

angr.errors
module, 896

angr.exploration_techniques
module, 390

angr.exploration_techniques.bucketizer
module, 426

angr.exploration_techniques.common
module, 424

angr.exploration_techniques.dfs
module, 408

angr.exploration_techniques.director
module, 418

angr.exploration_techniques.driller_core
module, 416

angr.exploration_techniques.explorer
module, 408

angr.exploration_techniques.lengthlimiter
module, 409

angr.exploration_techniques.local_loop_seer
module, 422

angr.exploration_techniques.loop_seer
module, 421

angr.exploration_techniques.manual_mergepoint
module, 410

angr.exploration_techniques.memory_watcher
module, 426

angr.exploration_techniques.oppologist
module, 420

angr.exploration_techniques.slicecutor
module, 417

angr.exploration_techniques.spiller
module, 410

angr.exploration_techniques.spiller_db
module, 412

angr.exploration_techniques.stochastic
module, 423

angr.exploration_techniques.suggestions
module, 426

angr.exploration_techniques.symbion
module, 424

angr.exploration_techniques.tech_builder
module, 424

angr.exploration_techniques.threading
module, 413

angr.exploration_techniques.timeout
module, 407

angr.exploration_techniques.tracer
module, 414

angr.exploration_techniques.unique
module, 423

angr.exploration_techniques.veritesting
module, 413

angr.factory
module, 216

angr.flirt
module, 885

angr.flirt.build_sig
module, 885

angr.keyed_region
module, 614

angr.knowledge_base
module, 520

angr.knowledge_base.knowledge_base
module, 520

angr.knowledge_plugins
module, 521

angr.knowledge_plugins.callsite_prototypes
module, 523

angr.knowledge_plugins.cfg
module, 524

angr.knowledge_plugins.cfg.cfg_manager
module, 544

angr.knowledge_plugins.cfg.cfg_model
module, 536

angr.knowledge_plugins.cfg.cfg_node
module, 544

angr.knowledge_plugins.cfg.indirect_jump
module, 547

angr.knowledge_plugins.cfg.memory_data
module, 542

angr.knowledge_plugins.comments
module, 549

angr.knowledge_plugins.data
module, 549

angr.knowledge_plugins.debug_variables
module, 568

938 Index

angr

angr.knowledge_plugins.functions
module, 550

angr.knowledge_plugins.functions.function
module, 552

angr.knowledge_plugins.functions.function_manager
module, 550

angr.knowledge_plugins.functions.function_parser
module, 560

angr.knowledge_plugins.functions.soot_function
module, 560

angr.knowledge_plugins.indirect_jumps
module, 549

angr.knowledge_plugins.key_definitions
module, 571

angr.knowledge_plugins.key_definitions.atoms
module, 584

angr.knowledge_plugins.key_definitions.constants
module, 588

angr.knowledge_plugins.key_definitions.definition
module, 589

angr.knowledge_plugins.key_definitions.environment
module, 591

angr.knowledge_plugins.key_definitions.heap_address
module, 592

angr.knowledge_plugins.key_definitions.key_definition_manager
module, 592

angr.knowledge_plugins.key_definitions.live_definitions
module, 593

angr.knowledge_plugins.key_definitions.rd_model
module, 602

angr.knowledge_plugins.key_definitions.tag
module, 604

angr.knowledge_plugins.key_definitions.undefined
module, 606

angr.knowledge_plugins.key_definitions.unknown_size
module, 606

angr.knowledge_plugins.key_definitions.uses
module, 606

angr.knowledge_plugins.labels
module, 549

angr.knowledge_plugins.patches
module, 521

angr.knowledge_plugins.plugin
module, 523

angr.knowledge_plugins.propagations
module, 549

angr.knowledge_plugins.structured_code
module, 571

angr.knowledge_plugins.structured_code.manager
module, 571

angr.knowledge_plugins.sync
module, 608

angr.knowledge_plugins.sync.sync_controller
module, 608

angr.knowledge_plugins.types
module, 549

angr.knowledge_plugins.variables
module, 561

angr.knowledge_plugins.variables.variable_access
module, 561

angr.knowledge_plugins.variables.variable_manager
module, 562

angr.knowledge_plugins.xrefs
module, 610

angr.knowledge_plugins.xrefs.xref
module, 610

angr.knowledge_plugins.xrefs.xref_manager
module, 612

angr.knowledge_plugins.xrefs.xref_types
module, 611

angr.misc.plugins
module, 222

angr.procedures
module, 473

angr.procedures.definitions
module, 475

angr.procedures.stubs.format_parser
module, 473

angr.project
module, 212

angr.protos
module, 617

angr.serializable
module, 617

angr.sim_manager
module, 382

angr.sim_options
module, 228

angr.sim_procedure
module, 469

angr.sim_state
module, 224

angr.sim_state_options
module, 228

angr.sim_type
module, 507

angr.sim_variable
module, 502

angr.simos
module, 877

angr.simos.cgc
module, 880

angr.simos.javavm
module, 882

angr.simos.linux
module, 879

angr.simos.simos
module, 877

Index 939

angr

angr.simos.userland
module, 880

angr.simos.windows
module, 881

angr.slicer
module, 873

angr.state_hierarchy
module, 389

angr.state_plugins
module, 231

angr.state_plugins.callstack
module, 263

angr.state_plugins.cgc
module, 271

angr.state_plugins.concrete
module, 292

angr.state_plugins.debug_variables
module, 307

angr.state_plugins.filesystem
module, 248

angr.state_plugins.gdb
module, 270

angr.state_plugins.globals
module, 278

angr.state_plugins.heap
module, 297

angr.state_plugins.heap.heap_base
module, 297

angr.state_plugins.heap.heap_brk
module, 298

angr.state_plugins.heap.heap_freelist
module, 300

angr.state_plugins.heap.heap_libc
module, 301

angr.state_plugins.heap.heap_ptmalloc
module, 302

angr.state_plugins.heap.utils
module, 306

angr.state_plugins.history
module, 267

angr.state_plugins.inspect
module, 233

angr.state_plugins.javavm_classloader
module, 294

angr.state_plugins.jni_references
module, 296

angr.state_plugins.libc
module, 236

angr.state_plugins.light_registers
module, 266

angr.state_plugins.log
module, 262

angr.state_plugins.loop_data
module, 291

angr.state_plugins.plugin
module, 231

angr.state_plugins.posix
module, 240

angr.state_plugins.preconstrainer
module, 282

angr.state_plugins.scratch
module, 280

angr.state_plugins.sim_action
module, 466

angr.state_plugins.sim_action_object
module, 468

angr.state_plugins.sim_event
module, 468

angr.state_plugins.solver
module, 254

angr.state_plugins.symbolizer
module, 307

angr.state_plugins.trace_additions
module, 273

angr.state_plugins.uc_manager
module, 279

angr.state_plugins.unicorn_engine
module, 284

angr.state_plugins.view
module, 309

angr.storage
module, 309

angr.storage.file
module, 314

angr.storage.memory_mixins
module, 336

angr.storage.memory_mixins.actions_mixin
module, 342

angr.storage.memory_mixins.address_concretization_mixin
module, 344

angr.storage.memory_mixins.bvv_conversion_mixin
module, 340

angr.storage.memory_mixins.clouseau_mixin
module, 346

angr.storage.memory_mixins.conditional_store_mixin
module, 346

angr.storage.memory_mixins.convenient_mappings_mixin
module, 348

angr.storage.memory_mixins.default_filler_mixin
module, 340

angr.storage.memory_mixins.dirty_addrs_mixin
module, 344

angr.storage.memory_mixins.hex_dumper_mixin
module, 341

angr.storage.memory_mixins.javavm_memory
module, 376

angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin
module, 376

940 Index

angr

angr.storage.memory_mixins.keyvalue_memory
module, 375

angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin
module, 375

angr.storage.memory_mixins.label_merger_mixin
module, 346

angr.storage.memory_mixins.multi_value_merger_mixin
module, 352

angr.storage.memory_mixins.name_resolution_mixin
module, 339

angr.storage.memory_mixins.paged_memory
module, 352

angr.storage.memory_mixins.paged_memory.page_backer_mixins
module, 357

angr.storage.memory_mixins.paged_memory.paged_memory_mixin
module, 352

angr.storage.memory_mixins.paged_memory.pages
module, 359

angr.storage.memory_mixins.paged_memory.pages.cooperation
module, 361

angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin
module, 360

angr.storage.memory_mixins.paged_memory.pages.ispo_mixin
module, 361

angr.storage.memory_mixins.paged_memory.pages.list_page
module, 362

angr.storage.memory_mixins.paged_memory.pages.multi_values
module, 350

angr.storage.memory_mixins.paged_memory.pages.mv_list_page
module, 348

angr.storage.memory_mixins.paged_memory.pages.permissions_mixin
module, 360

angr.storage.memory_mixins.paged_memory.pages.refcount_mixin
module, 359

angr.storage.memory_mixins.paged_memory.pages.ultra_page
module, 363

angr.storage.memory_mixins.paged_memory.privileged_mixin
module, 358

angr.storage.memory_mixins.paged_memory.stack_allocation_mixin
module, 358

angr.storage.memory_mixins.regioned_memory
module, 365

angr.storage.memory_mixins.regioned_memory.abstract_address_descriptor
module, 371

angr.storage.memory_mixins.regioned_memory.abstract_merger_mixin
module, 373

angr.storage.memory_mixins.regioned_memory.region_category_mixin
module, 370

angr.storage.memory_mixins.regioned_memory.region_data
module, 368

angr.storage.memory_mixins.regioned_memory.region_meta_mixin
module, 371

angr.storage.memory_mixins.regioned_memory.regioned_address_concretization_mixin
module, 373

angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin
module, 365

angr.storage.memory_mixins.regioned_memory.static_find_mixin
module, 370

angr.storage.memory_mixins.simple_interface_mixin
module, 342

angr.storage.memory_mixins.simplification_mixin
module, 347

angr.storage.memory_mixins.size_resolution_mixin
module, 343

angr.storage.memory_mixins.slotted_memory
module, 374

angr.storage.memory_mixins.smart_find_mixin
module, 339

angr.storage.memory_mixins.symbolic_merger_mixin
module, 342

angr.storage.memory_mixins.top_merger_mixin
module, 351

angr.storage.memory_mixins.underconstrained_mixin
module, 341

angr.storage.memory_mixins.unwrapper_mixin
module, 347

angr.storage.memory_object
module, 334

angr.storage.pcap
module, 335

angr.utils
module, 886

angr.utils.algo
module, 887

angr.utils.constants
module, 887

angr.utils.cowdict
module, 887

angr.utils.dynamic_dictlist
module, 887

angr.utils.enums_conv
module, 888

angr.utils.env
module, 888

angr.utils.formatting
module, 894

angr.utils.graph
module, 888

angr.utils.lazy_import
module, 892

angr.utils.library
module, 893

angr.utils.loader
module, 892

angr.utils.mp
module, 895

angr.utils.timing
module, 894

Index 941

angr

angr.vaults
module, 617

AngrAnalysisError, 896
AngrAnnotatedCFGError, 896
AngrAssemblyError, 897
AngrBackwardSlicingError, 896
AngrBladeError, 896
AngrBladeSimProcError, 896
AngrCallableError, 897
AngrCallableMultistateError, 897
AngrCFGError, 897
AngrCorruptDBError, 898
AngrDataGraphError, 897
AngrDB (class in angr.angrdb.db), 675
AngrDBError, 898
AngrDDGError, 897
AngrDelayJobNotice, 897
AngrDirectorError, 898
AngrError, 896
AngrExitError, 896
AngrExplorationTechniqueError, 897
AngrExplorerError, 898
AngrForwardAnalysisError, 897
AngrGirlScoutError, 896
AngrIncompatibleDBError, 898
AngrIncongruencyError, 897
AngrInvalidArgumentError, 896
AngrJobMergingFailureNotice, 897
AngrJobWideningFailureNotice, 897
AngrLifterError, 896
AngrLoopAnalysisError, 897
AngrNoPluginError, 901
AngrObjectFactory (class in angr.factory), 216
AngrPathError, 896
AngrSimOSError, 897
AngrSkipJobNotice, 897
AngrSurveyorError, 896
AngrSyscallError, 897
AngrTracerError, 898
AngrTypeError, 897
AngrUnsupportedSyscallError, 900
AngrValueError, 896
AngrVariableRecoveryError, 898
AngrVaultError, 896
AngrVFGError, 897
AngrVFGRestartAnalysisNotice, 897
annotate_mv_with_def()

(angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 810

annotate_mv_with_def()
(angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 780

annotate_with_def()
(angr.analyses.reaching_definitions.LiveDefinitions

static method), 761
annotate_with_def()

(angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 810

annotate_with_def()
(angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 780

annotate_with_def()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
static method), 596

annotate_with_def()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
static method), 575

annotate_with_variables()
(angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
static method), 823

annotated_cfg() (angr.analyses.backward_slice.BackwardSlice
method), 629

AnnotatedCFG (class in angr.annocfg), 873
AnnotatedVariable (class in

angr.analyses.loop_analysis), 839
ansi_color() (in module angr.utils.formatting), 894
append_data() (angr.analyses.reassembler.Reassembler

method), 859
append_procedure() (angr.analyses.reassembler.Reassembler

method), 859
append_state() (angr.analyses.vfg.VFGNode method),

844
append_statement() (in module

angr.analyses.decompiler.utils), 743
apply() (angr.analyses.cfg.cfg_fast.FunctionCallEdge

method), 651
apply() (angr.analyses.cfg.cfg_fast.FunctionEdge

method), 650
apply() (angr.analyses.cfg.cfg_fast.FunctionFakeRetEdge

method), 651
apply() (angr.analyses.cfg.cfg_fast.FunctionReturnEdge

method), 652
apply() (angr.analyses.cfg.cfg_fast.FunctionTransitionEdge

method), 651
apply() (angr.calling_conventions.AllocHelper

method), 483
apply() (angr.sim_manager.SimulationManager

method), 387
apply() (angr.SimulationManager method), 176
apply_at_callsite (angr.analyses.reaching_definitions.function_handler.FunctionEffect

attribute), 800
apply_definition() (angr.knowledge_plugins.functions.function.Function

method), 559
apply_function_edges()

(angr.analyses.cfg.cfg_fast.CFGJob method),
653

apply_patches_to_binary()
(angr.knowledge_plugins.patches.PatchManager

942 Index

angr

method), 522
apply_patches_to_state()

(angr.knowledge_plugins.patches.PatchManager
method), 522

arch (angr.analyses.cfg.cfg_arch_options.CFGArchOptions
attribute), 657

arch (angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTableProcessorState
attribute), 664

arch (angr.analyses.decompiler.ccall_rewriters.rewriter_base.CCallRewriterBase
attribute), 694

arch (angr.analyses.reaching_definitions.engine_ail.SimEngineRDAIL
attribute), 816

arch (angr.analyses.reaching_definitions.LiveDefinitions
attribute), 760

arch (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
attribute), 809

arch (angr.analyses.reaching_definitions.ReachingDefinitionsState
attribute), 779

arch (angr.analyses.reaching_definitions.Register
attribute), 770

arch (angr.Block attribute), 170
arch (angr.block.Block attribute), 221
arch (angr.block.DisassemblerBlock attribute), 220
ARCH (angr.calling_conventions.SimCC attribute), 488
ARCH (angr.calling_conventions.SimCCAArch64 at-

tribute), 497
ARCH (angr.calling_conventions.SimCCAArch64LinuxSyscall

attribute), 497
ARCH (angr.calling_conventions.SimCCAMD64LinuxSyscall

attribute), 495
ARCH (angr.calling_conventions.SimCCAMD64WindowsSyscall

attribute), 495
ARCH (angr.calling_conventions.SimCCARM attribute),

496
ARCH (angr.calling_conventions.SimCCARMHF at-

tribute), 496
ARCH (angr.calling_conventions.SimCCARMLinuxSyscall

attribute), 496
ARCH (angr.calling_conventions.SimCCCdecl attribute),

492
ARCH (angr.calling_conventions.SimCCMicrosoftAMD64

attribute), 493
ARCH (angr.calling_conventions.SimCCMicrosoftFastcall

attribute), 492
ARCH (angr.calling_conventions.SimCCN64 attribute),

498
ARCH (angr.calling_conventions.SimCCN64LinuxSyscall

attribute), 499
ARCH (angr.calling_conventions.SimCCO32 attribute),

498
ARCH (angr.calling_conventions.SimCCO32LinuxSyscall

attribute), 498
ARCH (angr.calling_conventions.SimCCPowerPC at-

tribute), 499

ARCH (angr.calling_conventions.SimCCPowerPC64 at-
tribute), 500

ARCH (angr.calling_conventions.SimCCPowerPC64LinuxSyscall
attribute), 500

ARCH (angr.calling_conventions.SimCCPowerPCLinuxSyscall
attribute), 499

ARCH (angr.calling_conventions.SimCCRISCV64LinuxSyscall
attribute), 497

ARCH (angr.calling_conventions.SimCCS390X attribute),
501

ARCH (angr.calling_conventions.SimCCS390XLinuxSyscall
attribute), 502

ARCH (angr.calling_conventions.SimCCSoot attribute),
500

ARCH (angr.calling_conventions.SimCCSystemVAMD64
attribute), 494

ARCH (angr.calling_conventions.SimCCX86LinuxSyscall
attribute), 494

ARCH (angr.calling_conventions.SimCCX86WindowsSyscall
attribute), 494

arch (angr.engines.pcode.lifter.IRSB attribute), 437
arch (angr.engines.pcode.lifter.Lifter attribute), 439
arch (angr.engines.pcode.lifter.PcodeDisassemblerBlock

attribute), 435
arch (angr.engines.pcode.lifter.PcodeLifter attribute),

442
arch (angr.knowledge_plugins.key_definitions.atoms.Register

attribute), 588
arch (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 595
arch (angr.knowledge_plugins.key_definitions.LiveDefinitions

attribute), 574
arch (angr.procedures.stubs.format_parser.FormatParser

attribute), 475
arch (angr.procedures.stubs.format_parser.ScanfFormatParser

attribute), 475
arch (angr.Project attribute), 164
arch (angr.project.Project attribute), 214
arch (angr.sim_procedure.SimProcedure attribute), 471
arch (angr.sim_state.SimState property), 226
ARCH (angr.SimCC attribute), 185
arch (angr.SimState property), 182
arch_overrideable() (in module angr.sim_state), 224
ARCHES (angr.analyses.decompiler.optimization_passes.base_ptr_save_simplifier.BasePointerSaveSimplifier

attribute), 706
ARCHES (angr.analyses.decompiler.optimization_passes.const_derefs.ConstantDereferencesSimplifier

attribute), 703
ARCHES (angr.analyses.decompiler.optimization_passes.div_simplifier.DivSimplifier

attribute), 707
ARCHES (angr.analyses.decompiler.optimization_passes.expr_op_swapper.ExprOpSwapper

attribute), 712
ARCHES (angr.analyses.decompiler.optimization_passes.ite_expr_converter.ITEExprConverter

attribute), 707
ARCHES (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.LoweredSwitchSimplifier

Index 943

angr

attribute), 709
ARCHES (angr.analyses.decompiler.optimization_passes.mod_simplifier.ModSimplifier

attribute), 710
ARCHES (angr.analyses.decompiler.optimization_passes.multi_simplifier.MultiSimplifier

attribute), 710
ARCHES (angr.analyses.decompiler.optimization_passes.optimization_pass.BaseOptimizationPass

attribute), 704
ARCHES (angr.analyses.decompiler.optimization_passes.optimization_pass.SequenceOptimizationPass

attribute), 705
ARCHES (angr.analyses.decompiler.optimization_passes.optimization_pass.StructuringOptimizationPass

attribute), 706
ARCHES (angr.analyses.decompiler.optimization_passes.register_save_area_simplifier.RegisterSaveAreaSimplifier

attribute), 712
ARCHES (angr.analyses.decompiler.optimization_passes.ret_addr_save_simplifier.RetAddrSaveSimplifier

attribute), 712
ARCHES (angr.analyses.decompiler.optimization_passes.stack_canary_simplifier.StackCanarySimplifier

attribute), 706
ARCHES (angr.analyses.decompiler.optimization_passes.x86_gcc_getpc_simplifier.X86GccGetPcSimplifier

attribute), 713
arg_list (angr.analyses.decompiler.structured_codegen.c.CFunction

attribute), 727
arg_locs() (angr.calling_conventions.SimCC method),

489
arg_locs() (angr.SimCC method), 186
ARG_REGS (angr.calling_conventions.SimCC attribute),

488
ARG_REGS (angr.calling_conventions.SimCCAArch64 at-

tribute), 496
ARG_REGS (angr.calling_conventions.SimCCAArch64LinuxSyscall

attribute), 497
ARG_REGS (angr.calling_conventions.SimCCAMD64LinuxSyscall

attribute), 495
ARG_REGS (angr.calling_conventions.SimCCAMD64WindowsSyscall

attribute), 495
ARG_REGS (angr.calling_conventions.SimCCARM at-

tribute), 495
ARG_REGS (angr.calling_conventions.SimCCARMHF at-

tribute), 496
ARG_REGS (angr.calling_conventions.SimCCARMLinuxSyscall

attribute), 496
ARG_REGS (angr.calling_conventions.SimCCCdecl

attribute), 491
ARG_REGS (angr.calling_conventions.SimCCMicrosoftAMD64

attribute), 492
ARG_REGS (angr.calling_conventions.SimCCMicrosoftFastcall

attribute), 492
ARG_REGS (angr.calling_conventions.SimCCN64 at-

tribute), 498
ARG_REGS (angr.calling_conventions.SimCCN64LinuxSyscall

attribute), 498
ARG_REGS (angr.calling_conventions.SimCCO32 at-

tribute), 497
ARG_REGS (angr.calling_conventions.SimCCO32LinuxSyscall

attribute), 498

ARG_REGS (angr.calling_conventions.SimCCPowerPC at-
tribute), 499

ARG_REGS (angr.calling_conventions.SimCCPowerPC64
attribute), 500

ARG_REGS (angr.calling_conventions.SimCCPowerPC64LinuxSyscall
attribute), 500

ARG_REGS (angr.calling_conventions.SimCCPowerPCLinuxSyscall
attribute), 499

ARG_REGS (angr.calling_conventions.SimCCRISCV64LinuxSyscall
attribute), 497

ARG_REGS (angr.calling_conventions.SimCCS390X at-
tribute), 501

ARG_REGS (angr.calling_conventions.SimCCS390XLinuxSyscall
attribute), 502

ARG_REGS (angr.calling_conventions.SimCCSoot at-
tribute), 500

ARG_REGS (angr.calling_conventions.SimCCSystemVAMD64
attribute), 494

ARG_REGS (angr.calling_conventions.SimCCX86LinuxSyscall
attribute), 493

ARG_REGS (angr.calling_conventions.SimCCX86WindowsSyscall
attribute), 494

ARG_REGS (angr.engines.pcode.cc.SimCCM68k at-
tribute), 464

ARG_REGS (angr.engines.pcode.cc.SimCCPARISC at-
tribute), 465

ARG_REGS (angr.engines.pcode.cc.SimCCPowerPC
attribute), 465

ARG_REGS (angr.engines.pcode.cc.SimCCRISCV at-
tribute), 464

ARG_REGS (angr.engines.pcode.cc.SimCCSH4 attribute),
465

ARG_REGS (angr.engines.pcode.cc.SimCCSPARC at-
tribute), 465

ARG_REGS (angr.engines.pcode.cc.SimCCXtensa at-
tribute), 466

ARG_REGS (angr.SimCC attribute), 185
arg_session (angr.procedures.stubs.format_parser.FormatParser

attribute), 475
arg_session (angr.procedures.stubs.format_parser.ScanfFormatParser

attribute), 475
arg_session (angr.sim_procedure.SimProcedure

attribute), 471
arg_session() (angr.calling_conventions.SimCC

method), 489
arg_session() (angr.SimCC method), 186
args (angr.analyses.decompiler.structured_codegen.c.CFunctionCall

attribute), 731
args (angr.sim_type.SimTypeCppFunction attribute), 514
args (angr.utils.mp.Closure attribute), 895
args_atoms (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 803
args_atoms (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789

944 Index

angr

args_defns (angr.analyses.reaching_definitions.dep_graph.FunctionCallRelationships
attribute), 796

ARGS_MISMATCH (angr.procedures.stubs.format_parser.FormatParser
attribute), 474

ARGS_MISMATCH (angr.sim_procedure.SimProcedure at-
tribute), 472

ARGS_MISMATCH (angr.SimProcedure attribute), 159
args_values (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 803
args_values (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
ArgSession (angr.calling_conventions.SimCCMicrosoftAMD64

attribute), 493
ArgSession (angr.calling_conventions.SimCCUsercall

attribute), 491
ArgSession (class in angr.calling_conventions), 487
argument_types (angr.sim_procedure.SimProcedure

property), 473
argument_types (angr.SimProcedure property), 161
arguments (angr.knowledge_plugins.functions.function.Function

property), 559
ArithmeticExpression (class in

angr.engines.light.data), 752
ARM (angr.analyses.cfg.cfg_fast.ARMDecodingMode at-

tribute), 649
ARMDecodingMode (class in angr.analyses.cfg.cfg_fast),

648
ArmElfFastResolver (class in

angr.analyses.cfg.indirect_jump_resolvers.arm_elf_fast),
659

Array (class in angr.analyses.typehoon.typeconsts), 837
array() (angr.state_plugins.debug_variables.SimDebugVariable

method), 308
array() (angr.state_plugins.view.SimMemView

method), 314
assembly() (angr.analyses.reassembler.BasicBlock

method), 855
assembly() (angr.analyses.reassembler.Data method),

857
assembly() (angr.analyses.reassembler.Instruction

method), 855
assembly() (angr.analyses.reassembler.Operand

method), 854
assembly() (angr.analyses.reassembler.Procedure

method), 856
assembly() (angr.analyses.reassembler.Reassembler

method), 860
assign() (angr.state_plugins.uc_manager.SimUCManager

method), 279
assign_labels() (angr.analyses.reassembler.BasicBlock

method), 855
assign_labels() (angr.analyses.reassembler.Data

method), 857
assign_labels() (angr.analyses.reassembler.Instruction

method), 855
assign_labels() (angr.analyses.reassembler.Procedure

method), 856
assign_unified_variable_names()

(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 566

assign_variable_names()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 566

Assignment (angr.analyses.cfg.indirect_jump_resolvers.jumptable.AddressTransferringTypes
attribute), 663

ast (angr.analyses.data_dep.dep_nodes.BaseDepNode
property), 870

AST (class in angr.analyses.ddg), 746
ast_graph (angr.analyses.ddg.DDG property), 750
ast_preserving_op() (in module

angr.state_plugins.sim_action_object), 468
ast_stripping_decorator() (in module

angr.state_plugins.sim_action_object), 468
ast_stripping_op() (in module

angr.state_plugins.sim_action_object), 468
ast_weight() (in module

angr.exploration_techniques.suggestions),
426

at_new_block() (angr.analyses.reaching_definitions.ReachingDefinitionsModel
method), 776

at_new_block() (angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel
method), 603

at_new_block() (angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel
method), 571

at_new_stmt() (angr.analyses.reaching_definitions.ReachingDefinitionsModel
method), 776

at_new_stmt() (angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel
method), 603

at_new_stmt() (angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel
method), 571

atoi_dumps() (angr.state_plugins.trace_additions.ChallRespInfo
static method), 276

atom (angr.analyses.reaching_definitions.Definition at-
tribute), 772

atom (angr.knowledge_plugins.key_definitions.Definition
attribute), 584

atom (angr.knowledge_plugins.key_definitions.definition.Definition
attribute), 591

Atom (class in angr.analyses.reaching_definitions), 768
Atom (class in angr.knowledge_plugins.key_definitions.atoms),

585
atom_hash (angr.knowledge_plugins.variables.variable_access.VariableAccess

attribute), 562
AtomKind (class in angr.analyses.reaching_definitions),

768
AtomKind (class in angr.knowledge_plugins.key_definitions.atoms),

584
available_flavors()

Index 945

angr

(angr.knowledge_plugins.structured_code.manager.StructuredCodeManager
method), 571

B
b() (angr.state_plugins.inspect.SimInspector method),

234
back_edges() (angr.analyses.forward_analysis.visitors.function_graph.FunctionGraphVisitor

method), 624
back_edges() (angr.analyses.forward_analysis.visitors.graph.GraphVisitor

method), 625
backend (angr.angrdb.models.DbObject attribute), 677
backend2name (angr.angrdb.serializers.loader.LoaderSerializer

attribute), 683
backend_args (angr.angrdb.models.DbObject at-

tribute), 677
backpatch() (angr.analyses.typehoon.translator.TypeTranslator

method), 831
BackwardSlice (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
BackwardSlice (class in angr.analyses.backward_slice),

628
BadJumpkindNotification, 872
BadStatesDropper (class in angr.distributed.worker),

902
base (angr.sim_type.SimType attribute), 507
base (angr.sim_type.SimTypeFunction attribute), 513
base (angr.sim_variable.SimStackVariable attribute), 506
base (angr.storage.memory_object.SimMemoryObject

attribute), 334
base_addr (angr.sim_variable.SimStackVariable at-

tribute), 506
base_addr_available

(angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTargetBaseAddr
property), 663

base_address (angr.storage.memory_mixins.regioned_memory.region_data.RegionDescriptor
attribute), 369

BaseDepNode (class in
angr.analyses.data_dep.dep_nodes), 869

BaseGoal (class in angr.exploration_techniques.director),
418

BaseLabel (class in angr.analyses.typehoon.typevars),
834

BaseNode (class in angr.analyses.decompiler.structuring.structurer_nodes),
686

BaseOptimizationPass (class in
angr.analyses.decompiler.optimization_passes.optimization_pass),
704

BasePointerSaveSimplifier (class in
angr.analyses.decompiler.optimization_passes.base_ptr_save_simplifier),
706

BaseProxiNode (class in
angr.analyses.proximity_graph), 865

BaseStructuredCodeGenerator (class in
angr.analyses.decompiler.structured_codegen.base),

725
basic_spec (angr.procedures.stubs.format_parser.FormatParser

attribute), 474
basic_spec (angr.procedures.stubs.format_parser.ScanfFormatParser

attribute), 475
BasicBlock (class in angr.analyses.reassembler), 855
BasicClaripyCooperation (class in

angr.storage.memory_mixins.paged_memory.pages.cooperation),
362

bbl_addr (angr.errors.SimError attribute), 898
bbl_addr (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate

attribute), 589
bbl_addrs (angr.state_plugins.history.SimStateHistory

property), 269
bck_chunk() (angr.PTChunk method), 210
bck_chunk() (angr.state_plugins.heap.heap_freelist.Chunk

method), 301
bck_chunk() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 303
BEFORE_REGION_IDENTIFICATION

(angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPassStage
attribute), 704

BehaviorFactory (class in
angr.engines.pcode.behavior), 464

behaviors (angr.engines.pcode.lifter.IRSB attribute),
437

behaviors (angr.engines.pcode.lifter.PcodeBasicBlockLifter
attribute), 441

binary (angr.knowledge_plugins.functions.function.Function
property), 556

binary_insert() (in module angr.utils.algo), 887
binary_name (angr.knowledge_plugins.functions.function.Function

attribute), 553
binary_name (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 561
BinaryError, 852
BinaryOptimizer (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
BinaryOptimizer (class in

angr.analyses.binary_optimizer), 862
BinDiff (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
BinDiff (class in angr.analyses.bindiff), 632
binop_operators (angr.analyses.decompiler.decompilation_cache.DecompilationCache

attribute), 699
bitlen (angr.analyses.stack_pointer_tracker.Register at-

tribute), 819
bits (angr.analyses.propagator.values.Top property),

754
bits (angr.analyses.reaching_definitions.Atom prop-

erty), 768
bits (angr.analyses.typehoon.lifter.TypeLifter attribute),

830
bits (angr.analyses.typehoon.typevars.HasField at-

946 Index

angr

tribute), 835
bits (angr.analyses.variable_recovery.engine_base.RichR

property), 829
bits (angr.engines.light.data.RegisterOffset property),

753
bits (angr.knowledge_plugins.key_definitions.atoms.Atom

property), 585
bits (angr.sim_variable.SimMemoryVariable property),

505
bits (angr.sim_variable.SimRegisterVariable property),

505
Blade (class in angr), 167
Blade (class in angr.blade), 872
blank_state() (angr.factory.AngrObjectFactory

method), 217
blob (angr.angrdb.models.DbCFGModel attribute), 678
blob (angr.angrdb.models.DbFunction attribute), 678
blob (angr.angrdb.models.DbVariableCollection at-

tribute), 679
blob (angr.angrdb.models.DbXRefs attribute), 680
block (angr.analyses.decompiler.structured_codegen.c.CAILBlock

attribute), 728
Block (angr.analyses.reaching_definitions.subject.SubjectType

attribute), 815
block (angr.analyses.variable_recovery.engine_ail.SimEngineVRAIL

attribute), 828
block (angr.knowledge_plugins.cfg.cfg_node.CFGNode

property), 546
block (angr.knowledge_plugins.cfg.CFGNode property),

527
Block (class in angr), 170
Block (class in angr.block), 221
block() (angr.analyses.decompiler.clinic.Clinic

method), 696
block() (angr.factory.AngrObjectFactory method), 220
block() (angr.sim_state.SimState method), 226
block() (angr.SimState method), 183
block_addr (angr.analyses.decompiler.clinic.DataRefDesc

attribute), 695
block_addr (angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionLocation

attribute), 717
block_addr (angr.analyses.decompiler.region_simplifiers.expr_folding.StatementLocation

attribute), 716
block_addr (angr.analyses.reaching_definitions.call_trace.CallSite

attribute), 791
block_addr (angr.code_location.CodeLocation at-

tribute), 613
block_addr (angr.knowledge_plugins.xrefs.xref.XRef at-

tribute), 611
block_addr (angr.state_plugins.unicorn_engine.BlockDetails

attribute), 285
block_addr (angr.state_plugins.unicorn_engine.StopDetails

attribute), 287
block_addrs (angr.knowledge_plugins.functions.function.Function

property), 554
block_addrs_set (angr.knowledge_plugins.functions.function.Function

property), 554
block_count (angr.state_plugins.history.SimStateHistory

property), 269
block_id (angr.analyses.cfg.cfg_emulated.CFGJob

property), 641
block_id (angr.analyses.vfg.PendingJob attribute), 842
block_id (angr.analyses.vfg.VFGJob property), 841
block_id (angr.knowledge_plugins.cfg.cfg_node.CFGNode

attribute), 545
block_id (angr.knowledge_plugins.cfg.CFGNode

attribute), 526
block_idx (angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionLocation

attribute), 717
block_idx (angr.analyses.decompiler.region_simplifiers.expr_folding.StatementLocation

attribute), 716
block_idx (angr.analyses.decompiler.structured_codegen.c.CLabel

attribute), 733
block_idx (angr.code_location.CodeLocation at-

tribute), 613
block_matches (angr.analyses.bindiff.FunctionDiff

property), 631
BLOCK_MAX_SIZE (angr.Block attribute), 170
BLOCK_MAX_SIZE (angr.block.Block attribute), 221
block_similarity() (angr.analyses.bindiff.FunctionDiff

method), 631
block_size (angr.state_plugins.unicorn_engine.BlockDetails

attribute), 285
block_size (angr.state_plugins.unicorn_engine.StopDetails

attribute), 287
block_trace_ind (angr.state_plugins.unicorn_engine.BlockDetails

attribute), 285
BlockCache (class in angr.analyses.decompiler.clinic),

695
BlockDetails (class in

angr.state_plugins.unicorn_engine), 285
BlockID (class in angr.analyses.cfg.cfg_job_base), 657
BlockLocator (class in

angr.analyses.decompiler.optimization_passes.ite_expr_converter),
707

BlockNode (class in angr.codenode), 875
blocks (angr.knowledge_plugins.functions.function.Function

property), 554
blocks_by_addr (angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPass

property), 705
blocks_by_addr_and_idx

(angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPass
property), 705

blocks_probably_identical()
(angr.analyses.bindiff.FunctionDiff method),
631

BLOCKS_THRESHOLD (angr.analyses.binary_optimizer.BinaryOptimizer
attribute), 862

Index 947

angr

blocks_with_differing_constants
(angr.analyses.bindiff.BinDiff property),
632

blocks_with_differing_constants
(angr.analyses.bindiff.FunctionDiff property),
631

BlockSimplifier (class in
angr.analyses.decompiler.block_simplifier),
693

BlockStart (class in angr.analyses.disassembly), 849
BlockWalker (class in

angr.analyses.decompiler.optimization_passes.const_derefs),
703

body (angr.analyses.decompiler.structured_codegen.c.CDoWhileLoop
attribute), 729

body (angr.analyses.decompiler.structured_codegen.c.CForLoop
attribute), 729

body (angr.analyses.decompiler.structured_codegen.c.CWhileLoop
attribute), 728

booleanize() (angr.engines.pcode.behavior.OpBehavior
class method), 446

both_iter (angr.calling_conventions.ArgSession
attribute), 487

both_iter (angr.calling_conventions.SimCC.ArgSession
attribute), 488

both_iter (angr.SimCC.ArgSession attribute), 186
Bottom (class in angr.analyses.propagator.values), 754
BottomType (class in angr.analyses.stack_pointer_tracker),

818
BottomType (class in angr.analyses.typehoon.typeconsts),

836
BoyScout (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
BoyScout (class in angr.analyses.boyscout), 633
BP (class in angr), 161
BP (class in angr.state_plugins.inspect), 233
BP_AFTER (angr.state_plugins.inspect.SimInspector at-

tribute), 233
BP_BEFORE (angr.state_plugins.inspect.SimInspector at-

tribute), 233
BP_BOTH (angr.state_plugins.inspect.SimInspector

attribute), 233
bp_on_stack (angr.knowledge_plugins.functions.function.Function

attribute), 553
bp_on_stack (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 561
branch() (angr.analyses.ddg.LiveDefinitions method),

747
BreakNode (class in angr.analyses.decompiler.structuring.structurer_nodes),

688
bss_memory_read_hook()

(angr.analyses.cfg.indirect_jump_resolvers.jumptable.BSSHook
method), 666

bss_memory_write_hook()

(angr.analyses.cfg.indirect_jump_resolvers.jumptable.BSSHook
method), 666

BSSHook (class in angr.analyses.cfg.indirect_jump_resolvers.jumptable),
666

Bucketizer (class in angr.exploration_techniques), 405
Bucketizer (class in angr.exploration_techniques.bucketizer),

426
build() (angr.analyses.disassembly.Operand static

method), 850
bv_slice() (in module angr.storage.memory_object),

334
BVS() (angr.state_plugins.solver.SimSolver method), 256
byte_string (angr.knowledge_plugins.cfg.cfg_node.CFGNode

attribute), 545
byte_string (angr.knowledge_plugins.cfg.CFGNode

attribute), 526
bytes (angr.Block property), 170
bytes (angr.block.Block property), 221
bytes_at() (angr.storage.memory_object.SimMemoryObject

method), 334
bytes_offset (angr.engines.pcode.lifter.Lifter at-

tribute), 440
bytes_offset (angr.engines.pcode.lifter.PcodeLifter at-

tribute), 442
bytestr (angr.codenode.BlockNode attribute), 876

C
c_args_as_atoms() (angr.analyses.reaching_definitions.function_handler.FunctionHandler

static method), 807
c_args_as_atoms() (angr.analyses.reaching_definitions.FunctionHandler

static method), 787
c_repr() (angr.analyses.decompiler.structured_codegen.c.CConstruct

method), 726
c_repr() (angr.analyses.typehoon.translator.SimTypeTempRef

method), 830
c_repr() (angr.sim_type.SimStruct method), 516
c_repr() (angr.sim_type.SimType method), 508
c_repr() (angr.sim_type.SimTypeArray method), 512
c_repr() (angr.sim_type.SimTypeBottom method), 509
c_repr() (angr.sim_type.SimTypeFunction method), 514
c_repr() (angr.sim_type.SimTypeInt method), 510
c_repr() (angr.sim_type.SimTypePointer method), 511
c_repr() (angr.sim_type.SimTypeReference method),

512
c_repr() (angr.sim_type.SimUnion method), 517
c_repr() (angr.sim_type.TypeRef method), 508
c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CAILBlock

method), 728
c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CAssignment

method), 731
c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CBinaryOp

method), 736
c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CBreak

method), 730

948 Index

angr

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CConstant
method), 737

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CConstruct
method), 727

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CContinue
method), 730

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CDirtyExpression
method), 739

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CDoWhileLoop
method), 729

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CFakeVariable
method), 734

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CForLoop
method), 729

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CFunction
method), 727

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CFunctionCall
method), 732

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CGoto
method), 732

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CIfBreak
method), 730

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CIfElse
method), 730

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CIndexedVariable
method), 735

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CITE
method), 738

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CLabel
method), 733

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CMultiStatementExpression
method), 739

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CRegister
method), 738

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CReturn
method), 732

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CStatements
method), 728

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CStructField
method), 733

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CSwitchCase
method), 731

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CTypeCast
method), 737

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CUnaryOp
method), 736

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CUnsupportedStatement
method), 732

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CVariable
method), 734

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CVariableField
method), 735

c_repr_chunks() (angr.analyses.decompiler.structured_codegen.c.CWhileLoop
method), 729

c_return_as_atoms()
(angr.analyses.reaching_definitions.function_handler.FunctionHandler
static method), 807

c_return_as_atoms()
(angr.analyses.reaching_definitions.FunctionHandler
static method), 787

cache_key (angr.storage.memory_object.SimMemoryObject
property), 334

CAILBlock (class in angr.analyses.decompiler.structured_codegen.c),
728

calc_size() (angr.calling_conventions.AllocHelper
class method), 483

call() (angr.sim_procedure.SimProcedure method), 473
call() (angr.SimProcedure method), 160
call() (angr.state_plugins.callstack.CallStack method),

266
call_c() (angr.callable.Callable method), 520
call_site_addr (angr.analyses.cfg.cfg_fast.FunctionReturn

attribute), 649
call_stack (angr.analyses.cfg.cfg_job_base.CFGJobBase

property), 658
call_stack (angr.analyses.vfg.PendingJob attribute),

842
call_stack_copy() (angr.analyses.cfg.cfg_job_base.CFGJobBase

method), 658
call_state() (angr.factory.AngrObjectFactory

method), 218
call_string (angr.code_location.ExternalCodeLocation

attribute), 614
callable (angr.knowledge_plugins.functions.function.Function

property), 559
Callable (class in angr.callable), 519
callable() (angr.factory.AngrObjectFactory method),

219
CallAnalysis (class in angr.analyses.vfg), 843
CALLEE_CLEANUP (angr.calling_conventions.SimCC at-

tribute), 488
CALLEE_CLEANUP (angr.calling_conventions.SimCCStdcall

attribute), 492
CALLEE_CLEANUP (angr.SimCC attribute), 185
callee_func (angr.analyses.decompiler.structured_codegen.c.CFunctionCall

attribute), 731
callee_func_addr (angr.analyses.cfg.cfg_fast.FunctionReturn

attribute), 649
callee_func_addr (angr.analyses.reaching_definitions.call_trace.CallSite

attribute), 791
callee_target (angr.analyses.decompiler.structured_codegen.c.CFunctionCall

attribute), 731
CalleeCleanupFinder

(angr.analyses.analysis.KnownAnalysesPlugin
attribute), 619

CalleeCleanupFinder (class in
angr.analyses.callee_cleanup_finder), 862

caller_func_addr (angr.analyses.cfg.cfg_fast.FunctionReturn

Index 949

angr

attribute), 649
caller_func_addr (angr.analyses.reaching_definitions.call_trace.CallSite

attribute), 791
CALLER_SAVED_REGS (angr.calling_conventions.SimCC

attribute), 488
CALLER_SAVED_REGS (angr.calling_conventions.SimCCAMD64LinuxSyscall

attribute), 495
CALLER_SAVED_REGS (angr.calling_conventions.SimCCARM

attribute), 495
CALLER_SAVED_REGS (angr.calling_conventions.SimCCARMHF

attribute), 496
CALLER_SAVED_REGS (angr.calling_conventions.SimCCCdecl

attribute), 491
CALLER_SAVED_REGS (angr.calling_conventions.SimCCN64

attribute), 498
CALLER_SAVED_REGS (angr.calling_conventions.SimCCO32

attribute), 497
CALLER_SAVED_REGS (angr.calling_conventions.SimCCSystemVAMD64

attribute), 494
CALLER_SAVED_REGS (angr.SimCC attribute), 185
caller_saved_regs_as_atoms()

(angr.analyses.reaching_definitions.function_handler.FunctionHandler
static method), 807

caller_saved_regs_as_atoms()
(angr.analyses.reaching_definitions.FunctionHandler
static method), 787

caller_will_handle_single_ret
(angr.analyses.reaching_definitions.function_handler.FunctionCallData
attribute), 803

caller_will_handle_single_ret
(angr.analyses.reaching_definitions.FunctionCallData
attribute), 789

CallFunctionGoal (class in
angr.exploration_techniques), 401

CallFunctionGoal (class in
angr.exploration_techniques.director), 419

callgraph (angr.knowledge_base.knowledge_base.KnowledgeBase
property), 520

callgraph (angr.KnowledgeBase property), 211
CallGraphVisitor (class in

angr.analyses.forward_analysis.visitors.call_graph),
623

calling_convention (angr.knowledge_plugins.functions.function.Function
attribute), 553

calling_convention (angr.knowledge_plugins.functions.soot_function.SootFunction
attribute), 561

CallingConvention (angr.analyses.analysis.KnownAnalysesPlugin
attribute), 620

CallingConventionAnalysis (class in
angr.analyses.calling_convention), 633

calloc() (angr.SimHeapPTMalloc method), 207
calloc() (angr.state_plugins.heap.heap_libc.SimHeapLibc

method), 302
calloc() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

method), 305
callout_sites (angr.knowledge_plugins.functions.function.Function

property), 556
CallProxiNode (class in

angr.analyses.proximity_graph), 866
callsite (angr.analyses.reaching_definitions.dep_graph.FunctionCallRelationships

attribute), 796
CallSite (class in angr.analyses.reaching_definitions.call_trace),

791
callsite_codeloc (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 802
callsite_codeloc (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
callsite_repr() (angr.analyses.cfg.cfg_job_base.BlockID

method), 657
callsite_repr() (angr.analyses.cfg.cfg_job_base.FunctionKey

method), 658
CallSiteFact (class in

angr.analyses.calling_convention), 633
CallSiteMaker (class in

angr.analyses.decompiler.callsite_maker),
694

CallsitePrototypes (class in
angr.knowledge_plugins.callsite_prototypes),
523

callsites (angr.analyses.reaching_definitions.call_trace.CallTrace
attribute), 792

callsites_to() (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis
method), 796

callsites_to() (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis
method), 775

callstack (angr.sim_state.SimState attribute), 225
callstack (angr.SimState attribute), 181
CallStack (class in angr.state_plugins.callstack), 263
callstack_key (angr.knowledge_plugins.cfg.cfg_node.CFGENode

property), 547
callstack_key (angr.knowledge_plugins.cfg.cfg_node.CFGNode

property), 546
callstack_key (angr.knowledge_plugins.cfg.CFGENode

property), 528
callstack_key (angr.knowledge_plugins.cfg.CFGNode

property), 527
callstack_repr() (angr.analyses.vfg.VFGJob

method), 841
CallStackAction (class in

angr.state_plugins.callstack), 266
CallTrace (angr.analyses.reaching_definitions.subject.SubjectType

attribute), 815
CallTrace (class in angr.analyses.reaching_definitions.call_trace),

792
CallTracingFilter (class in

angr.analyses.veritesting), 840
can_call_same_name()

(angr.analyses.identifier.identify.Identifier

950 Index

angr

method), 838
candidate_names (angr.sim_variable.SimVariable at-

tribute), 503
capstone (angr.Block property), 170
capstone (angr.block.Block property), 221
CapstoneBlock (class in angr.block), 220
CapstoneInsn (class in angr.block), 220
cardinality (angr.storage.memory_mixins.regioned_memory.abstract_address_descriptor.AbstractAddressDescriptor

property), 371
CArrayTypeLength (class in

angr.analyses.decompiler.structured_codegen.c),
739

CascadingConditionNode (class in
angr.analyses.decompiler.structuring.structurer_nodes),
687

CascadingConditionTransformer (class in
angr.analyses.decompiler.region_simplifiers.cascading_cond_transformer),
716

CascadingIfsRemover (class in
angr.analyses.decompiler.region_simplifiers.cascading_ifs),
716

Case (class in angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier),
708

case_addrs (angr.analyses.decompiler.structuring.structurer_nodes.IncompleteSwitchCaseHeadStatement
attribute), 690

case_idx (angr.analyses.decompiler.region_simplifiers.expr_folding.ConditionLocation
attribute), 717

cases (angr.analyses.decompiler.structured_codegen.c.CSwitchCase
attribute), 730

cases (angr.analyses.decompiler.structuring.structurer_nodes.IncompleteSwitchCaseNode
attribute), 690

cases (angr.analyses.decompiler.structuring.structurer_nodes.SwitchCaseNode
attribute), 689

cases_issubset() (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.LoweredSwitchSimplifier
static method), 709

CAssignment (class in
angr.analyses.decompiler.structured_codegen.c),
731

cast_primitive() (angr.simos.javavm.SimJavaVM
static method), 883

cast_to_mem() (angr.analyses.data_dep.dep_nodes.MemDepNode
class method), 870

CastType (angr.state_plugins.solver.SimSolver at-
tribute), 259

CatchDesync (angr.exploration_techniques.tracer.TracingMode
attribute), 414

category (angr.sim_variable.SimVariable attribute),
503

category (angr.SimFile property), 190
category (angr.storage.file.SimFile property), 317
category (angr.storage.memory_mixins.MemoryMixin

property), 336
category (angr.storage.memory_mixins.regioned_memory.region_category_mixin.RegionCategoryMixin

property), 370

CBinaryOp (class in angr.analyses.decompiler.structured_codegen.c),
736

CBreak (class in angr.analyses.decompiler.structured_codegen.c),
730

cc (angr.analyses.reaching_definitions.function_handler.FunctionCallData
attribute), 802

cc (angr.analyses.reaching_definitions.FunctionCallData
attribute), 789

cc (angr.analyses.reaching_definitions.subject.Subject
property), 815

cc (angr.calling_conventions.ArgSession attribute), 487
cc (angr.calling_conventions.SimCC.ArgSession at-

tribute), 488
cc (angr.calling_conventions.UsercallArgSession at-

tribute), 487
cc (angr.procedures.stubs.format_parser.FormatParser

attribute), 475
cc (angr.procedures.stubs.format_parser.ScanfFormatParser

attribute), 475
cc (angr.sim_procedure.SimProcedure attribute), 471
cc (angr.SimCC.ArgSession attribute), 185
cc() (angr.factory.AngrObjectFactory method), 219
CCallRewriterBase (class in

angr.analyses.decompiler.ccall_rewriters.rewriter_base),
694

CClosingObject (class in
angr.analyses.decompiler.structured_codegen.c),
739

CConstant (class in angr.analyses.decompiler.structured_codegen.c),
737

CConstruct (class in angr.analyses.decompiler.structured_codegen.c),
726

CContinue (class in angr.analyses.decompiler.structured_codegen.c),
730

CDG (angr.analyses.analysis.KnownAnalysesPlugin
attribute), 619

CDG (class in angr.analyses.cdg), 674
CDirtyExpression (class in

angr.analyses.decompiler.structured_codegen.c),
739

CDoWhileLoop (class in
angr.analyses.decompiler.structured_codegen.c),
729

ceiling_addr() (angr.analyses.cfg.cfb.CFBlanket
method), 638

ceiling_addr() (angr.knowledge_plugins.functions.function_manager.FunctionDict
method), 550

ceiling_func() (angr.knowledge_plugins.functions.function_manager.FunctionManager
method), 551

ceiling_item() (angr.analyses.cfg.cfb.CFBlanket
method), 638

ceiling_items() (angr.analyses.cfg.cfb.CFBlanket
method), 638

CExpression (class in

Index 951

angr

angr.analyses.decompiler.structured_codegen.c),
728

CFakeVariable (class in
angr.analyses.decompiler.structured_codegen.c),
733

CFB (angr.analyses.analysis.KnownAnalysesPlugin
attribute), 620

CFBlanket (angr.analyses.analysis.KnownAnalysesPlugin
attribute), 620

CFBlanket (class in angr.analyses.cfg.cfb), 638
CFBlanketView (class in angr.analyses.cfg.cfb), 637
CFG (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
CFG (class in angr.analyses.cfg.cfg), 639
cfg_cache (angr.analyses.veritesting.CallTracingFilter

attribute), 840
cfg_cache (angr.analyses.veritesting.Veritesting at-

tribute), 840
cfg_jumpkind_from_pb() (in module

angr.utils.enums_conv), 888
cfg_jumpkind_to_pb() (in module

angr.utils.enums_conv), 888
CFGArchOptions (class in

angr.analyses.cfg.cfg_arch_options), 657
CFGBase (class in angr.analyses.cfg.cfg_base), 646
CFGEmulated (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
CFGEmulated (class in angr.analyses.cfg.cfg_emulated),

641
CFGENode (class in angr.knowledge_plugins.cfg), 527
CFGENode (class in angr.knowledge_plugins.cfg.cfg_node),

546
CFGFast (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
CFGFast (class in angr.analyses.cfg.cfg_fast), 653
CFGFastSoot (class in angr.analyses.cfg.cfg_fast_soot),

669
CFGJob (class in angr.analyses.cfg.cfg_emulated), 641
CFGJob (class in angr.analyses.cfg.cfg_fast), 652
CFGJobBase (class in angr.analyses.cfg.cfg_job_base),

658
CFGJobType (class in angr.analyses.cfg.cfg_fast), 652
CFGManager (class in angr.knowledge_plugins.cfg), 535
CFGManager (class in angr.knowledge_plugins.cfg.cfg_manager),

544
CFGModel (class in angr.knowledge_plugins.cfg), 529
CFGModel (class in angr.knowledge_plugins.cfg.cfg_model),

536
CFGModelSerializer (class in

angr.angrdb.serializers.cfg_model), 680
CFGNode (class in angr.knowledge_plugins.cfg), 525
CFGNode (class in angr.knowledge_plugins.cfg.cfg_node),

544
CFGNodeCreationFailure (class in

angr.knowledge_plugins.cfg.cfg_node), 544
cfgs (angr.angrdb.models.DbKnowledgeBase attribute),

677
cfgs (angr.knowledge_base.knowledge_base.KnowledgeBase

attribute), 520
cfgs (angr.KnowledgeBase attribute), 211
CFGSliceToSink (class in

angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink),
816

CForLoop (class in angr.analyses.decompiler.structured_codegen.c),
729

CFunction (class in angr.analyses.decompiler.structured_codegen.c),
727

CFunctionCall (class in
angr.analyses.decompiler.structured_codegen.c),
731

CGoto (class in angr.analyses.decompiler.structured_codegen.c),
732

ChainMapCOW (class in angr.utils.cowdict), 887
ChallRespInfo (class in

angr.state_plugins.trace_additions), 274
changed_bytes() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

method), 354
changed_bytes() (angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin.HistoryTrackingMixin

method), 361
changed_bytes() (angr.storage.memory_mixins.paged_memory.pages.list_page.ListPage

method), 363
changed_bytes() (angr.storage.memory_mixins.paged_memory.pages.mv_list_page.MVListPage

method), 350
changed_bytes() (angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage

method), 365
changed_bytes() (angr.storage.memory_mixins.slotted_memory.SlottedMemoryMixin

method), 375
changed_pages() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

method), 355
chdir() (angr.state_plugins.filesystem.SimFilesystem

method), 250
check() (angr.BP method), 161
check() (angr.exploration_techniques.CallFunctionGoal

method), 401
check() (angr.exploration_techniques.director.BaseGoal

method), 418
check() (angr.exploration_techniques.director.CallFunctionGoal

method), 419
check() (angr.exploration_techniques.director.ExecuteAddressGoal

method), 418
check() (angr.exploration_techniques.ExecuteAddressGoal

method), 400
check() (angr.state_plugins.inspect.BP method), 233
check_concrete_target_methods()

(angr.engines.concrete.SimEngineConcrete
static method), 433

check_offset() (angr.calling_conventions.SimRegArg
method), 485

952 Index

angr

check_state() (angr.exploration_techniques.CallFunctionGoal
method), 401

check_state() (angr.exploration_techniques.director.BaseGoal
method), 418

check_state() (angr.exploration_techniques.director.CallFunctionGoal
method), 419

check_state() (angr.exploration_techniques.director.ExecuteAddressGoal
method), 419

check_state() (angr.exploration_techniques.ExecuteAddressGoal
method), 400

check_tests() (angr.analyses.identifier.identify.Identifier
method), 838

check_value_get() (angr.calling_conventions.SimFunctionArgument
method), 484

check_value_set() (angr.calling_conventions.SimFunctionArgument
method), 484

Chunk (class in angr.state_plugins.heap.heap_freelist),
300

chunk_from_mem() (angr.SimHeapPTMalloc method),
207

chunk_from_mem() (angr.state_plugins.heap.heap_freelist.SimHeapFreelist
method), 301

chunk_from_mem() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc
method), 305

chunks() (angr.SimHeapPTMalloc method), 206
chunks() (angr.state_plugins.heap.heap_freelist.SimHeapFreelist

method), 301
chunks() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

method), 304
CIfBreak (class in angr.analyses.decompiler.structured_codegen.c),

730
CIfElse (class in angr.analyses.decompiler.structured_codegen.c),

729
CIndexedVariable (class in

angr.analyses.decompiler.structured_codegen.c),
734

CITE (class in angr.analyses.decompiler.structured_codegen.c),
738

CLabel (class in angr.analyses.decompiler.structured_codegen.c),
732

claripy_ast_from_ail_condition()
(angr.analyses.decompiler.condition_processor.ConditionProcessor
method), 698

claripy_ast_to_sympy_expr()
(angr.analyses.decompiler.condition_processor.ConditionProcessor
static method), 698

ClassIdentifier (class in
angr.analyses.class_identifier), 848

clean() (angr.utils.cowdict.ChainMapCOW method),
887

clean() (angr.utils.cowdict.DefaultChainMapCOW
method), 887

cleanup() (angr.analyses.cfg.cfg_fast.PendingJobs
method), 650

cleanup() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeGenerator
method), 740

clear() (angr.analyses.decompiler.condition_processor.ConditionProcessor
method), 697

clear() (angr.knowledge_plugins.functions.function_manager.FunctionManager
method), 551

clear() (angr.state_plugins.log.SimStateLog method),
263

clear() (angr.state_plugins.scratch.SimStateScratch
method), 282

clear() (angr.storage.memory_mixins.regioned_memory.abstract_address_descriptor.AbstractAddressDescriptor
method), 371

clear_cache() (angr.engines.pcode.lifter.PcodeLifterEngineMixin
method), 443

clear_local_references()
(angr.state_plugins.jni_references.SimStateJNIReferences
method), 296

clear_page_cache() (angr.state_plugins.unicorn_engine.Unicorn
method), 290

clear_region_for_reflow()
(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 542

clear_region_for_reflow()
(angr.knowledge_plugins.cfg.CFGModel
method), 535

clear_updated_functions()
(angr.analyses.cfg.cfg_fast.PendingJobs
method), 650

ClemoryBackerMixin (class in
angr.storage.memory_mixins.paged_memory.page_backer_mixins),
357

Clinic (angr.analyses.analysis.KnownAnalysesPlugin
attribute), 620

clinic (angr.analyses.decompiler.decompilation_cache.DecompilationCache
attribute), 699

Clinic (class in angr.analyses.decompiler.clinic), 696
ClinicMode (class in angr.analyses.decompiler.clinic),

695
CLoop (class in angr.analyses.decompiler.structured_codegen.c),

728
close() (angr.state_plugins.posix.SimSystemPosix

method), 246
close() (angr.vaults.Vault static method), 618
close() (angr.vaults.VaultShelf method), 619
closed_fds (angr.state_plugins.posix.SimSystemPosix

property), 245
closest_common_ancestor()

(angr.state_plugins.history.SimStateHistory
method), 270

Closure (class in angr.utils.mp), 895
CmpOp (class in angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier),

720
CMultiStatementExpression (class in

angr.analyses.decompiler.structured_codegen.c),

Index 953

angr

738
code_constants (angr.knowledge_plugins.functions.function.Function

property), 555
codegen (angr.analyses.decompiler.decompilation_cache.DecompilationCache

attribute), 699
codegen (angr.analyses.decompiler.structured_codegen.c.CConstruct

attribute), 726
codeloc (angr.analyses.reaching_definitions.Definition

attribute), 772
codeloc (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

attribute), 809
codeloc (angr.analyses.reaching_definitions.ReachingDefinitionsState

attribute), 779
codeloc (angr.knowledge_plugins.key_definitions.Definition

attribute), 584
codeloc (angr.knowledge_plugins.key_definitions.definition.Definition

attribute), 591
codeloc_uses (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

attribute), 809
codeloc_uses (angr.analyses.reaching_definitions.ReachingDefinitionsState

attribute), 779
CodeLocation (class in angr.code_location), 612
codenode (angr.Block property), 170
codenode (angr.block.Block property), 221
codenode (angr.block.SootBlock property), 222
CodeNode (class in angr.analyses.decompiler.structuring.structurer_nodes),

687
CodeNode (class in angr.codenode), 875
CodeReference (angr.knowledge_plugins.cfg.memory_data.MemoryDataSort

attribute), 542
CodeReference (angr.knowledge_plugins.cfg.MemoryDataSort

attribute), 524
CodeTagging (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
CodeTagging (class in angr.analyses.code_tagging), 675
CodeTags (class in angr.analyses.code_tagging), 674
collapse() (angr.analyses.decompiler.structured_codegen.c.MakeTypecastsImplicit

class method), 742
collapsed (angr.analyses.decompiler.structured_codegen.c.CExpression

attribute), 728
collapsed (angr.analyses.decompiler.structured_codegen.c.CIndexedVariable

attribute), 735
collapsed (angr.analyses.decompiler.structured_codegen.c.CVariableField

attribute), 735
COLLECT_DATA_REFS (angr.analyses.decompiler.clinic.ClinicMode

attribute), 695
collect_data_refs (angr.engines.pcode.lifter.Lifter

attribute), 440
collect_data_refs (angr.engines.pcode.lifter.PcodeLifter

attribute), 442
color() (angr.analyses.disassembly.DisassemblyPiece

static method), 848
comment (angr.angrdb.models.DbComment attribute),

680

Comment (class in angr.analyses.disassembly), 851
comments (angr.angrdb.models.DbKnowledgeBase at-

tribute), 677
Comments (class in angr.knowledge_plugins.comments),

549
CommentsSerializer (class in

angr.angrdb.serializers.comments), 681
commit() (angr.knowledge_plugins.sync.sync_controller.SyncController

method), 608
common_type (angr.analyses.decompiler.structured_codegen.c.CBinaryOp

attribute), 736
compare_path_group()

(angr.analyses.congruency_check.CongruencyCheck
method), 861

compare_paths() (angr.analyses.congruency_check.CongruencyCheck
method), 861

compare_statement_dict() (in module
angr.analyses.bindiff), 630

compare_states() (angr.analyses.congruency_check.CongruencyCheck
method), 861

complement() (angr.sim_variable.SimVariableSet
method), 507

complete() (angr.exploration_techniques.ExplorationTechnique
method), 391

complete() (angr.exploration_techniques.Explorer
method), 397

complete() (angr.exploration_techniques.explorer.Explorer
method), 409

complete() (angr.exploration_techniques.Symbion
method), 405

complete() (angr.exploration_techniques.symbion.Symbion
method), 425

complete() (angr.exploration_techniques.Tracer
method), 395

complete() (angr.exploration_techniques.tracer.Tracer
method), 415

complete() (angr.ExplorationTechnique method), 179
complete() (angr.sim_manager.SimulationManager

method), 385
complete() (angr.SimulationManager method), 174
COMPLETE_SCANNING (angr.analyses.cfg.cfg_fast.CFGJobType

attribute), 652
CompleteCallingConventions

(angr.analyses.analysis.KnownAnalysesPlugin
attribute), 620

CompleteCallingConventionsAnalysis (class in
angr.analyses.complete_calling_conventions),
634

compute() (angr.state_plugins.trace_additions.FormatInfo
method), 273

compute() (angr.state_plugins.trace_additions.FormatInfoDontConstrain
method), 274

compute() (angr.state_plugins.trace_additions.FormatInfoIntToStr
method), 274

954 Index

angr

compute() (angr.state_plugins.trace_additions.FormatInfoStrToInt
method), 274

compute_common_type()
(angr.analyses.decompiler.structured_codegen.c.CBinaryOp
static method), 736

compute_dominance_frontier() (in module
angr.utils.graph), 889

concat() (angr.storage.memory_mixins.paged_memory.pages.multi_values.MultiValues
method), 351

concrete (angr.state_plugins.debug_variables.SimDebugVariable
property), 308

concrete (angr.state_plugins.view.SimMemView prop-
erty), 314

Concrete (class in angr.state_plugins.concrete), 292
concrete_load() (angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin

method), 346
concrete_load() (angr.storage.memory_mixins.MemoryMixin

method), 337
concrete_load() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

method), 354
concrete_load() (angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage

method), 365
concrete_path_bool() (in module

angr.state_plugins.solver), 254
concrete_path_list() (in module

angr.state_plugins.solver), 254
concrete_path_not_bool() (in module

angr.state_plugins.solver), 254
concrete_path_scalar() (in module

angr.state_plugins.solver), 254
concrete_path_tuple() (in module

angr.state_plugins.solver), 254
concrete_states (angr.analyses.variable_recovery.variable_recovery.VariableRecoveryState

property), 827
ConcreteBackerMixin (class in

angr.storage.memory_mixins.paged_memory.page_backer_mixins),
357

concretize() (angr.concretization_strategies.SimConcretizationStrategy
method), 335

concretize() (angr.SimFile method), 190
concretize() (angr.SimFileBase method), 189
concretize() (angr.SimFileDescriptor method), 198
concretize() (angr.SimFileDescriptorDuplex method),

201
concretize() (angr.SimPackets method), 192
concretize() (angr.storage.file.SimFile method), 317
concretize() (angr.storage.file.SimFileBase method),

316
concretize() (angr.storage.file.SimFileDescriptor

method), 327
concretize() (angr.storage.file.SimFileDescriptorBase

method), 326
concretize() (angr.storage.file.SimFileDescriptorDuplex

method), 330

concretize() (angr.storage.file.SimPackets method),
321

concretize() (angr.storage.file.SimPacketsSlots
method), 332

concretize() (in module angr.state_plugins.heap.utils),
306

concretize_load_idx()
(angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin
method), 377

concretize_read_addr()
(angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin
method), 346

concretize_store_idx()
(angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin
method), 377

concretize_write_addr()
(angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin
method), 345

cond (angr.analyses.decompiler.structured_codegen.c.CITE
attribute), 738

condition (angr.analyses.decompiler.structured_codegen.c.CDoWhileLoop
attribute), 729

condition (angr.analyses.decompiler.structured_codegen.c.CForLoop
attribute), 729

condition (angr.analyses.decompiler.structured_codegen.c.CIfBreak
attribute), 730

condition (angr.analyses.decompiler.structured_codegen.c.CWhileLoop
attribute), 728

condition (angr.analyses.decompiler.structuring.structurer_nodes.ConditionalBreakNode
attribute), 689

condition (angr.analyses.decompiler.structuring.structurer_nodes.ConditionNode
attribute), 687

condition (angr.analyses.decompiler.structuring.structurer_nodes.LoopNode
attribute), 688

Condition (class in angr.analyses.loop_analysis), 839
condition_and_nodes

(angr.analyses.decompiler.structured_codegen.c.CIfElse
attribute), 729

condition_and_nodes
(angr.analyses.decompiler.structuring.structurer_nodes.CascadingConditionNode
attribute), 688

condition_to_lambda() (in module
angr.exploration_techniques.common), 424

CONDITIONAL (angr.state_plugins.sim_action.SimActionExit
attribute), 466

ConditionalBreakLocation (class in
angr.analyses.decompiler.region_simplifiers.expr_folding),
717

ConditionalBreakNode (class in
angr.analyses.decompiler.structuring.structurer_nodes),
689

ConditionalMixin (class in
angr.storage.memory_mixins.conditional_store_mixin),
346

Index 955

angr

ConditionalRegion (class in
angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier),
720

ConditionLocation (class in
angr.analyses.decompiler.region_simplifiers.expr_folding),
717

ConditionNode (class in
angr.analyses.decompiler.structuring.structurer_nodes),
687

ConditionProcessor (class in
angr.analyses.decompiler.condition_processor),
697

configuration (angr.angrdb.models.DbStructuredCode
attribute), 679

configure_project() (angr.SimOS method), 168
configure_project() (angr.simos.linux.SimLinux

method), 879
configure_project() (angr.simos.simos.SimOS

method), 877
configure_project()

(angr.simos.userland.SimUserland method),
880

configure_project()
(angr.simos.windows.SimWindows method),
881

confirmed (angr.analyses.cfg.cfg_fast.FunctionFakeRetEdge
attribute), 651

CongruencyCheck (angr.analyses.analysis.KnownAnalysesPlugin
attribute), 620

CongruencyCheck (class in
angr.analyses.congruency_check), 860

connect() (angr.knowledge_plugins.sync.sync_controller.SyncController
method), 608

connected (angr.knowledge_plugins.sync.sync_controller.SyncController
property), 608

const_formats (angr.angrdb.models.DbStructuredCode
attribute), 679

CONST_TYPES (angr.engines.light.data.ArithmeticExpression
attribute), 752

const_val (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate
attribute), 590

Constant (angr.analyses.data_dep.dep_nodes.DepNodeTypes
attribute), 869

CONSTANT (angr.analyses.reaching_definitions.AtomKind
attribute), 768

CONSTANT (angr.knowledge_plugins.key_definitions.atoms.AtomKind
attribute), 585

Constant (class in angr.analyses.stack_pointer_tracker),
818

constant_after() (angr.analyses.stack_pointer_tracker.StackPointerTracker
method), 820

constant_after_block()
(angr.analyses.stack_pointer_tracker.StackPointerTracker
method), 820

constant_before() (angr.analyses.stack_pointer_tracker.StackPointerTracker
method), 820

constant_before_block()
(angr.analyses.stack_pointer_tracker.StackPointerTracker
method), 820

constant_jump_targets
(angr.engines.pcode.lifter.IRSB property),
439

constant_jump_targets_and_jumpkinds
(angr.engines.pcode.lifter.IRSB property),
439

ConstantChange (class in angr.analyses.bindiff), 630
ConstantDepNode (class in

angr.analyses.data_dep.dep_nodes), 870
ConstantDereferencesSimplifier (class in

angr.analyses.decompiler.optimization_passes.const_derefs),
703

ConstantOperand (class in angr.analyses.disassembly),
851

ConstantPropagation (class in
angr.analyses.binary_optimizer), 861

ConstantResolver (class in
angr.analyses.cfg.indirect_jump_resolvers.const_resolver),
667

constants (angr.engines.pcode.lifter.IRSB property),
439

ConstantSrc (class in
angr.analyses.reaching_definitions), 771

ConstantSrc (class in
angr.knowledge_plugins.key_definitions.atoms),
587

ConstantValueManager (class in
angr.analyses.cfg.indirect_jump_resolvers.jumptable),
663

constrain_all_zero()
(angr.analyses.identifier.identify.Identifier
static method), 838

constraint_hook() (in module
angr.state_plugins.trace_additions), 274

constraints (angr.state_plugins.solver.SimSolver prop-
erty), 257

constraints_since()
(angr.state_plugins.history.SimStateHistory
method), 270

construct() (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate
static method), 590

ContainerNode (class in angr.utils.graph), 890
contains() (angr.knowledge_plugins.debug_variables.DebugVariable

method), 569
contains_addr() (angr.knowledge_plugins.functions.function_manager.FunctionManager

method), 551
contains_atom() (angr.analyses.reaching_definitions.dep_graph.DepGraph

method), 798
contains_memory_variable()

956 Index

angr

(angr.sim_variable.SimVariableSet method),
507

contains_register_variable()
(angr.sim_variable.SimVariableSet method),
507

content (angr.analyses.reaching_definitions.subject.Subject
property), 815

content (angr.analyses.reassembler.Data property), 857
content (angr.angrdb.models.DbObject attribute), 677
content (angr.knowledge_plugins.cfg.memory_data.MemoryData

attribute), 543
content (angr.knowledge_plugins.cfg.MemoryData at-

tribute), 525
content_gen() (angr.storage.memory_mixins.paged_memory.pages.mv_list_page.MVListPage

method), 350
context (angr.code_location.CodeLocation attribute),

613
context (angr.engines.pcode.lifter.PcodeBasicBlockLifter

attribute), 441
context_sensitivity_level

(angr.analyses.cfg.cfg_base.CFGBase prop-
erty), 647

context_sensitivity_level
(angr.analyses.cfg.cfg_emulated.CFGEmulated
property), 645

continue_addr (angr.analyses.decompiler.structuring.structurer_nodes.LoopNode
property), 688

ContinueNode (class in
angr.analyses.decompiler.structuring.structurer_nodes),
688

ContinueScanningNotification, 648
ConvenientMappingsMixin (class in

angr.storage.memory_mixins.convenient_mappings_mixin),
348

convert_claripy_bool_ast()
(angr.analyses.decompiler.condition_processor.ConditionProcessor
method), 698

convert_claripy_bool_ast_core()
(angr.analyses.decompiler.condition_processor.ConditionProcessor
method), 698

convert_cppproto_to_py() (in module
angr.utils.library), 893

convert_cproto_to_py() (in module
angr.utils.library), 893

convert_variable_list()
(angr.knowledge_plugins.variables.variable_manager.VariableManager
static method), 568

ConvertTo (class in angr.analyses.typehoon.typevars),
834

CooperationBase (class in
angr.storage.memory_mixins.paged_memory.pages.cooperation),
361

copy() (angr.analyses.cfg.cfg_base.CFGBase method),
647

copy() (angr.analyses.cfg.cfg_emulated.CFGEmulated
method), 643

copy() (angr.analyses.cfg.cfg_fast.CFGFast method),
657

copy() (angr.analyses.cfg.segment_list.Segment
method), 672

copy() (angr.analyses.cfg.segment_list.SegmentList
method), 673

copy() (angr.analyses.ddg.LiveDefinitions method), 747
copy() (angr.analyses.decompiler.graph_region.GraphRegion

method), 702
copy() (angr.analyses.decompiler.optimization_passes.engine_base.SimplifierAILState

method), 710
copy() (angr.analyses.decompiler.region_simplifiers.expr_folding.StatementLocation

method), 716
copy() (angr.analyses.decompiler.structuring.structurer_nodes.CodeNode

method), 687
copy() (angr.analyses.decompiler.structuring.structurer_nodes.LoopNode

method), 688
copy() (angr.analyses.decompiler.structuring.structurer_nodes.MultiNode

method), 686
copy() (angr.analyses.decompiler.structuring.structurer_nodes.SequenceNode

method), 687
copy() (angr.analyses.loop_analysis.LoopAnalysisState

method), 839
copy() (angr.analyses.reaching_definitions.call_trace.CallTrace

method), 792
copy() (angr.analyses.reaching_definitions.LiveDefinitions

method), 760
copy() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

method), 811
copy() (angr.analyses.reaching_definitions.ReachingDefinitionsModel

method), 777
copy() (angr.analyses.reaching_definitions.ReachingDefinitionsState

method), 781
copy() (angr.analyses.stack_pointer_tracker.StackPointerTrackerState

method), 820
copy() (angr.analyses.typehoon.typevars.TypeVariables

method), 833
copy() (angr.analyses.variable_recovery.variable_recovery.VariableRecoveryState

method), 827
copy() (angr.analyses.variable_recovery.variable_recovery_fast.VariableRecoveryFastState

method), 826
copy() (angr.analyses.vfg.VFG method), 846
copy() (angr.concretization_strategies.norepeats.SimConcretizationStrategyNorepeats

method), 379
copy() (angr.concretization_strategies.norepeats_range.SimConcretizationStrategyNorepeatsRange

method), 381
copy() (angr.concretization_strategies.SimConcretizationStrategy

method), 335
copy() (angr.engines.pcode.lifter.IRSB method), 438
copy() (angr.keyed_region.KeyedRegion method), 615
copy() (angr.keyed_region.RegionObject method), 614
copy() (angr.knowledge_plugins.callsite_prototypes.CallsitePrototypes

Index 957

angr

method), 523
copy() (angr.knowledge_plugins.cfg.cfg_manager.CFGManager

method), 544
copy() (angr.knowledge_plugins.cfg.cfg_model.CFGModel

method), 536
copy() (angr.knowledge_plugins.cfg.cfg_node.CFGENode

method), 547
copy() (angr.knowledge_plugins.cfg.cfg_node.CFGNode

method), 546
copy() (angr.knowledge_plugins.cfg.CFGENode

method), 528
copy() (angr.knowledge_plugins.cfg.CFGManager

method), 536
copy() (angr.knowledge_plugins.cfg.CFGModel

method), 530
copy() (angr.knowledge_plugins.cfg.CFGNode method),

527
copy() (angr.knowledge_plugins.cfg.memory_data.MemoryData

method), 543
copy() (angr.knowledge_plugins.cfg.MemoryData

method), 525
copy() (angr.knowledge_plugins.comments.Comments

method), 549
copy() (angr.knowledge_plugins.data.Data method),

549
copy() (angr.knowledge_plugins.functions.function.Function

method), 560
copy() (angr.knowledge_plugins.functions.function_manager.FunctionManager

method), 551
copy() (angr.knowledge_plugins.indirect_jumps.IndirectJumps

method), 549
copy() (angr.knowledge_plugins.key_definitions.key_definition_manager.KeyDefinitionManager

method), 593
copy() (angr.knowledge_plugins.key_definitions.KeyDefinitionManager

method), 573
copy() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

method), 595
copy() (angr.knowledge_plugins.key_definitions.LiveDefinitions

method), 575
copy() (angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel

method), 604
copy() (angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel

method), 572
copy() (angr.knowledge_plugins.key_definitions.Uses

method), 583
copy() (angr.knowledge_plugins.key_definitions.uses.Uses

method), 608
copy() (angr.knowledge_plugins.labels.Labels method),

550
copy() (angr.knowledge_plugins.patches.PatchManager

method), 522
copy() (angr.knowledge_plugins.plugin.KnowledgeBasePlugin

method), 523
copy() (angr.knowledge_plugins.structured_code.manager.StructuredCodeManager

method), 571
copy() (angr.knowledge_plugins.sync.sync_controller.SyncController

method), 609
copy() (angr.knowledge_plugins.types.TypesStore

method), 549
copy() (angr.knowledge_plugins.variables.variable_manager.VariableManager

method), 568
copy() (angr.knowledge_plugins.xrefs.xref.XRef

method), 611
copy() (angr.knowledge_plugins.xrefs.xref_manager.XRefManager

method), 612
copy() (angr.misc.plugins.PluginPreset method), 224
copy() (angr.procedures.definitions.SimLibrary

method), 476
copy() (angr.procedures.definitions.SimSyscallLibrary

method), 480
copy() (angr.sim_manager.SimulationManager method),

384
copy() (angr.sim_state.SimState method), 227
copy() (angr.sim_state_options.SimStateOptions

method), 231
copy() (angr.sim_type.SimCppClass method), 517
copy() (angr.sim_type.SimCppClassValue method), 518
copy() (angr.sim_type.SimStruct method), 516
copy() (angr.sim_type.SimStructValue method), 516
copy() (angr.sim_type.SimType method), 508
copy() (angr.sim_type.SimTypeArray method), 512
copy() (angr.sim_type.SimTypeBottom method), 509
copy() (angr.sim_type.SimTypeChar method), 510
copy() (angr.sim_type.SimTypeCppFunction method),

514
copy() (angr.sim_type.SimTypeDouble method), 515
copy() (angr.sim_type.SimTypeFd method), 511
copy() (angr.sim_type.SimTypeFloat method), 515
copy() (angr.sim_type.SimTypeFunction method), 514
copy() (angr.sim_type.SimTypeInt method), 510
copy() (angr.sim_type.SimTypeLength method), 515
copy() (angr.sim_type.SimTypeNum method), 510
copy() (angr.sim_type.SimTypeNumOffset method), 518
copy() (angr.sim_type.SimTypePointer method), 511
copy() (angr.sim_type.SimTypeReference method), 512
copy() (angr.sim_type.SimTypeReg method), 509
copy() (angr.sim_type.SimTypeString method), 513
copy() (angr.sim_type.SimTypeTop method), 509
copy() (angr.sim_type.SimTypeWideChar method), 511
copy() (angr.sim_type.SimTypeWString method), 513
copy() (angr.sim_type.SimUnion method), 517
copy() (angr.sim_type.SimUnionValue method), 517
copy() (angr.sim_type.TypeRef method), 508
copy() (angr.sim_variable.SimConstantVariable

method), 503
copy() (angr.sim_variable.SimMemoryVariable

method), 505

958 Index

angr

copy() (angr.sim_variable.SimRegisterVariable
method), 505

copy() (angr.sim_variable.SimStackVariable method),
506

copy() (angr.sim_variable.SimTemporaryVariable
method), 504

copy() (angr.sim_variable.SimVariable method), 503
copy() (angr.sim_variable.SimVariableSet method), 507
copy() (angr.SimFile method), 191
copy() (angr.SimFileBase method), 189
copy() (angr.SimFileDescriptor method), 199
copy() (angr.SimFileDescriptorDuplex method), 201
copy() (angr.SimFileStream method), 195
copy() (angr.SimHeapBrk method), 204
copy() (angr.SimHeapPTMalloc method), 206
copy() (angr.SimHostFilesystem method), 204
copy() (angr.SimPackets method), 193
copy() (angr.SimPacketsStream method), 197
copy() (angr.SimState method), 183
copy() (angr.SimStatePlugin method), 161
copy() (angr.SimulationManager method), 173
copy() (angr.state_plugins.callstack.CallStack method),

264
copy() (angr.state_plugins.cgc.SimStateCGC method),

272
copy() (angr.state_plugins.concrete.Concrete method),

292
copy() (angr.state_plugins.filesystem.SimConcreteFilesystem

method), 252
copy() (angr.state_plugins.filesystem.SimFilesystem

method), 249
copy() (angr.state_plugins.filesystem.SimHostFilesystem

method), 254
copy() (angr.state_plugins.gdb.GDB method), 271
copy() (angr.state_plugins.globals.SimStateGlobals

method), 279
copy() (angr.state_plugins.heap.heap_base.SimHeapBase

method), 298
copy() (angr.state_plugins.heap.heap_brk.SimHeapBrk

method), 298
copy() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

method), 304
copy() (angr.state_plugins.history.SimStateHistory

method), 268
copy() (angr.state_plugins.inspect.SimInspector

method), 234
copy() (angr.state_plugins.javavm_classloader.SimJavaVmClassloader

method), 294
copy() (angr.state_plugins.jni_references.SimStateJNIReferences

method), 296
copy() (angr.state_plugins.libc.SimStateLibc method),

238
copy() (angr.state_plugins.light_registers.SimLightRegisters

method), 267

copy() (angr.state_plugins.log.SimStateLog method),
262

copy() (angr.state_plugins.loop_data.SimStateLoopData
method), 292

copy() (angr.state_plugins.plugin.SimStatePlugin
method), 232

copy() (angr.state_plugins.posix.PosixDevFS method),
241

copy() (angr.state_plugins.posix.PosixProcFS method),
243

copy() (angr.state_plugins.posix.SimSystemPosix
method), 245

copy() (angr.state_plugins.preconstrainer.SimStatePreconstrainer
method), 283

copy() (angr.state_plugins.scratch.SimStateScratch
method), 280

copy() (angr.state_plugins.sim_action.SimAction
method), 466

copy() (angr.state_plugins.sim_action_object.SimActionObject
method), 468

copy() (angr.state_plugins.solver.SimSolver method),
256

copy() (angr.state_plugins.symbolizer.SimSymbolizer
method), 307

copy() (angr.state_plugins.trace_additions.ChallRespInfo
method), 274

copy() (angr.state_plugins.trace_additions.FormatInfo
method), 273

copy() (angr.state_plugins.trace_additions.FormatInfoDontConstrain
method), 274

copy() (angr.state_plugins.trace_additions.FormatInfoIntToStr
method), 274

copy() (angr.state_plugins.trace_additions.FormatInfoStrToInt
method), 274

copy() (angr.state_plugins.trace_additions.ZenPlugin
method), 276

copy() (angr.state_plugins.uc_manager.SimUCManager
method), 279

copy() (angr.state_plugins.unicorn_engine.Unicorn
method), 289

copy() (angr.state_plugins.view.SimMemView method),
313

copy() (angr.state_plugins.view.SimRegNameView
method), 309

copy() (angr.storage.file.SimFile method), 318
copy() (angr.storage.file.SimFileBase method), 316
copy() (angr.storage.file.SimFileDescriptor method),

328
copy() (angr.storage.file.SimFileDescriptorDuplex

method), 330
copy() (angr.storage.file.SimFileStream method), 320
copy() (angr.storage.file.SimPackets method), 322
copy() (angr.storage.file.SimPacketsSlots method), 332
copy() (angr.storage.file.SimPacketsStream method),

Index 959

angr

324
copy() (angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin

method), 344
copy() (angr.storage.memory_mixins.convenient_mappings_mixin.ConvenientMappingsMixin

method), 348
copy() (angr.storage.memory_mixins.default_filler_mixin.ExplicitFillerMixin

method), 340
copy() (angr.storage.memory_mixins.default_filler_mixin.SpecialFillerMixin

method), 340
copy() (angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin

method), 377
copy() (angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin.KeyValueMemoryMixin

method), 375
copy() (angr.storage.memory_mixins.label_merger_mixin.LabelMergerMixin

method), 347
copy() (angr.storage.memory_mixins.MemoryMixin

method), 336
copy() (angr.storage.memory_mixins.multi_value_merger_mixin.MultiValueMergerMixin

method), 352
copy() (angr.storage.memory_mixins.paged_memory.page_backer_mixins.ClemoryBackerMixin

method), 357
copy() (angr.storage.memory_mixins.paged_memory.page_backer_mixins.DictBackerMixin

method), 358
copy() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.MVListPagesMixin

method), 356
copy() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

method), 353
copy() (angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin.HistoryTrackingMixin

method), 361
copy() (angr.storage.memory_mixins.paged_memory.pages.list_page.ListPage

method), 362
copy() (angr.storage.memory_mixins.paged_memory.pages.mv_list_page.MVListPage

method), 348
copy() (angr.storage.memory_mixins.paged_memory.pages.permissions_mixin.PermissionsMixin

method), 360
copy() (angr.storage.memory_mixins.paged_memory.pages.refcount_mixin.RefcountMixin

method), 359
copy() (angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage

method), 364
copy() (angr.storage.memory_mixins.paged_memory.stack_allocation_mixin.StackAllocationMixin

method), 358
copy() (angr.storage.memory_mixins.regioned_memory.region_data.RegionMap

method), 369
copy() (angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin

method), 371
copy() (angr.storage.memory_mixins.regioned_memory.regioned_address_concretization_mixin.RegionedAddressConcretizationMixin

method), 373
copy() (angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin

method), 366
copy() (angr.storage.memory_mixins.size_resolution_mixin.SizeConcretizationMixin

method), 343
copy() (angr.storage.memory_mixins.slotted_memory.SlottedMemoryMixin

method), 374
copy() (angr.storage.memory_mixins.top_merger_mixin.TopMergerMixin

method), 352
copy() (angr.storage.memory_mixins.underconstrained_mixin.UnderconstrainedMixin

method), 341
copy() (angr.storage.pcap.PCAP method), 335
copy() (angr.utils.cowdict.ChainMapCOW method), 887
copy_contents() (angr.storage.memory_mixins.MemoryMixin

method), 338
copy_contents() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

method), 355
copy_contents() (angr.storage.memory_mixins.unwrapper_mixin.UnwrapperMixin

method), 347
copy_graph() (angr.analyses.decompiler.clinic.Clinic

method), 696
copy_graph() (in module

angr.analyses.decompiler.utils), 746
CouldNotResolveException, 820
count (angr.state_plugins.unicorn_engine.TRANSMIT_RECORD

attribute), 284
count() (angr.exploration_techniques.spiller.PickledStatesDb

method), 411
count() (angr.state_plugins.history.TreeIter method),

270
count() (angr.storage.memory_mixins.paged_memory.pages.multi_values.MultiValues

method), 351
cprotos2py() (in module angr.utils.library), 894
crash_windup() (angr.exploration_techniques.Tracer

class method), 396
crash_windup() (angr.exploration_techniques.tracer.Tracer

class method), 416
create_extract_vtable()

(angr.analyses.vtable.VtableFinder method),
847

create_jump_target_var()
(angr.analyses.decompiler.condition_processor.ConditionProcessor
method), 698

create_new_reference()
(angr.state_plugins.jni_references.SimStateJNIReferences
method), 296

creation_failed (angr.knowledge_plugins.cfg.cfg_node.CFGENode
property), 547

creation_failed (angr.knowledge_plugins.cfg.CFGENode
property), 528

creation_failure_info
(angr.knowledge_plugins.cfg.cfg_node.CFGENode
attribute), 547

creation_failure_info
(angr.knowledge_plugins.cfg.CFGENode
attribute), 528

CRegister (class in angr.analyses.decompiler.structured_codegen.c),
738

CReturn (class in angr.analyses.decompiler.structured_codegen.c),
732

cs_operand (angr.analyses.disassembly.Operand prop-
erty), 850

960 Index

angr

CStatement (class in angr.analyses.decompiler.structured_codegen.c),
728

CStatements (class in
angr.analyses.decompiler.structured_codegen.c),
728

CStructField (class in
angr.analyses.decompiler.structured_codegen.c),
733

CStructFieldNameDef (class in
angr.analyses.decompiler.structured_codegen.c),
739

CStructuredCodeGenerator (class in
angr.analyses.decompiler.structured_codegen.c),
739

CStructuredCodeWalker (class in
angr.analyses.decompiler.structured_codegen.c),
741

cstyle_ifs (angr.analyses.decompiler.structured_codegen.c.CIfBreak
attribute), 730

cstyle_ifs (angr.analyses.decompiler.structured_codegen.c.CIfElse
attribute), 730

CSwitchCase (class in
angr.analyses.decompiler.structured_codegen.c),
730

CTypeCast (class in angr.analyses.decompiler.structured_codegen.c),
736

CUnaryOp (class in angr.analyses.decompiler.structured_codegen.c),
735

CUnsupportedStatement (class in
angr.analyses.decompiler.structured_codegen.c),
732

current_function_address
(angr.state_plugins.callstack.CallStack prop-
erty), 265

current_function_address()
(angr.analyses.reaching_definitions.call_trace.CallTrace
method), 792

current_return_target
(angr.state_plugins.callstack.CallStack prop-
erty), 265

current_stack_pointer
(angr.analyses.cfg.cfg_job_base.CFGJobBase
property), 658

current_stack_pointer
(angr.state_plugins.callstack.CallStack prop-
erty), 265

CVariable (class in angr.analyses.decompiler.structured_codegen.c),
734

CVariableField (class in
angr.analyses.decompiler.structured_codegen.c),
735

CWhileLoop (class in angr.analyses.decompiler.structured_codegen.c),
728

cyclic (angr.analyses.decompiler.graph_region.GraphRegion

attribute), 702
cyclic_ancestor (angr.analyses.decompiler.graph_region.GraphRegion

attribute), 702
cyclomatic_complexity

(angr.knowledge_plugins.functions.function.Function
property), 554

D
data (angr.analyses.variable_recovery.engine_base.RichR

attribute), 829
data (angr.engines.pcode.lifter.Lifter attribute), 439
data (angr.engines.pcode.lifter.PcodeLifter attribute),

442
data (angr.state_plugins.unicorn_engine.TRANSMIT_RECORD

attribute), 284
Data (class in angr.analyses.reassembler), 857
Data (class in angr.knowledge_plugins.data), 549
data_addr (angr.analyses.decompiler.clinic.DataRefDesc

attribute), 695
data_graph (angr.analyses.ddg.DDG property), 750
data_ptr() (angr.PTChunk method), 209
data_ptr() (angr.state_plugins.heap.heap_freelist.Chunk

method), 300
data_ptr() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 303
data_refs (angr.engines.pcode.lifter.IRSB attribute),

437
data_size (angr.analyses.decompiler.clinic.DataRefDesc

attribute), 695
data_sub_graph() (angr.analyses.ddg.DDG method),

750
data_type_str (angr.analyses.decompiler.clinic.DataRefDesc

attribute), 695
DataDependencyGraphAnalysis (class in

angr.analyses.data_dep.data_dependency_analysis),
867

DataGraphError, 674
DataGraphMeta (class in

angr.analyses.datagraph_meta), 674
DataLabel (class in angr.analyses.reassembler), 853
DataNormalizationMixin (class in

angr.storage.memory_mixins.bvv_conversion_mixin),
340

DATAREF_HINTS (angr.analyses.cfg.cfg_fast.CFGJobType
attribute), 652

DataRefDesc (class in angr.analyses.decompiler.clinic),
695

db_compatible() (angr.angrdb.db.AngrDB method),
676

DbCFGModel (class in angr.angrdb.models), 678
DbComment (class in angr.angrdb.models), 680
DbFunction (class in angr.angrdb.models), 678
dbg_comments() (angr.analyses.reassembler.Instruction

method), 855

Index 961

angr

dbg_draw() (angr.knowledge_plugins.functions.function.Function
method), 558

dbg_draw() (angr.knowledge_plugins.functions.function_manager.FunctionManager
method), 552

dbg_get_repr() (angr.analyses.decompiler.graph_region.GraphRegion
static method), 702

dbg_print() (angr.analyses.decompiler.graph_region.GraphRegion
method), 702

dbg_print() (angr.knowledge_plugins.functions.function.Function
method), 558

dbg_print() (angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin
method), 373

dbg_print_irsb() (angr.annocfg.AnnotatedCFG
method), 875

dbg_print_stack() (angr.sim_state.SimState method),
228

dbg_print_stack() (angr.SimState method), 184
dbg_repr() (angr.analyses.backward_slice.BackwardSlice

method), 629
dbg_repr() (angr.analyses.cfg.cfb.CFBlanket method),

638
dbg_repr() (angr.analyses.ddg.DDG method), 750
dbg_repr() (angr.analyses.decompiler.clinic.Clinic

method), 696
dbg_repr() (angr.analyses.decompiler.structuring.structurer_nodes.BaseNode

method), 686
dbg_repr() (angr.analyses.decompiler.structuring.structurer_nodes.BreakNode

method), 688
dbg_repr() (angr.analyses.decompiler.structuring.structurer_nodes.CodeNode

method), 687
dbg_repr() (angr.analyses.decompiler.structuring.structurer_nodes.ConditionalBreakNode

method), 689
dbg_repr() (angr.analyses.decompiler.structuring.structurer_nodes.ConditionNode

method), 687
dbg_repr() (angr.analyses.decompiler.structuring.structurer_nodes.ContinueNode

method), 689
dbg_repr() (angr.analyses.decompiler.structuring.structurer_nodes.LoopNode

method), 688
dbg_repr() (angr.analyses.decompiler.structuring.structurer_nodes.MultiNode

method), 686
dbg_repr() (angr.analyses.decompiler.structuring.structurer_nodes.SequenceNode

method), 687
dbg_repr() (angr.annocfg.AnnotatedCFG method), 875
dbg_repr() (angr.Blade method), 168
dbg_repr() (angr.blade.Blade method), 873
dbg_repr() (angr.keyed_region.KeyedRegion method),

615
dbg_repr() (angr.state_plugins.callstack.CallStack

method), 266
dbg_repr_run() (angr.analyses.backward_slice.BackwardSlice

method), 629
DbInformation (class in angr.angrdb.models), 677
DbKnowledgeBase (class in angr.angrdb.models), 677
DbLabel (class in angr.angrdb.models), 680

DbObject (class in angr.angrdb.models), 677
DbStructuredCode (class in angr.angrdb.models), 679
DbVariableCollection (class in angr.angrdb.models),

678
DbXRefs (class in angr.angrdb.models), 679
DDG (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
DDG (class in angr.analyses.ddg), 749
DDGJob (class in angr.analyses.ddg), 747
DDGView (class in angr.analyses.ddg), 749
DDGViewInstruction (class in angr.analyses.ddg), 749
DDGViewItem (class in angr.analyses.ddg), 749
deactivate() (angr.misc.plugins.PluginPreset

method), 223
dead_ref() (angr.state_hierarchy.StateHierarchy

method), 389
dead_ref() (angr.StateHierarchy method), 180
DeadAssignment (class in

angr.analyses.binary_optimizer), 862
deadended (angr.sim_manager.SimulationManager at-

tribute), 383
deadended (angr.SimulationManager attribute), 172
deadends (angr.analyses.cfg.cfg_emulated.CFGEmulated

property), 645
debug() (angr.sim_manager.ErrorRecord method), 389
DebugVariable (class in

angr.knowledge_plugins.debug_variables),
569

DebugVariableContainer (class in
angr.knowledge_plugins.debug_variables),
568

DebugVariableManager (class in
angr.knowledge_plugins.debug_variables),
569

dec_active_workers() (angr.distributed.server.Server
method), 902

dec_active_workers() (angr.Server method), 210
decode_instruction() (in module

angr.analyses.disassembly_utils), 852
DecodingAssumption (class in

angr.analyses.cfg.cfg_fast), 649
DecompilationCache (class in

angr.analyses.decompiler.decompilation_cache),
699

DecompilationOption (class in
angr.analyses.decompiler.decompilation_options),
698

DECOMPILE (angr.analyses.decompiler.clinic.ClinicMode
attribute), 695

decompile_functions() (in module
angr.analyses.decompiler.utils), 746

Decompiler (angr.analyses.analysis.KnownAnalysesPlugin
attribute), 620

Decompiler (class in angr.analyses.decompiler.decompiler),

962 Index

angr

699
decorate() (angr.analyses.reaching_definitions.function_handler.FunctionCallDataUnwrapped

static method), 805
default (angr.analyses.decompiler.structured_codegen.c.CSwitchCase

attribute), 730
default (angr.sim_state_options.StateOption attribute),

228
DEFAULT (angr.state_plugins.sim_action.SimActionExit

attribute), 467
default_cc() (in module angr), 184
default_cc() (in module angr.calling_conventions),

502
default_exit_target (angr.engines.pcode.lifter.IRSB

attribute), 437
default_indirect_jump_resolvers() (in module

angr.analyses.cfg.indirect_jump_resolvers.default_resolvers),
663

default_node (angr.analyses.decompiler.structuring.structurer_nodes.SwitchCaseNode
attribute), 689

default_simtype_from_size()
(angr.analyses.decompiler.structured_codegen.c.CStructuredCodeGenerator
method), 741

DefaultChainMapCOW (class in angr.utils.cowdict), 887
DefaultFillerMixin (class in

angr.storage.memory_mixins.default_filler_mixin),
340

DefaultListPagesMemory (class in
angr.storage.memory_mixins), 338

DefaultMemory (class in angr.storage.memory_mixins),
338

defer_cleanup() (angr.state_hierarchy.StateHierarchy
method), 389

defer_cleanup() (angr.StateHierarchy method), 180
definition (angr.knowledge_plugins.key_definitions.live_definitions.DefinitionAnnotation

attribute), 593
Definition (class in angr.analyses.reaching_definitions),

772
Definition (class in angr.knowledge_plugins.key_definitions),

584
Definition (class in angr.knowledge_plugins.key_definitions.definition),

591
DefinitionAnnotation (class in

angr.knowledge_plugins.key_definitions.live_definitions),
593

DefinitionMatchPredicate (class in
angr.knowledge_plugins.key_definitions.definition),
589

definitions (angr.analyses.ddg.DDGViewInstruction
property), 749

defs (angr.knowledge_base.knowledge_base.KnowledgeBase
attribute), 520

defs (angr.KnowledgeBase attribute), 211
DefUseChain (class in angr.analyses.vsa_ddg), 846
delete() (angr.SimMount method), 203

delete() (angr.state_plugins.filesystem.SimConcreteFilesystem
method), 252

delete() (angr.state_plugins.filesystem.SimFilesystem
method), 250

delete() (angr.state_plugins.filesystem.SimMount
method), 251

delete() (angr.state_plugins.posix.PosixDevFS
method), 240

delete() (angr.state_plugins.posix.PosixProcFS
method), 242

delete_reference() (angr.state_plugins.jni_references.SimStateJNIReferences
method), 296

delete_uc() (angr.state_plugins.unicorn_engine.Unicorn
static method), 290

demangled_name (angr.analyses.decompiler.structured_codegen.c.CFunction
attribute), 727

demangled_name (angr.knowledge_plugins.functions.function.Function
property), 559

demote() (angr.state_plugins.history.SimStateHistory
method), 269

dep_graph (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
property), 811

dep_graph (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis
property), 795

dep_graph (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis
property), 774

dep_graph (angr.analyses.reaching_definitions.ReachingDefinitionsState
property), 781

dependents (angr.analyses.ddg.DDGViewItem prop-
erty), 749

depends() (angr.analyses.reaching_definitions.function_handler.FunctionCallData
method), 803

depends() (angr.analyses.reaching_definitions.FunctionCallData
method), 790

depends_on (angr.analyses.ddg.DDGViewItem prop-
erty), 749

DepGraph (class in angr.analyses.reaching_definitions.dep_graph),
797

DepNodeTypes (class in
angr.analyses.data_dep.dep_nodes), 869

depth (angr.knowledge_plugins.cfg.cfg_node.CFGENode
attribute), 547

depth (angr.knowledge_plugins.cfg.CFGENode at-
tribute), 528

deref (angr.state_plugins.debug_variables.SimDebugVariable
property), 308

deref (angr.state_plugins.view.SimMemView property),
314

deref() (angr.analyses.reaching_definitions.LiveDefinitions
method), 767

deref() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 815

deref() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 785

Index 963

angr

deref() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 602

deref() (angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 581

DerefSize (class in angr.knowledge_plugins.key_definitions),
581

DerefSize (class in angr.knowledge_plugins.key_definitions.live_definitions),
593

DerivedTypeVariable (class in
angr.analyses.typehoon.typevars), 833

describe_variables()
(angr.state_plugins.solver.SimSolver method),
255

DESCRIPTION (angr.analyses.decompiler.optimization_passes.base_ptr_save_simplifier.BasePointerSaveSimplifier
attribute), 706

DESCRIPTION (angr.analyses.decompiler.optimization_passes.const_derefs.ConstantDereferencesSimplifier
attribute), 703

DESCRIPTION (angr.analyses.decompiler.optimization_passes.div_simplifier.DivSimplifier
attribute), 707

DESCRIPTION (angr.analyses.decompiler.optimization_passes.expr_op_swapper.ExprOpSwapper
attribute), 712

DESCRIPTION (angr.analyses.decompiler.optimization_passes.ite_expr_converter.ITEExprConverter
attribute), 708

DESCRIPTION (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.LoweredSwitchSimplifier
attribute), 709

DESCRIPTION (angr.analyses.decompiler.optimization_passes.mod_simplifier.ModSimplifier
attribute), 710

DESCRIPTION (angr.analyses.decompiler.optimization_passes.multi_simplifier.MultiSimplifier
attribute), 710

DESCRIPTION (angr.analyses.decompiler.optimization_passes.optimization_pass.BaseOptimizationPass
attribute), 704

DESCRIPTION (angr.analyses.decompiler.optimization_passes.register_save_area_simplifier.RegisterSaveAreaSimplifier
attribute), 712

DESCRIPTION (angr.analyses.decompiler.optimization_passes.ret_addr_save_simplifier.RetAddrSaveSimplifier
attribute), 712

DESCRIPTION (angr.analyses.decompiler.optimization_passes.stack_canary_simplifier.StackCanarySimplifier
attribute), 706

DESCRIPTION (angr.analyses.decompiler.optimization_passes.x86_gcc_getpc_simplifier.X86GccGetPcSimplifier
attribute), 713

DESCRIPTION (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationExprBase
attribute), 715

DESCRIPTION (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationMultiStmtBase
attribute), 714

DESCRIPTION (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationStmtBase
attribute), 713

description (angr.sim_state_options.StateOption at-
tribute), 228

descriptions (angr.state_plugins.history.SimStateHistory
property), 269

dest (angr.analyses.reaching_definitions.function_handler.FunctionEffect
attribute), 800

destroy() (angr.state_plugins.unicorn_engine.Unicorn
method), 290

desymbolize() (angr.analyses.reassembler.Data

method), 857
determine() (angr.analyses.typehoon.simple_solver.SimpleSolver

method), 830
DFS (class in angr.exploration_techniques), 398
DFS (class in angr.exploration_techniques.dfs), 408
dfs_back_edges() (in module angr.utils.graph), 889
dict_content (angr.utils.dynamic_dictlist.DynamicDictList

attribute), 888
dict_strkey_to_intkey()

(angr.angrdb.serializers.structured_code.StructuredCodeManagerSerializer
static method), 684

DictBackerMixin (class in
angr.storage.memory_mixins.paged_memory.page_backer_mixins),
357

Difference (class in angr.analyses.bindiff), 630
difference() (angr.sim_state_options.SimStateOptions

method), 230
differing_blocks (angr.analyses.bindiff.BinDiff prop-

erty), 632
differing_blocks (angr.analyses.bindiff.FunctionDiff

property), 631
differing_constants() (in module

angr.analyses.bindiff), 630
differing_functions (angr.analyses.bindiff.BinDiff

property), 632
differing_functions_with_consts()

(angr.analyses.bindiff.BinDiff method), 632
direct_next (angr.engines.pcode.lifter.IRSB property),

438
Director (class in angr.exploration_techniques), 399
Director (class in angr.exploration_techniques.director),

419
dirty (angr.analyses.decompiler.structured_codegen.c.CDirtyExpression

attribute), 739
DirtyAddrsMixin (class in

angr.storage.memory_mixins.dirty_addrs_mixin),
344

disable_profiling() (in module
angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast),
661

disable_timing() (in module
angr.state_plugins.solver), 254

DisassemblerBlock (class in angr.block), 220
DisassemblerInsn (class in angr.block), 220
Disassembly (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
disassembly (angr.Block property), 170
disassembly (angr.block.Block property), 221
disassembly (angr.engines.pcode.lifter.IRSB property),

439
Disassembly (class in angr.analyses.disassembly), 851
DisassemblyPiece (class in

angr.analyses.disassembly), 848
discard() (angr.knowledge_plugins.structured_code.manager.StructuredCodeManager

964 Index

angr

method), 571
discard() (angr.sim_state_options.SimStateOptions

method), 230
discard() (angr.sim_variable.SimVariableSet method),

507
discard_input() (angr.state_plugins.cgc.SimStateCGC

method), 272
discard_memory_variable()

(angr.sim_variable.SimVariableSet method),
507

discard_output() (angr.state_plugins.cgc.SimStateCGC
method), 272

discard_plugin_preset()
(angr.misc.plugins.PluginHub method), 223

discard_register_variable()
(angr.sim_variable.SimVariableSet method),
507

display_name (angr.analyses.data_dep.dep_nodes.VarDepNode
property), 871

dissect_instruction()
(angr.analyses.disassembly.Instruction
method), 850

dissect_instruction_by_default()
(angr.analyses.disassembly.Instruction
method), 850

dissect_instruction_for_arm()
(angr.analyses.disassembly.Instruction
method), 850

DivSimplifier (class in
angr.analyses.decompiler.optimization_passes.div_simplifier),
706

DivSimplifierAILEngine (class in
angr.analyses.decompiler.optimization_passes.div_simplifier),
706

do_full_xrefs() (angr.analyses.cfg.cfg_fast.CFGFast
method), 656

do_preprocess() (in module angr.sim_type), 518
do_trace() (angr.analyses.identifier.identify.Identifier

method), 838
dom (angr.utils.graph.Dominators attribute), 890
dom (angr.utils.graph.PostDominators attribute), 890
dominance_frontiers

(angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
property), 824

DominanceFrontier (class in
angr.analyses.dominance_frontier), 863

dominates() (in module angr.utils.graph), 889
Dominators (class in angr.utils.graph), 890
done (angr.analyses.vfg.AnalysisTask property), 842
done (angr.analyses.vfg.CallAnalysis property), 843
done (angr.analyses.vfg.FunctionAnalysis property), 843
DoNotUpdate (angr.analyses.calling_convention.UpdateArgumentsOption

attribute), 633
Double (class in angr.analyses.typehoon.typeconsts), 837

downsize() (angr.analyses.cfg.cfg_emulated.CFGEmulated
method), 644

downsize() (angr.analyses.forward_analysis.forward_analysis.ForwardAnalysis
method), 622

downsize() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 815

downsize() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 785

downsize() (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
method), 825

downsize() (angr.analyses.variable_recovery.variable_recovery_fast.VariableRecoveryFastState
method), 826

downsize() (angr.knowledge_plugins.cfg.cfg_node.CFGENode
method), 547

downsize() (angr.knowledge_plugins.cfg.CFGENode
method), 528

downsize() (angr.sim_state.SimState method), 226
downsize() (angr.SimState method), 183
downsize() (angr.state_plugins.inspect.SimInspector

method), 234
downsize() (angr.state_plugins.sim_action.SimAction

method), 466
downsize() (angr.state_plugins.sim_action.SimActionData

method), 468
downsize() (angr.state_plugins.solver.SimSolver

method), 257
downsize_region() (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase

static method), 825
DreamStructurer (class in

angr.analyses.decompiler.structuring.dream),
685

DrillerCore (class in angr.exploration_techniques),
393

DrillerCore (class in
angr.exploration_techniques.driller_core),
416

DROP (angr.sim_manager.SimulationManager attribute),
383

DROP (angr.SimulationManager attribute), 172
drop() (angr.sim_manager.SimulationManager method),

387
drop() (angr.SimulationManager method), 176
dst (angr.engines.pcode.lifter.ExitStatement attribute),

435
dst (angr.knowledge_plugins.xrefs.xref.XRef attribute),

611
dst_addr (angr.analyses.cfg.cfg_fast.FunctionCallEdge

attribute), 651
dst_addr (angr.analyses.cfg.cfg_fast.FunctionFakeRetEdge

attribute), 651
dst_addr (angr.analyses.cfg.cfg_fast.FunctionTransitionEdge

attribute), 651
dst_func_addr (angr.analyses.cfg.cfg_fast.FunctionReturnEdge

attribute), 652

Index 965

angr

dst_func_addr (angr.analyses.cfg.cfg_fast.FunctionTransitionEdge
attribute), 651

dst_type (angr.analyses.decompiler.structured_codegen.c.CTypeCast
attribute), 737

dummy (angr.analyses.reaching_definitions.Definition at-
tribute), 772

dummy (angr.knowledge_plugins.key_definitions.Definition
attribute), 584

dummy (angr.knowledge_plugins.key_definitions.definition.Definition
attribute), 591

DummyStructuredCodeGenerator (class in
angr.analyses.decompiler.structured_codegen.dummy),
743

dump() (angr.angrdb.db.AngrDB method), 676
dump() (angr.angrdb.serializers.cfg_model.CFGModelSerializer

static method), 681
dump() (angr.angrdb.serializers.comments.CommentsSerializer

static method), 681
dump() (angr.angrdb.serializers.funcs.FunctionManagerSerializer

static method), 681
dump() (angr.angrdb.serializers.kb.KnowledgeBaseSerializer

static method), 682
dump() (angr.angrdb.serializers.labels.LabelsSerializer

static method), 682
dump() (angr.angrdb.serializers.loader.LoaderSerializer

static method), 683
dump() (angr.angrdb.serializers.structured_code.StructuredCodeManagerSerializer

static method), 684
dump() (angr.angrdb.serializers.variables.VariableManagerSerializer

static method), 683
dump() (angr.angrdb.serializers.xrefs.XRefsSerializer

static method), 683
dump() (angr.calling_conventions.AllocHelper method),

483
dump_file_by_path()

(angr.state_plugins.posix.SimSystemPosix
method), 247

dump_graph() (angr.analyses.decompiler.structuring.phoenix.PhoenixStructurer
static method), 692

dump_internal() (angr.angrdb.serializers.variables.VariableManagerSerializer
static method), 684

dumps() (angr.state_plugins.posix.SimSystemPosix
method), 247

dumps() (angr.vaults.Vault method), 618
DUPLICATION_CHECK (angr.analyses.decompiler.structured_codegen.base.PositionMapping

attribute), 724
DURING_REGION_IDENTIFICATION

(angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPassStage
attribute), 704

dwarf_cfa (angr.state_plugins.debug_variables.SimDebugVariablePlugin
property), 309

dwarf_cfa_approx (angr.state_plugins.debug_variables.SimDebugVariablePlugin
property), 309

DYNAMIC_RET (angr.sim_procedure.SimProcedure

attribute), 471
DYNAMIC_RET (angr.SimProcedure attribute), 159
dynamic_returns() (angr.sim_procedure.SimProcedure

method), 472
dynamic_returns() (angr.SimProcedure method), 159
DynamicDictList (class in angr.utils.dynamic_dictlist),

887

E
E2BIG (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
EACCES (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
EAGAIN (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
EBADF (angr.state_plugins.cgc.SimStateCGC attribute),

271
EBADF (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
EBUSY (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
ECHILD (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
edges_to_repair (angr.knowledge_plugins.cfg.cfg_model.CFGModel

attribute), 536
edges_to_repair (angr.knowledge_plugins.cfg.CFGModel

attribute), 530
EDOM (angr.state_plugins.posix.SimSystemPosix at-

tribute), 245
EEXIST (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
EFAULT (angr.state_plugins.cgc.SimStateCGC attribute),

271
EFAULT (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
EFBIG (angr.state_plugins.posix.SimSystemPosix at-

tribute), 245
effects (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 803
effects (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
EINTR (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
EINVAL (angr.state_plugins.cgc.SimStateCGC attribute),

272
EINVAL (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
EIO (angr.state_plugins.posix.SimSystemPosix attribute),

244
EISDIR (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
ELFHeader (angr.knowledge_plugins.cfg.memory_data.MemoryDataSort

attribute), 542

966 Index

angr

ELFHeader (angr.knowledge_plugins.cfg.MemoryDataSort
attribute), 524

eliminatable (angr.analyses.cfg.indirect_jump_resolvers.jumptable.RegOffsetAnnotation
property), 664

eliminatable (angr.analyses.data_dep.data_dependency_analysis.NodalAnnotation
property), 867

eliminatable (angr.analyses.variable_recovery.annotations.StackLocationAnnotation
property), 821

eliminatable (angr.analyses.variable_recovery.annotations.VariableSourceAnnotation
property), 821

eliminatable (angr.analyses.variable_recovery.variable_recovery_base.VariableAnnotation
property), 822

eliminatable (angr.knowledge_plugins.key_definitions.live_definitions.DefinitionAnnotation
property), 594

eliminatable (angr.storage.memory_mixins.address_concretization_mixin.MultiwriteAnnotation
property), 344

else_node (angr.analyses.decompiler.structured_codegen.c.CIfElse
attribute), 730

else_node (angr.analyses.decompiler.structuring.structurer_nodes.CascadingConditionNode
attribute), 688

EMFILE (angr.state_plugins.posix.SimSystemPosix at-
tribute), 245

EMLINK (angr.state_plugins.posix.SimSystemPosix at-
tribute), 245

Empty (angr.analyses.proximity_graph.ProxiNodeTypes
attribute), 865

empty_block() (angr.engines.pcode.lifter.IRSB static
method), 437

EmptyBlockNotice, 686
EmptyNodeRemover (class in

angr.analyses.decompiler.empty_node_remover),
700

enable_profiling() (in module
angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast),
661

enable_timing() (in module
angr.state_plugins.solver), 254

end (angr.analyses.cfg.segment_list.Segment attribute),
671

end (angr.keyed_region.RegionObject property), 614
end_info_hook() (in module

angr.state_plugins.trace_additions), 274
endness (angr.analyses.reaching_definitions.MemoryLocation

attribute), 771
endness (angr.knowledge_plugins.key_definitions.atoms.MemoryLocation

attribute), 588
endness (angr.storage.memory_object.SimMemoryObject

attribute), 334
endpoints (angr.knowledge_plugins.functions.function.Function

property), 556
endpoints_with_type

(angr.knowledge_plugins.functions.function.Function
property), 556

ENFILE (angr.state_plugins.posix.SimSystemPosix at-

tribute), 245
ENODEV (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
ENOENT (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
ENOEXEC (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
ENOMEM (angr.state_plugins.cgc.SimStateCGC attribute),

272
ENOMEM (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
ENOSPC (angr.state_plugins.posix.SimSystemPosix at-

tribute), 245
ENOSYS (angr.state_plugins.cgc.SimStateCGC attribute),

272
ENOTBLK (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
ENOTDIR (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
ENOTTY (angr.state_plugins.posix.SimSystemPosix at-

tribute), 245
entry_state() (angr.factory.AngrObjectFactory

method), 217
entrypoints (angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink.CFGSliceToSink

property), 817
environment (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

property), 811
environment (angr.analyses.reaching_definitions.ReachingDefinitionsState

property), 781
Environment (class in

angr.knowledge_plugins.key_definitions.environment),
591

ENXIO (angr.state_plugins.posix.SimSystemPosix at-
tribute), 244

eof() (angr.SimFileDescriptor method), 198
eof() (angr.SimFileDescriptorDuplex method), 201
eof() (angr.storage.file.SimFileDescriptor method), 327
eof() (angr.storage.file.SimFileDescriptorBase method),

326
eof() (angr.storage.file.SimFileDescriptorDuplex

method), 330
EPERM (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
EPIPE (angr.state_plugins.cgc.SimStateCGC attribute),

272
EPIPE (angr.state_plugins.posix.SimSystemPosix at-

tribute), 245
EQ (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.CmpOp

attribute), 720
Equal (angr.analyses.loop_analysis.Condition attribute),

839
Equivalence (class in angr.analyses.typehoon.typevars),

831
ERANGE (angr.state_plugins.posix.SimSystemPosix at-

Index 967

angr

tribute), 245
erase() (angr.storage.memory_mixins.MemoryMixin

method), 337
erase() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

method), 353
erase() (angr.storage.memory_mixins.paged_memory.pages.list_page.ListPage

method), 362
erase() (angr.storage.memory_mixins.paged_memory.pages.mv_list_page.MVListPage

method), 349
EROFS (angr.state_plugins.posix.SimSystemPosix at-

tribute), 245
errno (angr.state_plugins.libc.SimStateLibc property),

240
error_converter() (in module

angr.state_plugins.solver), 254
ERROR_REG (angr.calling_conventions.SimCCN64LinuxSyscall

attribute), 499
ERROR_REG (angr.calling_conventions.SimCCO32LinuxSyscall

attribute), 498
ERROR_REG (angr.calling_conventions.SimCCPowerPC64LinuxSyscall

attribute), 500
ERROR_REG (angr.calling_conventions.SimCCPowerPCLinuxSyscall

attribute), 499
ERROR_REG (angr.calling_conventions.SimCCSyscall at-

tribute), 493
errored (angr.sim_manager.SimulationManager prop-

erty), 383
errored (angr.SimulationManager property), 172
ErrorRecord (class in angr.sim_manager), 389
errors (angr.analyses.analysis.Analysis attribute), 621
errors (angr.Analysis attribute), 178
ESPIPE (angr.state_plugins.posix.SimSystemPosix at-

tribute), 245
ESRCH (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
ETXTBSY (angr.state_plugins.posix.SimSystemPosix at-

tribute), 245
eval() (angr.state_plugins.solver.SimSolver method),

260
eval_atleast() (angr.state_plugins.solver.SimSolver

method), 261
eval_atmost() (angr.state_plugins.solver.SimSolver

method), 260
eval_exact() (angr.state_plugins.solver.SimSolver

method), 261
eval_one() (angr.state_plugins.solver.SimSolver

method), 260
eval_to_ast() (angr.state_plugins.solver.SimSolver

method), 258
eval_upto() (angr.state_plugins.solver.SimSolver

method), 259
evaluate_binary() (angr.engines.pcode.behavior.OpBehavior

method), 445
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorBoolAnd

method), 458
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorBoolOr

method), 459
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorBoolXor

method), 458
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorEqual

method), 446
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntAdd

method), 450
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntAnd

method), 453
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntCarry

method), 451
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntDiv

method), 456
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntLeft

method), 454
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntLess

method), 448
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntLessEqual

method), 448
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntMult

method), 455
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntOr

method), 454
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntRem

method), 457
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntRight

method), 454
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntSborrow

method), 451
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntScarry

method), 451
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntSdiv

method), 456
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntSless

method), 447
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntSlessEqual

method), 448
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntSrem

method), 457
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntSright

method), 455
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntSub

method), 450
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorIntXor

method), 453
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorNotEqual

method), 447
evaluate_binary() (angr.engines.pcode.behavior.OpBehaviorSubpiece

method), 463
evaluate_unary() (angr.engines.pcode.behavior.OpBehavior

method), 445
evaluate_unary() (angr.engines.pcode.behavior.OpBehaviorBoolNegate

968 Index

angr

method), 457
evaluate_unary() (angr.engines.pcode.behavior.OpBehaviorCopy

method), 446
evaluate_unary() (angr.engines.pcode.behavior.OpBehaviorInt2Comp

method), 452
evaluate_unary() (angr.engines.pcode.behavior.OpBehaviorIntNegate

method), 452
evaluate_unary() (angr.engines.pcode.behavior.OpBehaviorIntSext

method), 449
evaluate_unary() (angr.engines.pcode.behavior.OpBehaviorIntZext

method), 449
evaluate_unary() (angr.engines.pcode.behavior.OpBehaviorPopcount

method), 464
events (angr.state_plugins.history.SimStateHistory

property), 269
events_of_type() (angr.state_plugins.log.SimStateLog

method), 262
EXC_COUNTER (angr.analyses.decompiler.condition_processor.ConditionProcessor

attribute), 698
EXDEV (angr.state_plugins.posix.SimSystemPosix at-

tribute), 244
execute() (angr.Project method), 166
execute() (angr.project.Project method), 216
execute() (angr.sim_procedure.SimProcedure method),

471
execute() (angr.SimProcedure method), 159
ExecuteAddressGoal (class in

angr.exploration_techniques), 400
ExecuteAddressGoal (class in

angr.exploration_techniques.director), 418
executed_instruction_count (angr.errors.SimError

attribute), 898
Existence (class in angr.analyses.typehoon.typevars),

831
exists_in_replacements() (in module

angr.analyses.cfg.indirect_jump_resolvers.const_resolver),
667

exit() (angr.sim_procedure.SimProcedure method), 473
exit() (angr.SimProcedure method), 160
exit_hook() (in module

angr.state_plugins.trace_additions), 274
exit_observe() (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis

method), 795
exit_observe() (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis

method), 775
exit_observed (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

attribute), 809
exit_observed (angr.analyses.reaching_definitions.ReachingDefinitionsState

attribute), 779
exit_statements (angr.engines.pcode.lifter.IRSB prop-

erty), 438
ExitStatement (class in angr.engines.pcode.lifter), 435
ExplicitFillerMixin (class in

angr.storage.memory_mixins.default_filler_mixin),

340
ExplorationStatusNotifier (class in

angr.distributed.worker), 902
ExplorationTechnique (class in angr), 178
ExplorationTechnique (class in

angr.exploration_techniques), 390
explore() (angr.sim_manager.SimulationManager

method), 384
explore() (angr.SimulationManager method), 173
Explorer (class in angr.exploration_techniques), 396
Explorer (class in angr.exploration_techniques.explorer),

408
expr (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.Case

attribute), 708
expr (angr.analyses.decompiler.structured_codegen.c.CMultiStatementExpression

attribute), 739
expr (angr.analyses.decompiler.structured_codegen.c.CTypeCast

attribute), 737
expr_classes (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationExprBase

attribute), 715
expr_comments (angr.angrdb.models.DbStructuredCode

attribute), 679
expr_idx (angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionLocation

attribute), 717
ExpressionCounter (class in

angr.analyses.decompiler.region_simplifiers.expr_folding),
718

ExpressionFolder (class in
angr.analyses.decompiler.region_simplifiers.expr_folding),
718

ExpressionLocation (class in
angr.analyses.decompiler.region_simplifiers.expr_folding),
716

ExpressionNarrowingWalker (class in
angr.analyses.decompiler.expression_narrower),
701

ExpressionReplacer (class in
angr.analyses.decompiler.optimization_passes.expr_op_swapper),
711

ExpressionReplacer (class in
angr.analyses.decompiler.optimization_passes.ite_expr_converter),
707

ExpressionReplacer (class in
angr.analyses.decompiler.region_simplifiers.expr_folding),
718

expressions (angr.engines.pcode.lifter.IRSB property),
438

ExpressionUseFinder (class in
angr.analyses.decompiler.region_simplifiers.expr_folding),
717

ExprOpSwapper (class in
angr.analyses.decompiler.optimization_passes.expr_op_swapper),
712

extend() (angr.engines.pcode.lifter.IRSB method), 438

Index 969

angr

extend_actions() (angr.state_plugins.history.SimStateHistory
method), 269

extend_actions() (angr.state_plugins.log.SimStateLog
method), 262

extern (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate
attribute), 590

ExternalCodeLocation (class in angr.code_location),
613

extract() (angr.sim_type.SimCppClass method), 517
extract() (angr.sim_type.SimStruct method), 516
extract() (angr.sim_type.SimTypeArray method), 512
extract() (angr.sim_type.SimTypeBool method), 511
extract() (angr.sim_type.SimTypeChar method), 510
extract() (angr.sim_type.SimTypeFloat method), 515
extract() (angr.sim_type.SimTypeInt method), 510
extract() (angr.sim_type.SimTypeNum method), 510
extract() (angr.sim_type.SimTypeNumOffset method),

518
extract() (angr.sim_type.SimTypeReg method), 509
extract() (angr.sim_type.SimTypeString method), 513
extract() (angr.sim_type.SimTypeWideChar method),

511
extract() (angr.sim_type.SimTypeWString method),

513
extract() (angr.sim_type.SimUnion method), 517
extract() (angr.storage.memory_mixins.paged_memory.pages.multi_values.MultiValues

method), 351
extract_claripy() (angr.sim_type.SimType method),

508
extract_components()

(angr.procedures.stubs.format_parser.FormatParser
method), 475

extract_defs() (angr.analyses.reaching_definitions.LiveDefinitions
static method), 761

extract_defs() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 810

extract_defs() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 781

extract_defs() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
static method), 596

extract_defs() (angr.knowledge_plugins.key_definitions.LiveDefinitions
static method), 576

extract_defs_from_annotations()
(angr.analyses.reaching_definitions.LiveDefinitions
static method), 762

extract_defs_from_annotations()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
static method), 597

extract_defs_from_annotations()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
static method), 576

extract_defs_from_mv()
(angr.analyses.reaching_definitions.LiveDefinitions
static method), 762

extract_defs_from_mv()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
static method), 597

extract_defs_from_mv()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
static method), 576

extract_jump_targets() (in module
angr.analyses.decompiler.utils), 743

extract_offset_to_sp()
(angr.analyses.propagator.engine_ail.SimEnginePropagatorAIL
method), 756

extract_offset_to_sp()
(angr.engines.light.engine.SimEngineLightMixin
static method), 753

extract_stack_offset_from_addr()
(angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
static method), 824

extract_terms() (in module
angr.analyses.decompiler.structured_codegen.c),
726

extract_value_if_concrete()
(angr.analyses.xrefs.SimEngineXRefsVEX
static method), 864

extract_variables()
(angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
static method), 823

F
f (angr.utils.mp.Closure attribute), 895
failure() (angr.engines.successors.SimSuccessors

class method), 429
false_node (angr.analyses.decompiler.structuring.structurer_nodes.ConditionNode

attribute), 687
fast_memory_load() (angr.analyses.reassembler.Reassembler

method), 860
FastMemory (class in angr.storage.memory_mixins), 338
fd (angr.state_plugins.unicorn_engine.TRANSMIT_RECORD

attribute), 284
FD_SETSIZE (angr.state_plugins.cgc.SimStateCGC at-

tribute), 272
FetchingZeroPageError, 288
field (angr.analyses.decompiler.structured_codegen.c.CStructField

attribute), 733
FieldReferenceCleanup (class in

angr.analyses.decompiler.structured_codegen.c),
742

fields (angr.sim_type.SimUnion attribute), 516
file_exists (angr.SimFileDescriptor property), 199
file_exists (angr.storage.file.SimFileDescriptor prop-

erty), 328
file_exists (angr.storage.file.SimFileDescriptorBase

property), 327
fill_content() (angr.knowledge_plugins.cfg.memory_data.MemoryData

method), 543

970 Index

angr

fill_content() (angr.knowledge_plugins.cfg.MemoryData
method), 525

fill_reg_map() (in module
angr.analyses.reassembler), 853

filter() (angr.analyses.cfg.indirect_jump_resolvers.amd64_elf_got.AMD64ElfGotResolver
method), 658

filter() (angr.analyses.cfg.indirect_jump_resolvers.arm_elf_fast.ArmElfFastResolver
method), 659

filter() (angr.analyses.cfg.indirect_jump_resolvers.const_resolver.ConstantResolver
method), 667

filter() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTableResolver
method), 667

filter() (angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast.MipsElfFastResolver
method), 661

filter() (angr.analyses.cfg.indirect_jump_resolvers.resolver.IndirectJumpResolver
method), 668

filter() (angr.analyses.cfg.indirect_jump_resolvers.x86_elf_pic_plt.X86ElfPicPltResolver
method), 662

filter() (angr.analyses.cfg.indirect_jump_resolvers.x86_pe_iat.X86PeIatResolver
method), 660

filter() (angr.analyses.veritesting.CallTracingFilter
method), 840

filter() (angr.exploration_techniques.ExplorationTechnique
method), 390

filter() (angr.exploration_techniques.Explorer
method), 397

filter() (angr.exploration_techniques.explorer.Explorer
method), 409

filter() (angr.exploration_techniques.local_loop_seer.LocalLoopSeer
method), 422

filter() (angr.exploration_techniques.LocalLoopSeer
method), 406

filter() (angr.exploration_techniques.loop_seer.LoopSeer
method), 421

filter() (angr.exploration_techniques.LoopSeer
method), 394

filter() (angr.exploration_techniques.Slicecutor
method), 392

filter() (angr.exploration_techniques.slicecutor.Slicecutor
method), 417

filter() (angr.exploration_techniques.Tracer method),
395

filter() (angr.exploration_techniques.tracer.Tracer
method), 415

filter() (angr.ExplorationTechnique method), 179
filter() (angr.sim_manager.SimulationManager

method), 386
filter() (angr.SimulationManager method), 175
filter_actions() (angr.state_plugins.history.SimStateHistory

method), 268
filter_cond_regions() (in module

angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier),
722

filter_constraints()

(angr.state_plugins.trace_additions.ZenPlugin
method), 277

filter_variables() (angr.analyses.decompiler.optimization_passes.engine_base.SimplifierAILState
method), 710

final_states (angr.knowledge_plugins.cfg.cfg_node.CFGENode
attribute), 547

final_states (angr.knowledge_plugins.cfg.CFGENode
attribute), 528

find() (angr.storage.memory_mixins.MemoryMixin
method), 336

find() (angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin
method), 367

find() (angr.storage.memory_mixins.regioned_memory.static_find_mixin.StaticFindMixin
method), 371

find() (angr.storage.memory_mixins.smart_find_mixin.SmartFindMixin
method), 339

find() (angr.storage.memory_mixins.unwrapper_mixin.UnwrapperMixin
method), 347

find_all_predecessors()
(angr.analyses.reaching_definitions.dep_graph.DepGraph
method), 798

find_all_successors()
(angr.analyses.reaching_definitions.dep_graph.DepGraph
method), 798

find_cc() (angr.calling_conventions.SimCC static
method), 490

find_cc() (angr.SimCC static method), 187
find_consumers() (angr.analyses.ddg.DDG method),

751
find_data_references_and_update_memory_data()

(angr.analyses.decompiler.decompiler.Decompiler
method), 700

find_declaration() (angr.knowledge_plugins.functions.function.Function
method), 559

find_definition() (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationExprBase
static method), 715

find_definitions() (angr.analyses.ddg.DDG
method), 751

find_definitions() (angr.analyses.reaching_definitions.dep_graph.DepGraph
method), 798

find_defs_at() (angr.analyses.reaching_definitions.ReachingDefinitionsModel
method), 777

find_defs_at() (angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel
method), 603

find_defs_at() (angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel
method), 572

find_function_for_reflow_into_addr()
(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 542

find_function_for_reflow_into_addr()
(angr.knowledge_plugins.cfg.CFGModel
method), 535

find_killers() (angr.analyses.ddg.DDG method), 751
find_merge_points() (angr.utils.graph.GraphUtils

Index 971

angr

static method), 890
find_path() (angr.analyses.reaching_definitions.dep_graph.DepGraph

method), 799
find_paths() (angr.analyses.reaching_definitions.dep_graph.DepGraph

method), 799
find_sources() (angr.analyses.ddg.DDG method), 751
find_stack_vars_x86()

(angr.analyses.identifier.identify.Identifier
method), 838

find_variable_by_atom()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 564

find_variable_by_stmt()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 564

find_variables_by_atom()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 564

find_variables_by_insn()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 564

find_variables_by_register()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 565

find_variables_by_stack_offset()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 564

find_variables_by_stmt()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 564

find_widening_points()
(angr.utils.graph.GraphUtils static method),
891

FindFirstNodeInSet (class in
angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier),
723

finish() (angr.state_plugins.unicorn_engine.Unicorn
method), 290

fire() (angr.BP method), 161
fire() (angr.state_plugins.inspect.BP method), 233
first_nonlabel_node() (in module

angr.analyses.decompiler.utils), 745
first_nonlabel_statement() (in module

angr.analyses.decompiler.utils), 744
fix_prototype_returnty()

(angr.sim_procedure.SimProcedure method),
472

fix_prototype_returnty() (angr.SimProcedure
method), 160

flags (angr.procedures.stubs.format_parser.FormatParser
attribute), 474

Flags (class in angr.storage.file), 314
flavor (angr.angrdb.models.DbStructuredCode at-

tribute), 679

FlirtAnalysis (class in angr.analyses.flirt), 752
FlirtSignature (class in angr.flirt), 885
Float (class in angr.analyses.typehoon.typeconsts), 836
float_len_mod (angr.procedures.stubs.format_parser.ScanfFormatParser

attribute), 475
float_spec (angr.procedures.stubs.format_parser.ScanfFormatParser

attribute), 475
float_type() (in module

angr.analyses.typehoon.typeconsts), 837
FloatBase (class in angr.analyses.typehoon.typeconsts),

836
FloatingPoint (angr.knowledge_plugins.cfg.memory_data.MemoryDataSort

attribute), 542
FloatingPoint (angr.knowledge_plugins.cfg.MemoryDataSort

attribute), 524
floor_addr() (angr.analyses.cfg.cfb.CFBlanket

method), 638
floor_addr() (angr.knowledge_plugins.functions.function_manager.FunctionDict

method), 550
floor_func() (angr.knowledge_plugins.functions.function_manager.FunctionManager

method), 551
floor_item() (angr.analyses.cfg.cfb.CFBlanket

method), 638
floor_items() (angr.analyses.cfg.cfb.CFBlanket

method), 638
flush_pages() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

method), 355
fmt (angr.analyses.decompiler.structured_codegen.c.CConstant

property), 737
fmt_char (angr.analyses.decompiler.structured_codegen.c.CConstant

property), 737
fmt_float (angr.analyses.decompiler.structured_codegen.c.CConstant

property), 737
fmt_hex (angr.analyses.decompiler.structured_codegen.c.CConstant

property), 737
fmt_int() (angr.analyses.decompiler.structured_codegen.c.CConstant

method), 738
fmt_neg (angr.analyses.decompiler.structured_codegen.c.CConstant

property), 737
force_unroll_loops()

(angr.analyses.cfg.cfg_emulated.CFGEmulated
method), 644

FormatInfo (class in angr.state_plugins.trace_additions),
273

FormatInfoDontConstrain (class in
angr.state_plugins.trace_additions), 274

FormatInfoIntToStr (class in
angr.state_plugins.trace_additions), 274

FormatInfoStrToInt (class in
angr.state_plugins.trace_additions), 274

FormatParser (class in
angr.procedures.stubs.format_parser), 474

FormatSpecifier (class in
angr.procedures.stubs.format_parser), 474

972 Index

angr

FormatString (class in
angr.procedures.stubs.format_parser), 473

ForwardAnalysis (class in
angr.analyses.forward_analysis.forward_analysis),
621

found (angr.sim_manager.SimulationManager attribute),
383

found (angr.SimulationManager attribute), 172
FP_ARG_REGS (angr.calling_conventions.SimCC at-

tribute), 488
FP_ARG_REGS (angr.calling_conventions.SimCCAArch64

attribute), 496
FP_ARG_REGS (angr.calling_conventions.SimCCAArch64LinuxSyscall

attribute), 497
FP_ARG_REGS (angr.calling_conventions.SimCCAMD64WindowsSyscall

attribute), 495
FP_ARG_REGS (angr.calling_conventions.SimCCARM at-

tribute), 495
FP_ARG_REGS (angr.calling_conventions.SimCCARMHF

attribute), 496
FP_ARG_REGS (angr.calling_conventions.SimCCARMLinuxSyscall

attribute), 496
FP_ARG_REGS (angr.calling_conventions.SimCCCdecl

attribute), 491
FP_ARG_REGS (angr.calling_conventions.SimCCMicrosoftAMD64

attribute), 493
FP_ARG_REGS (angr.calling_conventions.SimCCN64 at-

tribute), 498
FP_ARG_REGS (angr.calling_conventions.SimCCN64LinuxSyscall

attribute), 499
FP_ARG_REGS (angr.calling_conventions.SimCCO32 at-

tribute), 497
FP_ARG_REGS (angr.calling_conventions.SimCCO32LinuxSyscall

attribute), 498
FP_ARG_REGS (angr.calling_conventions.SimCCPowerPC

attribute), 499
FP_ARG_REGS (angr.calling_conventions.SimCCPowerPC64

attribute), 500
FP_ARG_REGS (angr.calling_conventions.SimCCPowerPC64LinuxSyscall

attribute), 500
FP_ARG_REGS (angr.calling_conventions.SimCCPowerPCLinuxSyscall

attribute), 499
FP_ARG_REGS (angr.calling_conventions.SimCCRISCV64LinuxSyscall

attribute), 497
FP_ARG_REGS (angr.calling_conventions.SimCCS390X

attribute), 501
FP_ARG_REGS (angr.calling_conventions.SimCCS390XLinuxSyscall

attribute), 502
FP_ARG_REGS (angr.calling_conventions.SimCCSystemVAMD64

attribute), 494
FP_ARG_REGS (angr.calling_conventions.SimCCX86LinuxSyscall

attribute), 493
FP_ARG_REGS (angr.calling_conventions.SimCCX86WindowsSyscall

attribute), 494

FP_ARG_REGS (angr.engines.pcode.cc.SimCCM68k at-
tribute), 464

FP_ARG_REGS (angr.engines.pcode.cc.SimCCPowerPC
attribute), 465

FP_ARG_REGS (angr.engines.pcode.cc.SimCCXtensa at-
tribute), 466

FP_ARG_REGS (angr.SimCC attribute), 185
fp_args (angr.calling_conventions.SimCC property),

488
fp_args (angr.SimCC property), 185
fp_iter (angr.calling_conventions.ArgSession at-

tribute), 487
fp_iter (angr.calling_conventions.SimCC.ArgSession

attribute), 488
fp_iter (angr.SimCC.ArgSession attribute), 186
FP_RETURN_VAL (angr.calling_conventions.SimCC at-

tribute), 488
FP_RETURN_VAL (angr.calling_conventions.SimCCARMHF

attribute), 496
FP_RETURN_VAL (angr.calling_conventions.SimCCCdecl

attribute), 492
FP_RETURN_VAL (angr.calling_conventions.SimCCMicrosoftAMD64

attribute), 493
FP_RETURN_VAL (angr.calling_conventions.SimCCSystemVAMD64

attribute), 494
FP_RETURN_VAL (angr.SimCC attribute), 185
free() (angr.analyses.reaching_definitions.heap_allocator.HeapAllocator

method), 800
free() (angr.SimHeapPTMalloc method), 207
free() (angr.state_plugins.heap.heap_libc.SimHeapLibc

method), 301
free() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

method), 305
free_chunks() (angr.SimHeapPTMalloc method), 206
free_chunks() (angr.state_plugins.heap.heap_freelist.SimHeapFreelist

method), 301
free_chunks() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

method), 304
freeze() (angr.analyses.stack_pointer_tracker.StackPointerTrackerState

method), 820
fresh_block() (angr.factory.AngrObjectFactory

method), 220
fresh_constraints (angr.state_plugins.log.SimStateLog

property), 262
from_ail_expr() (angr.analyses.reaching_definitions.Atom

static method), 768
from_ail_expr() (angr.knowledge_plugins.key_definitions.atoms.Atom

static method), 585
from_argument() (angr.analyses.reaching_definitions.Atom

static method), 768
from_argument() (angr.knowledge_plugins.key_definitions.atoms.Atom

static method), 585
from_cle_variable()

(angr.state_plugins.debug_variables.SimDebugVariable

Index 973

angr

static method), 308
from_digraph() (angr.annocfg.AnnotatedCFG

method), 874
from_name() (angr.knowledge_plugins.debug_variables.DebugVariableManager

method), 570
from_name_and_pc() (angr.knowledge_plugins.debug_variables.DebugVariableManager

method), 570
from_opstr() (angr.analyses.loop_analysis.Condition

class method), 839
from_pc() (angr.knowledge_plugins.debug_variables.DebugVariable

method), 569
from_pc() (angr.knowledge_plugins.debug_variables.DebugVariableContainer

method), 569
from_signature (angr.knowledge_plugins.functions.function.Function

attribute), 553
from_signature (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 561
from_state() (angr.analyses.variable_recovery.annotations.VariableSourceAnnotation

static method), 821
FrozenStackPointerTrackerState (class in

angr.analyses.stack_pointer_tracker), 819
FS (in module angr.flirt), 885
fstat() (angr.state_plugins.posix.SimSystemPosix

method), 246
fstat_with_result()

(angr.state_plugins.posix.SimSystemPosix
method), 246

full_graph (angr.analyses.decompiler.graph_region.GraphRegion
attribute), 702

full_init_state() (angr.factory.AngrObjectFactory
method), 217

full_simplify() (angr.state_hierarchy.StateHierarchy
method), 389

full_simplify() (angr.StateHierarchy method), 180
func (angr.analyses.cfg.indirect_jump_resolvers.jumptable.ConstantValueManager

attribute), 664
func_addr (angr.analyses.cfg.cfg_fast.CFGJob at-

tribute), 653
func_addr (angr.analyses.cfg.cfg_job_base.BlockID

property), 658
func_addr (angr.analyses.cfg.cfg_job_base.CFGJobBase

property), 658
func_addr (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationExprBase

attribute), 715
func_addr (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationMultiStmtBase

attribute), 714
func_addr (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationStmtBase

attribute), 713
func_addr (angr.analyses.variable_recovery.engine_base.SimEngineVRBase

property), 829
func_addr (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase

property), 824
func_addr (angr.angrdb.models.DbStructuredCode at-

tribute), 679

func_addr (angr.angrdb.models.DbVariableCollection
attribute), 679

func_addr (angr.knowledge_plugins.cfg.indirect_jump.IndirectJump
attribute), 548

func_addr (angr.knowledge_plugins.cfg.IndirectJump
attribute), 529

func_edge_type_from_pb() (in module
angr.utils.enums_conv), 888

func_edge_type_to_pb() (in module
angr.utils.enums_conv), 888

func_graph (angr.analyses.reaching_definitions.subject.Subject
property), 815

func_lookup() (angr.analyses.disassembly.Disassembly
method), 852

FuncComment (class in angr.analyses.disassembly), 851
FuncIn (class in angr.analyses.typehoon.typevars), 834
FuncInfo (class in angr.analyses.identifier.identify), 837
FuncOut (class in angr.analyses.typehoon.typevars), 834
funcs (angr.angrdb.models.DbKnowledgeBase at-

tribute), 677
Function (angr.analyses.proximity_graph.ProxiNodeTypes

attribute), 865
function (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 802
function (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
Function (angr.analyses.reaching_definitions.subject.SubjectType

attribute), 815
Function (class in angr.knowledge_plugins.functions.function),

552
function() (angr.knowledge_plugins.functions.function_manager.FunctionManager

method), 552
function_address (angr.knowledge_plugins.cfg.cfg_node.CFGNode

attribute), 545
function_address (angr.knowledge_plugins.cfg.CFGNode

attribute), 526
function_address (angr.storage.memory_mixins.regioned_memory.region_data.AddressWrapper

attribute), 369
function_calls (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis

attribute), 794
function_codeloc (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 802
function_codeloc (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
function_dependency_graph()

(angr.analyses.ddg.DDG method), 750
function_final_states (angr.analyses.vfg.VFG

property), 845
function_initial_states (angr.analyses.vfg.VFG

property), 845
function_name (angr.analyses.reassembler.FunctionLabel

property), 853
function_needs_variable_recovery()

(angr.analyses.complete_calling_conventions.CompleteCallingConventionsAnalysis

974 Index

angr

static method), 636
FUNCTION_PROLOGUE (angr.analyses.cfg.cfg_fast.CFGJobType

attribute), 652
function_prototype()

(angr.factory.AngrObjectFactory method),
220

FunctionAnalysis (class in angr.analyses.vfg), 842
FunctionCall (angr.analyses.proximity_graph.ProxiNodeTypes

attribute), 865
FunctionCallData (class in

angr.analyses.reaching_definitions), 787
FunctionCallData (class in

angr.analyses.reaching_definitions.function_handler),
801

FunctionCallDataUnwrapped (class in
angr.analyses.reaching_definitions.function_handler),
804

FunctionCallEdge (class in angr.analyses.cfg.cfg_fast),
651

FunctionCallRelationships (class in
angr.analyses.reaching_definitions.dep_graph),
796

FunctionDict (class in
angr.knowledge_plugins.functions.function_manager),
550

FunctionDiff (class in angr.analyses.bindiff), 630
FunctionEdge (class in angr.analyses.cfg.cfg_fast), 650
FunctionEffect (class in

angr.analyses.reaching_definitions.function_handler),
800

FunctionFakeRetEdge (class in
angr.analyses.cfg.cfg_fast), 651

FunctionGraphVisitor (class in
angr.analyses.forward_analysis.visitors.function_graph),
623

FunctionHandler (class in
angr.analyses.reaching_definitions), 785

FunctionHandler (class in
angr.analyses.reaching_definitions.function_handler),
805

FunctionKey (class in angr.analyses.cfg.cfg_job_base),
658

FunctionLabel (class in angr.analyses.reassembler),
853

FunctionManager (class in
angr.knowledge_plugins.functions.function_manager),
550

FunctionManagerSerializer (class in
angr.angrdb.serializers.funcs), 681

FunctionParser (class in
angr.knowledge_plugins.functions.function_parser),
560

FunctionProxiNode (class in
angr.analyses.proximity_graph), 865

FunctionReturn (class in angr.analyses.cfg.cfg_fast),
649

FunctionReturnEdge (class in
angr.analyses.cfg.cfg_fast), 651

functions (angr.analyses.cfg.cfg_base.CFGBase prop-
erty), 647

functions (angr.knowledge_base.knowledge_base.KnowledgeBase
attribute), 520

functions (angr.KnowledgeBase attribute), 211
functions_called() (angr.knowledge_plugins.functions.function.Function

method), 560
functions_probably_identical()

(angr.analyses.bindiff.BinDiff method), 632
FunctionStart (class in angr.analyses.disassembly),

848
FunctionTag (class in

angr.knowledge_plugins.key_definitions.tag),
605

FunctionTransitionEdge (class in
angr.analyses.cfg.cfg_fast), 651

functy (angr.analyses.decompiler.structured_codegen.c.CFunction
attribute), 727

fwd_chunk() (angr.PTChunk method), 209
fwd_chunk() (angr.state_plugins.heap.heap_freelist.Chunk

method), 300
fwd_chunk() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 303

G
g_label_ctr (angr.analyses.reassembler.Label at-

tribute), 853
GDB (class in angr.state_plugins.gdb), 270
generate_code_cover()

(angr.analyses.cfg.cfg_fast.CFGFast method),
657

generate_gdt() (angr.SimOS method), 169
generate_gdt() (angr.simos.simos.SimOS method),

878
generate_index() (angr.analyses.cfg.cfg_base.CFGBase

method), 647
generate_symbolic_cmd_line_arg()

(angr.simos.javavm.SimJavaVM static method),
883

generic_compare() (angr.engines.pcode.behavior.OpBehavior
static method), 446

generic_info_hook() (in module
angr.state_plugins.trace_additions), 274

get() (angr.analyses.stack_pointer_tracker.StackPointerTrackerState
method), 820

get() (angr.knowledge_plugins.functions.function_manager.FunctionDict
method), 550

get() (angr.knowledge_plugins.key_definitions.environment.Environment
method), 591

Index 975

angr

get() (angr.knowledge_plugins.labels.Labels method),
549

get() (angr.procedures.definitions.SimCppLibrary
method), 479

get() (angr.procedures.definitions.SimLibrary method),
477

get() (angr.procedures.definitions.SimSyscallLibrary
method), 481

get() (angr.SimMount method), 203
get() (angr.state_plugins.filesystem.SimConcreteFilesystem

method), 252
get() (angr.state_plugins.filesystem.SimFilesystem

method), 250
get() (angr.state_plugins.filesystem.SimMount method),

251
get() (angr.state_plugins.globals.SimStateGlobals

method), 279
get() (angr.state_plugins.posix.PosixDevFS method),

240
get() (angr.state_plugins.posix.PosixProcFS method),

242
get() (angr.state_plugins.view.SimRegNameView

method), 310
get() (angr.utils.mp.Initializer class method), 895
get_abstract_locations()

(angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin
method), 371

get_addr() (angr.annocfg.AnnotatedCFG method), 874
get_addr_of_native_method()

(angr.simos.javavm.SimJavaVM method),
884

get_all_definitions() (in module
angr.analyses.reaching_definitions), 791

get_all_nodes() (angr.analyses.cfg.cfg_base.CFGBase
method), 647

get_all_nodes() (angr.analyses.vfg.VFG method), 846
get_all_nodes() (angr.analyses.vsa_ddg.VSA_DDG

method), 847
get_all_nodes() (angr.knowledge_plugins.cfg.cfg_model.CFGModel

method), 538
get_all_nodes() (angr.knowledge_plugins.cfg.CFGModel

method), 531
get_all_nodes_intersecting_region()

(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 538

get_all_nodes_intersecting_region()
(angr.knowledge_plugins.cfg.CFGModel
method), 531

get_all_patches() (angr.knowledge_plugins.patches.PatchManager
method), 522

get_all_predecessors()
(angr.analyses.cfg.cfg_base.CFGBase
method), 647

get_all_predecessors()

(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 540

get_all_predecessors()
(angr.knowledge_plugins.cfg.CFGModel
method), 533

get_all_successors()
(angr.analyses.cfg.cfg_base.CFGBase
method), 647

get_all_successors()
(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 540

get_all_successors()
(angr.knowledge_plugins.cfg.CFGModel
method), 534

get_all_variables()
(angr.keyed_region.KeyedRegion method),
616

get_alloc_depth() (angr.state_plugins.uc_manager.SimUCManager
method), 280

get_any_node() (angr.analyses.cfg.cfg_base.CFGBase
method), 647

get_any_node() (angr.analyses.vfg.VFG method), 845
get_any_node() (angr.knowledge_plugins.cfg.cfg_model.CFGModel

method), 537
get_any_node() (angr.knowledge_plugins.cfg.CFGModel

method), 531
get_arg_info() (angr.calling_conventions.SimCC

method), 491
get_arg_info() (angr.SimCC method), 188
get_args() (angr.calling_conventions.SimCC method),

489
get_args() (angr.SimCC method), 187
get_ast_subexprs() (in module

angr.analyses.decompiler.utils), 744
get_base_addr() (angr.keyed_region.KeyedRegion

method), 616
get_basic_info() (in module angr.flirt.build_sig), 885
get_behavior_for_opcode()

(angr.engines.pcode.behavior.BehaviorFactory
method), 464

get_block() (angr.knowledge_plugins.functions.function.Function
method), 554

get_block_size() (angr.knowledge_plugins.functions.function.Function
method), 554

get_branching_nodes()
(angr.analyses.cfg.cfg_base.CFGBase
method), 648

get_branching_nodes()
(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 540

get_branching_nodes()
(angr.knowledge_plugins.cfg.CFGModel
method), 534

get_by_addr() (angr.knowledge_plugins.functions.function_manager.FunctionManager

976 Index

angr

method), 551
get_by_name() (angr.knowledge_plugins.functions.function_manager.FunctionManager

method), 551
get_byte() (angr.state_plugins.trace_additions.ChallRespInfo

static method), 276
get_call_args() (angr.analyses.identifier.identify.Identifier

method), 838
get_call_return() (angr.knowledge_plugins.functions.function.Function

method), 557
get_call_sites() (angr.knowledge_plugins.functions.function.Function

method), 557
get_call_stack_suffix()

(angr.analyses.cfg.cfg_job_base.CFGJobBase
method), 658

get_call_target() (angr.knowledge_plugins.functions.function.Function
method), 557

get_cc() (angr.knowledge_plugins.callsite_prototypes.CallsitePrototypes
method), 523

get_class() (angr.state_plugins.javavm_classloader.SimJavaVmClassloader
method), 294

get_class_hierarchy()
(angr.state_plugins.javavm_classloader.SimJavaVmClassloader
method), 294

get_cmd_line_args() (angr.simos.javavm.SimJavaVM
static method), 884

get_concrete_fd() (angr.state_plugins.posix.SimSystemPosix
method), 246

get_concrete_state()
(angr.analyses.variable_recovery.variable_recovery.VariableRecoveryState
method), 827

get_concrete_value()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 765

get_concrete_value()
(angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 814

get_concrete_value()
(angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 784

get_concrete_value()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 600

get_concrete_value()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 579

get_concrete_value_from_atom()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 765

get_concrete_value_from_atom()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 599

get_concrete_value_from_atom()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 579

get_concrete_value_from_definition()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 764

get_concrete_value_from_definition()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 599

get_concrete_value_from_definition()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 579

get_cpp_function_name() (in module
angr.utils.library), 894

get_data_dep() (angr.analyses.data_dep.data_dependency_analysis.DataDependencyGraphAnalysis
method), 868

get_data_references()
(angr.knowledge_plugins.cfg.cfg_node.CFGNode
method), 545

get_data_references()
(angr.knowledge_plugins.cfg.CFGNode
method), 526

get_data_size() (angr.PTChunk method), 209
get_data_size() (angr.state_plugins.heap.heap_freelist.Chunk

method), 300
get_data_size() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 302
get_dbinfo() (angr.angrdb.db.AngrDB method), 676
get_default_optimization_passes() (in module

angr.analyses.decompiler.optimization_passes),
703

get_default_value_by_type()
(angr.simos.javavm.SimJavaVM static method),
883

get_definitions() (angr.analyses.reaching_definitions.LiveDefinitions
method), 763

get_definitions() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 814

get_definitions() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 784

get_definitions() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 598

get_definitions() (angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 577

get_definitions_from_atoms()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 764

get_definitions_from_atoms()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 599

get_definitions_from_atoms()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 578

get_defs() (angr.analyses.reaching_definitions.ReachingDefinitionsModel
method), 777

get_defs() (angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel
method), 603

Index 977

angr

get_defs() (angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel
method), 572

get_dependants() (angr.analyses.cdg.CDG method),
674

get_element() (angr.analyses.decompiler.structured_codegen.base.PositionMapping
method), 725

get_exit_livedefinitions() (in module
angr.analyses.reaching_definitions.function_handler),
800

get_exit_stmt_idx()
(angr.analyses.cfg.cfg_base.CFGBase
method), 648

get_exit_stmt_idx()
(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 540

get_exit_stmt_idx()
(angr.knowledge_plugins.cfg.CFGModel
method), 534

get_expr_depth() (angr.state_plugins.trace_additions.ZenPlugin
method), 276

get_fd() (angr.state_plugins.posix.SimSystemPosix
method), 246

get_flag_bytes() (angr.state_plugins.trace_additions.ZenPlugin
method), 277

get_flag_rand_args()
(angr.state_plugins.trace_additions.ZenPlugin
static method), 276

get_footprint() (angr.calling_conventions.SimArrayArg
method), 486

get_footprint() (angr.calling_conventions.SimComboArg
method), 486

get_footprint() (angr.calling_conventions.SimFunctionArgument
method), 484

get_footprint() (angr.calling_conventions.SimReferenceArgument
method), 487

get_footprint() (angr.calling_conventions.SimRegArg
method), 485

get_footprint() (angr.calling_conventions.SimStackArg
method), 485

get_footprint() (angr.calling_conventions.SimStructArg
method), 486

get_func_addr_from_addr()
(angr.knowledge_plugins.sync.sync_controller.SyncController
method), 610

get_func_info() (angr.analyses.identifier.identify.Identifier
method), 838

get_function_diff() (angr.analyses.bindiff.BinDiff
method), 633

get_function_manager()
(angr.knowledge_plugins.variables.variable_manager.VariableManager
method), 568

get_function_name() (in module angr.utils.library),
893

get_function_subgraph()

(angr.analyses.cfg.cfg_emulated.CFGEmulated
method), 645

get_global_variables()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 565

get_guardians() (angr.analyses.cdg.CDG method),
674

get_heap_definitions()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 764

get_heap_definitions()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 599

get_heap_definitions()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 578

get_heap_offset() (angr.analyses.reaching_definitions.LiveDefinitions
static method), 767

get_heap_offset() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
static method), 810

get_heap_offset() (angr.analyses.reaching_definitions.ReachingDefinitionsState
static method), 780

get_heap_offset() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
static method), 602

get_heap_offset() (angr.knowledge_plugins.key_definitions.LiveDefinitions
static method), 581

get_implementers() (angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

get_info() (angr.angrdb.db.AngrDB static method),
676

get_intersecting_functions()
(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 541

get_intersecting_functions()
(angr.knowledge_plugins.cfg.CFGModel
method), 535

get_irsb_at() (angr.analyses.datagraph_meta.DataGraphMeta
method), 674

get_knowledge() (angr.knowledge_base.knowledge_base.KnowledgeBase
method), 521

get_knowledge() (angr.KnowledgeBase method), 211
get_last_statement()

(angr.analyses.decompiler.condition_processor.ConditionProcessor
class method), 697

get_last_statement_index()
(angr.annocfg.AnnotatedCFG method), 874

get_last_statements()
(angr.analyses.decompiler.condition_processor.ConditionProcessor
class method), 698

get_loop_back_edges()
(angr.analyses.cfg.cfg_base.CFGBase
method), 648

get_loops() (angr.annocfg.AnnotatedCFG method),
874

978 Index

angr

get_max_sinkhole() (angr.state_plugins.cgc.SimStateCGC
method), 273

get_memory_definitions()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 764

get_memory_definitions()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 599

get_memory_definitions()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 578

get_method_native_type()
(angr.simos.javavm.SimJavaVM method),
884

get_model() (angr.knowledge_plugins.key_definitions.key_definition_manager.KeyDefinitionManager
method), 593

get_model() (angr.knowledge_plugins.key_definitions.KeyDefinitionManager
method), 573

get_most_accurate()
(angr.knowledge_plugins.cfg.cfg_manager.CFGManager
method), 544

get_most_accurate()
(angr.knowledge_plugins.cfg.CFGManager
method), 536

get_mountpoint() (angr.state_plugins.filesystem.SimFilesystem
method), 250

get_native_cc() (angr.simos.javavm.SimJavaVM
method), 884

get_native_type() (angr.simos.javavm.SimJavaVM
method), 884

get_nearest_pos() (angr.analyses.decompiler.structured_codegen.base.InstructionMapping
method), 725

get_new_uuid() (angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin
static method), 376

get_node() (angr.analyses.cfg.cfg_base.CFGBase
method), 647

get_node() (angr.analyses.decompiler.structured_codegen.base.PositionMapping
method), 724

get_node() (angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 537

get_node() (angr.knowledge_plugins.cfg.CFGModel
method), 530

get_node() (angr.knowledge_plugins.functions.function.Function
method), 555

get_normalized_block()
(angr.analyses.bindiff.FunctionDiff static
method), 631

get_objects_by_offset()
(angr.keyed_region.KeyedRegion method),
616

get_observation_by_exit()
(angr.analyses.reaching_definitions.ReachingDefinitionsModel
method), 777

get_observation_by_exit()

(angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel
method), 604

get_observation_by_exit()
(angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel
method), 573

get_observation_by_insn()
(angr.analyses.reaching_definitions.ReachingDefinitionsModel
method), 777

get_observation_by_insn()
(angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel
method), 604

get_observation_by_insn()
(angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel
method), 572

get_observation_by_node()
(angr.analyses.reaching_definitions.ReachingDefinitionsModel
method), 777

get_observation_by_node()
(angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel
method), 604

get_observation_by_node()
(angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel
method), 572

get_observation_by_stmt()
(angr.analyses.reaching_definitions.ReachingDefinitionsModel
method), 777

get_observation_by_stmt()
(angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel
method), 604

get_observation_by_stmt()
(angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel
method), 573

get_one_value() (angr.analyses.reaching_definitions.LiveDefinitions
method), 765

get_one_value() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 814

get_one_value() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 784

get_one_value() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 600

get_one_value() (angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 579

get_one_value_from_atom()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 764

get_one_value_from_atom()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 599

get_one_value_from_atom()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 579

get_one_value_from_definition()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 764

Index 979

angr

get_one_value_from_definition()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 599

get_one_value_from_definition()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 579

get_optimization_passes() (in module
angr.analyses.decompiler.optimization_passes),
703

get_patch() (angr.knowledge_plugins.patches.PatchManager
method), 522

get_phi_subvariables()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 566

get_phi_variables()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 566

get_plugin() (angr.knowledge_base.knowledge_base.KnowledgeBase
method), 521

get_plugin() (angr.KnowledgeBase method), 211
get_plugin() (angr.misc.plugins.PluginHub method),

223
get_plugin() (angr.sim_state.SimState method), 226
get_plugin() (angr.SimState method), 182
get_possible_len() (angr.state_plugins.trace_additions.ChallRespInfo

method), 276
get_post_dominators() (angr.analyses.cdg.CDG

method), 674
get_predecessors() (angr.analyses.cfg.cfg_base.CFGBase

method), 647
get_predecessors() (angr.analyses.ddg.DDG

method), 750
get_predecessors() (angr.analyses.vsa_ddg.VSA_DDG

method), 846
get_predecessors() (angr.knowledge_plugins.cfg.cfg_model.CFGModel

method), 538
get_predecessors() (angr.knowledge_plugins.cfg.CFGModel

method), 532
get_predecessors_and_jumpkind()

(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 540

get_predecessors_and_jumpkind()
(angr.knowledge_plugins.cfg.CFGModel
method), 533

get_predecessors_and_jumpkinds()
(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 539

get_predecessors_and_jumpkinds()
(angr.knowledge_plugins.cfg.CFGModel
method), 533

get_prototype() (angr.knowledge_plugins.callsite_prototypes.CallsitePrototypes
method), 523

get_prototype() (angr.procedures.definitions.SimCppLibrary
method), 479

get_prototype() (angr.procedures.definitions.SimLibrary
method), 478

get_prototype() (angr.procedures.definitions.SimSyscallLibrary
method), 482

get_prototype_type()
(angr.knowledge_plugins.callsite_prototypes.CallsitePrototypes
method), 523

get_reaching_definitions()
(angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis
method), 795

get_reaching_definitions()
(angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis
method), 774

get_reaching_definitions_by_insn()
(angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis
method), 795

get_reaching_definitions_by_insn()
(angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis
method), 774

get_reaching_definitions_by_node()
(angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis
method), 795

get_reaching_definitions_by_node()
(angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis
method), 774

get_real_len() (angr.state_plugins.trace_additions.ChallRespInfo
method), 276

get_recent_bbl_addrs()
(angr.state_plugins.unicorn_engine.Unicorn
method), 290

get_recent_n() (angr.exploration_techniques.spiller.PickledStatesDb
method), 411

get_ref() (angr.state_hierarchy.StateHierarchy
method), 389

get_ref() (angr.StateHierarchy method), 180
get_reg_name() (angr.analyses.identifier.identify.Identifier

static method), 838
get_register_definitions()

(angr.analyses.reaching_definitions.LiveDefinitions
method), 763

get_register_definitions()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 598

get_register_definitions()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 578

get_regs() (angr.state_plugins.unicorn_engine.Unicorn
method), 290

get_run() (angr.annocfg.AnnotatedCFG method), 874
get_same_length_constraints()

(angr.state_plugins.trace_additions.ChallRespInfo
method), 276

get_segment_register_name()
(angr.simos.linux.SimLinux method), 880

980 Index

angr

get_segment_register_name()
(angr.simos.windows.SimWindows method),
882

get_size() (angr.PTChunk method), 209
get_size() (angr.state_plugins.heap.heap_freelist.Chunk

method), 300
get_size() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 302
get_sp() (angr.analyses.reaching_definitions.LiveDefinitions

method), 762
get_sp() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

method), 811
get_sp() (angr.analyses.reaching_definitions.ReachingDefinitionsState

method), 781
get_sp() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

method), 597
get_sp() (angr.knowledge_plugins.key_definitions.LiveDefinitions

method), 576
get_sp_offset() (angr.analyses.reaching_definitions.LiveDefinitions

method), 762
get_sp_offset() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

method), 597
get_sp_offset() (angr.knowledge_plugins.key_definitions.LiveDefinitions

method), 576
get_stack_address()

(angr.analyses.reaching_definitions.LiveDefinitions
method), 762

get_stack_address()
(angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 811

get_stack_address()
(angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 781

get_stack_address()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 597

get_stack_address()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 576

get_stack_definitions()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 764

get_stack_definitions()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 599

get_stack_definitions()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 578

get_stack_offset() (angr.analyses.reaching_definitions.LiveDefinitions
static method), 761

get_stack_offset() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 810

get_stack_offset() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 780

get_stack_offset() (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
method), 824

get_stack_offset() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
static method), 596

get_stack_offset() (angr.knowledge_plugins.key_definitions.LiveDefinitions
static method), 575

get_stack_values() (angr.analyses.reaching_definitions.LiveDefinitions
method), 764

get_stack_values() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 599

get_stack_values() (angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 578

get_stdin_indices()
(angr.state_plugins.trace_additions.ChallRespInfo
method), 276

get_stdout_indices()
(angr.state_plugins.trace_additions.ChallRespInfo
method), 276

get_stop_details() (angr.state_plugins.unicorn_engine.Unicorn
method), 290

get_stop_msg() (angr.state_plugins.unicorn_engine.STOP
static method), 287

get_structurer_option() (in module
angr.analyses.decompiler.decompilation_options),
699

get_stub() (angr.procedures.definitions.SimCppLibrary
method), 479

get_stub() (angr.procedures.definitions.SimLibrary
method), 477

get_stub() (angr.procedures.definitions.SimSyscallLibrary
method), 482

get_sub_classes() (angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

get_sub_classes_including()
(angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

get_sub_interfaces()
(angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

get_sub_interfaces_including()
(angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

get_subgraph() (angr.analyses.cfg.cfg_emulated.CFGEmulated
method), 645

get_successors() (angr.analyses.cfg.cfg_base.CFGBase
method), 647

get_successors() (angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 538

get_successors() (angr.knowledge_plugins.cfg.CFGModel
method), 532

get_successors_and_jumpkind()
(angr.analyses.cfg.cfg_base.CFGBase
method), 647

get_successors_and_jumpkind()

Index 981

angr

(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 539

get_successors_and_jumpkind()
(angr.knowledge_plugins.cfg.CFGModel
method), 533

get_successors_and_jumpkinds()
(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 539

get_successors_and_jumpkinds()
(angr.knowledge_plugins.cfg.CFGModel
method), 532

get_super_classes()
(angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

get_super_classes_including()
(angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

get_superclass() (angr.state_plugins.javavm_classloader.SimJavaVmClassloader
method), 294

get_symbolic_addrs()
(angr.storage.memory_mixins.convenient_mappings_mixin.ConvenientMappingsMixin
method), 348

get_targets() (angr.annocfg.AnnotatedCFG method),
874

get_tmp_definitions()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 763

get_tmp_definitions()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 598

get_tmp_definitions()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 577

get_topological_order()
(angr.analyses.cfg.cfg_emulated.CFGEmulated
method), 645

get_type() (angr.state_plugins.trace_additions.FormatInfo
method), 274

get_type() (angr.state_plugins.trace_additions.FormatInfoDontConstrain
method), 274

get_type() (angr.state_plugins.trace_additions.FormatInfoIntToStr
method), 274

get_type() (angr.state_plugins.trace_additions.FormatInfoStrToInt
method), 274

get_type_variable()
(angr.analyses.typehoon.typevars.TypeVariables
method), 833

get_unambiguous_name()
(angr.knowledge_plugins.functions.function.Function
method), 559

get_unconstrained_simprocedure()
(angr.engines.soot.engine.SootMixin method),
432

get_unified_local_vars()

(angr.analyses.decompiler.structured_codegen.c.CFunction
method), 727

get_unified_variables()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 565

get_unique_label() (angr.knowledge_plugins.labels.Labels
method), 550

get_unique_strings() (in module
angr.flirt.build_sig), 886

get_unique_symbol_name()
(angr.analyses.reassembler.SymbolManager
method), 854

get_uses() (angr.knowledge_plugins.key_definitions.Uses
method), 582

get_uses() (angr.knowledge_plugins.key_definitions.uses.Uses
method), 607

get_uses_by_insaddr()
(angr.knowledge_plugins.key_definitions.Uses
method), 583

get_uses_by_insaddr()
(angr.knowledge_plugins.key_definitions.uses.Uses
method), 607

get_uses_by_location()
(angr.knowledge_plugins.key_definitions.Uses
method), 583

get_uses_by_location()
(angr.knowledge_plugins.key_definitions.uses.Uses
method), 607

get_uses_with_expr()
(angr.knowledge_plugins.key_definitions.Uses
method), 582

get_uses_with_expr()
(angr.knowledge_plugins.key_definitions.uses.Uses
method), 607

get_value() (angr.calling_conventions.SimArrayArg
method), 486

get_value() (angr.calling_conventions.SimComboArg
method), 486

get_value() (angr.calling_conventions.SimFunctionArgument
method), 484

get_value() (angr.calling_conventions.SimLyingRegArg
method), 491

get_value() (angr.calling_conventions.SimReferenceArgument
method), 487

get_value() (angr.calling_conventions.SimRegArg
method), 485

get_value() (angr.calling_conventions.SimStackArg
method), 485

get_value() (angr.calling_conventions.SimStructArg
method), 486

get_value_from_atom()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 764

get_value_from_atom()

982 Index

angr

(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 599

get_value_from_atom()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 579

get_value_from_definition()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 764

get_value_from_definition()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 599

get_value_from_definition()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 578

get_values() (angr.analyses.reaching_definitions.LiveDefinitions
method), 765

get_values() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 814

get_values() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 784

get_values() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 599

get_values() (angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 579

get_variable() (angr.analyses.decompiler.optimization_passes.engine_base.SimplifierAILState
method), 710

get_variable() (angr.state_plugins.debug_variables.SimDebugVariablePlugin
method), 309

get_variable_accesses()
(angr.knowledge_plugins.variables.variable_manager.VariableManager
method), 568

get_variable_accesses()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 565

get_variable_definitions()
(angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryBase
method), 822

get_variable_definitions()
(angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
method), 824

get_variable_type()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 567

get_variables() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 565

get_variables() (angr.state_plugins.solver.SimSolver
method), 255

get_variables_by_offset()
(angr.keyed_region.KeyedRegion method),
616

get_variables_without_writes()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 566

get_whitelisted_statements()

(angr.annocfg.AnnotatedCFG method), 874
get_xrefs_by_dst() (angr.knowledge_plugins.xrefs.xref_manager.XRefManager

method), 612
get_xrefs_by_dst_region()

(angr.knowledge_plugins.xrefs.xref_manager.XRefManager
method), 612

get_xrefs_by_ins_addr()
(angr.knowledge_plugins.xrefs.xref_manager.XRefManager
method), 612

get_xrefs_by_ins_addr_region()
(angr.knowledge_plugins.xrefs.xref_manager.XRefManager
method), 612

getpiece() (angr.analyses.disassembly.DisassemblyPiece
method), 848

getstate() (angr.calling_conventions.ArgSession
method), 487

getstate() (angr.calling_conventions.SerializableCounter
method), 484

getstate() (angr.calling_conventions.SerializableIterator
method), 484

getstate() (angr.calling_conventions.SerializableListIterator
method), 484

getstate() (angr.calling_conventions.SimCC.ArgSession
method), 489

getstate() (angr.calling_conventions.UsercallArgSession
method), 487

getstate() (angr.SimCC.ArgSession method), 186
give_up_on_memory_tracking()

(angr.analyses.stack_pointer_tracker.StackPointerTrackerState
method), 820

global_addr (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate
attribute), 590

GlobalDescriptorTable (class in angr.simos.simos),
878

GotoSimplifier (class in
angr.analyses.decompiler.region_simplifiers.goto),
719

GOTPLTEntry (angr.knowledge_plugins.cfg.memory_data.MemoryDataSort
attribute), 542

GOTPLTEntry (angr.knowledge_plugins.cfg.MemoryDataSort
attribute), 524

gp (angr.analyses.cfg.cfg_fast.CFGJob attribute), 653
gp_register_read_hook()

(angr.analyses.cfg.indirect_jump_resolvers.jumptable.MIPSGPHook
method), 666

gp_register_write_hook()
(angr.analyses.cfg.indirect_jump_resolvers.jumptable.MIPSGPHook
method), 666

graph (angr.analyses.cdg.CDG property), 674
graph (angr.analyses.cfg.cfg_base.CFGBase property),

648
graph (angr.analyses.cfg.cfg_emulated.CFGEmulated

property), 645
graph (angr.analyses.cfg.cfg_fast.CFGFast property),

Index 983

angr

656
graph (angr.analyses.data_dep.data_dependency_analysis.DataDependencyGraphAnalysis

property), 868
graph (angr.analyses.ddg.DDG property), 750
graph (angr.analyses.decompiler.graph_region.GraphRegion

attribute), 702
graph (angr.analyses.forward_analysis.forward_analysis.ForwardAnalysis

property), 622
graph (angr.analyses.reaching_definitions.dep_graph.DepGraph

property), 797
graph (angr.knowledge_plugins.cfg.cfg_model.CFGModel

attribute), 536
graph (angr.knowledge_plugins.cfg.CFGModel at-

tribute), 530
graph (angr.knowledge_plugins.functions.function.Function

property), 557
graph_ex() (angr.knowledge_plugins.functions.function.Function

method), 557
graph_with_successors

(angr.analyses.decompiler.graph_region.GraphRegion
attribute), 702

GraphChangedNotification, 691
GraphRegion (class in

angr.analyses.decompiler.graph_region),
701

GraphUtils (class in angr.utils.graph), 890
GraphVisitor (class in

angr.analyses.forward_analysis.visitors.graph),
624

GT (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.CmpOp
attribute), 720

GUARD (angr.analyses.reaching_definitions.AtomKind at-
tribute), 768

guard (angr.errors.SimError attribute), 898
GUARD (angr.knowledge_plugins.key_definitions.atoms.AtomKind

attribute), 585
GuardUse (class in angr.analyses.reaching_definitions),

771
GuardUse (class in angr.knowledge_plugins.key_definitions.atoms),

587
guess_prototype() (angr.calling_conventions.SimCC

static method), 489
guess_prototype() (angr.calling_conventions.SimCCSoot

static method), 501
guess_prototype() (angr.SimCC static method), 186
guess_value_type() (in module

angr.analyses.decompiler.structured_codegen.c),
726

guessed_cc (angr.analyses.reaching_definitions.function_handler.FunctionCallData
attribute), 803

guessed_cc (angr.analyses.reaching_definitions.FunctionCallData
attribute), 789

guessed_prototype (angr.analyses.reaching_definitions.function_handler.FunctionCallData
attribute), 803

guessed_prototype (angr.analyses.reaching_definitions.FunctionCallData
attribute), 789

H
handle() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker

class method), 741
handle_CAssignment()

(angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_CAssignment()
(angr.analyses.decompiler.structured_codegen.c.MakeTypecastsImplicit
class method), 742

handle_CBinaryOp() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 742

handle_CBinaryOp() (angr.analyses.decompiler.structured_codegen.c.MakeTypecastsImplicit
class method), 742

handle_CBinaryOp() (angr.analyses.decompiler.structured_codegen.c.PointerArithmeticFixer
class method), 743

handle_CDoWhileLoop()
(angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_CForLoop() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_CFunction() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_CFunctionCall()
(angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_CFunctionCall()
(angr.analyses.decompiler.structured_codegen.c.MakeTypecastsImplicit
class method), 742

handle_CGoto() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_CIfBreak() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_CIfElse() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_CIndexedVariable()
(angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 742

handle_CITE() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 742

handle_CReturn() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_CReturn() (angr.analyses.decompiler.structured_codegen.c.MakeTypecastsImplicit
class method), 742

handle_CStatements()
(angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_CSwitchCase()
(angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_CTypeCast() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 742

984 Index

angr

handle_CTypeCast() (angr.analyses.decompiler.structured_codegen.c.FieldReferenceCleanup
class method), 742

handle_CTypeCast() (angr.analyses.decompiler.structured_codegen.c.MakeTypecastsImplicit
class method), 742

handle_CUnaryOp() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 742

handle_CVariableField()
(angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 742

handle_CWhileLoop()
(angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_default() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeWalker
class method), 741

handle_exception() (angr.SimOS method), 169
handle_exception() (angr.simos.simos.SimOS

method), 878
handle_exception() (angr.simos.windows.SimWindows

method), 882
handle_external_function()

(angr.analyses.reaching_definitions.function_handler.FunctionHandler
method), 806

handle_external_function()
(angr.analyses.reaching_definitions.FunctionHandler
method), 786

handle_function() (angr.analyses.reaching_definitions.function_handler.FunctionHandler
method), 805

handle_function() (angr.analyses.reaching_definitions.FunctionHandler
method), 786

handle_generic_function()
(angr.analyses.reaching_definitions.function_handler.FunctionHandler
method), 806

handle_generic_function()
(angr.analyses.reaching_definitions.FunctionHandler
method), 786

handle_indirect_function()
(angr.analyses.reaching_definitions.function_handler.FunctionHandler
method), 806

handle_indirect_function()
(angr.analyses.reaching_definitions.FunctionHandler
method), 786

handle_local_function()
(angr.analyses.find_objects_static.NewFunctionHandler
method), 847

handle_local_function()
(angr.analyses.reaching_definitions.function_handler.FunctionHandler
method), 806

handle_local_function()
(angr.analyses.reaching_definitions.FunctionHandler
method), 786

handle_pcode_block()
(angr.engines.pcode.emulate.PcodeEmulatorMixin
method), 444

hardcopy (angr.state_plugins.history.TreeIter property),

270
HAS_BITSHIFTS (angr.analyses.code_tagging.CodeTags

attribute), 675
has_bitshifts() (angr.analyses.code_tagging.CodeTagging

method), 675
has_blocks (angr.analyses.cfg.segment_list.SegmentList

property), 674
has_clobbered() (angr.analyses.reaching_definitions.function_handler.FunctionCallData

method), 803
has_clobbered() (angr.analyses.reaching_definitions.FunctionCallData

method), 789
has_default_value (angr.sim_state_options.StateOption

property), 228
has_function_manager()

(angr.knowledge_plugins.variables.variable_manager.VariableManager
method), 568

has_implementation()
(angr.procedures.definitions.SimCppLibrary
method), 479

has_implementation()
(angr.procedures.definitions.SimLibrary
method), 478

has_implementation()
(angr.procedures.definitions.SimSyscallLibrary
method), 482

has_job() (angr.analyses.forward_analysis.forward_analysis.ForwardAnalysis
method), 622

has_load (angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionUseFinder
attribute), 718

has_memory_dep (angr.state_plugins.unicorn_engine.VEXStmtDetails
attribute), 285

has_metadata() (angr.procedures.definitions.SimCppLibrary
method), 479

has_metadata() (angr.procedures.definitions.SimLibrary
method), 478

has_metadata() (angr.procedures.definitions.SimSyscallLibrary
method), 482

has_model() (angr.knowledge_plugins.key_definitions.key_definition_manager.KeyDefinitionManager
method), 593

has_model() (angr.knowledge_plugins.key_definitions.KeyDefinitionManager
method), 573

has_nonlabel_statements() (in module
angr.analyses.decompiler.utils), 744

has_plugin() (angr.knowledge_base.knowledge_base.KnowledgeBase
method), 521

has_plugin() (angr.KnowledgeBase method), 211
has_plugin() (angr.misc.plugins.PluginHub method),

223
has_plugin() (angr.sim_state.SimState method), 226
has_plugin() (angr.SimState method), 182
has_plugin_preset (angr.misc.plugins.PluginHub

property), 223
has_prototype() (angr.knowledge_plugins.callsite_prototypes.CallsitePrototypes

method), 523

Index 985

angr

has_prototype() (angr.procedures.definitions.SimCppLibrary
method), 480

has_prototype() (angr.procedures.definitions.SimLibrary
method), 478

has_prototype() (angr.procedures.definitions.SimSyscallLibrary
method), 482

has_remote (angr.knowledge_plugins.sync.sync_controller.SyncController
property), 609

has_return (angr.knowledge_plugins.cfg.cfg_node.CFGNode
attribute), 545

has_return (angr.knowledge_plugins.cfg.CFGNode at-
tribute), 526

has_return (angr.knowledge_plugins.functions.function.Function
property), 559

HAS_SQL (angr.analyses.code_tagging.CodeTags at-
tribute), 675

has_sql() (angr.analyses.code_tagging.CodeTagging
method), 675

has_statements (angr.engines.pcode.lifter.IRSB prop-
erty), 438

has_store() (angr.analyses.decompiler.region_simplifiers.expr_folding.StoreStatementFinder
method), 719

has_super_class() (angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

has_symbolic_exit (angr.state_plugins.unicorn_engine.BlockDetails
attribute), 285

has_tmpexpr() (angr.analyses.propagator.engine_ail.SimEnginePropagatorAIL
static method), 757

has_type_variable_for()
(angr.analyses.typehoon.typevars.TypeVariables
method), 833

has_unresolved_calls
(angr.knowledge_plugins.functions.function.Function
property), 555

has_unresolved_jumps
(angr.knowledge_plugins.functions.function.Function
property), 555

HAS_XOR (angr.analyses.code_tagging.CodeTags at-
tribute), 675

has_xor() (angr.analyses.code_tagging.CodeTagging
method), 675

HasCallExprWalker (class in
angr.analyses.decompiler.block_simplifier),
693

HasCallNotification, 692
HasField (class in angr.analyses.typehoon.typevars),

834
HasNext (angr.analyses.loop_analysis.VariableTypes at-

tribute), 839
head (angr.analyses.decompiler.graph_region.GraphRegion

attribute), 702
head (angr.analyses.decompiler.structuring.structurer_nodes.IncompleteSwitchCaseNode

attribute), 690
heap (angr.analyses.reaching_definitions.LiveDefinitions

attribute), 760
heap (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

property), 811
heap (angr.analyses.reaching_definitions.ReachingDefinitionsState

property), 781
heap (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 595
heap (angr.knowledge_plugins.key_definitions.LiveDefinitions

attribute), 574
heap_address() (angr.analyses.reaching_definitions.LiveDefinitions

method), 767
heap_address() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

method), 809
heap_address() (angr.analyses.reaching_definitions.ReachingDefinitionsState

method), 779
heap_address() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

method), 602
heap_address() (angr.knowledge_plugins.key_definitions.LiveDefinitions

method), 581
heap_allocator (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

attribute), 809
heap_allocator (angr.analyses.reaching_definitions.ReachingDefinitionsState

attribute), 779
heap_definitions (angr.analyses.reaching_definitions.LiveDefinitions

property), 760
heap_definitions (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

property), 595
heap_definitions (angr.knowledge_plugins.key_definitions.LiveDefinitions

property), 575
heap_offset (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate

attribute), 590
heap_uses (angr.analyses.reaching_definitions.LiveDefinitions

attribute), 760
heap_uses (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

property), 811
heap_uses (angr.analyses.reaching_definitions.ReachingDefinitionsState

property), 781
heap_uses (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 595
heap_uses (angr.knowledge_plugins.key_definitions.LiveDefinitions

attribute), 574
HeapAddress (class in

angr.knowledge_plugins.key_definitions.heap_address),
592

HeapAllocator (class in
angr.analyses.reaching_definitions.heap_allocator),
799

HeavyPcodeMixin (class in angr.engines.pcode.engine),
434

height() (angr.analyses.disassembly.Comment
method), 851

height() (angr.analyses.disassembly.DisassemblyPiece
method), 848

height() (angr.analyses.disassembly.FunctionStart

986 Index

angr

method), 849
hex_dump() (angr.storage.memory_mixins.hex_dumper_mixin.HexDumperMixin

method), 341
HexDumperMixin (class in

angr.storage.memory_mixins.hex_dumper_mixin),
341

highlight() (angr.analyses.disassembly.DisassemblyPiece
method), 848

history (angr.sim_state.SimState attribute), 225
history (angr.SimState attribute), 181
history_contains() (angr.state_hierarchy.StateHierarchy

method), 390
history_contains() (angr.StateHierarchy method),

180
history_predecessors()

(angr.state_hierarchy.StateHierarchy method),
390

history_predecessors() (angr.StateHierarchy
method), 180

history_successors()
(angr.state_hierarchy.StateHierarchy method),
389

history_successors() (angr.StateHierarchy method),
180

HistoryIter (class in angr.state_plugins.history), 270
HistoryTrackingMixin (class in

angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin),
360

Hook (class in angr.analyses.disassembly), 849
hook() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.PutHook

static method), 665
hook() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.RegisterInitializerHook

method), 666
hook() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.StoreHook

static method), 665
hook() (angr.analyses.find_objects_static.NewFunctionHandler

method), 847
hook() (angr.analyses.reaching_definitions.function_handler.FunctionHandler

method), 805
hook() (angr.analyses.reaching_definitions.FunctionHandler

method), 785
hook() (angr.Project method), 164
hook() (angr.project.Project method), 214
hook() (angr.state_plugins.unicorn_engine.Unicorn

method), 290
hook_add() (angr.state_plugins.unicorn_engine.Uniwrapper

method), 288
hook_after() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.LoadHook

method), 665
hook_before() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.LoadHook

method), 665
hook_del() (angr.state_plugins.unicorn_engine.Uniwrapper

method), 288
hook_reset() (angr.state_plugins.unicorn_engine.Uniwrapper

method), 288
hook_symbol() (angr.Project method), 165
hook_symbol() (angr.project.Project method), 215
hooked_by() (angr.Project method), 165
hooked_by() (angr.project.Project method), 214
HookNode (class in angr.codenode), 876
HooksMixin (class in angr.engines.hook), 430

I
id (angr.angrdb.models.DbCFGModel attribute), 678
id (angr.angrdb.models.DbComment attribute), 680
id (angr.angrdb.models.DbFunction attribute), 678
id (angr.angrdb.models.DbInformation attribute), 677
id (angr.angrdb.models.DbKnowledgeBase attribute),

677
id (angr.angrdb.models.DbLabel attribute), 680
id (angr.angrdb.models.DbObject attribute), 677
id (angr.angrdb.models.DbStructuredCode attribute),

679
id (angr.angrdb.models.DbVariableCollection attribute),

679
id (angr.angrdb.models.DbXRefs attribute), 679
id (angr.exploration_techniques.spiller_db.PickledState

attribute), 412
ident (angr.analyses.disassembly.DisassemblyPiece at-

tribute), 848
ident (angr.analyses.disassembly.OperandPiece at-

tribute), 851
ident (angr.angrdb.models.DbCFGModel attribute), 678
ident (angr.angrdb.models.DbVariableCollection

attribute), 679
ident (angr.knowledge_plugins.cfg.cfg_model.CFGModel

attribute), 536
ident (angr.knowledge_plugins.cfg.CFGModel at-

tribute), 529
ident (angr.sim_variable.SimVariable attribute), 503
identical_blocks (angr.analyses.bindiff.BinDiff prop-

erty), 632
identical_blocks (angr.analyses.bindiff.FunctionDiff

property), 631
identical_functions (angr.analyses.bindiff.BinDiff

property), 632
Identifier (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 619
Identifier (class in angr.analyses.identifier.identify),

838
identify_func() (angr.analyses.identifier.identify.Identifier

method), 838
idx (angr.analyses.decompiler.structuring.structurer_nodes.CodeNode

property), 687
idx (angr.analyses.decompiler.structuring.structurer_nodes.MultiNode

attribute), 686
idx (angr.analyses.typehoon.typevars.TypeVariable at-

tribute), 833

Index 987

angr

IfElseFlattener (class in
angr.analyses.decompiler.region_simplifiers.ifelse),
719

iffalse (angr.analyses.decompiler.structured_codegen.c.CITE
attribute), 738

IfSimplifier (class in
angr.analyses.decompiler.region_simplifiers.if_),
719

iftrue (angr.analyses.decompiler.structured_codegen.c.CITE
attribute), 738

IFUNC_HINTS (angr.analyses.cfg.cfg_fast.CFGJobType
attribute), 652

immediate_dominators()
(angr.analyses.cfg.cfg_emulated.CFGEmulated
method), 644

immediate_postdominators()
(angr.analyses.cfg.cfg_emulated.CFGEmulated
method), 644

import_binsync() (in module
angr.knowledge_plugins.sync.sync_controller),
608

ImportedLine (class in
angr.analyses.decompiler.structured_codegen.dwarf_import),
743

ImportSourceCode (class in
angr.analyses.decompiler.structured_codegen.dwarf_import),
743

inc_active_workers() (angr.distributed.server.Server
method), 902

inc_active_workers() (angr.Server method), 210
includes() (angr.keyed_region.RegionObject method),

614
includes() (angr.storage.memory_object.SimMemoryObject

method), 334
includes_function()

(angr.analyses.reaching_definitions.call_trace.CallTrace
method), 792

IncompleteSwitchCaseHeadStatement (class in
angr.analyses.decompiler.structuring.structurer_nodes),
690

IncompleteSwitchCaseNode (class in
angr.analyses.decompiler.structuring.structurer_nodes),
689

inconsistent (angr.analyses.stack_pointer_tracker.StackPointerTracker
property), 820

inconsistent_for() (angr.analyses.stack_pointer_tracker.StackPointerTracker
method), 820

indent_str() (angr.analyses.decompiler.structured_codegen.c.CConstruct
static method), 727

index (angr.utils.graph.ContainerNode attribute), 890
indirect_jumps (angr.analyses.cfg.cfg_fast.CFGFast

attribute), 657
indirect_jumps (angr.analyses.cfg.cfg_fast_soot.CFGFastSoot

attribute), 671

IndirectJump (class in angr.knowledge_plugins.cfg),
528

IndirectJump (class in
angr.knowledge_plugins.cfg.indirect_jump),
547

IndirectJumpResolver (class in
angr.analyses.cfg.indirect_jump_resolvers.resolver),
668

IndirectJumps (class in
angr.knowledge_plugins.indirect_jumps),
549

IndirectJumpType (class in
angr.knowledge_plugins.cfg), 529

IndirectJumpType (class in
angr.knowledge_plugins.cfg.indirect_jump),
547

info (angr.code_location.CodeLocation attribute), 613
info (angr.knowledge_plugins.functions.function.Function

attribute), 553
info (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 561
init_checker() (in module

angr.knowledge_plugins.sync.sync_controller),
608

init_class() (angr.state_plugins.javavm_classloader.SimJavaVmClassloader
method), 294

init_hierarchy() (angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

init_state() (angr.SimHeapPTMalloc method), 208
init_state() (angr.SimStatePlugin method), 163
init_state() (angr.state_plugins.heap.heap_base.SimHeapBase

method), 298
init_state() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

method), 306
init_state() (angr.state_plugins.history.SimStateHistory

method), 267
init_state() (angr.state_plugins.plugin.SimStatePlugin

method), 233
init_state() (angr.state_plugins.posix.SimSystemPosix

method), 245
init_state() (angr.state_plugins.symbolizer.SimSymbolizer

method), 307
init_static_field() (angr.simos.javavm.SimJavaVM

static method), 883
INITIAL_SP_32BIT (angr.analyses.reaching_definitions.LiveDefinitions

attribute), 760
INITIAL_SP_32BIT (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 594
INITIAL_SP_32BIT (angr.knowledge_plugins.key_definitions.LiveDefinitions

attribute), 574
INITIAL_SP_64BIT (angr.analyses.reaching_definitions.LiveDefinitions

attribute), 760
INITIAL_SP_64BIT (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 594

988 Index

angr

INITIAL_SP_64BIT (angr.knowledge_plugins.key_definitions.LiveDefinitions
attribute), 574

InitializationFinder (class in
angr.analyses.init_finder), 863

initialize() (angr.storage.pcap.PCAP method), 335
initialize() (angr.utils.mp.Initializer method), 895
initialize_dominance_frontiers()

(angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryBase
method), 822

initialize_gdt_x86() (angr.simos.linux.SimLinux
method), 880

initialize_gdt_x86()
(angr.simos.windows.SimWindows method),
882

initialize_segment_register_x64()
(angr.simos.linux.SimLinux method), 879

initialize_segment_register_x64()
(angr.simos.windows.SimWindows method),
882

initialize_variable_names()
(angr.knowledge_plugins.variables.variable_manager.VariableManager
method), 568

initialized_classes
(angr.state_plugins.javavm_classloader.SimJavaVmClassloader
property), 294

initializer (angr.analyses.decompiler.structured_codegen.c.CForLoop
attribute), 729

initializer (angr.analyses.decompiler.structuring.structurer_nodes.LoopNode
attribute), 688

Initializer (class in angr.utils.mp), 895
InitialValueTag (class in

angr.knowledge_plugins.key_definitions.tag),
606

inline_call() (angr.sim_procedure.SimProcedure
method), 472

inline_call() (angr.SimProcedure method), 160
inner_step() (angr.exploration_techniques.Threading

method), 397
inner_step() (angr.exploration_techniques.threading.Threading

method), 413
input_state (angr.knowledge_plugins.cfg.cfg_node.CFGENode

attribute), 547
input_state (angr.knowledge_plugins.cfg.CFGENode

attribute), 527
input_variables() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal

method), 566
ins_addr (angr.analyses.cfg.cfg_fast.FunctionEdge at-

tribute), 650
ins_addr (angr.analyses.decompiler.clinic.DataRefDesc

attribute), 695
ins_addr (angr.analyses.decompiler.structured_codegen.base.InstructionMappingElement

attribute), 725
ins_addr (angr.analyses.decompiler.structured_codegen.c.CLabel

attribute), 733

ins_addr (angr.code_location.CodeLocation attribute),
613

ins_addr (angr.errors.SimError attribute), 898
ins_addr (angr.knowledge_plugins.cfg.indirect_jump.IndirectJump

attribute), 548
ins_addr (angr.knowledge_plugins.cfg.IndirectJump at-

tribute), 529
ins_addr (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate

attribute), 589
ins_addr (angr.knowledge_plugins.xrefs.xref.XRef at-

tribute), 611
ins_addrs (angr.state_plugins.history.SimStateHistory

property), 270
insert() (angr.SimMount method), 203
insert() (angr.state_plugins.filesystem.SimConcreteFilesystem

method), 252
insert() (angr.state_plugins.filesystem.SimFilesystem

method), 250
insert() (angr.state_plugins.filesystem.SimMount

method), 251
insert() (angr.state_plugins.posix.PosixDevFS

method), 240
insert() (angr.state_plugins.posix.PosixProcFS

method), 242
insert_asm() (angr.analyses.reassembler.Reassembler

method), 859
insert_node() (angr.analyses.decompiler.structuring.structurer_nodes.SequenceNode

method), 686
insert_node() (in module

angr.analyses.decompiler.utils), 744
inserted_asm_after_label

(angr.analyses.reassembler.Reassembler
property), 858

inserted_asm_before_label
(angr.analyses.reassembler.Reassembler
property), 858

insn (angr.block.CapstoneInsn attribute), 220
insn_addr_to_memory_data

(angr.analyses.cfg.cfg_fast.CFGFast prop-
erty), 656

insn_addr_to_memory_data
(angr.knowledge_plugins.cfg.cfg_model.CFGModel
attribute), 536

insn_addr_to_memory_data
(angr.knowledge_plugins.cfg.CFGModel
attribute), 530

insn_observe() (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis
method), 795

insn_observe() (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis
method), 775

insn_op_idx (angr.knowledge_plugins.xrefs.xref.XRef
attribute), 611

insn_op_type (angr.knowledge_plugins.xrefs.xref.XRef
attribute), 611

Index 989

angr

insns (angr.block.DisassemblerBlock attribute), 220
insns (angr.engines.pcode.lifter.PcodeDisassemblerBlock

attribute), 435
inspect (angr.sim_state.SimState attribute), 225
inspect (angr.SimState attribute), 181
InspectMixinHigh (class in

angr.storage.memory_mixins.clouseau_mixin),
346

Instruction (class in angr.analyses.disassembly), 849
Instruction (class in angr.analyses.reassembler), 854
instruction_addresses

(angr.engines.pcode.lifter.IRSB property),
438

instruction_addresses()
(angr.analyses.reassembler.BasicBlock
method), 855

instruction_addresses()
(angr.analyses.reassembler.Procedure method),
856

instruction_addrs (angr.Block property), 170
instruction_addrs (angr.block.Block property), 221
instruction_addrs (angr.knowledge_plugins.cfg.cfg_node.CFGNode

attribute), 545
instruction_addrs (angr.knowledge_plugins.cfg.CFGNode

attribute), 526
instruction_size() (angr.knowledge_plugins.functions.function.Function

method), 558
InstructionError, 852
InstructionMapping (class in

angr.analyses.decompiler.structured_codegen.base),
725

InstructionMappingElement (class in
angr.analyses.decompiler.structured_codegen.base),
725

instructions (angr.analyses.reassembler.Reassembler
property), 857

instructions (angr.Block property), 170
instructions (angr.block.Block property), 221
instructions (angr.engines.pcode.lifter.IRSB prop-

erty), 438
Int (class in angr.analyses.typehoon.typeconsts), 836
Int1 (class in angr.analyses.typehoon.typeconsts), 836
Int128 (class in angr.analyses.typehoon.typeconsts), 836
Int16 (class in angr.analyses.typehoon.typeconsts), 836
int2base() (in module

angr.state_plugins.trace_additions), 274
Int32 (class in angr.analyses.typehoon.typeconsts), 836
Int64 (class in angr.analyses.typehoon.typeconsts), 836
Int8 (class in angr.analyses.typehoon.typeconsts), 836
int_args (angr.calling_conventions.SimCC property),

488
int_args (angr.SimCC property), 185
int_iter (angr.calling_conventions.ArgSession at-

tribute), 487

int_iter (angr.calling_conventions.SimCC.ArgSession
attribute), 488

int_iter (angr.SimCC.ArgSession attribute), 186
int_len_mod (angr.procedures.stubs.format_parser.FormatParser

attribute), 474
int_sign (angr.procedures.stubs.format_parser.FormatParser

attribute), 474
int_type() (in module

angr.analyses.typehoon.typeconsts), 837
Integer (angr.analyses.proximity_graph.ProxiNodeTypes

attribute), 865
Integer (angr.knowledge_plugins.cfg.memory_data.MemoryDataSort

attribute), 542
Integer (angr.knowledge_plugins.cfg.MemoryDataSort

attribute), 524
IntegerProxiNode (class in

angr.analyses.proximity_graph), 866
internal_objects (angr.keyed_region.RegionObject

property), 614
interpret() (angr.procedures.stubs.format_parser.FormatString

method), 473
intersection() (angr.state_plugins.sim_action_object.SimActionObject

method), 468
invalidate_direct_next()

(angr.engines.pcode.lifter.IRSB method),
438

inverted_idoms() (in module angr.utils.graph), 888
ip (angr.sim_state.SimState property), 225
ip (angr.SimState property), 182
IROp (class in angr.analyses.disassembly), 849
irsb (angr.analyses.disassembly.IROp attribute), 849
irsb (angr.engines.pcode.lifter.Lifter attribute), 440
irsb (angr.engines.pcode.lifter.PcodeLifter attribute),

442
irsb (angr.engines.UberEngine attribute), 427
irsb (angr.knowledge_plugins.cfg.cfg_node.CFGNode

attribute), 545
irsb (angr.knowledge_plugins.cfg.CFGNode attribute),

526
IRSB (class in angr.engines.pcode.lifter), 435
irsb_from_node() (angr.analyses.vfg.VFG method),

846
is_a_jump_target() (angr.analyses.decompiler.structuring.structurer_base.StructurerBase

static method), 691
is_alignment (angr.knowledge_plugins.functions.function.Function

attribute), 553
is_alignment (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 561
is_alignment_mask() (in module angr.utils.constants),

887
is_arm (angr.knowledge_plugins.cfg.cfg_model.CFGModel

attribute), 536
is_arm (angr.knowledge_plugins.cfg.CFGModel at-

tribute), 529

990 Index

angr

is_base (angr.engines.light.data.SpOffset attribute), 753
is_bool_expr() (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationExprBase

static method), 715
is_bounded() (angr.state_plugins.uc_manager.SimUCManager

method), 280
is_bytes (angr.storage.memory_object.SimMemoryObject

attribute), 334
is_class_initialized()

(angr.state_plugins.javavm_classloader.SimJavaVmClassloader
method), 294

is_concrete() (angr.analyses.init_finder.SimEngineInitFinderVEX
static method), 863

is_cross_referenced()
(angr.analyses.vtable.VtableFinder method),
847

is_default_name (angr.knowledge_plugins.functions.function.Function
attribute), 553

is_default_name (angr.knowledge_plugins.functions.soot_function.SootFunction
attribute), 561

is_empty (angr.engines.successors.SimSuccessors prop-
erty), 429

is_empty (angr.keyed_region.RegionObject property),
614

is_empty (angr.storage.memory_mixins.regioned_memory.region_data.RegionMap
property), 369

is_empty() (angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink.CFGSliceToSink
method), 817

is_empty_node() (in module
angr.analyses.decompiler.utils), 744

is_empty_or_label_only_node() (in module
angr.analyses.decompiler.utils), 744

is_exception (angr.analyses.cfg.cfg_fast.FunctionTransitionEdge
attribute), 651

is_expr (angr.analyses.decompiler.structured_codegen.c.CFunctionCall
attribute), 732

is_false() (angr.state_plugins.solver.SimSolver
method), 259

is_fp_arg() (angr.calling_conventions.SimCC
method), 488

is_fp_arg() (angr.SimCC method), 185
is_fp_value() (angr.calling_conventions.SimCC static

method), 489
is_fp_value() (angr.SimCC static method), 186
is_free() (angr.PTChunk method), 209
is_free() (angr.state_plugins.heap.heap_freelist.Chunk

method), 300
is_free() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 303
IS_FUNCTION (angr.sim_procedure.SimProcedure

attribute), 472
IS_FUNCTION (angr.SimProcedure attribute), 159
is_function() (angr.analyses.vtable.VtableFinder

method), 847
is_function_argument

(angr.sim_variable.SimVariable property),
503

is_global_variable_address()
(angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
method), 824

is_heap_address() (angr.analyses.reaching_definitions.LiveDefinitions
static method), 767

is_heap_address() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
static method), 809

is_heap_address() (angr.analyses.reaching_definitions.ReachingDefinitionsState
static method), 780

is_heap_address() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
static method), 602

is_heap_address() (angr.knowledge_plugins.key_definitions.LiveDefinitions
static method), 581

is_hex() (in module angr.analyses.reassembler), 853
is_hook (angr.codenode.BlockNode attribute), 875
is_hook (angr.codenode.CodeNode attribute), 875
is_hook (angr.codenode.HookNode attribute), 876
is_hook (angr.codenode.SyscallNode attribute), 876
is_hooked() (angr.Project method), 165
is_hooked() (angr.project.Project method), 214
is_immediate (angr.analyses.reassembler.Operand

property), 854
is_in_readonly_section() (in module

angr.utils.loader), 892
is_in_readonly_segment() (in module

angr.utils.loader), 892
is_java (angr.sim_procedure.SimProcedure property),

473
is_java (angr.SimProcedure property), 160
is_jumptable (angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTableProcessorState

attribute), 664
is_machine_word_size_type() (in module

angr.analyses.decompiler.structured_codegen.c),
726

is_not_in_cfg() (angr.analyses.veritesting.Veritesting
method), 841

is_occupied() (angr.analyses.cfg.segment_list.SegmentList
method), 672

is_on_stack (angr.analyses.reaching_definitions.MemoryLocation
property), 771

is_on_stack (angr.knowledge_plugins.key_definitions.atoms.MemoryLocation
property), 588

is_on_stack (angr.storage.memory_mixins.regioned_memory.region_data.AddressWrapper
attribute), 369

is_overbound() (angr.analyses.veritesting.Veritesting
method), 841

is_pc() (in module angr.utils.loader), 892
is_phi_variable() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal

method), 565
is_plt (angr.analyses.reassembler.Procedure property),

856
is_plt (angr.knowledge_plugins.functions.function.Function

Index 991

angr

attribute), 553
is_plt (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 560
is_prev_free() (angr.PTChunk method), 209
is_prev_free() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 303
is_prototype_guessed

(angr.knowledge_plugins.functions.function.Function
attribute), 553

is_prototype_guessed
(angr.knowledge_plugins.functions.soot_function.SootFunction
attribute), 561

is_pyinstaller() (in module angr.utils.env), 888
is_simple_jump_node() (in module

angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier),
722

is_simprocedure (angr.knowledge_plugins.cfg.cfg_node.CFGNode
property), 546

is_simprocedure (angr.knowledge_plugins.cfg.CFGNode
property), 526

is_simprocedure (angr.knowledge_plugins.functions.function.Function
attribute), 553

is_simprocedure (angr.knowledge_plugins.functions.soot_function.SootFunction
attribute), 561

is_special (angr.engines.pcode.behavior.OpBehavior
attribute), 445

is_special (angr.engines.pcode.behavior.OpBehaviorBoolAnd
attribute), 459

is_special (angr.engines.pcode.behavior.OpBehaviorBoolNegate
attribute), 458

is_special (angr.engines.pcode.behavior.OpBehaviorBoolOr
attribute), 459

is_special (angr.engines.pcode.behavior.OpBehaviorBoolXor
attribute), 458

is_special (angr.engines.pcode.behavior.OpBehaviorCopy
attribute), 446

is_special (angr.engines.pcode.behavior.OpBehaviorEqual
attribute), 447

is_special (angr.engines.pcode.behavior.OpBehaviorFloatAbs
attribute), 461

is_special (angr.engines.pcode.behavior.OpBehaviorFloatAdd
attribute), 460

is_special (angr.engines.pcode.behavior.OpBehaviorFloatCeil
attribute), 462

is_special (angr.engines.pcode.behavior.OpBehaviorFloatDiv
attribute), 460

is_special (angr.engines.pcode.behavior.OpBehaviorFloatEqual
attribute), 459

is_special (angr.engines.pcode.behavior.OpBehaviorFloatFloat2Float
attribute), 462

is_special (angr.engines.pcode.behavior.OpBehaviorFloatFloor
attribute), 463

is_special (angr.engines.pcode.behavior.OpBehaviorFloatInt2Float
attribute), 462

is_special (angr.engines.pcode.behavior.OpBehaviorFloatLess
attribute), 460

is_special (angr.engines.pcode.behavior.OpBehaviorFloatLessEqual
attribute), 460

is_special (angr.engines.pcode.behavior.OpBehaviorFloatMult
attribute), 461

is_special (angr.engines.pcode.behavior.OpBehaviorFloatNan
attribute), 460

is_special (angr.engines.pcode.behavior.OpBehaviorFloatNeg
attribute), 461

is_special (angr.engines.pcode.behavior.OpBehaviorFloatNotEqual
attribute), 459

is_special (angr.engines.pcode.behavior.OpBehaviorFloatRound
attribute), 463

is_special (angr.engines.pcode.behavior.OpBehaviorFloatSqrt
attribute), 462

is_special (angr.engines.pcode.behavior.OpBehaviorFloatSub
attribute), 461

is_special (angr.engines.pcode.behavior.OpBehaviorFloatTrunc
attribute), 462

is_special (angr.engines.pcode.behavior.OpBehaviorInt2Comp
attribute), 452

is_special (angr.engines.pcode.behavior.OpBehaviorIntAdd
attribute), 450

is_special (angr.engines.pcode.behavior.OpBehaviorIntAnd
attribute), 453

is_special (angr.engines.pcode.behavior.OpBehaviorIntCarry
attribute), 451

is_special (angr.engines.pcode.behavior.OpBehaviorIntDiv
attribute), 456

is_special (angr.engines.pcode.behavior.OpBehaviorIntLeft
attribute), 454

is_special (angr.engines.pcode.behavior.OpBehaviorIntLess
attribute), 448

is_special (angr.engines.pcode.behavior.OpBehaviorIntLessEqual
attribute), 449

is_special (angr.engines.pcode.behavior.OpBehaviorIntMult
attribute), 456

is_special (angr.engines.pcode.behavior.OpBehaviorIntNegate
attribute), 453

is_special (angr.engines.pcode.behavior.OpBehaviorIntOr
attribute), 454

is_special (angr.engines.pcode.behavior.OpBehaviorIntRem
attribute), 457

is_special (angr.engines.pcode.behavior.OpBehaviorIntRight
attribute), 455

is_special (angr.engines.pcode.behavior.OpBehaviorIntSborrow
attribute), 452

is_special (angr.engines.pcode.behavior.OpBehaviorIntScarry
attribute), 451

is_special (angr.engines.pcode.behavior.OpBehaviorIntSdiv
attribute), 456

is_special (angr.engines.pcode.behavior.OpBehaviorIntSext
attribute), 450

992 Index

angr

is_special (angr.engines.pcode.behavior.OpBehaviorIntSless
attribute), 447

is_special (angr.engines.pcode.behavior.OpBehaviorIntSlessEqual
attribute), 448

is_special (angr.engines.pcode.behavior.OpBehaviorIntSrem
attribute), 457

is_special (angr.engines.pcode.behavior.OpBehaviorIntSright
attribute), 455

is_special (angr.engines.pcode.behavior.OpBehaviorIntSub
attribute), 450

is_special (angr.engines.pcode.behavior.OpBehaviorIntXor
attribute), 453

is_special (angr.engines.pcode.behavior.OpBehaviorIntZext
attribute), 449

is_special (angr.engines.pcode.behavior.OpBehaviorNotEqual
attribute), 447

is_special (angr.engines.pcode.behavior.OpBehaviorPiece
attribute), 463

is_special (angr.engines.pcode.behavior.OpBehaviorPopcount
attribute), 464

is_special (angr.engines.pcode.behavior.OpBehaviorSubpiece
attribute), 463

is_stack (angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin
property), 371

is_stack_address() (angr.analyses.reaching_definitions.LiveDefinitions
static method), 761

is_stack_address() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 810

is_stack_address() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 780

is_stack_address() (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
static method), 824

is_stack_address() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
static method), 596

is_stack_address() (angr.knowledge_plugins.key_definitions.LiveDefinitions
static method), 575

is_statement_terminating() (in module
angr.analyses.decompiler.utils), 746

is_stored() (angr.vaults.Vault method), 618
is_stored() (angr.vaults.VaultDict method), 618
is_subclass() (angr.analyses.soot_class_hierarchy.SootClassHierarchy

method), 637
is_subclass_including()

(angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

is_symbol_hooked() (angr.Project method), 166
is_symbol_hooked() (angr.project.Project method),

215
is_symbolic (angr.state_plugins.sim_action.SimAction

property), 466
is_symbolic (angr.state_plugins.sim_action.SimActionConstraint

property), 467
is_symbolic (angr.state_plugins.sim_action.SimActionData

property), 468

is_symbolic (angr.state_plugins.sim_action.SimActionExit
property), 467

is_symbolic (angr.state_plugins.sim_action.SimActionOperation
property), 467

is_syscall (angr.analyses.cfg.cfg_emulated.CFGJob
property), 641

is_syscall (angr.knowledge_plugins.cfg.cfg_node.CFGNode
attribute), 545

is_syscall (angr.knowledge_plugins.cfg.CFGNode at-
tribute), 526

is_syscall (angr.knowledge_plugins.functions.function.Function
attribute), 553

is_syscall (angr.knowledge_plugins.functions.soot_function.SootFunction
attribute), 560

is_syscall_addr() (angr.SimOS method), 169
is_syscall_addr() (angr.simos.simos.SimOS method),

878
is_syscall_addr() (angr.simos.userland.SimUserland

method), 881
is_taint_impacting_stack_pointers()

(angr.analyses.backward_slice.BackwardSlice
method), 629

is_taint_related_to_ip()
(angr.analyses.backward_slice.BackwardSlice
method), 629

is_thumb_addr() (angr.analyses.cfg.cfg_base.CFGBase
method), 648

is_top() (angr.analyses.reaching_definitions.LiveDefinitions
static method), 761

is_top() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 809

is_top() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 779

is_top() (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
static method), 823

is_top() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
static method), 596

is_top() (angr.knowledge_plugins.key_definitions.LiveDefinitions
static method), 575

is_tracking_memory (angr.analyses.stack_pointer_tracker.FrozenStackPointerTrackerState
attribute), 819

is_tracking_memory (angr.analyses.stack_pointer_tracker.StackPointerTrackerState
attribute), 819

is_true() (angr.state_plugins.solver.SimSolver
method), 258

is_unary (angr.engines.pcode.behavior.OpBehavior at-
tribute), 445

is_unary (angr.engines.pcode.behavior.OpBehaviorBoolAnd
attribute), 459

is_unary (angr.engines.pcode.behavior.OpBehaviorBoolNegate
attribute), 458

is_unary (angr.engines.pcode.behavior.OpBehaviorBoolOr
attribute), 459

is_unary (angr.engines.pcode.behavior.OpBehaviorBoolXor

Index 993

angr

attribute), 458
is_unary (angr.engines.pcode.behavior.OpBehaviorCopy

attribute), 446
is_unary (angr.engines.pcode.behavior.OpBehaviorEqual

attribute), 447
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatAbs

attribute), 461
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatAdd

attribute), 460
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatCeil

attribute), 462
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatDiv

attribute), 460
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatEqual

attribute), 459
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatFloat2Float

attribute), 462
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatFloor

attribute), 463
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatInt2Float

attribute), 462
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatLess

attribute), 460
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatLessEqual

attribute), 460
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatMult

attribute), 461
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatNan

attribute), 460
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatNeg

attribute), 461
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatNotEqual

attribute), 459
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatRound

attribute), 463
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatSqrt

attribute), 461
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatSub

attribute), 461
is_unary (angr.engines.pcode.behavior.OpBehaviorFloatTrunc

attribute), 462
is_unary (angr.engines.pcode.behavior.OpBehaviorInt2Comp

attribute), 452
is_unary (angr.engines.pcode.behavior.OpBehaviorIntAdd

attribute), 450
is_unary (angr.engines.pcode.behavior.OpBehaviorIntAnd

attribute), 453
is_unary (angr.engines.pcode.behavior.OpBehaviorIntCarry

attribute), 451
is_unary (angr.engines.pcode.behavior.OpBehaviorIntDiv

attribute), 456
is_unary (angr.engines.pcode.behavior.OpBehaviorIntLeft

attribute), 454
is_unary (angr.engines.pcode.behavior.OpBehaviorIntLess

attribute), 448
is_unary (angr.engines.pcode.behavior.OpBehaviorIntLessEqual

attribute), 449
is_unary (angr.engines.pcode.behavior.OpBehaviorIntMult

attribute), 456
is_unary (angr.engines.pcode.behavior.OpBehaviorIntNegate

attribute), 453
is_unary (angr.engines.pcode.behavior.OpBehaviorIntOr

attribute), 454
is_unary (angr.engines.pcode.behavior.OpBehaviorIntRem

attribute), 457
is_unary (angr.engines.pcode.behavior.OpBehaviorIntRight

attribute), 455
is_unary (angr.engines.pcode.behavior.OpBehaviorIntSborrow

attribute), 452
is_unary (angr.engines.pcode.behavior.OpBehaviorIntScarry

attribute), 451
is_unary (angr.engines.pcode.behavior.OpBehaviorIntSdiv

attribute), 456
is_unary (angr.engines.pcode.behavior.OpBehaviorIntSext

attribute), 450
is_unary (angr.engines.pcode.behavior.OpBehaviorIntSless

attribute), 447
is_unary (angr.engines.pcode.behavior.OpBehaviorIntSlessEqual

attribute), 448
is_unary (angr.engines.pcode.behavior.OpBehaviorIntSrem

attribute), 457
is_unary (angr.engines.pcode.behavior.OpBehaviorIntSright

attribute), 455
is_unary (angr.engines.pcode.behavior.OpBehaviorIntSub

attribute), 450
is_unary (angr.engines.pcode.behavior.OpBehaviorIntXor

attribute), 453
is_unary (angr.engines.pcode.behavior.OpBehaviorIntZext

attribute), 449
is_unary (angr.engines.pcode.behavior.OpBehaviorNotEqual

attribute), 447
is_unary (angr.engines.pcode.behavior.OpBehaviorPiece

attribute), 463
is_unary (angr.engines.pcode.behavior.OpBehaviorPopcount

attribute), 464
is_unary (angr.engines.pcode.behavior.OpBehaviorSubpiece

attribute), 463
is_using_outdated_def()

(angr.analyses.propagator.engine_ail.SimEnginePropagatorAIL
method), 756

is_va_start_amd64()
(angr.analyses.calling_convention.CallingConventionAnalysis
method), 634

is_value_set (angr.state_plugins.unicorn_engine.MemoryValue
attribute), 284

is_value_symbolic (angr.state_plugins.unicorn_engine.MemoryValue
attribute), 284

is_variable_used_at()

994 Index

angr

(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 564

is_visible_class() (angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

is_visible_method()
(angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

IsArray (class in angr.analyses.typehoon.typevars), 835
ISPOMixin (class in angr.storage.memory_mixins.paged_memory.pages.ispo_mixin),

361
ite_exprs (angr.analyses.decompiler.decompilation_cache.DecompilationCache

attribute), 699
ite_exprs (angr.angrdb.models.DbStructuredCode at-

tribute), 679
ITEExprConverter (class in

angr.analyses.decompiler.optimization_passes.ite_expr_converter),
707

items() (angr.analyses.ddg.LiveDefinitions method),
748

items() (angr.analyses.decompiler.structured_codegen.base.InstructionMapping
method), 725

items() (angr.analyses.decompiler.structured_codegen.base.PositionMapping
method), 724

items() (angr.knowledge_plugins.labels.Labels
method), 549

items() (angr.knowledge_plugins.patches.PatchManager
method), 522

items() (angr.state_plugins.globals.SimStateGlobals
method), 279

items() (angr.storage.memory_mixins.paged_memory.pages.multi_values.MultiValues
method), 351

iter_own() (angr.knowledge_plugins.types.TypesStore
method), 549

iterator (angr.analyses.decompiler.structured_codegen.c.CForLoop
attribute), 729

iterator (angr.analyses.decompiler.structuring.structurer_nodes.LoopNode
attribute), 688

Iterator (angr.analyses.loop_analysis.VariableTypes
attribute), 839

itervariables() (angr.analyses.ddg.LiveDefinitions
method), 748

J
javavm_memory (angr.sim_state.SimState property), 226
javavm_memory (angr.SimState property), 182
javavm_registers (angr.sim_state.SimState property),

226
javavm_registers (angr.SimState property), 182
JavaVmMemory (class in angr.storage.memory_mixins),

339
JavaVmMemoryMixin (class in

angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin),
376

jni_references (angr.sim_state.SimState attribute),
225

jni_references (angr.SimState attribute), 181
job (angr.analyses.forward_analysis.job_info.JobInfo

property), 623
job_type (angr.analyses.cfg.cfg_fast.CFGJob attribute),

653
JobInfo (class in angr.analyses.forward_analysis.job_info),

622
jobs (angr.analyses.forward_analysis.forward_analysis.ForwardAnalysis

property), 622
jump() (angr.sim_procedure.SimProcedure method), 473
jump() (angr.SimProcedure method), 160
jump_guards (angr.state_plugins.history.SimStateHistory

property), 269
jump_sources (angr.state_plugins.history.SimStateHistory

property), 269
jump_tables (angr.analyses.cfg.cfg_fast.CFGFast prop-

erty), 656
jump_tables (angr.knowledge_plugins.cfg.cfg_model.CFGModel

attribute), 536
jump_tables (angr.knowledge_plugins.cfg.CFGModel

attribute), 530
jump_targets (angr.state_plugins.history.SimStateHistory

property), 269
jumpkind (angr.analyses.cfg.cfg_fast.CFGJob attribute),

653
jumpkind (angr.engines.pcode.lifter.ExitStatement

attribute), 435
jumpkind (angr.engines.pcode.lifter.IRSB attribute), 437
jumpkind (angr.knowledge_plugins.cfg.indirect_jump.IndirectJump

attribute), 548
jumpkind (angr.knowledge_plugins.cfg.IndirectJump at-

tribute), 529
jumpkinds (angr.state_plugins.history.SimStateHistory

property), 269
jumpout_sites (angr.knowledge_plugins.functions.function.Function

property), 556
jumptable (angr.knowledge_plugins.cfg.indirect_jump.IndirectJump

attribute), 548
jumptable (angr.knowledge_plugins.cfg.IndirectJump

attribute), 529
jumptable_addr (angr.knowledge_plugins.cfg.indirect_jump.IndirectJump

attribute), 548
jumptable_addr (angr.knowledge_plugins.cfg.IndirectJump

attribute), 529
Jumptable_AddressComputed

(angr.knowledge_plugins.cfg.indirect_jump.IndirectJumpType
attribute), 547

Jumptable_AddressComputed
(angr.knowledge_plugins.cfg.IndirectJumpType
attribute), 529

Jumptable_AddressLoadedFromMemory
(angr.knowledge_plugins.cfg.indirect_jump.IndirectJumpType

Index 995

angr

attribute), 547
Jumptable_AddressLoadedFromMemory

(angr.knowledge_plugins.cfg.IndirectJumpType
attribute), 529

jumptable_entries (angr.knowledge_plugins.cfg.indirect_jump.IndirectJump
attribute), 548

jumptable_entries (angr.knowledge_plugins.cfg.IndirectJump
attribute), 529

jumptable_entry_size
(angr.knowledge_plugins.cfg.indirect_jump.IndirectJump
attribute), 548

jumptable_entry_size
(angr.knowledge_plugins.cfg.IndirectJump
attribute), 529

jumptable_size (angr.knowledge_plugins.cfg.indirect_jump.IndirectJump
attribute), 548

jumptable_size (angr.knowledge_plugins.cfg.IndirectJump
attribute), 529

JumpTableEntryConditionRewriter (class in
angr.analyses.decompiler.jumptable_entry_condition_rewriter),
702

JumpTableProcessor (class in
angr.analyses.cfg.indirect_jump_resolvers.jumptable),
665

JumpTableProcessorState (class in
angr.analyses.cfg.indirect_jump_resolvers.jumptable),
664

JumpTableResolver (class in
angr.analyses.cfg.indirect_jump_resolvers.jumptable),
666

JumpTargetBaseAddr (class in
angr.analyses.cfg.indirect_jump_resolvers.jumptable),
663

JumpTargetCollector (class in
angr.analyses.decompiler.jump_target_collector),
702

K
K (angr.knowledge_base.knowledge_base.KnowledgeBase

attribute), 521
K (angr.KnowledgeBase attribute), 211
kb (angr.analyses.analysis.Analysis attribute), 621
kb (angr.analyses.backward_slice.BackwardSlice at-

tribute), 630
kb (angr.analyses.binary_optimizer.BinaryOptimizer at-

tribute), 862
kb (angr.analyses.bindiff.BinDiff attribute), 633
kb (angr.analyses.boyscout.BoyScout attribute), 633
kb (angr.analyses.callee_cleanup_finder.CalleeCleanupFinder

attribute), 863
kb (angr.analyses.calling_convention.CallingConventionAnalysis

attribute), 634
kb (angr.analyses.cdg.CDG attribute), 674
kb (angr.analyses.cfg.cfb.CFBlanket attribute), 638

kb (angr.analyses.cfg.cfg_fast.CFGFast attribute), 657
kb (angr.analyses.cfg.cfg_fast_soot.CFGFastSoot at-

tribute), 671
kb (angr.analyses.cfg.indirect_jump_resolvers.jumptable.ConstantValueManager

attribute), 664
kb (angr.analyses.class_identifier.ClassIdentifier at-

tribute), 848
kb (angr.analyses.code_tagging.CodeTagging attribute),

675
kb (angr.analyses.complete_calling_conventions.CompleteCallingConventionsAnalysis

attribute), 636
kb (angr.analyses.congruency_check.CongruencyCheck

attribute), 861
kb (angr.analyses.data_dep.data_dependency_analysis.DataDependencyGraphAnalysis

attribute), 868
kb (angr.analyses.ddg.DDG attribute), 752
kb (angr.analyses.decompiler.ail_simplifier.AILSimplifier

attribute), 693
kb (angr.analyses.decompiler.block_simplifier.BlockSimplifier

attribute), 694
kb (angr.analyses.decompiler.callsite_maker.CallSiteMaker

attribute), 694
kb (angr.analyses.decompiler.clinic.Clinic attribute), 697
kb (angr.analyses.decompiler.decompiler.Decompiler at-

tribute), 700
kb (angr.analyses.decompiler.optimization_passes.optimization_pass.BaseOptimizationPass

property), 704
kb (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationExprBase

attribute), 715
kb (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationMultiStmtBase

attribute), 714
kb (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationStmtBase

attribute), 713
kb (angr.analyses.decompiler.region_identifier.RegionIdentifier

attribute), 716
kb (angr.analyses.decompiler.region_simplifiers.region_simplifier.RegionSimplifier

attribute), 720
kb (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeGenerator

attribute), 741
kb (angr.analyses.decompiler.structured_codegen.dwarf_import.ImportSourceCode

attribute), 743
kb (angr.analyses.decompiler.structuring.phoenix.PhoenixStructurer

attribute), 692
kb (angr.analyses.decompiler.structuring.recursive_structurer.RecursiveStructurer

attribute), 685
kb (angr.analyses.disassembly.Disassembly attribute),

852
kb (angr.analyses.dominance_frontier.DominanceFrontier

attribute), 863
kb (angr.analyses.find_objects_static.StaticObjectFinder

attribute), 848
kb (angr.analyses.flirt.FlirtAnalysis attribute), 752
kb (angr.analyses.identifier.identify.Identifier attribute),

838

996 Index

angr

kb (angr.analyses.init_finder.InitializationFinder at-
tribute), 863

kb (angr.analyses.loop_analysis.LoopAnalysis attribute),
840

kb (angr.analyses.loopfinder.LoopFinder attribute), 839
kb (angr.analyses.propagator.propagator.PropagatorAnalysis

attribute), 759
kb (angr.analyses.proximity_graph.ProximityGraphAnalysis

attribute), 867
kb (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis

attribute), 796
kb (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis

attribute), 775
kb (angr.analyses.reassembler.Reassembler attribute),

860
kb (angr.analyses.soot_class_hierarchy.SootClassHierarchy

attribute), 637
kb (angr.analyses.stack_pointer_tracker.StackPointerTracker

attribute), 820
kb (angr.analyses.static_hooker.StaticHooker attribute),

861
kb (angr.analyses.typehoon.typehoon.Typehoon at-

tribute), 835
kb (angr.analyses.variable_recovery.variable_recovery.VariableRecovery

attribute), 828
kb (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryBase

attribute), 822
kb (angr.analyses.variable_recovery.variable_recovery_fast.VariableRecoveryFast

attribute), 827
kb (angr.analyses.veritesting.Veritesting attribute), 841
kb (angr.analyses.vfg.VFG attribute), 846
kb (angr.analyses.vsa_ddg.VSA_DDG attribute), 847
kb (angr.analyses.vtable.VtableFinder attribute), 847
kb (angr.analyses.xrefs.XRefsAnalysis attribute), 865
kb (angr.Analysis attribute), 178
kb (angr.angrdb.models.DbCFGModel attribute), 678
kb (angr.angrdb.models.DbComment attribute), 680
kb (angr.angrdb.models.DbFunction attribute), 678
kb (angr.angrdb.models.DbLabel attribute), 680
kb (angr.angrdb.models.DbStructuredCode attribute),

679
kb (angr.angrdb.models.DbVariableCollection attribute),

679
kb (angr.angrdb.models.DbXRefs attribute), 680
kb_id (angr.angrdb.models.DbCFGModel attribute), 678
kb_id (angr.angrdb.models.DbComment attribute), 680
kb_id (angr.angrdb.models.DbFunction attribute), 678
kb_id (angr.angrdb.models.DbLabel attribute), 680
kb_id (angr.angrdb.models.DbStructuredCode at-

tribute), 679
kb_id (angr.angrdb.models.DbVariableCollection

attribute), 679
kb_id (angr.angrdb.models.DbXRefs attribute), 680
keep_path() (angr.annocfg.AnnotatedCFG method),

875
key (angr.angrdb.models.DbInformation attribute), 677
KeyDefinitionManager (class in

angr.knowledge_plugins.key_definitions),
573

KeyDefinitionManager (class in
angr.knowledge_plugins.key_definitions.key_definition_manager),
593

KeyedRegion (class in angr.keyed_region), 614
keys() (angr.knowledge_plugins.patches.PatchManager

method), 522
keys() (angr.state_plugins.globals.SimStateGlobals

method), 279
keys() (angr.storage.memory_mixins.paged_memory.pages.multi_values.MultiValues

method), 351
keys() (angr.vaults.Vault method), 618
keys() (angr.vaults.VaultDict method), 618
keys() (angr.vaults.VaultDir method), 619
keys() (angr.vaults.VaultDirShelf method), 619
KeyValueMemory (class in

angr.storage.memory_mixins), 339
KeyValueMemoryMixin (class in

angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin),
375

kill_and_add_definition()
(angr.analyses.reaching_definitions.LiveDefinitions
method), 763

kill_and_add_definition()
(angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 812

kill_and_add_definition()
(angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 782

kill_and_add_definition()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 598

kill_and_add_definition()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 577

kill_def() (angr.analyses.ddg.LiveDefinitions
method), 748

kill_def() (angr.analyses.reaching_definitions.ReachingDefinitionsModel
method), 776

kill_def() (angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel
method), 603

kill_def() (angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel
method), 571

kill_definitions() (angr.analyses.reaching_definitions.LiveDefinitions
method), 762

kill_definitions() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 812

kill_definitions() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 782

kill_definitions() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

Index 997

angr

method), 597
kill_definitions() (angr.knowledge_plugins.key_definitions.LiveDefinitions

method), 576
kind (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate

attribute), 589
KnowledgeBase (class in angr), 211
KnowledgeBase (class in

angr.knowledge_base.knowledge_base), 520
KnowledgeBasePlugin (class in

angr.knowledge_plugins.plugin), 523
KnowledgeBaseSerializer (class in

angr.angrdb.serializers.kb), 682
KnownAnalysesPlugin (class in

angr.analyses.analysis), 619
kwargs (angr.utils.mp.Closure attribute), 895

L
label (angr.analyses.typehoon.typevars.DerivedTypeVariable

attribute), 833
label (angr.storage.memory_object.SimLabeledMemoryObject

attribute), 334
Label (class in angr.analyses.disassembly), 849
Label (class in angr.analyses.reassembler), 853
label_got() (angr.analyses.reassembler.SymbolManager

method), 854
LabeledMemory (class in angr.storage.memory_mixins),

339
LabeledPagesMixin (class in

angr.storage.memory_mixins.paged_memory.paged_memory_mixin),
355

LabelMergerMixin (class in
angr.storage.memory_mixins.label_merger_mixin),
346

labels (angr.angrdb.models.DbKnowledgeBase at-
tribute), 677

Labels (class in angr.knowledge_plugins.labels), 549
LabelsSerializer (class in

angr.angrdb.serializers.labels), 682
LambdaAttrIter (class in angr.state_plugins.history),

270
LambdaIterIter (class in angr.state_plugins.history),

270
LARGE_SWITCH (angr.analyses.code_tagging.CodeTags

attribute), 675
last_addr (angr.analyses.cfg.cfg_fast.CFGJob at-

tribute), 653
last_addr (angr.storage.memory_object.SimMemoryObject

property), 334
last_nonlabel_statement() (in module

angr.analyses.decompiler.utils), 745
lazy_import() (in module angr.utils.lazy_import), 892
length (angr.analyses.decompiler.structured_codegen.base.PositionMappingElement

attribute), 724

length (angr.state_plugins.unicorn_engine.MEM_PATCH
attribute), 284

length (angr.storage.memory_object.SimMemoryObject
attribute), 334

length_spec (angr.procedures.stubs.format_parser.FormatSpecifier
attribute), 474

LengthLimiter (class in angr.exploration_techniques),
398

LengthLimiter (class in
angr.exploration_techniques.lengthlimiter),
409

lhs (angr.analyses.decompiler.structured_codegen.c.CAssignment
attribute), 731

lhs (angr.analyses.decompiler.structured_codegen.c.CBinaryOp
attribute), 736

lift() (angr.analyses.typehoon.lifter.TypeLifter
method), 830

lift() (angr.engines.pcode.lifter.Lifter method), 440
lift() (angr.engines.pcode.lifter.PcodeBasicBlockLifter

method), 441
lift() (angr.engines.pcode.lifter.PcodeLifter method),

442
lift() (in module angr.engines.pcode.lifter), 440
lift_pcode() (angr.engines.pcode.lifter.PcodeLifterEngineMixin

method), 444
lift_soot() (angr.engines.soot.engine.SootMixin

method), 432
lift_vex() (angr.engines.pcode.lifter.PcodeLifterEngineMixin

method), 443
Lifter (class in angr.engines.pcode.lifter), 439
lineage (angr.state_plugins.history.SimStateHistory

property), 269
lineage() (angr.state_hierarchy.StateHierarchy

method), 389
lineage() (angr.StateHierarchy method), 180
linux_syscall_update_error_reg()

(angr.calling_conventions.SimCCSyscall
method), 493

list_content (angr.utils.dynamic_dictlist.DynamicDictList
attribute), 888

list_default_plugins()
(angr.misc.plugins.PluginPreset method),
223

ListPage (class in angr.storage.memory_mixins.paged_memory.pages.list_page),
362

ListPagesMixin (class in
angr.storage.memory_mixins.paged_memory.paged_memory_mixin),
355

ListPagesWithLabelsMixin (class in
angr.storage.memory_mixins.paged_memory.paged_memory_mixin),
356

live_definitions (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
attribute), 809

live_definitions (angr.analyses.reaching_definitions.ReachingDefinitionsState

998 Index

angr

attribute), 779
LiveDefinitions (class in angr.analyses.ddg), 747
LiveDefinitions (class in

angr.analyses.reaching_definitions), 759
LiveDefinitions (class in

angr.knowledge_plugins.key_definitions),
573

LiveDefinitions (class in
angr.knowledge_plugins.key_definitions.live_definitions),
594

LiveVariables (class in
angr.knowledge_plugins.variables.variable_manager),
562

Load (class in angr.analyses.typehoon.typevars), 834
load() (angr.analyses.stack_pointer_tracker.StackPointerTrackerState

method), 820
load() (angr.angrdb.db.AngrDB method), 676
load() (angr.angrdb.serializers.cfg_model.CFGModelSerializer

static method), 681
load() (angr.angrdb.serializers.comments.CommentsSerializer

static method), 681
load() (angr.angrdb.serializers.funcs.FunctionManagerSerializer

static method), 682
load() (angr.angrdb.serializers.kb.KnowledgeBaseSerializer

static method), 682
load() (angr.angrdb.serializers.labels.LabelsSerializer

static method), 682
load() (angr.angrdb.serializers.loader.LoaderSerializer

static method), 683
load() (angr.angrdb.serializers.structured_code.StructuredCodeManagerSerializer

static method), 684
load() (angr.angrdb.serializers.variables.VariableManagerSerializer

static method), 684
load() (angr.angrdb.serializers.xrefs.XRefsSerializer

static method), 683
load() (angr.state_plugins.light_registers.SimLightRegisters

method), 267
load() (angr.storage.memory_mixins.actions_mixin.ActionsMixinHigh

method), 342
load() (angr.storage.memory_mixins.actions_mixin.ActionsMixinLow

method), 342
load() (angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin

method), 346
load() (angr.storage.memory_mixins.bvv_conversion_mixin.DataNormalizationMixin

method), 341
load() (angr.storage.memory_mixins.clouseau_mixin.InspectMixinHigh

method), 346
load() (angr.storage.memory_mixins.conditional_store_mixin.ConditionalMixin

method), 346
load() (angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin

method), 376
load() (angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin.KeyValueMemoryMixin

method), 375
load() (angr.storage.memory_mixins.MemoryMixin

method), 336
load() (angr.storage.memory_mixins.name_resolution_mixin.NameResolutionMixin

method), 339
load() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

method), 353
load() (angr.storage.memory_mixins.paged_memory.pages.list_page.ListPage

method), 362
load() (angr.storage.memory_mixins.paged_memory.pages.mv_list_page.MVListPage

method), 349
load() (angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage

method), 364
load() (angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin

method), 372
load() (angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin

method), 366
load() (angr.storage.memory_mixins.simple_interface_mixin.SimpleInterfaceMixin

method), 342
load() (angr.storage.memory_mixins.size_resolution_mixin.SizeConcretizationMixin

method), 344
load() (angr.storage.memory_mixins.size_resolution_mixin.SizeNormalizationMixin

method), 343
load() (angr.storage.memory_mixins.slotted_memory.SlottedMemoryMixin

method), 375
load() (angr.storage.memory_mixins.underconstrained_mixin.UnderconstrainedMixin

method), 342
load() (angr.storage.memory_mixins.unwrapper_mixin.UnwrapperMixin

method), 347
load() (angr.vaults.Vault method), 618
load() (angr.vaults.VaultDirShelf method), 619
load_all_definitions() (in module

angr.procedures.definitions), 483
load_array_element()

(angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin
method), 376

load_array_elements()
(angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin
method), 376

load_from_dwarf() (angr.knowledge_plugins.debug_variables.DebugVariableManager
method), 570

load_from_dwarf() (angr.knowledge_plugins.variables.variable_manager.VariableManager
method), 568

load_internal() (angr.angrdb.serializers.variables.VariableManagerSerializer
static method), 684

load_shellcode() (in module angr), 167
load_shellcode() (in module angr.project), 212
load_signatures() (in module angr.flirt), 885
load_win32api_definitions() (in module

angr.procedures.definitions), 483
load_with_labels() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.LabeledPagesMixin

method), 355
LoaderSerializer (class in

angr.angrdb.serializers.loader), 682
LoadHook (class in angr.analyses.cfg.indirect_jump_resolvers.jumptable),

665

Index 999

angr

loads() (angr.vaults.Vault method), 618
loc (angr.analyses.typehoon.typevars.FuncIn attribute),

834
loc (angr.analyses.typehoon.typevars.FuncOut at-

tribute), 834
loc_repr() (angr.sim_variable.SimConstantVariable

method), 503
loc_repr() (angr.sim_variable.SimMemoryVariable

method), 505
loc_repr() (angr.sim_variable.SimRegisterVariable

method), 505
loc_repr() (angr.sim_variable.SimStackVariable

method), 506
loc_repr() (angr.sim_variable.SimTemporaryVariable

method), 504
loc_repr() (angr.sim_variable.SimVariable method),

503
local_runtime_values

(angr.knowledge_plugins.functions.function.Function
property), 555

local_types (angr.analyses.decompiler.decompilation_cache.DecompilationCache
property), 699

local_vars (angr.sim_procedure.SimProcedure at-
tribute), 472

local_vars (angr.SimProcedure attribute), 159
LOCALE_ARRAY (angr.state_plugins.libc.SimStateLibc at-

tribute), 236
LocalLoopSeer (class in angr.exploration_techniques),

406
LocalLoopSeer (class in

angr.exploration_techniques.local_loop_seer),
422

LocalVariableTag (class in
angr.knowledge_plugins.key_definitions.tag),
605

location (angr.knowledge_plugins.variables.variable_access.VariableAccess
attribute), 562

LocationBase (class in
angr.analyses.decompiler.region_simplifiers.expr_folding),
716

long_reason (angr.knowledge_plugins.cfg.cfg_node.CFGNodeCreationFailure
attribute), 544

looks_like_sql() (in module angr.utils), 886
lookup() (angr.knowledge_plugins.labels.Labels

method), 550
lookup() (angr.SimMount method), 203
lookup() (angr.state_plugins.filesystem.SimConcreteFilesystem

method), 252
lookup() (angr.state_plugins.filesystem.SimMount

method), 251
lookup() (angr.state_plugins.jni_references.SimStateJNIReferences

method), 296
lookup() (angr.state_plugins.posix.PosixDevFS

method), 240

lookup() (angr.state_plugins.posix.PosixProcFS
method), 242

lookup_defs() (angr.analyses.ddg.LiveDefinitions
method), 748

lookup_original() (angr.state_plugins.trace_additions.ChallRespInfo
method), 276

Loop (class in angr.analyses.loopfinder), 838
LoopAnalysis (class in angr.analyses.loop_analysis),

839
LoopAnalysisState (class in

angr.analyses.loop_analysis), 839
LoopFinder (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
LoopFinder (class in angr.analyses.loopfinder), 838
looping_times (angr.knowledge_plugins.cfg.cfg_node.CFGENode

attribute), 547
looping_times (angr.knowledge_plugins.cfg.CFGENode

attribute), 528
LoopNode (class in angr.analyses.decompiler.structuring.structurer_nodes),

688
LoopSeer (class in angr.exploration_techniques), 393
LoopSeer (class in angr.exploration_techniques.loop_seer),

421
LoopSimplifier (class in

angr.analyses.decompiler.region_simplifiers.loop),
719

LoopVisitor (class in
angr.analyses.forward_analysis.visitors.loop),
626

LoweredSwitchSimplifier (class in
angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier),
709

LShift (angr.engines.light.data.ArithmeticExpression
attribute), 752

LT (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.CmpOp
attribute), 720

M
main() (in module angr.flirt.build_sig), 886
main_executable_region_limbos_contain()

(angr.analyses.reassembler.Reassembler
method), 858

main_executable_regions
(angr.analyses.reassembler.Reassembler
property), 858

main_executable_regions_contain()
(angr.analyses.reassembler.Reassembler
method), 858

main_nonexecutable_region_limbos_contain()
(angr.analyses.reassembler.Reassembler
method), 858

main_nonexecutable_regions
(angr.analyses.reassembler.Reassembler
property), 858

1000 Index

angr

main_nonexecutable_regions_contain()
(angr.analyses.reassembler.Reassembler
method), 858

main_object (angr.angrdb.models.DbObject attribute),
677

make() (angr.sim_type.SimTypePointer method), 511
make() (angr.sim_type.SimTypeReference method), 512
make_breakpoint() (angr.state_plugins.inspect.SimInspector

method), 234
make_bv_sizes_equal() (in module

angr.engines.pcode.behavior), 444
make_child() (angr.state_plugins.history.SimStateHistory

method), 270
make_concrete_int() (angr.sim_state.SimState

method), 227
make_concrete_int() (angr.SimState method), 184
make_continuation()

(angr.sim_procedure.SimProcedure method),
471

make_continuation() (angr.SimProcedure method),
159

make_copy() (angr.analyses.cfg.cfg_base.CFGBase
method), 647

make_function_codeloc()
(angr.analyses.reaching_definitions.function_handler.FunctionHandler
method), 805

make_function_codeloc()
(angr.analyses.reaching_definitions.FunctionHandler
method), 785

make_functions() (angr.analyses.cfg.cfg_base.CFGBase
method), 648

make_functions() (angr.analyses.cfg.cfg_fast_soot.CFGFastSoot
method), 671

make_ident() (angr.SimFileBase static method), 189
make_ident() (angr.storage.file.SimFileBase static

method), 316
make_initial_state()

(angr.analyses.identifier.identify.Identifier
static method), 838

make_liveness_snapshot()
(angr.analyses.reaching_definitions.ReachingDefinitionsModel
method), 776

make_liveness_snapshot()
(angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel
method), 603

make_liveness_snapshot()
(angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel
method), 572

make_methods() (in module
angr.state_plugins.sim_action_object), 468

make_phi_node() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 563

make_ro_state() (in module
angr.knowledge_plugins.sync.sync_controller),

608
make_state() (in module

angr.knowledge_plugins.sync.sync_controller),
608

make_symbolic_state()
(angr.analyses.identifier.identify.Identifier
static method), 838

MakeTypecastsImplicit (class in
angr.analyses.decompiler.structured_codegen.c),
742

malloc() (angr.SimHeapPTMalloc method), 207
malloc() (angr.state_plugins.heap.heap_libc.SimHeapLibc

method), 301
malloc() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

method), 305
ManualMergepoint (class in

angr.exploration_techniques), 402
ManualMergepoint (class in

angr.exploration_techniques.manual_mergepoint),
410

map() (angr.storage.memory_mixins.regioned_memory.region_data.RegionMap
method), 369

map_callsites() (angr.analyses.identifier.identify.Identifier
method), 838

map_region() (angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin
method), 346

map_region() (angr.storage.memory_mixins.MemoryMixin
method), 337

map_region() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin
method), 354

mapping (angr.analyses.cfg.indirect_jump_resolvers.jumptable.ConstantValueManager
attribute), 664

mark_const() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 814

mark_const() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 785

mark_function_alignments()
(angr.analyses.cfg.cfg_base.CFGBase
method), 648

mark_guard() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 814

mark_guard() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 785

mark_nofilter() (angr.exploration_techniques.manual_mergepoint.ManualMergepoint
method), 410

mark_nofilter() (angr.exploration_techniques.ManualMergepoint
method), 402

mark_nonreturning_calls_endpoints()
(angr.knowledge_plugins.functions.function.Function
method), 557

mark_okfilter() (angr.exploration_techniques.manual_mergepoint.ManualMergepoint
method), 410

mark_okfilter() (angr.exploration_techniques.ManualMergepoint
method), 402

Index 1001

angr

match_stmt_classes() (in module
angr.analyses.decompiler.utils), 746

matches() (angr.analyses.reaching_definitions.Definition
method), 772

matches() (angr.knowledge_plugins.key_definitions.Definition
method), 584

matches() (angr.knowledge_plugins.key_definitions.definition.Definition
method), 591

matches() (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate
method), 590

max() (angr.state_plugins.solver.SimSolver method), 258
max_allocation (angr.state_plugins.cgc.SimStateCGC

attribute), 272
max_bytes (angr.engines.pcode.lifter.Lifter attribute),

440
max_bytes (angr.engines.pcode.lifter.PcodeLifter

attribute), 442
MAX_DATA_REFS (angr.engines.pcode.lifter.IRSB at-

tribute), 436
MAX_EXITS (angr.engines.pcode.lifter.IRSB attribute),

436
max_inst (angr.engines.pcode.lifter.Lifter attribute), 440
max_inst (angr.engines.pcode.lifter.PcodeLifter at-

tribute), 442
max_int() (angr.state_plugins.solver.SimSolver

method), 261
MAX_ONE_CALL (angr.analyses.decompiler.structuring.phoenix.MultiStmtExprMode

attribute), 691
max_size (angr.knowledge_plugins.cfg.memory_data.MemoryData

attribute), 543
max_size (angr.knowledge_plugins.cfg.MemoryData at-

tribute), 525
max_size (angr.utils.dynamic_dictlist.DynamicDictList

attribute), 888
maximum_syscall_number()

(angr.procedures.definitions.SimSyscallLibrary
method), 480

mem (angr.sim_state.SimState attribute), 225
mem (angr.SimState attribute), 181
mem (angr.state_plugins.debug_variables.SimDebugVariable

property), 308
MEM (angr.state_plugins.sim_action.SimAction attribute),

466
mem() (angr.analyses.reaching_definitions.Atom static

method), 769
mem() (angr.knowledge_plugins.key_definitions.atoms.Atom

static method), 586
mem_concrete() (angr.sim_state.SimState method), 227
mem_concrete() (angr.SimState method), 183
mem_map() (angr.state_plugins.unicorn_engine.Uniwrapper

method), 288
mem_map_ptr() (angr.state_plugins.unicorn_engine.Uniwrapper

method), 288
MEM_PATCH (class in angr.state_plugins.unicorn_engine),

284
mem_reset() (angr.state_plugins.unicorn_engine.Uniwrapper

method), 288
mem_unmap() (angr.state_plugins.unicorn_engine.Uniwrapper

method), 288
mem_untyped (angr.state_plugins.debug_variables.SimDebugVariable

property), 308
member() (angr.state_plugins.debug_variables.SimDebugVariable

method), 308
member() (angr.state_plugins.view.SimMemView

method), 314
members (angr.sim_type.SimCppClass property), 517
MemDepNode (class in angr.analyses.data_dep.dep_nodes),

870
memo() (angr.SimStatePlugin static method), 161
memo() (angr.state_plugins.plugin.SimStatePlugin static

method), 232
Memory (angr.analyses.data_dep.dep_nodes.DepNodeTypes

attribute), 869
MEMORY (angr.analyses.reaching_definitions.AtomKind

attribute), 768
memory (angr.analyses.reaching_definitions.LiveDefinitions

attribute), 760
memory (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

property), 811
memory (angr.analyses.reaching_definitions.ReachingDefinitionsState

property), 781
memory (angr.analyses.stack_pointer_tracker.FrozenStackPointerTrackerState

attribute), 819
memory (angr.analyses.stack_pointer_tracker.StackPointerTrackerState

attribute), 819
MEMORY (angr.knowledge_plugins.key_definitions.atoms.AtomKind

attribute), 584
memory (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 595
memory (angr.knowledge_plugins.key_definitions.LiveDefinitions

attribute), 574
MEMORY (angr.knowledge_plugins.variables.variable_manager.VariableType

attribute), 562
memory (angr.sim_state.SimState attribute), 225
memory (angr.SimState attribute), 181
memory() (angr.analyses.reaching_definitions.Atom

static method), 769
memory() (angr.knowledge_plugins.key_definitions.atoms.Atom

static method), 586
memory_args (angr.calling_conventions.SimCC prop-

erty), 488
memory_args (angr.SimCC property), 185
memory_data (angr.analyses.cfg.cfg_fast.CFGFast prop-

erty), 656
memory_data (angr.knowledge_plugins.cfg.cfg_model.CFGModel

attribute), 536
memory_data (angr.knowledge_plugins.cfg.CFGModel

attribute), 530

1002 Index

angr

memory_data (angr.knowledge_plugins.xrefs.xref.XRef
attribute), 611

memory_definitions (angr.analyses.reaching_definitions.LiveDefinitions
property), 760

memory_definitions (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
property), 595

memory_definitions (angr.knowledge_plugins.key_definitions.LiveDefinitions
property), 574

memory_uses (angr.analyses.reaching_definitions.LiveDefinitions
attribute), 760

memory_uses (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
property), 811

memory_uses (angr.analyses.reaching_definitions.ReachingDefinitionsState
property), 781

memory_uses (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
attribute), 595

memory_uses (angr.knowledge_plugins.key_definitions.LiveDefinitions
attribute), 574

memory_values (angr.state_plugins.unicorn_engine.VEXStmtDetails
attribute), 285

memory_values_count
(angr.state_plugins.unicorn_engine.VEXStmtDetails
attribute), 285

MemoryData (class in angr.knowledge_plugins.cfg), 524
MemoryData (class in angr.knowledge_plugins.cfg.memory_data),

542
MemoryDataSort (class in angr.knowledge_plugins.cfg),

524
MemoryDataSort (class in

angr.knowledge_plugins.cfg.memory_data),
542

MemoryLocation (class in
angr.analyses.reaching_definitions), 770

MemoryLocation (class in
angr.knowledge_plugins.key_definitions.atoms),
588

MemoryMappingError, 288
MemoryMixin (class in angr.storage.memory_mixins),

336
MemoryObjectMixin (class in

angr.storage.memory_mixins.paged_memory.pages.cooperation),
361

MemoryObjectSetMixin (class in
angr.storage.memory_mixins.paged_memory.pages.cooperation),
361

MemoryOperand (class in angr.analyses.disassembly),
851

MemoryRegion (class in angr.analyses.cfg.cfb), 637
MemoryRegionMetaMixin (class in

angr.storage.memory_mixins.regioned_memory.region_meta_mixin),
371

MemoryValue (class in
angr.state_plugins.unicorn_engine), 284

MemoryWatcher (class in angr.exploration_techniques),

405
MemoryWatcher (class in

angr.exploration_techniques.memory_watcher),
426

merge() (angr.analyses.decompiler.optimization_passes.engine_base.SimplifierAILState
method), 710

merge() (angr.analyses.loop_analysis.LoopAnalysisState
method), 839

merge() (angr.analyses.reaching_definitions.LiveDefinitions
method), 762

merge() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 811

merge() (angr.analyses.reaching_definitions.ReachingDefinitionsModel
method), 777

merge() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 781

merge() (angr.analyses.stack_pointer_tracker.FrozenStackPointerTrackerState
method), 819

merge() (angr.analyses.stack_pointer_tracker.StackPointerTrackerState
method), 820

merge() (angr.analyses.variable_recovery.variable_recovery.VariableRecoveryState
method), 827

merge() (angr.analyses.variable_recovery.variable_recovery_fast.VariableRecoveryFastState
method), 826

merge() (angr.concretization_strategies.norepeats.SimConcretizationStrategyNorepeats
method), 379

merge() (angr.concretization_strategies.norepeats_range.SimConcretizationStrategyNorepeatsRange
method), 381

merge() (angr.concretization_strategies.SimConcretizationStrategy
method), 335

merge() (angr.keyed_region.KeyedRegion method), 615
merge() (angr.knowledge_plugins.cfg.cfg_node.CFGNode

method), 546
merge() (angr.knowledge_plugins.cfg.CFGNode

method), 527
merge() (angr.knowledge_plugins.key_definitions.environment.Environment

method), 592
merge() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

method), 597
merge() (angr.knowledge_plugins.key_definitions.LiveDefinitions

method), 576
merge() (angr.knowledge_plugins.key_definitions.rd_model.ReachingDefinitionsModel

method), 604
merge() (angr.knowledge_plugins.key_definitions.ReachingDefinitionsModel

method), 572
merge() (angr.knowledge_plugins.key_definitions.Uses

method), 583
merge() (angr.knowledge_plugins.key_definitions.uses.Uses

method), 608
merge() (angr.sim_manager.SimulationManager

method), 388
merge() (angr.sim_state.SimState method), 227
merge() (angr.SimFile method), 191
merge() (angr.SimFileDescriptor method), 199

Index 1003

angr

merge() (angr.SimFileDescriptorDuplex method), 202
merge() (angr.SimFileStream method), 195
merge() (angr.SimHeapBrk method), 205
merge() (angr.SimHeapPTMalloc method), 207
merge() (angr.SimPackets method), 193
merge() (angr.SimPacketsStream method), 197
merge() (angr.SimState method), 183
merge() (angr.SimStatePlugin method), 162
merge() (angr.SimulationManager method), 177
merge() (angr.state_plugins.callstack.CallStack

method), 264
merge() (angr.state_plugins.cgc.SimStateCGC method),

272
merge() (angr.state_plugins.concrete.Concrete method),

293
merge() (angr.state_plugins.filesystem.SimConcreteFilesystem

method), 252
merge() (angr.state_plugins.filesystem.SimFilesystem

method), 249
merge() (angr.state_plugins.globals.SimStateGlobals

method), 278
merge() (angr.state_plugins.heap.heap_brk.SimHeapBrk

method), 299
merge() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

method), 305
merge() (angr.state_plugins.history.SimStateHistory

method), 267
merge() (angr.state_plugins.inspect.SimInspector

method), 235
merge() (angr.state_plugins.javavm_classloader.SimJavaVmClassloader

method), 295
merge() (angr.state_plugins.jni_references.SimStateJNIReferences

method), 296
merge() (angr.state_plugins.libc.SimStateLibc method),

239
merge() (angr.state_plugins.log.SimStateLog method),

262
merge() (angr.state_plugins.loop_data.SimStateLoopData

method), 291
merge() (angr.state_plugins.plugin.SimStatePlugin

method), 232
merge() (angr.state_plugins.posix.PosixDevFS method),

240
merge() (angr.state_plugins.posix.PosixProcFS

method), 242
merge() (angr.state_plugins.posix.SimSystemPosix

method), 246
merge() (angr.state_plugins.preconstrainer.SimStatePreconstrainer

method), 282
merge() (angr.state_plugins.scratch.SimStateScratch

method), 281
merge() (angr.state_plugins.solver.SimSolver method),

256
merge() (angr.state_plugins.trace_additions.ChallRespInfo

method), 275
merge() (angr.state_plugins.trace_additions.ZenPlugin

method), 276
merge() (angr.state_plugins.unicorn_engine.Unicorn

method), 289
merge() (angr.state_plugins.view.SimMemView

method), 313
merge() (angr.state_plugins.view.SimRegNameView

method), 309
merge() (angr.storage.file.SimFile method), 318
merge() (angr.storage.file.SimFileDescriptor method),

328
merge() (angr.storage.file.SimFileDescriptorDuplex

method), 331
merge() (angr.storage.file.SimFileStream method), 320
merge() (angr.storage.file.SimPackets method), 322
merge() (angr.storage.file.SimPacketsSlots method), 333
merge() (angr.storage.file.SimPacketsStream method),

324
merge() (angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin

method), 345
merge() (angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin

method), 377
merge() (angr.storage.memory_mixins.MemoryMixin

method), 336
merge() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

method), 353
merge() (angr.storage.memory_mixins.paged_memory.pages.list_page.ListPage

method), 362
merge() (angr.storage.memory_mixins.paged_memory.pages.multi_values.MultiValues

method), 351
merge() (angr.storage.memory_mixins.paged_memory.pages.mv_list_page.MVListPage

method), 349
merge() (angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage

method), 364
merge() (angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin

method), 372
merge() (angr.storage.memory_mixins.regioned_memory.regioned_address_concretization_mixin.RegionedAddressConcretizationMixin

method), 373
merge() (angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin

method), 366
merge() (angr.storage.memory_mixins.slotted_memory.SlottedMemoryMixin

method), 374
merge_jobs() (angr.analyses.vfg.CallAnalysis method),

844
merge_points() (angr.annocfg.AnnotatedCFG

method), 875
merge_to_top() (angr.keyed_region.KeyedRegion

method), 615
merge_transitions() (in module

angr.analyses.cfg_slice_to_sink.transitions),
818

merged_jobs (angr.analyses.forward_analysis.job_info.JobInfo
property), 623

1004 Index

angr

MicrosoftAMD64ArgSession (class in
angr.calling_conventions), 492

min() (angr.state_plugins.solver.SimSolver method), 258
min_int() (angr.state_plugins.solver.SimSolver

method), 261
minimum_syscall_number()

(angr.procedures.definitions.SimSyscallLibrary
method), 480

MipsElfFastResolver (class in
angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast),
661

MIPSGPHook (class in angr.analyses.cfg.indirect_jump_resolvers.jumptable),
666

MixedPermissonsError, 288
mnemonic (angr.analyses.disassembly.Instruction prop-

erty), 849
mnemonic (angr.block.CapstoneInsn property), 221
mnemonic (angr.block.DisassemblerInsn property), 220
mnemonic (angr.engines.pcode.lifter.PcodeDisassemblerInsn

property), 435
model (angr.analyses.cfg.cfg_base.CFGBase property),

647
model (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis

attribute), 794
ModSimplifier (class in

angr.analyses.decompiler.optimization_passes.mod_simplifier),
710

ModSimplifierAILEngine (class in
angr.analyses.decompiler.optimization_passes.mod_simplifier),
710

module
angr, 157
angr.analyses, 619
angr.analyses.analysis, 619
angr.analyses.backward_slice, 628
angr.analyses.binary_optimizer, 861
angr.analyses.bindiff, 630
angr.analyses.boyscout, 633
angr.analyses.callee_cleanup_finder, 862
angr.analyses.calling_convention, 633
angr.analyses.cdg, 674
angr.analyses.cfg, 637
angr.analyses.cfg.cfb, 637
angr.analyses.cfg.cfg, 639
angr.analyses.cfg.cfg_arch_options, 657
angr.analyses.cfg.cfg_base, 646
angr.analyses.cfg.cfg_emulated, 641
angr.analyses.cfg.cfg_fast, 648
angr.analyses.cfg.cfg_fast_soot, 669
angr.analyses.cfg.cfg_job_base, 657
angr.analyses.cfg.indirect_jump_resolvers,

669
angr.analyses.cfg.indirect_jump_resolvers.amd64_elf_got,

658

angr.analyses.cfg.indirect_jump_resolvers.arm_elf_fast,
659

angr.analyses.cfg.indirect_jump_resolvers.const_resolver,
667

angr.analyses.cfg.indirect_jump_resolvers.default_resolvers,
663

angr.analyses.cfg.indirect_jump_resolvers.jumptable,
663

angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast,
661

angr.analyses.cfg.indirect_jump_resolvers.resolver,
668

angr.analyses.cfg.indirect_jump_resolvers.x86_elf_pic_plt,
662

angr.analyses.cfg.indirect_jump_resolvers.x86_pe_iat,
660

angr.analyses.cfg.segment_list, 671
angr.analyses.cfg_slice_to_sink, 816
angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink,

816
angr.analyses.cfg_slice_to_sink.graph,

817
angr.analyses.cfg_slice_to_sink.transitions,

818
angr.analyses.class_identifier, 848
angr.analyses.code_tagging, 674
angr.analyses.complete_calling_conventions,

634
angr.analyses.congruency_check, 860
angr.analyses.data_dep, 872
angr.analyses.data_dep.data_dependency_analysis,

867
angr.analyses.data_dep.dep_nodes, 869
angr.analyses.data_dep.sim_act_location,

868
angr.analyses.datagraph_meta, 674
angr.analyses.ddg, 746
angr.analyses.decompiler, 692
angr.analyses.decompiler.ail_simplifier,

692
angr.analyses.decompiler.ailgraph_walker,

693
angr.analyses.decompiler.block_simplifier,

693
angr.analyses.decompiler.callsite_maker,

694
angr.analyses.decompiler.ccall_rewriters,

694
angr.analyses.decompiler.ccall_rewriters.amd64_ccalls,

694
angr.analyses.decompiler.ccall_rewriters.rewriter_base,

694
angr.analyses.decompiler.clinic, 695
angr.analyses.decompiler.condition_processor,

Index 1005

angr

697
angr.analyses.decompiler.decompilation_cache,

699
angr.analyses.decompiler.decompilation_options,

698
angr.analyses.decompiler.decompiler, 699
angr.analyses.decompiler.empty_node_remover,

700
angr.analyses.decompiler.expression_narrower,

701
angr.analyses.decompiler.graph_region,

701
angr.analyses.decompiler.jump_target_collector,

702
angr.analyses.decompiler.jumptable_entry_condition_rewriter,

702
angr.analyses.decompiler.optimization_passes,

703
angr.analyses.decompiler.optimization_passes.base_ptr_save_simplifier,

706
angr.analyses.decompiler.optimization_passes.const_derefs,

703
angr.analyses.decompiler.optimization_passes.div_simplifier,

706
angr.analyses.decompiler.optimization_passes.engine_base,

710
angr.analyses.decompiler.optimization_passes.expr_op_swapper,

711
angr.analyses.decompiler.optimization_passes.ite_expr_converter,

707
angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier,

708
angr.analyses.decompiler.optimization_passes.mod_simplifier,

710
angr.analyses.decompiler.optimization_passes.multi_simplifier,

709
angr.analyses.decompiler.optimization_passes.optimization_pass,

703
angr.analyses.decompiler.optimization_passes.register_save_area_simplifier,

712
angr.analyses.decompiler.optimization_passes.ret_addr_save_simplifier,

712
angr.analyses.decompiler.optimization_passes.stack_canary_simplifier,

706
angr.analyses.decompiler.optimization_passes.x86_gcc_getpc_simplifier,

713
angr.analyses.decompiler.peephole_optimizations,

713
angr.analyses.decompiler.peephole_optimizations.base,

713
angr.analyses.decompiler.redundant_label_remover,

723
angr.analyses.decompiler.region_identifier,

715

angr.analyses.decompiler.region_simplifiers,
716

angr.analyses.decompiler.region_simplifiers.cascading_cond_transformer,
716

angr.analyses.decompiler.region_simplifiers.cascading_ifs,
716

angr.analyses.decompiler.region_simplifiers.expr_folding,
716

angr.analyses.decompiler.region_simplifiers.goto,
719

angr.analyses.decompiler.region_simplifiers.if_,
719

angr.analyses.decompiler.region_simplifiers.ifelse,
719

angr.analyses.decompiler.region_simplifiers.loop,
719

angr.analyses.decompiler.region_simplifiers.node_address_finder,
719

angr.analyses.decompiler.region_simplifiers.region_simplifier,
720

angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier,
720

angr.analyses.decompiler.region_simplifiers.switch_expr_simplifier,
723

angr.analyses.decompiler.region_walker,
723

angr.analyses.decompiler.sequence_walker,
724

angr.analyses.decompiler.structured_codegen,
724

angr.analyses.decompiler.structured_codegen.base,
724

angr.analyses.decompiler.structured_codegen.c,
725

angr.analyses.decompiler.structured_codegen.dummy,
743

angr.analyses.decompiler.structured_codegen.dwarf_import,
743

angr.analyses.decompiler.structuring, 685
angr.analyses.decompiler.structuring.dream,

685
angr.analyses.decompiler.structuring.phoenix,

691
angr.analyses.decompiler.structuring.recursive_structurer,

685
angr.analyses.decompiler.structuring.structurer_base,

690
angr.analyses.decompiler.structuring.structurer_nodes,

686
angr.analyses.decompiler.utils, 743
angr.analyses.disassembly, 848
angr.analyses.disassembly_utils, 852
angr.analyses.dominance_frontier, 863
angr.analyses.find_objects_static, 847

1006 Index

angr

angr.analyses.flirt, 752
angr.analyses.forward_analysis, 621
angr.analyses.forward_analysis.forward_analysis,

621
angr.analyses.forward_analysis.job_info,

622
angr.analyses.forward_analysis.visitors,

623
angr.analyses.forward_analysis.visitors.call_graph,

623
angr.analyses.forward_analysis.visitors.function_graph,

623
angr.analyses.forward_analysis.visitors.graph,

624
angr.analyses.forward_analysis.visitors.loop,

626
angr.analyses.forward_analysis.visitors.single_node_graph,

627
angr.analyses.identifier.identify, 837
angr.analyses.init_finder, 863
angr.analyses.loop_analysis, 839
angr.analyses.loopfinder, 838
angr.analyses.propagator, 754
angr.analyses.propagator.engine_ail, 756
angr.analyses.propagator.engine_base, 755
angr.analyses.propagator.engine_vex, 755
angr.analyses.propagator.outdated_definition_walker,

757
angr.analyses.propagator.propagator, 758
angr.analyses.propagator.tmpvar_finder,

758
angr.analyses.propagator.top_checker_mixin,

759
angr.analyses.propagator.values, 754
angr.analyses.propagator.vex_vars, 754
angr.analyses.proximity_graph, 865
angr.analyses.reaching_definitions, 759
angr.analyses.reaching_definitions.call_trace,

791
angr.analyses.reaching_definitions.dep_graph,

796
angr.analyses.reaching_definitions.engine_ail,

815
angr.analyses.reaching_definitions.engine_vex,

792
angr.analyses.reaching_definitions.function_handler,

800
angr.analyses.reaching_definitions.heap_allocator,

799
angr.analyses.reaching_definitions.rd_state,

807
angr.analyses.reaching_definitions.reaching_definitions,

793
angr.analyses.reaching_definitions.subject,

815
angr.analyses.reassembler, 852
angr.analyses.soot_class_hierarchy, 636
angr.analyses.stack_pointer_tracker, 818
angr.analyses.static_hooker, 861
angr.analyses.typehoon, 837
angr.analyses.typehoon.lifter, 829
angr.analyses.typehoon.simple_solver, 830
angr.analyses.typehoon.translator, 830
angr.analyses.typehoon.typeconsts, 836
angr.analyses.typehoon.typehoon, 835
angr.analyses.typehoon.typevars, 831
angr.analyses.variable_recovery, 829
angr.analyses.variable_recovery.annotations,

820
angr.analyses.variable_recovery.engine_ail,

828
angr.analyses.variable_recovery.engine_base,

828
angr.analyses.variable_recovery.engine_vex,

828
angr.analyses.variable_recovery.irsb_scanner,

829
angr.analyses.variable_recovery.variable_recovery,

827
angr.analyses.variable_recovery.variable_recovery_base,

821
angr.analyses.variable_recovery.variable_recovery_fast,

825
angr.analyses.veritesting, 840
angr.analyses.vfg, 841
angr.analyses.vsa_ddg, 846
angr.analyses.vtable, 847
angr.analyses.xrefs, 863
angr.angrdb, 675
angr.angrdb.db, 675
angr.angrdb.models, 677
angr.angrdb.serializers, 680
angr.angrdb.serializers.cfg_model, 680
angr.angrdb.serializers.comments, 681
angr.angrdb.serializers.funcs, 681
angr.angrdb.serializers.kb, 682
angr.angrdb.serializers.labels, 682
angr.angrdb.serializers.loader, 682
angr.angrdb.serializers.structured_code,

684
angr.angrdb.serializers.variables, 683
angr.angrdb.serializers.xrefs, 683
angr.annocfg, 873
angr.blade, 872
angr.block, 220
angr.callable, 519
angr.calling_conventions, 483
angr.code_location, 612

Index 1007

angr

angr.codenode, 875
angr.concretization_strategies, 335
angr.concretization_strategies.any, 381
angr.concretization_strategies.controlled_data,

381
angr.concretization_strategies.eval, 379
angr.concretization_strategies.max, 380
angr.concretization_strategies.nonzero,

381
angr.concretization_strategies.nonzero_range,

380
angr.concretization_strategies.norepeats,

379
angr.concretization_strategies.norepeats_range,

381
angr.concretization_strategies.range, 380
angr.concretization_strategies.single,

379
angr.concretization_strategies.solutions,

379
angr.concretization_strategies.unlimited_range,

381
angr.distributed, 902
angr.distributed.server, 902
angr.distributed.worker, 902
angr.engines, 427
angr.engines.concrete, 433
angr.engines.engine, 427
angr.engines.failure, 431
angr.engines.hook, 430
angr.engines.light, 753
angr.engines.light.data, 752
angr.engines.light.engine, 753
angr.engines.pcode, 434
angr.engines.pcode.behavior, 444
angr.engines.pcode.cc, 464
angr.engines.pcode.emulate, 444
angr.engines.pcode.engine, 434
angr.engines.pcode.lifter, 435
angr.engines.procedure, 430
angr.engines.soot, 431
angr.engines.soot.engine, 431
angr.engines.successors, 428
angr.engines.syscall, 431
angr.engines.unicorn, 432
angr.engines.vex, 431
angr.errors, 896
angr.exploration_techniques, 390
angr.exploration_techniques.bucketizer,

426
angr.exploration_techniques.common, 424
angr.exploration_techniques.dfs, 408
angr.exploration_techniques.director, 418

angr.exploration_techniques.driller_core,
416

angr.exploration_techniques.explorer, 408
angr.exploration_techniques.lengthlimiter,

409
angr.exploration_techniques.local_loop_seer,

422
angr.exploration_techniques.loop_seer,

421
angr.exploration_techniques.manual_mergepoint,

410
angr.exploration_techniques.memory_watcher,

426
angr.exploration_techniques.oppologist,

420
angr.exploration_techniques.slicecutor,

417
angr.exploration_techniques.spiller, 410
angr.exploration_techniques.spiller_db,

412
angr.exploration_techniques.stochastic,

423
angr.exploration_techniques.suggestions,

426
angr.exploration_techniques.symbion, 424
angr.exploration_techniques.tech_builder,

424
angr.exploration_techniques.threading,

413
angr.exploration_techniques.timeout, 407
angr.exploration_techniques.tracer, 414
angr.exploration_techniques.unique, 423
angr.exploration_techniques.veritesting,

413
angr.factory, 216
angr.flirt, 885
angr.flirt.build_sig, 885
angr.keyed_region, 614
angr.knowledge_base, 520
angr.knowledge_base.knowledge_base, 520
angr.knowledge_plugins, 521
angr.knowledge_plugins.callsite_prototypes,

523
angr.knowledge_plugins.cfg, 524
angr.knowledge_plugins.cfg.cfg_manager,

544
angr.knowledge_plugins.cfg.cfg_model, 536
angr.knowledge_plugins.cfg.cfg_node, 544
angr.knowledge_plugins.cfg.indirect_jump,

547
angr.knowledge_plugins.cfg.memory_data,

542
angr.knowledge_plugins.comments, 549
angr.knowledge_plugins.data, 549

1008 Index

angr

angr.knowledge_plugins.debug_variables,
568

angr.knowledge_plugins.functions, 550
angr.knowledge_plugins.functions.function,

552
angr.knowledge_plugins.functions.function_manager,

550
angr.knowledge_plugins.functions.function_parser,

560
angr.knowledge_plugins.functions.soot_function,

560
angr.knowledge_plugins.indirect_jumps,

549
angr.knowledge_plugins.key_definitions,

571
angr.knowledge_plugins.key_definitions.atoms,

584
angr.knowledge_plugins.key_definitions.constants,

588
angr.knowledge_plugins.key_definitions.definition,

589
angr.knowledge_plugins.key_definitions.environment,

591
angr.knowledge_plugins.key_definitions.heap_address,

592
angr.knowledge_plugins.key_definitions.key_definition_manager,

592
angr.knowledge_plugins.key_definitions.live_definitions,

593
angr.knowledge_plugins.key_definitions.rd_model,

602
angr.knowledge_plugins.key_definitions.tag,

604
angr.knowledge_plugins.key_definitions.undefined,

606
angr.knowledge_plugins.key_definitions.unknown_size,

606
angr.knowledge_plugins.key_definitions.uses,

606
angr.knowledge_plugins.labels, 549
angr.knowledge_plugins.patches, 521
angr.knowledge_plugins.plugin, 523
angr.knowledge_plugins.propagations, 549
angr.knowledge_plugins.structured_code,

571
angr.knowledge_plugins.structured_code.manager,

571
angr.knowledge_plugins.sync, 608
angr.knowledge_plugins.sync.sync_controller,

608
angr.knowledge_plugins.types, 549
angr.knowledge_plugins.variables, 561
angr.knowledge_plugins.variables.variable_access,

561

angr.knowledge_plugins.variables.variable_manager,
562

angr.knowledge_plugins.xrefs, 610
angr.knowledge_plugins.xrefs.xref, 610
angr.knowledge_plugins.xrefs.xref_manager,

612
angr.knowledge_plugins.xrefs.xref_types,

611
angr.misc.plugins, 222
angr.procedures, 473
angr.procedures.definitions, 475
angr.procedures.stubs.format_parser, 473
angr.project, 212
angr.protos, 617
angr.serializable, 617
angr.sim_manager, 382
angr.sim_options, 228
angr.sim_procedure, 469
angr.sim_state, 224
angr.sim_state_options, 228
angr.sim_type, 507
angr.sim_variable, 502
angr.simos, 877
angr.simos.cgc, 880
angr.simos.javavm, 882
angr.simos.linux, 879
angr.simos.simos, 877
angr.simos.userland, 880
angr.simos.windows, 881
angr.slicer, 873
angr.state_hierarchy, 389
angr.state_plugins, 231
angr.state_plugins.callstack, 263
angr.state_plugins.cgc, 271
angr.state_plugins.concrete, 292
angr.state_plugins.debug_variables, 307
angr.state_plugins.filesystem, 248
angr.state_plugins.gdb, 270
angr.state_plugins.globals, 278
angr.state_plugins.heap, 297
angr.state_plugins.heap.heap_base, 297
angr.state_plugins.heap.heap_brk, 298
angr.state_plugins.heap.heap_freelist,

300
angr.state_plugins.heap.heap_libc, 301
angr.state_plugins.heap.heap_ptmalloc,

302
angr.state_plugins.heap.utils, 306
angr.state_plugins.history, 267
angr.state_plugins.inspect, 233
angr.state_plugins.javavm_classloader,

294
angr.state_plugins.jni_references, 296
angr.state_plugins.libc, 236

Index 1009

angr

angr.state_plugins.light_registers, 266
angr.state_plugins.log, 262
angr.state_plugins.loop_data, 291
angr.state_plugins.plugin, 231
angr.state_plugins.posix, 240
angr.state_plugins.preconstrainer, 282
angr.state_plugins.scratch, 280
angr.state_plugins.sim_action, 466
angr.state_plugins.sim_action_object, 468
angr.state_plugins.sim_event, 468
angr.state_plugins.solver, 254
angr.state_plugins.symbolizer, 307
angr.state_plugins.trace_additions, 273
angr.state_plugins.uc_manager, 279
angr.state_plugins.unicorn_engine, 284
angr.state_plugins.view, 309
angr.storage, 309
angr.storage.file, 314
angr.storage.memory_mixins, 336
angr.storage.memory_mixins.actions_mixin,

342
angr.storage.memory_mixins.address_concretization_mixin,

344
angr.storage.memory_mixins.bvv_conversion_mixin,

340
angr.storage.memory_mixins.clouseau_mixin,

346
angr.storage.memory_mixins.conditional_store_mixin,

346
angr.storage.memory_mixins.convenient_mappings_mixin,

348
angr.storage.memory_mixins.default_filler_mixin,

340
angr.storage.memory_mixins.dirty_addrs_mixin,

344
angr.storage.memory_mixins.hex_dumper_mixin,

341
angr.storage.memory_mixins.javavm_memory,

376
angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin,

376
angr.storage.memory_mixins.keyvalue_memory,

375
angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin,

375
angr.storage.memory_mixins.label_merger_mixin,

346
angr.storage.memory_mixins.multi_value_merger_mixin,

352
angr.storage.memory_mixins.name_resolution_mixin,

339
angr.storage.memory_mixins.paged_memory,

352
angr.storage.memory_mixins.paged_memory.page_backer_mixins,

357
angr.storage.memory_mixins.paged_memory.paged_memory_mixin,

352
angr.storage.memory_mixins.paged_memory.pages,

359
angr.storage.memory_mixins.paged_memory.pages.cooperation,

361
angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin,

360
angr.storage.memory_mixins.paged_memory.pages.ispo_mixin,

361
angr.storage.memory_mixins.paged_memory.pages.list_page,

362
angr.storage.memory_mixins.paged_memory.pages.multi_values,

350
angr.storage.memory_mixins.paged_memory.pages.mv_list_page,

348
angr.storage.memory_mixins.paged_memory.pages.permissions_mixin,

360
angr.storage.memory_mixins.paged_memory.pages.refcount_mixin,

359
angr.storage.memory_mixins.paged_memory.pages.ultra_page,

363
angr.storage.memory_mixins.paged_memory.privileged_mixin,

358
angr.storage.memory_mixins.paged_memory.stack_allocation_mixin,

358
angr.storage.memory_mixins.regioned_memory,

365
angr.storage.memory_mixins.regioned_memory.abstract_address_descriptor,

371
angr.storage.memory_mixins.regioned_memory.abstract_merger_mixin,

373
angr.storage.memory_mixins.regioned_memory.region_category_mixin,

370
angr.storage.memory_mixins.regioned_memory.region_data,

368
angr.storage.memory_mixins.regioned_memory.region_meta_mixin,

371
angr.storage.memory_mixins.regioned_memory.regioned_address_concretization_mixin,

373
angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin,

365
angr.storage.memory_mixins.regioned_memory.static_find_mixin,

370
angr.storage.memory_mixins.simple_interface_mixin,

342
angr.storage.memory_mixins.simplification_mixin,

347
angr.storage.memory_mixins.size_resolution_mixin,

343
angr.storage.memory_mixins.slotted_memory,

374
angr.storage.memory_mixins.smart_find_mixin,

1010 Index

angr

339
angr.storage.memory_mixins.symbolic_merger_mixin,

342
angr.storage.memory_mixins.top_merger_mixin,

351
angr.storage.memory_mixins.underconstrained_mixin,

341
angr.storage.memory_mixins.unwrapper_mixin,

347
angr.storage.memory_object, 334
angr.storage.pcap, 335
angr.utils, 886
angr.utils.algo, 887
angr.utils.constants, 887
angr.utils.cowdict, 887
angr.utils.dynamic_dictlist, 887
angr.utils.enums_conv, 888
angr.utils.env, 888
angr.utils.formatting, 894
angr.utils.graph, 888
angr.utils.lazy_import, 892
angr.utils.library, 893
angr.utils.loader, 892
angr.utils.mp, 895
angr.utils.timing, 894
angr.vaults, 617

most_mergeable() (angr.state_hierarchy.StateHierarchy
method), 390

most_mergeable() (angr.StateHierarchy method), 180
mount() (angr.state_plugins.filesystem.SimFilesystem

method), 250
move() (angr.sim_manager.SimulationManager method),

386
move() (angr.SimulationManager method), 175
move_codelocs() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

method), 811
move_codelocs() (angr.analyses.reaching_definitions.ReachingDefinitionsState

method), 782
mp_context() (in module angr.utils.mp), 896
Mul (angr.engines.light.data.ArithmeticExpression

attribute), 752
mulpyplex() (angr.sim_manager.SimulationManager

method), 383
mulpyplex() (angr.SimulationManager method), 172
MultiNode (class in angr.analyses.decompiler.structuring.structurer_nodes),

686
MultipleBlocksException, 703
MultiSimplifier (class in

angr.analyses.decompiler.optimization_passes.multi_simplifier),
709

MultiSimplifierAILEngine (class in
angr.analyses.decompiler.optimization_passes.multi_simplifier),
709

MultiStatementExpressionAssignmentFinder

(class in angr.analyses.decompiler.region_simplifiers.expr_folding),
717

MultiStmtExprMode (class in
angr.analyses.decompiler.structuring.phoenix),
691

MultiValuedMemory (class in
angr.storage.memory_mixins), 339

MultiValueMergerMixin (class in
angr.storage.memory_mixins.multi_value_merger_mixin),
352

MultiValues (class in
angr.storage.memory_mixins.paged_memory.pages.multi_values),
350

MultiwriteAnnotation (class in
angr.storage.memory_mixins.address_concretization_mixin),
344

MVListPage (class in angr.storage.memory_mixins.paged_memory.pages.mv_list_page),
348

MVListPagesMixin (class in
angr.storage.memory_mixins.paged_memory.paged_memory_mixin),
356

MVListPagesWithLabelsMixin (class in
angr.storage.memory_mixins.paged_memory.paged_memory_mixin),
356

N
n (angr.analyses.typehoon.typevars.AddN attribute), 834
n (angr.analyses.typehoon.typevars.SubN attribute), 834
NAME (angr.analyses.decompiler.optimization_passes.base_ptr_save_simplifier.BasePointerSaveSimplifier

attribute), 706
NAME (angr.analyses.decompiler.optimization_passes.const_derefs.ConstantDereferencesSimplifier

attribute), 703
NAME (angr.analyses.decompiler.optimization_passes.div_simplifier.DivSimplifier

attribute), 707
NAME (angr.analyses.decompiler.optimization_passes.expr_op_swapper.ExprOpSwapper

attribute), 712
NAME (angr.analyses.decompiler.optimization_passes.ite_expr_converter.ITEExprConverter

attribute), 707
NAME (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.LoweredSwitchSimplifier

attribute), 709
NAME (angr.analyses.decompiler.optimization_passes.mod_simplifier.ModSimplifier

attribute), 710
NAME (angr.analyses.decompiler.optimization_passes.multi_simplifier.MultiSimplifier

attribute), 710
NAME (angr.analyses.decompiler.optimization_passes.optimization_pass.BaseOptimizationPass

attribute), 704
NAME (angr.analyses.decompiler.optimization_passes.register_save_area_simplifier.RegisterSaveAreaSimplifier

attribute), 712
NAME (angr.analyses.decompiler.optimization_passes.ret_addr_save_simplifier.RetAddrSaveSimplifier

attribute), 712
NAME (angr.analyses.decompiler.optimization_passes.stack_canary_simplifier.StackCanarySimplifier

attribute), 706
NAME (angr.analyses.decompiler.optimization_passes.x86_gcc_getpc_simplifier.X86GccGetPcSimplifier

attribute), 713

Index 1011

angr

NAME (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationExprBase
attribute), 714

NAME (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationMultiStmtBase
attribute), 714

NAME (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationStmtBase
attribute), 713

name (angr.analyses.decompiler.structured_codegen.c.CFakeVariable
attribute), 734

name (angr.analyses.decompiler.structured_codegen.c.CFunction
attribute), 727

name (angr.analyses.decompiler.structured_codegen.c.CLabel
attribute), 733

name (angr.analyses.decompiler.structured_codegen.c.CStructFieldNameDef
attribute), 739

name (angr.analyses.decompiler.structured_codegen.c.CVariable
property), 734

NAME (angr.analyses.decompiler.structuring.dream.DreamStructurer
attribute), 685

NAME (angr.analyses.decompiler.structuring.phoenix.PhoenixStructurer
attribute), 692

NAME (angr.analyses.decompiler.structuring.structurer_base.StructurerBase
attribute), 690

name (angr.analyses.reaching_definitions.function_handler.FunctionCallData
attribute), 802

name (angr.analyses.reaching_definitions.FunctionCallData
attribute), 789

name (angr.analyses.reaching_definitions.Register prop-
erty), 770

name (angr.analyses.reassembler.Procedure property),
856

name (angr.angrdb.models.DbKnowledgeBase attribute),
677

name (angr.angrdb.models.DbLabel attribute), 680
name (angr.knowledge_plugins.cfg.cfg_node.CFGNode

property), 545
name (angr.knowledge_plugins.cfg.CFGNode property),

526
name (angr.knowledge_plugins.functions.function.Function

property), 553
name (angr.knowledge_plugins.key_definitions.atoms.Register

property), 588
name (angr.procedures.definitions.SimLibrary property),

476
name (angr.sim_state_options.StateOption attribute), 228
name (angr.sim_type.NamedTypeMixin property), 508
name (angr.sim_type.TypeRef property), 508
name (angr.sim_variable.SimVariable attribute), 503
name_stop() (angr.state_plugins.unicorn_engine.STOP

static method), 287
named_errors (angr.analyses.analysis.Analysis at-

tribute), 621
named_errors (angr.Analysis attribute), 178
NamedTypeMixin (class in angr.sim_type), 508
NameResolutionMixin (class in

angr.storage.memory_mixins.name_resolution_mixin),
339

native_arch (angr.simos.javavm.SimJavaVM property),
884

NE (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.CmpOp
attribute), 720

NEVER (angr.analyses.decompiler.structuring.phoenix.MultiStmtExprMode
attribute), 691

new() (angr.analyses.cfg.cfg_job_base.BlockID static
method), 658

new() (angr.analyses.cfg.cfg_job_base.FunctionKey
static method), 658

new() (angr.analyses.typehoon.typeconsts.Pointer
method), 837

new_block_addr() (angr.analyses.decompiler.clinic.Clinic
method), 697

new_block_addr() (angr.analyses.decompiler.optimization_passes.optimization_pass.OptimizationPass
method), 705

new_from_shared() (angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage
class method), 364

new_label() (angr.analyses.reassembler.Label static
method), 853

new_label() (angr.analyses.reassembler.SymbolManager
method), 854

new_model() (angr.knowledge_plugins.cfg.cfg_manager.CFGManager
method), 544

new_model() (angr.knowledge_plugins.cfg.CFGManager
method), 536

NewFunctionHandler (class in
angr.analyses.find_objects_static), 847

Next (angr.analyses.loop_analysis.VariableTypes at-
tribute), 839

next (angr.engines.pcode.lifter.IRSB attribute), 437
next (angr.state_plugins.unicorn_engine.MEM_PATCH

attribute), 284
next_addr (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.Case

attribute), 708
next_arg() (angr.calling_conventions.SimCC method),

489
next_arg() (angr.calling_conventions.SimCCARM

method), 496
next_arg() (angr.calling_conventions.SimCCARMHF

method), 496
next_arg() (angr.calling_conventions.SimCCCdecl

method), 492
next_arg() (angr.calling_conventions.SimCCMicrosoftAMD64

method), 493
next_arg() (angr.calling_conventions.SimCCO32

method), 498
next_arg() (angr.calling_conventions.SimCCSystemVAMD64

method), 494
next_arg() (angr.calling_conventions.SimCCUsercall

method), 491
next_arg() (angr.SimCC method), 186

1012 Index

angr

next_chunk() (angr.PTChunk method), 209
next_chunk() (angr.state_plugins.heap.heap_freelist.Chunk

method), 300
next_chunk() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 303
next_free_pos() (angr.analyses.cfg.segment_list.SegmentList

method), 672
next_node() (angr.analyses.forward_analysis.visitors.graph.GraphVisitor

method), 626
next_node() (angr.analyses.forward_analysis.visitors.single_node_graph.SingleNodeGraphVisitor

method), 627
next_pos_with_sort_not_in()

(angr.analyses.cfg.segment_list.SegmentList
method), 672

next_variable_ident()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 563

no_ret (angr.knowledge_plugins.cfg.cfg_node.CFGNode
attribute), 545

no_ret (angr.knowledge_plugins.cfg.CFGNode at-
tribute), 526

NO_RET (angr.sim_procedure.SimProcedure attribute),
471

NO_RET (angr.SimProcedure attribute), 159
NoConcreteDispatch, 637
NodalAnnotation (class in

angr.analyses.data_dep.data_dependency_analysis),
867

node (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.ConditionalRegion
attribute), 721

node (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.SwitchCaseRegion
attribute), 721

node (angr.analyses.decompiler.structuring.structurer_nodes.CodeNode
attribute), 687

node (angr.analyses.decompiler.structuring.structurer_nodes.ConditionNode
attribute), 687

node (angr.analyses.forward_analysis.visitors.single_node_graph.SingleNodeGraphVisitor
attribute), 627

node_addr (angr.analyses.decompiler.region_simplifiers.expr_folding.ConditionalBreakLocation
attribute), 717

node_addr (angr.analyses.decompiler.region_simplifiers.expr_folding.ConditionLocation
attribute), 717

node_observe() (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis
method), 795

node_observe() (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis
method), 774

node_position() (angr.analyses.decompiler.structuring.structurer_nodes.SequenceNode
method), 686

node_returned (angr.analyses.forward_analysis.visitors.single_node_graph.SingleNodeGraphVisitor
attribute), 627

node_type (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.Case
attribute), 708

NodeAddressFinder (class in
angr.analyses.decompiler.region_simplifiers.node_address_finder),

719
NodeFoundNotification, 707
nodes (angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink.CFGSliceToSink

property), 817
nodes (angr.analyses.decompiler.structuring.structurer_nodes.MultiNode

attribute), 686
nodes (angr.analyses.decompiler.structuring.structurer_nodes.SequenceNode

attribute), 686
nodes (angr.knowledge_plugins.functions.function.Function

property), 555
nodes() (angr.analyses.cfg.cfg_base.CFGBase method),

647
nodes() (angr.analyses.forward_analysis.visitors.graph.GraphVisitor

method), 625
nodes() (angr.analyses.reaching_definitions.dep_graph.DepGraph

method), 797
nodes() (angr.knowledge_plugins.cfg.cfg_model.CFGModel

method), 538
nodes() (angr.knowledge_plugins.cfg.CFGModel

method), 532
nodes_iter() (angr.analyses.cfg.cfg_base.CFGBase

method), 648
nodes_iter() (angr.analyses.forward_analysis.visitors.graph.GraphVisitor

method), 625
NONE (angr.simos.windows.SecurityCookieInit attribute),

881
NORMAL (angr.analyses.cfg.cfg_fast.CFGJobType at-

tribute), 652
normalize() (angr.analyses.cfg.cfg_base.CFGBase

method), 648
normalize() (angr.analyses.cfg.cfg_fast_soot.CFGFastSoot

method), 670
normalize() (angr.knowledge_plugins.functions.function.Function

method), 559
normalize() (angr.knowledge_plugins.functions.soot_function.SootFunction

method), 561
normalize() (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate

method), 590
normalize_cpp_function_name() (in module

angr.sim_type), 519
normalized (angr.analyses.cfg.cfg_base.CFGBase

property), 647
normalized (angr.knowledge_plugins.cfg.cfg_model.CFGModel

attribute), 536
normalized (angr.knowledge_plugins.cfg.CFGModel at-

tribute), 530
normalized (angr.knowledge_plugins.functions.function.Function

attribute), 553
normalized (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 560
NormalizedBlock (class in angr.analyses.bindiff), 630
NormalizedFunction (class in angr.analyses.bindiff),

630
NotAJumpTableNotification, 663

Index 1013

angr

NotEqual (angr.analyses.loop_analysis.Condition
attribute), 839

NotMemoryview (class in
angr.storage.memory_mixins.paged_memory.page_backer_mixins),
357

NotypeLabel (class in angr.analyses.reassembler), 853
NULL_TERMINATE (angr.knowledge_plugins.key_definitions.DerefSize

attribute), 582
NULL_TERMINATE (angr.knowledge_plugins.key_definitions.live_definitions.DerefSize

attribute), 593
num_arguments (angr.knowledge_plugins.functions.function.Function

property), 555

O
O (in module angr.analyses.decompiler.decompilation_options),

699
O_ACCMODE (angr.storage.file.Flags attribute), 315
O_APPEND (angr.storage.file.Flags attribute), 315
O_ASYNC (angr.storage.file.Flags attribute), 315
O_CLOEXEC (angr.storage.file.Flags attribute), 315
O_CREAT (angr.storage.file.Flags attribute), 315
O_DIRECT (angr.storage.file.Flags attribute), 315
O_DIRECTORY (angr.storage.file.Flags attribute), 315
O_DSYNC (angr.storage.file.Flags attribute), 315
O_EXCL (angr.storage.file.Flags attribute), 315
O_LARGEFILE (angr.storage.file.Flags attribute), 315
O_NDELAY (angr.storage.file.Flags attribute), 315
O_NOATIME (angr.storage.file.Flags attribute), 315
O_NOCTTY (angr.storage.file.Flags attribute), 315
O_NOFOLLOW (angr.storage.file.Flags attribute), 315
O_NONBLOCK (angr.storage.file.Flags attribute), 315
O_PATH (angr.storage.file.Flags attribute), 315
O_RDONLY (angr.storage.file.Flags attribute), 314
O_RDWR (angr.storage.file.Flags attribute), 314
O_SYNC (angr.storage.file.Flags attribute), 315
O_TMPFILE (angr.storage.file.Flags attribute), 315
O_TRUNC (angr.storage.file.Flags attribute), 315
O_WRONLY (angr.storage.file.Flags attribute), 314
obj (angr.analyses.decompiler.structured_codegen.base.PositionMappingElement

attribute), 724
obj (angr.analyses.disassembly.IROp attribute), 849
obj (angr.keyed_region.StoredObject attribute), 614
obj (angr.utils.graph.ContainerNode property), 890
obj_bit_size() (in module

angr.storage.memory_object), 334
obj_id (angr.keyed_region.StoredObject property), 614
object (angr.storage.memory_object.SimMemoryObject

attribute), 334
ObjectLabel (class in angr.analyses.reassembler), 853
ObservationPointType (class in

angr.analyses.reaching_definitions), 767
ObservationPointType (class in

angr.knowledge_plugins.key_definitions.constants),
588

observed_results (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis
property), 794

observed_results (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis
property), 774

occupied_by() (angr.analyses.cfg.segment_list.SegmentList
method), 673

occupied_by_sort() (angr.analyses.cfg.segment_list.SegmentList
method), 673

occupied_size (angr.analyses.cfg.segment_list.SegmentList
property), 674

occupy() (angr.analyses.cfg.segment_list.SegmentList
method), 673

offset (angr.analyses.decompiler.structured_codegen.c.CStructField
attribute), 733

offset (angr.analyses.propagator.vex_vars.VEXReg at-
tribute), 754

offset (angr.analyses.reaching_definitions.Definition
property), 772

offset (angr.analyses.reassembler.Label property), 853
offset (angr.analyses.stack_pointer_tracker.OffsetVal

property), 819
offset (angr.analyses.stack_pointer_tracker.Register at-

tribute), 819
offset (angr.analyses.typehoon.typevars.HasField at-

tribute), 835
offset (angr.engines.light.data.RegisterOffset attribute),

753
offset (angr.knowledge_plugins.functions.function.Function

property), 556
offset (angr.knowledge_plugins.key_definitions.Definition

property), 584
offset (angr.knowledge_plugins.key_definitions.definition.Definition

property), 591
offset (angr.knowledge_plugins.variables.variable_access.VariableAccess

attribute), 562
Offset (angr.knowledge_plugins.xrefs.xref_types.XRefType

attribute), 611
offset (angr.sim_variable.SimStackVariable attribute),

506
offset (angr.state_plugins.unicorn_engine.RegisterValue

attribute), 285
offset_after() (angr.analyses.stack_pointer_tracker.StackPointerTracker

method), 820
offset_after_block()

(angr.analyses.stack_pointer_tracker.StackPointerTracker
method), 820

offset_before() (angr.analyses.stack_pointer_tracker.StackPointerTracker
method), 820

offset_before_block()
(angr.analyses.stack_pointer_tracker.StackPointerTracker
method), 820

offsets (angr.sim_type.SimStruct property), 516
OffsetVal (class in angr.analyses.stack_pointer_tracker),

819

1014 Index

angr

offsIP (angr.engines.pcode.lifter.IRSB property), 438
on_worker_exit() (angr.distributed.server.Server

method), 902
on_worker_exit() (angr.Server method), 211
one_active (angr.sim_manager.SimulationManager at-

tribute), 383
one_active (angr.SimulationManager attribute), 172
one_deadended (angr.sim_manager.SimulationManager

attribute), 383
one_deadended (angr.SimulationManager attribute),

172
one_found (angr.sim_manager.SimulationManager at-

tribute), 383
one_found (angr.SimulationManager attribute), 172
one_pruned (angr.sim_manager.SimulationManager at-

tribute), 383
one_pruned (angr.SimulationManager attribute), 172
one_result (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis

property), 794
one_result (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis

property), 774
one_stashed (angr.sim_manager.SimulationManager

attribute), 383
one_stashed (angr.SimulationManager attribute), 172
one_type() (angr.sim_state_options.StateOption

method), 228
one_unconstrained (angr.sim_manager.SimulationManager

attribute), 383
one_unconstrained (angr.SimulationManager at-

tribute), 172
one_unsat (angr.sim_manager.SimulationManager at-

tribute), 383
one_unsat (angr.SimulationManager attribute), 172
one_value() (angr.storage.memory_mixins.paged_memory.pages.multi_values.MultiValues

method), 351
op (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.ConditionalRegion

attribute), 721
op (angr.analyses.decompiler.structured_codegen.c.CBinaryOp

attribute), 736
op (angr.analyses.decompiler.structured_codegen.c.CUnaryOp

attribute), 735
op (angr.engines.light.data.ArithmeticExpression at-

tribute), 753
OP_AFTER (angr.analyses.reaching_definitions.ObservationPointType

attribute), 768
OP_AFTER (angr.knowledge_plugins.key_definitions.constants.ObservationPointType

attribute), 589
OP_BEFORE (angr.analyses.reaching_definitions.ObservationPointType

attribute), 767
OP_BEFORE (angr.knowledge_plugins.key_definitions.constants.ObservationPointType

attribute), 589
op_precedence (angr.analyses.decompiler.structured_codegen.c.CBinaryOp

property), 736
op_str (angr.block.CapstoneInsn property), 221

op_str (angr.block.DisassemblerInsn property), 220
op_str (angr.engines.pcode.lifter.PcodeDisassemblerInsn

property), 435
OpBehavior (class in angr.engines.pcode.behavior), 445
OpBehaviorBoolAnd (class in

angr.engines.pcode.behavior), 458
OpBehaviorBoolNegate (class in

angr.engines.pcode.behavior), 457
OpBehaviorBoolOr (class in

angr.engines.pcode.behavior), 459
OpBehaviorBoolXor (class in

angr.engines.pcode.behavior), 458
OpBehaviorCopy (class in

angr.engines.pcode.behavior), 446
OpBehaviorEqual (class in

angr.engines.pcode.behavior), 446
OpBehaviorFloatAbs (class in

angr.engines.pcode.behavior), 461
OpBehaviorFloatAdd (class in

angr.engines.pcode.behavior), 460
OpBehaviorFloatCeil (class in

angr.engines.pcode.behavior), 462
OpBehaviorFloatDiv (class in

angr.engines.pcode.behavior), 460
OpBehaviorFloatEqual (class in

angr.engines.pcode.behavior), 459
OpBehaviorFloatFloat2Float (class in

angr.engines.pcode.behavior), 462
OpBehaviorFloatFloor (class in

angr.engines.pcode.behavior), 462
OpBehaviorFloatInt2Float (class in

angr.engines.pcode.behavior), 462
OpBehaviorFloatLess (class in

angr.engines.pcode.behavior), 459
OpBehaviorFloatLessEqual (class in

angr.engines.pcode.behavior), 460
OpBehaviorFloatMult (class in

angr.engines.pcode.behavior), 461
OpBehaviorFloatNan (class in

angr.engines.pcode.behavior), 460
OpBehaviorFloatNeg (class in

angr.engines.pcode.behavior), 461
OpBehaviorFloatNotEqual (class in

angr.engines.pcode.behavior), 459
OpBehaviorFloatRound (class in

angr.engines.pcode.behavior), 463
OpBehaviorFloatSqrt (class in

angr.engines.pcode.behavior), 461
OpBehaviorFloatSub (class in

angr.engines.pcode.behavior), 461
OpBehaviorFloatTrunc (class in

angr.engines.pcode.behavior), 462
OpBehaviorInt2Comp (class in

angr.engines.pcode.behavior), 452

Index 1015

angr

OpBehaviorIntAdd (class in
angr.engines.pcode.behavior), 450

OpBehaviorIntAnd (class in
angr.engines.pcode.behavior), 453

OpBehaviorIntCarry (class in
angr.engines.pcode.behavior), 450

OpBehaviorIntDiv (class in
angr.engines.pcode.behavior), 456

OpBehaviorIntLeft (class in
angr.engines.pcode.behavior), 454

OpBehaviorIntLess (class in
angr.engines.pcode.behavior), 448

OpBehaviorIntLessEqual (class in
angr.engines.pcode.behavior), 448

OpBehaviorIntMult (class in
angr.engines.pcode.behavior), 455

OpBehaviorIntNegate (class in
angr.engines.pcode.behavior), 452

OpBehaviorIntOr (class in
angr.engines.pcode.behavior), 453

OpBehaviorIntRem (class in
angr.engines.pcode.behavior), 456

OpBehaviorIntRight (class in
angr.engines.pcode.behavior), 454

OpBehaviorIntSborrow (class in
angr.engines.pcode.behavior), 451

OpBehaviorIntScarry (class in
angr.engines.pcode.behavior), 451

OpBehaviorIntSdiv (class in
angr.engines.pcode.behavior), 456

OpBehaviorIntSext (class in
angr.engines.pcode.behavior), 449

OpBehaviorIntSless (class in
angr.engines.pcode.behavior), 447

OpBehaviorIntSlessEqual (class in
angr.engines.pcode.behavior), 448

OpBehaviorIntSrem (class in
angr.engines.pcode.behavior), 457

OpBehaviorIntSright (class in
angr.engines.pcode.behavior), 455

OpBehaviorIntSub (class in
angr.engines.pcode.behavior), 450

OpBehaviorIntXor (class in
angr.engines.pcode.behavior), 453

OpBehaviorIntZext (class in
angr.engines.pcode.behavior), 449

OpBehaviorNotEqual (class in
angr.engines.pcode.behavior), 447

OpBehaviorPiece (class in
angr.engines.pcode.behavior), 463

OpBehaviorPopcount (class in
angr.engines.pcode.behavior), 463

OpBehaviorSubpiece (class in
angr.engines.pcode.behavior), 463

opcode (angr.engines.pcode.behavior.OpBehavior
attribute), 445

opcode (angr.engines.pcode.behavior.OpBehaviorBoolAnd
attribute), 459

opcode (angr.engines.pcode.behavior.OpBehaviorBoolNegate
attribute), 458

opcode (angr.engines.pcode.behavior.OpBehaviorBoolOr
attribute), 459

opcode (angr.engines.pcode.behavior.OpBehaviorBoolXor
attribute), 458

opcode (angr.engines.pcode.behavior.OpBehaviorCopy
attribute), 446

opcode (angr.engines.pcode.behavior.OpBehaviorEqual
attribute), 447

opcode (angr.engines.pcode.behavior.OpBehaviorFloatAbs
attribute), 461

opcode (angr.engines.pcode.behavior.OpBehaviorFloatAdd
attribute), 460

opcode (angr.engines.pcode.behavior.OpBehaviorFloatCeil
attribute), 462

opcode (angr.engines.pcode.behavior.OpBehaviorFloatDiv
attribute), 460

opcode (angr.engines.pcode.behavior.OpBehaviorFloatEqual
attribute), 459

opcode (angr.engines.pcode.behavior.OpBehaviorFloatFloat2Float
attribute), 462

opcode (angr.engines.pcode.behavior.OpBehaviorFloatFloor
attribute), 462

opcode (angr.engines.pcode.behavior.OpBehaviorFloatInt2Float
attribute), 462

opcode (angr.engines.pcode.behavior.OpBehaviorFloatLess
attribute), 460

opcode (angr.engines.pcode.behavior.OpBehaviorFloatLessEqual
attribute), 460

opcode (angr.engines.pcode.behavior.OpBehaviorFloatMult
attribute), 461

opcode (angr.engines.pcode.behavior.OpBehaviorFloatNan
attribute), 460

opcode (angr.engines.pcode.behavior.OpBehaviorFloatNeg
attribute), 461

opcode (angr.engines.pcode.behavior.OpBehaviorFloatNotEqual
attribute), 459

opcode (angr.engines.pcode.behavior.OpBehaviorFloatRound
attribute), 463

opcode (angr.engines.pcode.behavior.OpBehaviorFloatSqrt
attribute), 461

opcode (angr.engines.pcode.behavior.OpBehaviorFloatSub
attribute), 461

opcode (angr.engines.pcode.behavior.OpBehaviorFloatTrunc
attribute), 462

opcode (angr.engines.pcode.behavior.OpBehaviorInt2Comp
attribute), 452

opcode (angr.engines.pcode.behavior.OpBehaviorIntAdd
attribute), 450

1016 Index

angr

opcode (angr.engines.pcode.behavior.OpBehaviorIntAnd
attribute), 453

opcode (angr.engines.pcode.behavior.OpBehaviorIntCarry
attribute), 451

opcode (angr.engines.pcode.behavior.OpBehaviorIntDiv
attribute), 456

opcode (angr.engines.pcode.behavior.OpBehaviorIntLeft
attribute), 454

opcode (angr.engines.pcode.behavior.OpBehaviorIntLess
attribute), 448

opcode (angr.engines.pcode.behavior.OpBehaviorIntLessEqual
attribute), 449

opcode (angr.engines.pcode.behavior.OpBehaviorIntMult
attribute), 456

opcode (angr.engines.pcode.behavior.OpBehaviorIntNegate
attribute), 452

opcode (angr.engines.pcode.behavior.OpBehaviorIntOr
attribute), 454

opcode (angr.engines.pcode.behavior.OpBehaviorIntRem
attribute), 457

opcode (angr.engines.pcode.behavior.OpBehaviorIntRight
attribute), 455

opcode (angr.engines.pcode.behavior.OpBehaviorIntSborrow
attribute), 452

opcode (angr.engines.pcode.behavior.OpBehaviorIntScarry
attribute), 451

opcode (angr.engines.pcode.behavior.OpBehaviorIntSdiv
attribute), 456

opcode (angr.engines.pcode.behavior.OpBehaviorIntSext
attribute), 449

opcode (angr.engines.pcode.behavior.OpBehaviorIntSless
attribute), 447

opcode (angr.engines.pcode.behavior.OpBehaviorIntSlessEqual
attribute), 448

opcode (angr.engines.pcode.behavior.OpBehaviorIntSrem
attribute), 457

opcode (angr.engines.pcode.behavior.OpBehaviorIntSright
attribute), 455

opcode (angr.engines.pcode.behavior.OpBehaviorIntSub
attribute), 450

opcode (angr.engines.pcode.behavior.OpBehaviorIntXor
attribute), 453

opcode (angr.engines.pcode.behavior.OpBehaviorIntZext
attribute), 449

opcode (angr.engines.pcode.behavior.OpBehaviorNotEqual
attribute), 447

opcode (angr.engines.pcode.behavior.OpBehaviorPiece
attribute), 463

opcode (angr.engines.pcode.behavior.OpBehaviorPopcount
attribute), 464

opcode (angr.engines.pcode.behavior.OpBehaviorSubpiece
attribute), 463

Opcode (class in angr.analyses.disassembly), 850
OpDescriptor (class in

angr.analyses.decompiler.optimization_passes.expr_op_swapper),
711

open() (angr.state_plugins.posix.SimSystemPosix
method), 245

open_db() (angr.angrdb.db.AngrDB static method), 675
open_socket() (angr.state_plugins.posix.SimSystemPosix

method), 246
opening_symbol (angr.analyses.decompiler.structured_codegen.c.CClosingObject

attribute), 739
operand (angr.analyses.decompiler.structured_codegen.c.CUnaryOp

attribute), 735
Operand (class in angr.analyses.disassembly), 850
Operand (class in angr.analyses.reassembler), 854
operand_str (angr.analyses.reassembler.DataLabel

property), 853
operand_str (angr.analyses.reassembler.FunctionLabel

property), 853
operand_str (angr.analyses.reassembler.Label prop-

erty), 853
operand_str (angr.analyses.reassembler.NotypeLabel

property), 853
operand_str (angr.analyses.reassembler.ObjectLabel

property), 853
OperandPiece (class in angr.analyses.disassembly), 851
operands (angr.engines.light.data.ArithmeticExpression

attribute), 753
OPERATE (angr.state_plugins.sim_action.SimActionData

attribute), 467
operations (angr.engines.pcode.lifter.IRSB property),

438
operations (angr.knowledge_plugins.functions.function.Function

property), 555
Oppologist (class in angr.exploration_techniques), 399
Oppologist (class in angr.exploration_techniques.oppologist),

420
opt_level (angr.engines.pcode.lifter.Lifter attribute),

440
opt_level (angr.engines.pcode.lifter.PcodeLifter

attribute), 442
OptimizationPass (class in

angr.analyses.decompiler.optimization_passes.optimization_pass),
704

OptimizationPassStage (class in
angr.analyses.decompiler.optimization_passes.optimization_pass),
703

optimize() (angr.analyses.binary_optimizer.BinaryOptimizer
method), 862

optimize() (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationExprBase
method), 715

optimize() (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationMultiStmtBase
method), 714

optimize() (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationStmtBase
method), 713

OPTIONS (angr.analyses.cfg.cfg_arch_options.CFGArchOptions

Index 1017

angr

attribute), 657
OPTIONS (angr.sim_state_options.SimStateOptions

attribute), 228
options (angr.slicer.SimLightState attribute), 873
options_to_params()

(angr.analyses.decompiler.decompiler.Decompiler
static method), 700

Or (angr.engines.light.data.ArithmeticExpression at-
tribute), 752

Or1 (angr.analyses.cfg.indirect_jump_resolvers.jumptable.AddressTransferringTypes
attribute), 663

original_node (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.Case
attribute), 708

other_input_defns (angr.analyses.reaching_definitions.dep_graph.FunctionCallRelationships
attribute), 796

other_output_defns (angr.analyses.reaching_definitions.dep_graph.FunctionCallRelationships
attribute), 796

other_types (angr.procedures.stubs.format_parser.FormatParser
attribute), 474

other_uses (angr.analyses.reaching_definitions.LiveDefinitions
attribute), 760

other_uses (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
attribute), 595

other_uses (angr.knowledge_plugins.key_definitions.LiveDefinitions
attribute), 574

others (angr.analyses.reaching_definitions.LiveDefinitions
attribute), 760

others (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
attribute), 595

others (angr.knowledge_plugins.key_definitions.LiveDefinitions
attribute), 574

OutdatedDefinitionWalker (class in
angr.analyses.propagator.outdated_definition_walker),
757

OutdatedError, 639
OuterWalker (class in

angr.analyses.decompiler.optimization_passes.expr_op_swapper),
711

output() (angr.analyses.cfg.cfg_base.CFGBase
method), 647

output() (angr.analyses.cfg.cfg_fast.CFGFast method),
657

OVERFLOW_FP_RETURN_VAL
(angr.calling_conventions.SimCCSystemVAMD64
attribute), 494

OVERFLOW_RETURN_VAL
(angr.calling_conventions.SimCC attribute),
488

OVERFLOW_RETURN_VAL
(angr.calling_conventions.SimCCARM at-
tribute), 495

OVERFLOW_RETURN_VAL
(angr.calling_conventions.SimCCCdecl at-
tribute), 491

OVERFLOW_RETURN_VAL
(angr.calling_conventions.SimCCMicrosoftAMD64
attribute), 493

OVERFLOW_RETURN_VAL
(angr.calling_conventions.SimCCO32 at-
tribute), 498

OVERFLOW_RETURN_VAL
(angr.calling_conventions.SimCCSystemVAMD64
attribute), 494

OVERFLOW_RETURN_VAL (angr.SimCC attribute), 185
overlap() (angr.knowledge_plugins.patches.PatchManager

static method), 522
overwrite_tmp_value()

(angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast.OverwriteTmpValueCallback
method), 661

OverwriteTmpValueCallback (class in
angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast),
661

P
packed (angr.sim_type.SimStruct property), 516
pad_chr (angr.procedures.stubs.format_parser.FormatSpecifier

attribute), 474
PAGE_TYPE (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.ListPagesMixin

attribute), 356
PAGE_TYPE (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.MVListPagesMixin

attribute), 356
PAGE_TYPE (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

attribute), 353
PAGE_TYPE (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.UltraPagesMixin

attribute), 357
PageBase (class in angr.storage.memory_mixins.paged_memory.pages),

359
PagedMemoryMixin (class in

angr.storage.memory_mixins.paged_memory.paged_memory_mixin),
352

ParameterTag (class in
angr.knowledge_plugins.key_definitions.tag),
605

parent (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.ConditionalRegion
attribute), 721

parent (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.SwitchCaseRegion
attribute), 721

parentop (angr.analyses.disassembly.OperandPiece at-
tribute), 851

parents (angr.state_plugins.history.SimStateHistory
property), 269

parents() (angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin.HistoryTrackingMixin
method), 361

parse() (angr.serializable.Serializable class method),
617

parse_block() (angr.analyses.disassembly.Disassembly
method), 852

parse_cpp_file() (in module angr.sim_type), 519

1018 Index

angr

parse_defns() (in module angr.sim_type), 518
parse_file() (in module angr.sim_type), 518
parse_from_cmessage() (angr.Block class method),

171
parse_from_cmessage() (angr.block.Block class

method), 222
parse_from_cmessage()

(angr.knowledge_plugins.cfg.cfg_model.CFGModel
class method), 536

parse_from_cmessage()
(angr.knowledge_plugins.cfg.cfg_node.CFGNode
class method), 546

parse_from_cmessage()
(angr.knowledge_plugins.cfg.CFGModel
class method), 530

parse_from_cmessage()
(angr.knowledge_plugins.cfg.CFGNode class
method), 527

parse_from_cmessage()
(angr.knowledge_plugins.cfg.memory_data.MemoryData
class method), 544

parse_from_cmessage()
(angr.knowledge_plugins.cfg.MemoryData
class method), 525

parse_from_cmessage()
(angr.knowledge_plugins.functions.function.Function
class method), 555

parse_from_cmessage()
(angr.knowledge_plugins.variables.variable_access.VariableAccess
class method), 562

parse_from_cmessage()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
class method), 563

parse_from_cmessage()
(angr.knowledge_plugins.xrefs.xref.XRef
class method), 611

parse_from_cmessage()
(angr.knowledge_plugins.xrefs.xref_manager.XRefManager
class method), 612

parse_from_cmessage()
(angr.serializable.Serializable class method),
617

parse_from_cmessage()
(angr.sim_variable.SimMemoryVariable
class method), 506

parse_from_cmessage()
(angr.sim_variable.SimRegisterVariable class
method), 505

parse_from_cmessage()
(angr.sim_variable.SimStackVariable class
method), 506

parse_from_cmessage()
(angr.sim_variable.SimTemporaryVariable
class method), 504

parse_from_cmsg() (angr.knowledge_plugins.functions.function_parser.FunctionParser
static method), 560

parse_signature() (in module angr.sim_type), 518
parse_stack_pointer() (in module

angr.analyses.variable_recovery.variable_recovery_base),
821

parse_type() (in module angr.sim_type), 519
parse_type_with_name() (in module angr.sim_type),

519
parse_types() (in module angr.sim_type), 518
parse_variable_addr()

(angr.analyses.decompiler.clinic.Clinic
method), 697

parsedcprotos2py() (in module angr.utils.library),
893

ParsedInstruction (class in
angr.analyses.data_dep.sim_act_location),
869

Patch (class in angr.knowledge_plugins.patches), 521
patch_addrs() (angr.knowledge_plugins.patches.PatchManager

method), 522
patched_entry_state

(angr.knowledge_plugins.patches.PatchManager
property), 522

PatchManager (class in
angr.knowledge_plugins.patches), 521

path (angr.angrdb.models.DbObject attribute), 677
path_between() (angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink.CFGSliceToSink

method), 817
PathUnreachableError, 896
PCAP (class in angr.storage.pcap), 335
PcodeBasicBlockLifter (class in

angr.engines.pcode.lifter), 441
PcodeDisassemblerBlock (class in

angr.engines.pcode.lifter), 435
PcodeDisassemblerInsn (class in

angr.engines.pcode.lifter), 435
PcodeEmulatorMixin (class in

angr.engines.pcode.emulate), 444
PcodeLifter (class in angr.engines.pcode.lifter), 441
PcodeLifterEngineMixin (class in

angr.engines.pcode.lifter), 442
peek_input() (angr.state_plugins.cgc.SimStateCGC

method), 272
peek_output() (angr.state_plugins.cgc.SimStateCGC

method), 272
peephole_optimize_expr() (in module

angr.analyses.decompiler.utils), 746
peephole_optimize_exprs() (in module

angr.analyses.decompiler.utils), 746
peephole_optimize_multistmts() (in module

angr.analyses.decompiler.utils), 746
peephole_optimize_stmts() (in module

angr.analyses.decompiler.utils), 746

Index 1019

angr

PeepholeOptimizationExprBase (class in
angr.analyses.decompiler.peephole_optimizations.base),
714

PeepholeOptimizationMultiStmtBase (class in
angr.analyses.decompiler.peephole_optimizations.base),
714

PeepholeOptimizationStmtBase (class in
angr.analyses.decompiler.peephole_optimizations.base),
713

PendingJob (class in angr.analyses.cfg.cfg_emulated),
641

PendingJob (class in angr.analyses.vfg), 841
PendingJobs (class in angr.analyses.cfg.cfg_fast), 649
perform_call() (angr.callable.Callable method), 520
perm_exec (angr.storage.memory_mixins.paged_memory.pages.permissions_mixin.PermissionsMixin

property), 360
perm_read (angr.storage.memory_mixins.paged_memory.pages.permissions_mixin.PermissionsMixin

property), 360
perm_write (angr.storage.memory_mixins.paged_memory.pages.permissions_mixin.PermissionsMixin

property), 360
permissions() (angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin

method), 346
permissions() (angr.storage.memory_mixins.MemoryMixin

method), 337
permissions() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

method), 354
PermissionsMixin (class in

angr.storage.memory_mixins.paged_memory.pages.permissions_mixin),
360

Permissive (angr.exploration_techniques.tracer.TracingMode
attribute), 414

persistent_id() (angr.vaults.VaultPickler method),
618

persistent_load() (angr.vaults.VaultUnpickler
method), 618

PhoenixStructurer (class in
angr.analyses.decompiler.structuring.phoenix),
691

PickledState (class in
angr.exploration_techniques.spiller_db),
412

PickledStatesBase (class in
angr.exploration_techniques.spiller), 410

PickledStatesDb (class in
angr.exploration_techniques.spiller), 411

PickledStatesList (class in
angr.exploration_techniques.spiller), 410

PLATFORMS (angr.analyses.decompiler.optimization_passes.base_ptr_save_simplifier.BasePointerSaveSimplifier
attribute), 706

PLATFORMS (angr.analyses.decompiler.optimization_passes.const_derefs.ConstantDereferencesSimplifier
attribute), 703

PLATFORMS (angr.analyses.decompiler.optimization_passes.div_simplifier.DivSimplifier
attribute), 707

PLATFORMS (angr.analyses.decompiler.optimization_passes.expr_op_swapper.ExprOpSwapper

attribute), 712
PLATFORMS (angr.analyses.decompiler.optimization_passes.ite_expr_converter.ITEExprConverter

attribute), 707
PLATFORMS (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.LoweredSwitchSimplifier

attribute), 709
PLATFORMS (angr.analyses.decompiler.optimization_passes.mod_simplifier.ModSimplifier

attribute), 710
PLATFORMS (angr.analyses.decompiler.optimization_passes.multi_simplifier.MultiSimplifier

attribute), 710
PLATFORMS (angr.analyses.decompiler.optimization_passes.optimization_pass.BaseOptimizationPass

attribute), 704
PLATFORMS (angr.analyses.decompiler.optimization_passes.optimization_pass.SequenceOptimizationPass

attribute), 705
PLATFORMS (angr.analyses.decompiler.optimization_passes.optimization_pass.StructuringOptimizationPass

attribute), 706
PLATFORMS (angr.analyses.decompiler.optimization_passes.register_save_area_simplifier.RegisterSaveAreaSimplifier

attribute), 712
PLATFORMS (angr.analyses.decompiler.optimization_passes.ret_addr_save_simplifier.RetAddrSaveSimplifier

attribute), 712
PLATFORMS (angr.analyses.decompiler.optimization_passes.stack_canary_simplifier.StackCanarySimplifier

attribute), 706
PLATFORMS (angr.analyses.decompiler.optimization_passes.x86_gcc_getpc_simplifier.X86GccGetPcSimplifier

attribute), 713
plugin_preset (angr.misc.plugins.PluginHub prop-

erty), 222
PluginHub (class in angr.misc.plugins), 222
PluginPreset (class in angr.misc.plugins), 223
plugins (angr.sim_state.SimState property), 225
plugins (angr.SimState property), 182
PluginVendor (class in angr.misc.plugins), 224
Pointer (class in angr.analyses.typehoon.typeconsts),

837
Pointer32 (class in angr.analyses.typehoon.typeconsts),

837
Pointer64 (class in angr.analyses.typehoon.typeconsts),

837
pointer_addr (angr.knowledge_plugins.cfg.memory_data.MemoryData

attribute), 543
pointer_addr (angr.knowledge_plugins.cfg.MemoryData

attribute), 525
pointer_to_atom() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

method), 815
pointer_to_atom() (angr.analyses.reaching_definitions.ReachingDefinitionsState

method), 785
pointer_to_atoms() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

method), 815
pointer_to_atoms() (angr.analyses.reaching_definitions.ReachingDefinitionsState

method), 785
PointerArithmeticFixer (class in

angr.analyses.decompiler.structured_codegen.c),
742

PointerArray (angr.knowledge_plugins.cfg.memory_data.MemoryDataSort
attribute), 542

PointerArray (angr.knowledge_plugins.cfg.MemoryDataSort

1020 Index

angr

attribute), 524
PointerWrapper (class in angr), 184
PointerWrapper (class in angr.calling_conventions),

483
pop() (angr.state_plugins.callstack.CallStack method),

265
pop() (angr.state_plugins.globals.SimStateGlobals

method), 279
pop_from_backup() (angr.state_plugins.trace_additions.ChallRespInfo

method), 276
pop_job() (angr.analyses.cfg.cfg_fast.PendingJobs

method), 650
pop_n() (angr.exploration_techniques.spiller.PickledStatesBase

method), 410
pop_n() (angr.exploration_techniques.spiller.PickledStatesDb

method), 411
pop_n() (angr.exploration_techniques.spiller.PickledStatesList

method), 411
pop_priv() (angr.state_plugins.scratch.SimStateScratch

method), 280
pop_stack_frame() (angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin

method), 376
populate() (angr.sim_manager.SimulationManager

method), 386
populate() (angr.SimulationManager method), 175
pos (angr.SimFileBase attribute), 188
pos (angr.storage.file.SimFileBase attribute), 316
PositionMapping (class in

angr.analyses.decompiler.structured_codegen.base),
724

PositionMappingElement (class in
angr.analyses.decompiler.structured_codegen.base),
724

posix (angr.sim_state.SimState attribute), 225
posix (angr.SimState attribute), 181
PosixDevFS (class in angr.state_plugins.posix), 240
PosixProcFS (class in angr.state_plugins.posix), 242
posmap_pos (angr.analyses.decompiler.structured_codegen.base.InstructionMappingElement

attribute), 725
PossibleObject (class in

angr.analyses.find_objects_static), 847
post_dom (angr.utils.graph.PostDominators property),

890
PostDominators (class in angr.utils.graph), 890
pp() (angr.analyses.datagraph_meta.DataGraphMeta

method), 674
pp() (angr.analyses.ddg.DDG method), 750
pp() (angr.Block method), 170
pp() (angr.block.Block method), 221
pp() (angr.block.DisassemblerBlock method), 220
pp() (angr.engines.pcode.lifter.IRSB method), 438
pp() (angr.knowledge_plugins.functions.function.Function

method), 560
pp_constraints() (angr.analyses.typehoon.typehoon.Typehoon

method), 835
pp_solution() (angr.analyses.typehoon.typehoon.Typehoon

method), 835
pp_str() (angr.analyses.typehoon.typeconsts.TypeConstant

method), 836
pp_str() (angr.analyses.typehoon.typevars.Add

method), 832
pp_str() (angr.analyses.typehoon.typevars.DerivedTypeVariable

method), 833
pp_str() (angr.analyses.typehoon.typevars.Equivalence

method), 831
pp_str() (angr.analyses.typehoon.typevars.Existence

method), 831
pp_str() (angr.analyses.typehoon.typevars.Sub

method), 832
pp_str() (angr.analyses.typehoon.typevars.Subtype

method), 832
pp_str() (angr.analyses.typehoon.typevars.TypeConstraint

method), 831
pp_str() (angr.analyses.typehoon.typevars.TypeVariable

method), 833
preconstrain() (angr.state_plugins.preconstrainer.SimStatePreconstrainer

method), 283
preconstrain_file()

(angr.state_plugins.preconstrainer.SimStatePreconstrainer
method), 283

preconstrain_flag_page()
(angr.state_plugins.preconstrainer.SimStatePreconstrainer
method), 283

predecessors (angr.knowledge_plugins.cfg.cfg_node.CFGNode
property), 545

predecessors (angr.knowledge_plugins.cfg.CFGNode
property), 526

predecessors() (angr.analyses.forward_analysis.visitors.call_graph.CallGraphVisitor
method), 623

predecessors() (angr.analyses.forward_analysis.visitors.function_graph.FunctionGraphVisitor
method), 624

predecessors() (angr.analyses.forward_analysis.visitors.graph.GraphVisitor
method), 625

predecessors() (angr.analyses.forward_analysis.visitors.loop.LoopVisitor
method), 627

predecessors() (angr.analyses.forward_analysis.visitors.single_node_graph.SingleNodeGraphVisitor
method), 628

predecessors() (angr.analyses.reaching_definitions.dep_graph.DepGraph
method), 797

predecessors() (angr.codenode.CodeNode method),
875

predecessors_and_jumpkinds()
(angr.knowledge_plugins.cfg.cfg_node.CFGNode
method), 545

predecessors_and_jumpkinds()
(angr.knowledge_plugins.cfg.CFGNode
method), 526

prep() (angr.analyses.analysis.AnalysisFactory

Index 1021

angr

method), 621
prep_tracer() (angr.state_plugins.trace_additions.ChallRespInfo

static method), 276
prep_tracer() (angr.state_plugins.trace_additions.ZenPlugin

static method), 278
prepare_call_state() (angr.SimOS method), 169
prepare_call_state() (angr.simos.simos.SimOS

method), 877
prepare_callsite() (angr.sim_state.SimState

method), 227
prepare_callsite() (angr.SimState method), 184
prepare_function_symbol() (angr.SimOS method),

169
prepare_function_symbol()

(angr.simos.linux.SimLinux method), 879
prepare_function_symbol()

(angr.simos.simos.SimOS method), 877
prepare_native_return_state()

(angr.engines.soot.engine.SootMixin static
method), 432

prepare_native_return_state() (in module
angr.simos.javavm), 884

prepare_return_state()
(angr.engines.soot.engine.SootMixin static
method), 432

prepared_registers (angr.knowledge_plugins.functions.function.Function
attribute), 553

prepared_registers (angr.knowledge_plugins.functions.soot_function.SootFunction
attribute), 561

prepared_stack_variables
(angr.knowledge_plugins.functions.function.Function
attribute), 553

prepared_stack_variables
(angr.knowledge_plugins.functions.soot_function.SootFunction
attribute), 561

prev_chunk() (angr.PTChunk method), 209
prev_chunk() (angr.state_plugins.heap.heap_freelist.Chunk

method), 300
prev_chunk() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 303
prev_size() (angr.PTChunk method), 209
prev_size() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 303
print_all_chunks() (angr.state_plugins.heap.heap_freelist.SimHeapFreelist

method), 301
print_heap_state() (angr.state_plugins.heap.heap_freelist.SimHeapFreelist

method), 301
PRINTABLES (angr.analyses.cfg.cfg_fast.CFGFast

attribute), 654
prioritize_functions()

(angr.analyses.complete_calling_conventions.CompleteCallingConventionsAnalysis
method), 636

priority (angr.exploration_techniques.spiller_db.PickledState
attribute), 412

priv (angr.state_plugins.scratch.SimStateScratch prop-
erty), 280

PrivilegedPagingMixin (class in
angr.storage.memory_mixins.paged_memory.privileged_mixin),
358

probably_identical (angr.analyses.bindiff.FunctionDiff
property), 631

Procedure (class in angr.analyses.reassembler), 855
ProcedureChunk (class in angr.analyses.reassembler),

856
ProcedureEngine (class in angr.engines.procedure),

430
ProcedureMixin (class in angr.engines.procedure), 430
process() (angr.analyses.decompiler.optimization_passes.engine_base.SimplifierAILEngine

method), 711
process() (angr.analyses.loop_analysis.SootBlockProcessor

method), 839
process() (angr.analyses.propagator.engine_base.SimEnginePropagatorBase

method), 755
process() (angr.analyses.reaching_definitions.engine_ail.SimEngineRDAIL

method), 816
process() (angr.analyses.reaching_definitions.engine_vex.SimEngineRDVEX

method), 792
process() (angr.analyses.variable_recovery.engine_base.SimEngineVRBase

method), 829
process() (angr.engines.engine.SimEngine method),

427
process() (angr.engines.engine.SuccessorsMixin

method), 428
process() (angr.engines.light.engine.SimEngineLight

method), 754
process_exc_file() (in module angr.flirt.build_sig),

886
process_procedure()

(angr.engines.procedure.ProcedureMixin
method), 430

process_successors()
(angr.engines.concrete.SimEngineConcrete
method), 433

process_successors()
(angr.engines.engine.SuccessorsMixin
method), 428

process_successors()
(angr.engines.failure.SimEngineFailure
method), 431

process_successors()
(angr.engines.hook.HooksMixin method),
430

process_successors()
(angr.engines.pcode.engine.HeavyPcodeMixin
method), 434

process_successors()
(angr.engines.procedure.ProcedureEngine
method), 430

1022 Index

angr

process_successors()
(angr.engines.soot.engine.SootMixin method),
432

process_successors()
(angr.engines.syscall.SimEngineSyscall
method), 431

process_successors()
(angr.engines.unicorn.SimEngineUnicorn
method), 432

ProgramVariable (class in angr.analyses.ddg), 747
project (angr.analyses.analysis.Analysis attribute), 621
project (angr.analyses.backward_slice.BackwardSlice

attribute), 629
project (angr.analyses.binary_optimizer.BinaryOptimizer

attribute), 862
project (angr.analyses.bindiff.BinDiff attribute), 633
project (angr.analyses.boyscout.BoyScout attribute),

633
project (angr.analyses.callee_cleanup_finder.CalleeCleanupFinder

attribute), 863
project (angr.analyses.calling_convention.CallingConventionAnalysis

attribute), 634
project (angr.analyses.cdg.CDG attribute), 674
project (angr.analyses.cfg.cfb.CFBlanket attribute),

638
project (angr.analyses.cfg.cfg_fast.CFGFast attribute),

657
project (angr.analyses.cfg.cfg_fast_soot.CFGFastSoot

attribute), 671
project (angr.analyses.cfg.indirect_jump_resolvers.jumptable.ConstantValueManager

attribute), 664
project (angr.analyses.class_identifier.ClassIdentifier

attribute), 848
project (angr.analyses.code_tagging.CodeTagging at-

tribute), 675
project (angr.analyses.complete_calling_conventions.CompleteCallingConventionsAnalysis

attribute), 636
project (angr.analyses.congruency_check.CongruencyCheck

attribute), 861
project (angr.analyses.data_dep.data_dependency_analysis.DataDependencyGraphAnalysis

attribute), 868
project (angr.analyses.ddg.DDG attribute), 752
project (angr.analyses.decompiler.ail_simplifier.AILSimplifier

attribute), 693
project (angr.analyses.decompiler.block_simplifier.BlockSimplifier

attribute), 694
project (angr.analyses.decompiler.callsite_maker.CallSiteMaker

attribute), 694
project (angr.analyses.decompiler.clinic.Clinic at-

tribute), 697
project (angr.analyses.decompiler.decompiler.Decompiler

attribute), 700
project (angr.analyses.decompiler.optimization_passes.optimization_pass.BaseOptimizationPass

property), 704

project (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationExprBase
attribute), 715

project (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationMultiStmtBase
attribute), 714

project (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationStmtBase
attribute), 713

project (angr.analyses.decompiler.region_identifier.RegionIdentifier
attribute), 716

project (angr.analyses.decompiler.region_simplifiers.region_simplifier.RegionSimplifier
attribute), 720

project (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeGenerator
attribute), 741

project (angr.analyses.decompiler.structured_codegen.dwarf_import.ImportSourceCode
attribute), 743

project (angr.analyses.decompiler.structuring.phoenix.PhoenixStructurer
attribute), 692

project (angr.analyses.decompiler.structuring.recursive_structurer.RecursiveStructurer
attribute), 685

project (angr.analyses.disassembly.Disassembly at-
tribute), 852

project (angr.analyses.disassembly.Value property),
851

project (angr.analyses.dominance_frontier.DominanceFrontier
attribute), 863

project (angr.analyses.find_objects_static.StaticObjectFinder
attribute), 848

project (angr.analyses.flirt.FlirtAnalysis attribute), 752
project (angr.analyses.identifier.identify.Identifier at-

tribute), 838
project (angr.analyses.init_finder.InitializationFinder

attribute), 863
project (angr.analyses.loop_analysis.LoopAnalysis at-

tribute), 840
project (angr.analyses.loopfinder.LoopFinder at-

tribute), 839
project (angr.analyses.propagator.propagator.PropagatorAnalysis

attribute), 759
project (angr.analyses.proximity_graph.ProximityGraphAnalysis

attribute), 867
project (angr.analyses.reaching_definitions.LiveDefinitions

attribute), 760
project (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis

attribute), 796
project (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis

attribute), 775
project (angr.analyses.reassembler.Reassembler

attribute), 860
project (angr.analyses.soot_class_hierarchy.SootClassHierarchy

attribute), 637
project (angr.analyses.stack_pointer_tracker.StackPointerTracker

attribute), 820
project (angr.analyses.static_hooker.StaticHooker at-

tribute), 861
project (angr.analyses.typehoon.typehoon.Typehoon at-

Index 1023

angr

tribute), 835
project (angr.analyses.variable_recovery.variable_recovery.VariableRecovery

attribute), 828
project (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryBase

attribute), 822
project (angr.analyses.variable_recovery.variable_recovery_fast.VariableRecoveryFast

attribute), 827
project (angr.analyses.veritesting.Veritesting attribute),

841
project (angr.analyses.vfg.VFG attribute), 846
project (angr.analyses.vsa_ddg.VSA_DDG attribute),

847
project (angr.analyses.vtable.VtableFinder attribute),

847
project (angr.analyses.xrefs.XRefsAnalysis attribute),

864
project (angr.Analysis attribute), 178
project (angr.knowledge_plugins.cfg.cfg_model.CFGModel

property), 536
project (angr.knowledge_plugins.cfg.CFGModel prop-

erty), 530
project (angr.knowledge_plugins.functions.function.Function

property), 554
project (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 595
project (angr.knowledge_plugins.key_definitions.LiveDefinitions

attribute), 574
project (angr.procedures.stubs.format_parser.FormatParser

attribute), 475
project (angr.procedures.stubs.format_parser.ScanfFormatParser

attribute), 475
project (angr.sim_procedure.SimProcedure attribute),

471
Project (class in angr), 163
Project (class in angr.project), 212
prop (angr.analyses.decompiler.clinic.BlockCache

attribute), 695
prop_key (angr.analyses.propagator.propagator.PropagatorAnalysis

property), 759
propagations (angr.knowledge_base.knowledge_base.KnowledgeBase

attribute), 520
propagations (angr.KnowledgeBase attribute), 211
Propagator (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
PropagatorAnalysis (class in

angr.analyses.propagator.propagator), 758
prototype (angr.analyses.decompiler.structured_codegen.c.CFunctionCall

property), 732
prototype (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 803
prototype (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
prototype (angr.knowledge_plugins.functions.function.Function

attribute), 553

prototype (angr.knowledge_plugins.functions.soot_function.SootFunction
attribute), 561

prototype (angr.procedures.stubs.format_parser.FormatParser
attribute), 475

prototype (angr.procedures.stubs.format_parser.ScanfFormatParser
attribute), 475

prototype (angr.sim_procedure.SimProcedure at-
tribute), 471

ProximityGraphAnalysis (class in
angr.analyses.proximity_graph), 867

ProxiNodeTypes (class in
angr.analyses.proximity_graph), 865

prune() (angr.sim_manager.SimulationManager
method), 386

prune() (angr.SimulationManager method), 175
pruned (angr.sim_manager.SimulationManager at-

tribute), 383
pruned (angr.SimulationManager attribute), 172
pseudocode (angr.knowledge_plugins.functions.function.Function

property), 556
PTChunk (class in angr), 208
PTChunk (class in angr.state_plugins.heap.heap_ptmalloc),

302
PTChunkIterator (class in

angr.state_plugins.heap.heap_ptmalloc),
304

pull() (angr.knowledge_plugins.sync.sync_controller.SyncController
method), 609

pull_comment() (angr.knowledge_plugins.sync.sync_controller.SyncController
method), 610

pull_comments() (angr.knowledge_plugins.sync.sync_controller.SyncController
method), 610

pull_function() (angr.knowledge_plugins.sync.sync_controller.SyncController
method), 609

pull_patches() (angr.knowledge_plugins.sync.sync_controller.SyncController
method), 610

pull_stack_variables()
(angr.knowledge_plugins.sync.sync_controller.SyncController
method), 610

push() (angr.state_plugins.callstack.CallStack method),
265

push_comment() (angr.knowledge_plugins.sync.sync_controller.SyncController
method), 609

push_comments() (angr.knowledge_plugins.sync.sync_controller.SyncController
method), 609

push_function() (angr.knowledge_plugins.sync.sync_controller.SyncController
method), 609

push_priv() (angr.state_plugins.scratch.SimStateScratch
method), 280

push_stack_frame() (angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin
method), 376

push_stack_variable()
(angr.knowledge_plugins.sync.sync_controller.SyncController
method), 609

1024 Index

angr

push_stack_variables()
(angr.knowledge_plugins.sync.sync_controller.SyncController
method), 609

put() (angr.analyses.stack_pointer_tracker.StackPointerTrackerState
method), 820

PutHook (class in angr.analyses.cfg.indirect_jump_resolvers.jumptable),
665

Q
qualifies_for_implicit_cast() (in module

angr.analyses.decompiler.structured_codegen.c),
726

qualifies_for_simple_cast() (in module
angr.analyses.decompiler.structured_codegen.c),
726

quasi_topological_sort_nodes()
(angr.utils.graph.GraphUtils static method),
891

query() (angr.knowledge_plugins.functions.function_manager.FunctionManager
method), 551

R
ran_cca (angr.knowledge_plugins.functions.function.Function

attribute), 553
ran_cca (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 561
RANDOM (angr.simos.windows.SecurityCookieInit at-

tribute), 881
randomize_procedures()

(angr.analyses.reassembler.Reassembler
method), 860

rd (angr.analyses.decompiler.clinic.BlockCache at-
tribute), 695

rda_observe_callback()
(angr.knowledge_plugins.key_definitions.key_definition_manager.RDAObserverControl
method), 593

RDAObserverControl (class in
angr.knowledge_plugins.key_definitions.key_definition_manager),
592

reachable() (angr.state_plugins.history.SimStateHistory
method), 269

reached_fixedpoint()
(angr.analyses.forward_analysis.visitors.graph.GraphVisitor
method), 626

reaching_condition (angr.analyses.decompiler.structuring.structurer_nodes.CodeNode
attribute), 687

reaching_condition (angr.analyses.decompiler.structuring.structurer_nodes.ConditionNode
attribute), 687

ReachingDefinitions
(angr.analyses.analysis.KnownAnalysesPlugin
attribute), 620

ReachingDefinitionsAnalysis (class in
angr.analyses.reaching_definitions), 772

ReachingDefinitionsAnalysis (class in
angr.analyses.reaching_definitions.reaching_definitions),
793

ReachingDefinitionsModel (class in
angr.analyses.reaching_definitions), 776

ReachingDefinitionsModel (class in
angr.knowledge_plugins.key_definitions),
571

ReachingDefinitionsModel (class in
angr.knowledge_plugins.key_definitions.rd_model),
602

ReachingDefinitionsState (class in
angr.analyses.reaching_definitions), 778

ReachingDefinitionsState (class in
angr.analyses.reaching_definitions.rd_state),
807

READ (angr.knowledge_plugins.variables.variable_access.VariableAccessSort
attribute), 561

Read (angr.knowledge_plugins.xrefs.xref_types.XRefType
attribute), 612

READ (angr.state_plugins.sim_action.SimActionData at-
tribute), 467

read() (angr.SimFile method), 190
read() (angr.SimFileBase method), 189
read() (angr.SimFileStream method), 194
read() (angr.SimPackets method), 192
read() (angr.SimPacketsStream method), 196
read() (angr.storage.file.SimFile method), 317
read() (angr.storage.file.SimFileBase method), 316
read() (angr.storage.file.SimFileDescriptorBase

method), 325
read() (angr.storage.file.SimFileStream method), 319
read() (angr.storage.file.SimPackets method), 321
read() (angr.storage.file.SimPacketsSlots method), 332
read() (angr.storage.file.SimPacketsStream method),

323
read_data() (angr.SimFileDescriptor method), 198
read_data() (angr.SimFileDescriptorDuplex method),

200
read_data() (angr.storage.file.SimFileDescriptor

method), 327
read_data() (angr.storage.file.SimFileDescriptorBase

method), 325
read_data() (angr.storage.file.SimFileDescriptorDuplex

method), 329
read_from() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal

method), 563
read_msr() (angr.state_plugins.unicorn_engine.Unicorn

method), 290
read_pos (angr.SimFileDescriptor property), 199
read_pos (angr.SimFileDescriptorDuplex property), 201
read_pos (angr.storage.file.SimFileDescriptor property),

328
read_pos (angr.storage.file.SimFileDescriptorBase

Index 1025

angr

property), 326
read_pos (angr.storage.file.SimFileDescriptorDuplex

property), 330
read_storage (angr.SimFileDescriptor property), 199
read_storage (angr.SimFileDescriptorDuplex prop-

erty), 201
read_storage (angr.storage.file.SimFileDescriptor

property), 328
read_storage (angr.storage.file.SimFileDescriptorBase

property), 326
read_storage (angr.storage.file.SimFileDescriptorDuplex

property), 330
real_args (angr.calling_conventions.UsercallArgSession

attribute), 487
real_length() (angr.utils.dynamic_dictlist.DynamicDictList

method), 888
realloc() (angr.SimHeapPTMalloc method), 207
realloc() (angr.state_plugins.heap.heap_libc.SimHeapLibc

method), 302
realloc() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

method), 305
reapply_options() (angr.analyses.decompiler.structured_codegen.base.BaseStructuredCodeGenerator

method), 725
reapply_options() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeGenerator

method), 740
Reassembler (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
Reassembler (class in angr.analyses.reassembler), 857
ReassemblerFailureNotice, 852
rebuild_callgraph()

(angr.knowledge_plugins.functions.function_manager.FunctionManager
method), 552

recent_actions (angr.state_plugins.history.SimStateHistory
property), 269

recent_constraints (angr.state_plugins.history.SimStateHistory
property), 269

reconstrain() (angr.state_plugins.preconstrainer.SimStatePreconstrainer
method), 284

record_state() (angr.errors.SimError method), 898
record_variable() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal

method), 563
recover_edge_condition()

(angr.analyses.decompiler.condition_processor.ConditionProcessor
method), 697

recover_edge_conditions()
(angr.analyses.decompiler.condition_processor.ConditionProcessor
method), 697

recover_reaching_conditions()
(angr.analyses.decompiler.condition_processor.ConditionProcessor
method), 697

recurse_analysis() (angr.analyses.reaching_definitions.function_handler.FunctionHandler
method), 806

recurse_analysis() (angr.analyses.reaching_definitions.FunctionHandler
method), 787

recursive_copy() (angr.analyses.decompiler.graph_region.GraphRegion
method), 702

RecursiveStructurer (class in
angr.analyses.decompiler.structuring.recursive_structurer),
685

RecursiveType (class in
angr.analyses.typehoon.simple_solver), 830

recv() (angr.storage.pcap.PCAP method), 335
redefine_locals (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 803
redefine_locals (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
RedundantLabelRemover (class in

angr.analyses.decompiler.redundant_label_remover),
723

RedundantStackVariable (class in
angr.analyses.binary_optimizer), 861

RefcountMixin (class in
angr.storage.memory_mixins.paged_memory.pages.refcount_mixin),
359

REFERENCE (angr.knowledge_plugins.variables.variable_access.VariableAccessSort
attribute), 561

reference_at() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 563

reference_size (angr.knowledge_plugins.cfg.memory_data.MemoryData
attribute), 543

reference_size (angr.knowledge_plugins.cfg.MemoryData
attribute), 525

reference_values (angr.analyses.decompiler.structured_codegen.c.CConstant
attribute), 737

refine() (angr.calling_conventions.SimFunctionArgument
method), 484

refine() (angr.calling_conventions.SimLyingRegArg
method), 491

refine() (angr.calling_conventions.SimRegArg
method), 485

refine() (angr.calling_conventions.SimStackArg
method), 485

refine_locs_with_struct_type() (in module
angr.calling_conventions), 483

reflow_variable_types()
(angr.analyses.decompiler.decompiler.Decompiler
method), 700

reg (angr.analyses.decompiler.structured_codegen.c.CRegister
attribute), 738

reg (angr.analyses.stack_pointer_tracker.OffsetVal prop-
erty), 819

reg (angr.engines.light.data.RegisterOffset attribute),
753

reg (angr.sim_variable.SimRegisterVariable attribute),
504

REG (angr.state_plugins.sim_action.SimAction attribute),
466

reg() (angr.analyses.reaching_definitions.Atom static

1026 Index

angr

method), 769
reg() (angr.knowledge_plugins.key_definitions.atoms.Atom

static method), 585
reg_concrete() (angr.sim_state.SimState method), 227
reg_concrete() (angr.SimState method), 183
reg_deps (angr.state_plugins.sim_action.SimAction

property), 466
reg_deps (angr.state_plugins.sim_action.SimActionData

property), 468
reg_name (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate

attribute), 590
reg_offset (angr.analyses.cfg.indirect_jump_resolvers.jumptable.RegOffsetAnnotation

attribute), 664
reg_offset (angr.analyses.reaching_definitions.Register

attribute), 770
reg_offset (angr.knowledge_plugins.key_definitions.atoms.Register

attribute), 588
reg_read_callback()

(angr.analyses.cfg.indirect_jump_resolvers.jumptable.ConstantValueManager
method), 664

reg_size (angr.analyses.data_dep.dep_nodes.RegDepNode
property), 872

RegDepNode (class in angr.analyses.data_dep.dep_nodes),
871

regenerate_text() (angr.analyses.decompiler.structured_codegen.base.BaseStructuredCodeGenerator
method), 725

regenerate_text() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeGenerator
method), 740

regenerate_text() (angr.analyses.decompiler.structured_codegen.dwarf_import.ImportSourceCode
method), 743

region (angr.sim_variable.SimVariable attribute), 503
region (angr.storage.memory_mixins.regioned_memory.region_data.AddressWrapper

attribute), 369
region_base_addr (angr.storage.memory_mixins.regioned_memory.region_data.AddressWrapper

attribute), 369
region_id (angr.storage.memory_mixins.regioned_memory.region_data.RegionDescriptor

attribute), 369
region_ids (angr.storage.memory_mixins.regioned_memory.region_data.RegionMap

property), 369
RegionCategoryMixin (class in

angr.storage.memory_mixins.regioned_memory.region_category_mixin),
370

RegionDescriptor (class in
angr.storage.memory_mixins.regioned_memory.region_data),
369

RegionedAddressConcretizationMixin (class in
angr.storage.memory_mixins.regioned_memory.regioned_address_concretization_mixin),
373

RegionedMemory (class in
angr.storage.memory_mixins), 339

RegionedMemoryMixin (class in
angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin),
365

RegionIdentifier (class in

angr.analyses.decompiler.region_identifier),
715

RegionMap (class in angr.storage.memory_mixins.regioned_memory.region_data),
369

RegionObject (class in angr.keyed_region), 614
regions (angr.analyses.cfg.cfb.CFBlanket property),

638
RegionSimplifier (class in

angr.analyses.decompiler.region_simplifiers.region_simplifier),
720

RegionWalker (class in
angr.analyses.decompiler.region_walker),
723

Register (angr.analyses.data_dep.dep_nodes.DepNodeTypes
attribute), 869

register (angr.analyses.disassembly.RegisterOperand
property), 851

REGISTER (angr.analyses.reaching_definitions.AtomKind
attribute), 768

REGISTER (angr.knowledge_plugins.key_definitions.atoms.AtomKind
attribute), 584

REGISTER (angr.knowledge_plugins.variables.variable_manager.VariableType
attribute), 562

Register (class in angr.analyses.disassembly), 851
Register (class in angr.analyses.reaching_definitions),

770
Register (class in angr.analyses.stack_pointer_tracker),

819
Register (class in angr.knowledge_plugins.key_definitions.atoms),

587
register() (angr.analyses.reaching_definitions.Atom

static method), 769
register() (angr.knowledge_plugins.key_definitions.atoms.Atom

static method), 586
register() (angr.utils.mp.Initializer method), 895
register_analysis() (in module angr), 178
register_analysis() (in module angr.analyses), 619
register_bool_option()

(angr.sim_state_options.SimStateOptions
class method), 231

register_callbacks()
(angr.analyses.variable_recovery.variable_recovery.VariableRecoveryState
method), 827

register_data_reference()
(angr.analyses.reassembler.Reassembler
method), 859

register_default() (angr.knowledge_plugins.plugin.KnowledgeBasePlugin
static method), 523

register_default() (angr.misc.plugins.PluginHub
class method), 222

register_default() (angr.SimStatePlugin class
method), 162

register_default() (angr.state_plugins.plugin.SimStatePlugin
class method), 233

Index 1027

angr

register_default_cc() (in module
angr.calling_conventions), 502

register_definitions
(angr.analyses.reaching_definitions.LiveDefinitions
property), 760

register_definitions
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
property), 595

register_definitions
(angr.knowledge_plugins.key_definitions.LiveDefinitions
property), 574

register_function_analysis()
(angr.analyses.vfg.CallAnalysis method),
843

register_instruction_reference()
(angr.analyses.reassembler.Reassembler
method), 859

register_kernel_types() (in module
angr.utils.library), 893

register_optimization_pass() (in module
angr.analyses.decompiler.optimization_passes),
703

register_option() (angr.sim_state_options.SimStateOptions
class method), 231

register_pcode_arch_default_cc() (in module
angr.engines.pcode.cc), 466

register_plugin() (angr.knowledge_base.knowledge_base.KnowledgeBase
method), 521

register_plugin() (angr.KnowledgeBase method),
211

register_plugin() (angr.misc.plugins.PluginHub
method), 223

register_plugin() (angr.misc.plugins.PluginVendor
method), 224

register_plugin() (angr.sim_state.SimState method),
226

register_plugin() (angr.SimState method), 182
register_preset() (angr.misc.plugins.PluginHub

class method), 222
register_region (angr.knowledge_plugins.variables.variable_manager.LiveVariables

attribute), 562
register_simos() (in module angr.simos), 877
register_syscall_cc() (in module

angr.calling_conventions), 502
register_types() (in module angr.sim_type), 518
register_uses (angr.analyses.reaching_definitions.LiveDefinitions

attribute), 760
register_uses (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

property), 811
register_uses (angr.analyses.reaching_definitions.ReachingDefinitionsState

property), 781
register_uses (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 595
register_uses (angr.knowledge_plugins.key_definitions.LiveDefinitions

attribute), 574
register_values (angr.state_plugins.unicorn_engine.BlockDetails

attribute), 285
register_values_count

(angr.state_plugins.unicorn_engine.BlockDetails
attribute), 285

register_variable()
(angr.state_plugins.solver.SimSolver method),
255

RegisterInitializerHook (class in
angr.analyses.cfg.indirect_jump_resolvers.jumptable),
665

RegisterOffset (class in angr.engines.light.data), 753
RegisterOperand (class in angr.analyses.disassembly),

851
RegisterReallocation (class in

angr.analyses.binary_optimizer), 861
registers (angr.analyses.reaching_definitions.LiveDefinitions

attribute), 760
registers (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

property), 811
registers (angr.analyses.reaching_definitions.ReachingDefinitionsState

property), 781
registers (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 595
registers (angr.knowledge_plugins.key_definitions.LiveDefinitions

attribute), 574
registers (angr.sim_state.SimState attribute), 225
registers (angr.SimState attribute), 181
registers_read_afterwards

(angr.knowledge_plugins.functions.function.Function
attribute), 553

registers_read_afterwards
(angr.knowledge_plugins.functions.soot_function.SootFunction
attribute), 561

RegisterSaveAreaSimplifier (class in
angr.analyses.decompiler.optimization_passes.register_save_area_simplifier),
712

RegisterValue (class in
angr.state_plugins.unicorn_engine), 285

RegOffsetAnnotation (class in
angr.analyses.cfg.indirect_jump_resolvers.jumptable),
664

regs (angr.analyses.stack_pointer_tracker.FrozenStackPointerTrackerState
attribute), 819

regs (angr.analyses.stack_pointer_tracker.StackPointerTrackerState
attribute), 819

regs (angr.sim_state.SimState attribute), 225
regs (angr.SimState attribute), 181
regs (angr.slicer.SimLightState attribute), 873
regs_to_initialize (angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTableProcessorState

attribute), 664
rehook_symbol() (angr.Project method), 166
rehook_symbol() (angr.project.Project method), 216

1028 Index

angr

ReinterpretAs (class in
angr.analyses.typehoon.typevars), 834

related_function_addr
(angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin
property), 371

related_function_address
(angr.storage.memory_mixins.regioned_memory.region_data.RegionDescriptor
attribute), 369

relativize() (angr.storage.memory_mixins.regioned_memory.region_data.RegionMap
method), 370

release() (angr.analyses.cfg.segment_list.SegmentList
method), 673

release() (angr.SimHeapBrk method), 205
release() (angr.state_plugins.heap.heap_brk.SimHeapBrk

method), 299
release_plugin() (angr.knowledge_base.knowledge_base.KnowledgeBase

method), 521
release_plugin() (angr.KnowledgeBase method), 211
release_plugin() (angr.misc.plugins.PluginHub

method), 223
release_plugin() (angr.misc.plugins.PluginVendor

method), 224
release_shared() (angr.storage.memory_mixins.paged_memory.pages.refcount_mixin.RefcountMixin

method), 360
reload_analyses() (angr.analyses.analysis.AnalysesHub

method), 619
reload_format() (angr.analyses.disassembly.Instruction

method), 849
reload_solver() (angr.state_plugins.solver.SimSolver

method), 254
reload_variable_types()

(angr.analyses.decompiler.structured_codegen.base.BaseStructuredCodeGenerator
method), 725

reload_variable_types()
(angr.analyses.decompiler.structured_codegen.c.CStructuredCodeGenerator
method), 741

relocatable (angr.analyses.cfg.indirect_jump_resolvers.jumptable.RegOffsetAnnotation
property), 664

relocatable (angr.analyses.data_dep.data_dependency_analysis.NodalAnnotation
property), 867

relocatable (angr.analyses.variable_recovery.annotations.StackLocationAnnotation
property), 821

relocatable (angr.analyses.variable_recovery.annotations.VariableSourceAnnotation
property), 821

relocatable (angr.analyses.variable_recovery.variable_recovery_base.VariableAnnotation
property), 822

relocatable (angr.knowledge_plugins.key_definitions.live_definitions.DefinitionAnnotation
property), 593

relocateable (angr.storage.memory_mixins.address_concretization_mixin.MultiwriteAnnotation
property), 344

Relocation (class in angr.analyses.reassembler), 857
relocations (angr.analyses.reassembler.Reassembler

property), 857
remove() (angr.sim_state_options.SimStateOptions

method), 230
remove_breakpoint()

(angr.state_plugins.inspect.SimInspector
method), 234

remove_cgc_attachments()
(angr.analyses.reassembler.Reassembler
method), 860

remove_claripy_bool_asts()
(angr.analyses.decompiler.condition_processor.ConditionProcessor
method), 697

remove_cycles() (angr.analyses.cfg.cfg_emulated.CFGEmulated
method), 643

remove_edge() (angr.analyses.cfg.cfg_base.CFGBase
method), 648

remove_empty_nodes()
(angr.analyses.decompiler.clinic.Clinic static
method), 697

remove_fakerets() (angr.analyses.cfg.cfg_emulated.CFGEmulated
method), 644

remove_instruction()
(angr.analyses.reassembler.Reassembler
method), 859

remove_labels() (in module
angr.analyses.decompiler.utils), 745

remove_last_statement() (in module
angr.analyses.decompiler.utils), 743

remove_node() (angr.analyses.decompiler.structuring.structurer_nodes.SequenceNode
method), 686

remove_node() (angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 537

remove_node() (angr.knowledge_plugins.cfg.CFGModel
method), 530

remove_node_and_graph_node()
(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 541

remove_node_and_graph_node()
(angr.knowledge_plugins.cfg.CFGModel
method), 535

remove_patch() (angr.knowledge_plugins.patches.PatchManager
method), 522

remove_preconstraints()
(angr.state_plugins.preconstrainer.SimStatePreconstrainer
method), 283

remove_technique() (angr.sim_manager.SimulationManager
method), 384

remove_technique() (angr.SimulationManager
method), 173

remove_types() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 567

remove_unnecessary_stuff()
(angr.analyses.reassembler.Reassembler
method), 860

remove_unnecessary_stuff_glibc()
(angr.analyses.reassembler.Reassembler

Index 1029

angr

method), 860
remove_use() (angr.knowledge_plugins.key_definitions.Uses

method), 582
remove_use() (angr.knowledge_plugins.key_definitions.uses.Uses

method), 607
remove_uses() (angr.knowledge_plugins.key_definitions.Uses

method), 583
remove_uses() (angr.knowledge_plugins.key_definitions.uses.Uses

method), 607
remove_variable() (angr.analyses.decompiler.optimization_passes.engine_base.SimplifierAILState

method), 710
RemoveNodeNotice, 693
rename() (angr.knowledge_plugins.types.TypesStore

method), 549
renamed (angr.sim_variable.SimVariable attribute), 503
render() (angr.analyses.disassembly.Disassembly

method), 852
render() (angr.analyses.disassembly.DisassemblyPiece

method), 848
render_text() (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeGenerator

method), 741
RENDER_TYPE (angr.analyses.decompiler.structured_codegen.c.CStructuredCodeGenerator

attribute), 740
RepHook (class in angr.exploration_techniques.tracer),

414
replace() (angr.analyses.typehoon.typevars.Add

method), 832
replace() (angr.analyses.typehoon.typevars.DerivedTypeVariable

method), 833
replace() (angr.analyses.typehoon.typevars.Existence

method), 831
replace() (angr.analyses.typehoon.typevars.Sub

method), 832
replace() (angr.analyses.typehoon.typevars.Subtype

method), 832
replace() (angr.keyed_region.KeyedRegion method),

615
replace() (angr.procedures.stubs.format_parser.FormatString

method), 473
replace_all() (angr.storage.memory_mixins.convenient_mappings_mixin.ConvenientMappingsMixin

method), 348
replace_all() (angr.storage.memory_mixins.MemoryMixin

method), 338
replace_all() (angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin

method), 367
replace_all_with_offsets()

(angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage
method), 365

replace_last_statement() (in module
angr.analyses.decompiler.utils), 743

replace_node_in_node()
(angr.analyses.decompiler.structuring.structurer_base.StructurerBase
static method), 691

replace_nodes() (angr.analyses.decompiler.structuring.structurer_base.StructurerBase

static method), 691
replace_region() (angr.analyses.decompiler.graph_region.GraphRegion

method), 702
replace_region_with_region()

(angr.analyses.decompiler.graph_region.GraphRegion
method), 702

replacements (angr.analyses.propagator.propagator.PropagatorAnalysis
property), 759

report() (angr.exploration_techniques.Suggestions
static method), 407

report() (angr.exploration_techniques.suggestions.Suggestions
static method), 427

repr_addr() (in module angr.codenode), 875
request_knowledge()

(angr.knowledge_base.knowledge_base.KnowledgeBase
method), 521

request_knowledge() (angr.KnowledgeBase method),
212

request_plugin() (angr.misc.plugins.PluginPreset
method), 223

REQUIRE_CFG_STATES (angr.exploration_techniques.CallFunctionGoal
attribute), 401

REQUIRE_CFG_STATES (angr.exploration_techniques.director.BaseGoal
attribute), 418

REQUIRE_CFG_STATES (angr.exploration_techniques.director.CallFunctionGoal
attribute), 419

REQUIRE_DATA_C (angr.engines.pcode.lifter.Lifter
attribute), 439

REQUIRE_DATA_PY (angr.engines.pcode.lifter.Lifter at-
tribute), 439

reraise() (angr.sim_manager.ErrorRecord method),
389

reset() (angr.analyses.forward_analysis.visitors.graph.GraphVisitor
method), 625

reset() (angr.analyses.forward_analysis.visitors.single_node_graph.SingleNodeGraphVisitor
method), 627

reset() (angr.state_plugins.unicorn_engine.Uniwrapper
method), 288

reset_initial_regs() (angr.Block static method),
170

reset_initial_regs() (angr.block.Block static
method), 221

reset_prototype() (angr.analyses.reaching_definitions.function_handler.FunctionCallData
method), 803

reset_prototype() (angr.analyses.reaching_definitions.FunctionCallData
method), 790

reset_uses() (angr.analyses.reaching_definitions.LiveDefinitions
method), 761

reset_uses() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 595

reset_uses() (angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 575

resolvable (angr.state_plugins.debug_variables.SimDebugVariable
property), 308

1030 Index

angr

resolvable (angr.state_plugins.view.SimMemView
property), 314

resolve() (angr.analyses.cfg.indirect_jump_resolvers.amd64_elf_got.AMD64ElfGotResolver
method), 659

resolve() (angr.analyses.cfg.indirect_jump_resolvers.arm_elf_fast.ArmElfFastResolver
method), 660

resolve() (angr.analyses.cfg.indirect_jump_resolvers.const_resolver.ConstantResolver
method), 668

resolve() (angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTableResolver
method), 667

resolve() (angr.analyses.cfg.indirect_jump_resolvers.mips_elf_fast.MipsElfFastResolver
method), 662

resolve() (angr.analyses.cfg.indirect_jump_resolvers.resolver.IndirectJumpResolver
method), 668

resolve() (angr.analyses.cfg.indirect_jump_resolvers.x86_elf_pic_plt.X86ElfPicPltResolver
method), 662

resolve() (angr.analyses.cfg.indirect_jump_resolvers.x86_pe_iat.X86PeIatResolver
method), 660

resolve_abstract_dispatch()
(angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

resolve_concrete_dispatch()
(angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

resolve_invoke() (angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

resolve_register() (angr.state_plugins.light_registers.SimLightRegisters
method), 267

resolve_special_dispatch()
(angr.analyses.soot_class_hierarchy.SootClassHierarchy
method), 637

resolved (angr.state_plugins.debug_variables.SimDebugVariable
property), 308

resolved (angr.state_plugins.view.SimMemView prop-
erty), 314

resolved_indirect_jumps
(angr.knowledge_base.knowledge_base.KnowledgeBase
property), 520

resolved_indirect_jumps (angr.KnowledgeBase
property), 211

resolved_targets (angr.knowledge_plugins.cfg.indirect_jump.IndirectJump
attribute), 548

resolved_targets (angr.knowledge_plugins.cfg.IndirectJump
attribute), 529

resource_event() (in module
angr.state_plugins.sim_event), 468

restore_graph() (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.LoweredSwitchSimplifier
static method), 709

result (angr.analyses.decompiler.ccall_rewriters.rewriter_base.CCallRewriterBase
attribute), 694

resume() (angr.analyses.cfg.cfg_emulated.CFGEmulated
method), 643

resume_with_new_graph()
(angr.analyses.forward_analysis.visitors.function_graph.FunctionGraphVisitor

method), 624
resymbolize() (angr.state_plugins.symbolizer.SimSymbolizer

method), 307
ret() (angr.sim_procedure.SimProcedure method), 472
ret() (angr.SimProcedure method), 160
ret() (angr.state_plugins.callstack.CallStack method),

266
ret_addr (angr.analyses.cfg.cfg_fast.FunctionCallEdge

attribute), 651
ret_atoms (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 803
ret_atoms (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
ret_defns (angr.analyses.reaching_definitions.dep_graph.FunctionCallRelationships

attribute), 796
ret_errno() (angr.state_plugins.libc.SimStateLibc

method), 240
ret_expr (angr.analyses.decompiler.structured_codegen.c.CFunctionCall

attribute), 731
ret_from_addr (angr.analyses.cfg.cfg_fast.FunctionReturnEdge

attribute), 652
ret_sites (angr.knowledge_plugins.functions.function.Function

property), 556
ret_target (angr.analyses.cfg.cfg_fast.CFGJob at-

tribute), 653
ret_to_addr (angr.analyses.cfg.cfg_fast.FunctionReturnEdge

attribute), 652
ret_values (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 803
ret_values (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
ret_values_deps (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 803
ret_values_deps (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
retaddr_on_stack (angr.knowledge_plugins.functions.function.Function

attribute), 553
retaddr_on_stack (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 561
retaddr_popped (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 803
retaddr_popped (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
RetAddrSaveSimplifier (class in

angr.analyses.decompiler.optimization_passes.ret_addr_save_simplifier),
712

retout_sites (angr.knowledge_plugins.functions.function.Function
property), 556

RETURN_ADDR (angr.calling_conventions.SimCC at-
tribute), 488

return_addr (angr.calling_conventions.SimCC prop-
erty), 489

RETURN_ADDR (angr.calling_conventions.SimCCAArch64
attribute), 496

Index 1031

angr

RETURN_ADDR (angr.calling_conventions.SimCCAArch64LinuxSyscall
attribute), 497

RETURN_ADDR (angr.calling_conventions.SimCCAMD64LinuxSyscall
attribute), 495

RETURN_ADDR (angr.calling_conventions.SimCCAMD64WindowsSyscall
attribute), 495

RETURN_ADDR (angr.calling_conventions.SimCCARM at-
tribute), 495

RETURN_ADDR (angr.calling_conventions.SimCCARMHF
attribute), 496

RETURN_ADDR (angr.calling_conventions.SimCCARMLinuxSyscall
attribute), 496

RETURN_ADDR (angr.calling_conventions.SimCCCdecl
attribute), 492

RETURN_ADDR (angr.calling_conventions.SimCCMicrosoftAMD64
attribute), 493

RETURN_ADDR (angr.calling_conventions.SimCCMicrosoftFastcall
attribute), 492

RETURN_ADDR (angr.calling_conventions.SimCCN64 at-
tribute), 498

RETURN_ADDR (angr.calling_conventions.SimCCN64LinuxSyscall
attribute), 499

RETURN_ADDR (angr.calling_conventions.SimCCO32 at-
tribute), 497

RETURN_ADDR (angr.calling_conventions.SimCCO32LinuxSyscall
attribute), 498

RETURN_ADDR (angr.calling_conventions.SimCCPowerPC
attribute), 499

RETURN_ADDR (angr.calling_conventions.SimCCPowerPC64
attribute), 500

RETURN_ADDR (angr.calling_conventions.SimCCPowerPC64LinuxSyscall
attribute), 500

RETURN_ADDR (angr.calling_conventions.SimCCPowerPCLinuxSyscall
attribute), 499

RETURN_ADDR (angr.calling_conventions.SimCCRISCV64LinuxSyscall
attribute), 497

RETURN_ADDR (angr.calling_conventions.SimCCS390X
attribute), 501

RETURN_ADDR (angr.calling_conventions.SimCCS390XLinuxSyscall
attribute), 502

RETURN_ADDR (angr.calling_conventions.SimCCSystemVAMD64
attribute), 494

RETURN_ADDR (angr.calling_conventions.SimCCX86LinuxSyscall
attribute), 493

RETURN_ADDR (angr.calling_conventions.SimCCX86WindowsSyscall
attribute), 494

RETURN_ADDR (angr.engines.pcode.cc.SimCCM68k at-
tribute), 464

RETURN_ADDR (angr.engines.pcode.cc.SimCCPARISC at-
tribute), 465

RETURN_ADDR (angr.engines.pcode.cc.SimCCPowerPC
attribute), 465

RETURN_ADDR (angr.engines.pcode.cc.SimCCRISCV at-
tribute), 464

RETURN_ADDR (angr.engines.pcode.cc.SimCCSH4 at-
tribute), 465

RETURN_ADDR (angr.engines.pcode.cc.SimCCSPARC at-
tribute), 465

RETURN_ADDR (angr.engines.pcode.cc.SimCCXtensa at-
tribute), 466

RETURN_ADDR (angr.SimCC attribute), 185
return_addr (angr.SimCC property), 186
return_in_implicit_outparam()

(angr.calling_conventions.SimCC method),
489

return_in_implicit_outparam()
(angr.calling_conventions.SimCCCdecl
method), 492

return_in_implicit_outparam()
(angr.calling_conventions.SimCCMicrosoftAMD64
method), 493

return_in_implicit_outparam()
(angr.calling_conventions.SimCCSystemVAMD64
method), 495

return_in_implicit_outparam() (angr.SimCC
method), 186

return_target (angr.knowledge_plugins.cfg.cfg_node.CFGENode
attribute), 547

return_target (angr.knowledge_plugins.cfg.CFGENode
attribute), 528

return_to (angr.analyses.cfg.cfg_fast.FunctionReturn
attribute), 649

return_type (angr.sim_procedure.SimProcedure prop-
erty), 473

return_type (angr.SimProcedure property), 161
RETURN_VAL (angr.calling_conventions.SimCC at-

tribute), 488
RETURN_VAL (angr.calling_conventions.SimCCAArch64

attribute), 497
RETURN_VAL (angr.calling_conventions.SimCCAArch64LinuxSyscall

attribute), 497
RETURN_VAL (angr.calling_conventions.SimCCAMD64LinuxSyscall

attribute), 495
RETURN_VAL (angr.calling_conventions.SimCCAMD64WindowsSyscall

attribute), 495
RETURN_VAL (angr.calling_conventions.SimCCARM at-

tribute), 495
RETURN_VAL (angr.calling_conventions.SimCCARMHF

attribute), 496
RETURN_VAL (angr.calling_conventions.SimCCARMLinuxSyscall

attribute), 496
RETURN_VAL (angr.calling_conventions.SimCCCdecl at-

tribute), 491
RETURN_VAL (angr.calling_conventions.SimCCMicrosoftAMD64

attribute), 493
RETURN_VAL (angr.calling_conventions.SimCCMicrosoftFastcall

attribute), 492
RETURN_VAL (angr.calling_conventions.SimCCN64 at-

1032 Index

angr

tribute), 498
RETURN_VAL (angr.calling_conventions.SimCCN64LinuxSyscall

attribute), 499
RETURN_VAL (angr.calling_conventions.SimCCO32 at-

tribute), 497
RETURN_VAL (angr.calling_conventions.SimCCO32LinuxSyscall

attribute), 498
RETURN_VAL (angr.calling_conventions.SimCCPowerPC

attribute), 499
RETURN_VAL (angr.calling_conventions.SimCCPowerPC64

attribute), 500
RETURN_VAL (angr.calling_conventions.SimCCPowerPC64LinuxSyscall

attribute), 500
RETURN_VAL (angr.calling_conventions.SimCCPowerPCLinuxSyscall

attribute), 499
RETURN_VAL (angr.calling_conventions.SimCCRISCV64LinuxSyscall

attribute), 497
RETURN_VAL (angr.calling_conventions.SimCCS390X at-

tribute), 501
RETURN_VAL (angr.calling_conventions.SimCCS390XLinuxSyscall

attribute), 502
RETURN_VAL (angr.calling_conventions.SimCCSystemVAMD64

attribute), 494
RETURN_VAL (angr.calling_conventions.SimCCX86LinuxSyscall

attribute), 493
RETURN_VAL (angr.calling_conventions.SimCCX86WindowsSyscall

attribute), 494
RETURN_VAL (angr.engines.pcode.cc.SimCCM68k at-

tribute), 464
RETURN_VAL (angr.engines.pcode.cc.SimCCPARISC at-

tribute), 465
RETURN_VAL (angr.engines.pcode.cc.SimCCPowerPC at-

tribute), 465
RETURN_VAL (angr.engines.pcode.cc.SimCCRISCV

attribute), 465
RETURN_VAL (angr.engines.pcode.cc.SimCCSH4 at-

tribute), 465
RETURN_VAL (angr.engines.pcode.cc.SimCCSPARC at-

tribute), 465
RETURN_VAL (angr.engines.pcode.cc.SimCCXtensa

attribute), 466
RETURN_VAL (angr.SimCC attribute), 185
return_val() (angr.calling_conventions.SimCC

method), 489
return_val() (angr.calling_conventions.SimCCCdecl

method), 492
return_val() (angr.calling_conventions.SimCCSystemVAMD64

method), 494
return_val() (angr.calling_conventions.SimCCUsercall

method), 491
return_val() (angr.SimCC method), 186
returning (angr.analyses.decompiler.structured_codegen.c.CFunctionCall

attribute), 731
returning (angr.knowledge_plugins.functions.function.Function

property), 554
returning_source (angr.analyses.cfg.cfg_fast.CFGJob

attribute), 653
returnty (angr.sim_type.SimTypeCppFunction at-

tribute), 514
ReturnValueTag (class in

angr.knowledge_plugins.key_definitions.tag),
606

retval (angr.analyses.decompiler.structured_codegen.c.CReturn
attribute), 732

reverse_post_order_sort_nodes()
(angr.utils.graph.GraphUtils static method),
891

revisit_node() (angr.analyses.forward_analysis.visitors.graph.GraphVisitor
method), 626

revisit_successors()
(angr.analyses.forward_analysis.visitors.graph.GraphVisitor
method), 626

rhs (angr.analyses.decompiler.structured_codegen.c.CAssignment
attribute), 731

rhs (angr.analyses.decompiler.structured_codegen.c.CBinaryOp
attribute), 736

RichR (class in angr.analyses.variable_recovery.engine_base),
828

RShift (angr.engines.light.data.ArithmeticExpression
attribute), 752

run() (angr.analyses.congruency_check.CongruencyCheck
method), 861

run() (angr.analyses.identifier.identify.Identifier
method), 838

run() (angr.distributed.server.Server method), 902
run() (angr.distributed.worker.Worker method), 903
run() (angr.exploration_techniques.tracer.RepHook

method), 414
run() (angr.Server method), 211
run() (angr.sim_manager.SimulationManager method),

384
run() (angr.sim_procedure.SimProcedure method), 472
run() (angr.SimProcedure method), 159
run() (angr.SimulationManager method), 173
run_pelf() (in module angr.flirt.build_sig), 886
run_sigmake() (in module angr.flirt.build_sig), 886

S
s2u() (in module angr.analyses.decompiler.optimization_passes.register_save_area_simplifier),

712
s2u() (in module angr.analyses.decompiler.optimization_passes.stack_canary_simplifier),

706
satisfiable() (angr.sim_state.SimState method), 226
satisfiable() (angr.SimState method), 183
satisfiable() (angr.state_plugins.solver.SimSolver

method), 259
save_info() (angr.angrdb.db.AngrDB static method),

675

Index 1033

angr

SCANF_DELIMITERS (angr.procedures.stubs.format_parser.FormatString
attribute), 473

ScanfFormatParser (class in
angr.procedures.stubs.format_parser), 475

scc_id (angr.utils.graph.SCCPlaceholder attribute), 890
SCCPlaceholder (class in angr.utils.graph), 890
scratch (angr.sim_state.SimState attribute), 225
scratch (angr.SimState attribute), 181
SDiv() (angr.state_plugins.sim_action_object.SimActionObject

method), 468
se (angr.sim_state.SimState property), 225
se (angr.SimState property), 182
search() (angr.analyses.cfg.segment_list.SegmentList

method), 672
section_alignment()

(angr.analyses.reassembler.Reassembler
method), 858

SecurityCookieInit (class in angr.simos.windows),
881

seek() (angr.SimFileDescriptor method), 198
seek() (angr.SimFileDescriptorDuplex method), 201
seek() (angr.storage.file.SimFileDescriptor method),

327
seek() (angr.storage.file.SimFileDescriptorBase

method), 326
seek() (angr.storage.file.SimFileDescriptorDuplex

method), 330
seekable (angr.SimFileBase attribute), 188
seekable (angr.storage.file.SimFileBase attribute), 316
seekable (angr.storage.file.SimPacketsSlots attribute),

332
SegfaultError, 288
Segment (class in angr.analyses.cfg.segment_list), 671
SegmentBoundary (angr.knowledge_plugins.cfg.memory_data.MemoryDataSort

attribute), 542
SegmentBoundary (angr.knowledge_plugins.cfg.MemoryDataSort

attribute), 524
SegmentList (class in angr.analyses.cfg.segment_list),

672
selector() (angr.exploration_techniques.ExplorationTechnique

method), 391
selector() (angr.ExplorationTechnique method), 179
selector() (angr.sim_manager.SimulationManager

method), 386
selector() (angr.SimulationManager method), 175
seq (angr.analyses.disassembly.IROp attribute), 849
sequence_matcher_similarity()

(angr.exploration_techniques.unique.UniqueSearch
static method), 424

sequence_matcher_similarity()
(angr.exploration_techniques.UniqueSearch
static method), 404

sequence_node (angr.analyses.decompiler.structuring.structurer_nodes.LoopNode
attribute), 688

SequenceNode (class in
angr.analyses.decompiler.structuring.structurer_nodes),
686

SequenceOptimizationPass (class in
angr.analyses.decompiler.optimization_passes.optimization_pass),
705

SequenceWalker (class in
angr.analyses.decompiler.sequence_walker),
724

Serializable (class in angr.serializable), 617
SerializableCounter (class in

angr.calling_conventions), 484
SerializableIterator (class in

angr.calling_conventions), 483
SerializableListIterator (class in

angr.calling_conventions), 484
serialize() (angr.knowledge_plugins.functions.function_parser.FunctionParser

static method), 560
serialize() (angr.serializable.Serializable method),

617
serialize_to_cmessage() (angr.Block method), 170
serialize_to_cmessage() (angr.block.Block

method), 221
serialize_to_cmessage()

(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 536

serialize_to_cmessage()
(angr.knowledge_plugins.cfg.cfg_node.CFGNode
method), 546

serialize_to_cmessage()
(angr.knowledge_plugins.cfg.CFGModel
method), 530

serialize_to_cmessage()
(angr.knowledge_plugins.cfg.CFGNode
method), 527

serialize_to_cmessage()
(angr.knowledge_plugins.cfg.memory_data.MemoryData
method), 543

serialize_to_cmessage()
(angr.knowledge_plugins.cfg.MemoryData
method), 525

serialize_to_cmessage()
(angr.knowledge_plugins.functions.function.Function
method), 555

serialize_to_cmessage()
(angr.knowledge_plugins.variables.variable_access.VariableAccess
method), 562

serialize_to_cmessage()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 563

serialize_to_cmessage()
(angr.knowledge_plugins.xrefs.xref.XRef
method), 611

serialize_to_cmessage()

1034 Index

angr

(angr.knowledge_plugins.xrefs.xref_manager.XRefManager
method), 612

serialize_to_cmessage()
(angr.serializable.Serializable method), 617

serialize_to_cmessage()
(angr.sim_variable.SimMemoryVariable
method), 505

serialize_to_cmessage()
(angr.sim_variable.SimRegisterVariable
method), 505

serialize_to_cmessage()
(angr.sim_variable.SimStackVariable method),
506

serialize_to_cmessage()
(angr.sim_variable.SimTemporaryVariable
method), 504

Server (class in angr), 210
Server (class in angr.distributed.server), 902
session_scope() (angr.angrdb.db.AngrDB static

method), 675
set() (angr.knowledge_plugins.key_definitions.environment.Environment

method), 592
set_abi_cc() (angr.procedures.definitions.SimSyscallLibrary

method), 481
set_args() (angr.sim_procedure.SimProcedure

method), 472
set_args() (angr.SimProcedure method), 160
set_base_state() (angr.callable.Callable method),

520
set_bck_chunk() (angr.PTChunk method), 210
set_bck_chunk() (angr.state_plugins.heap.heap_freelist.Chunk

method), 301
set_bck_chunk() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 304
set_brk() (angr.state_plugins.posix.SimSystemPosix

method), 245
set_c_prototype() (angr.procedures.definitions.SimLibrary

method), 477
set_data() (angr.state_plugins.gdb.GDB method), 271
set_default_cc() (angr.procedures.definitions.SimLibrary

method), 476
set_entry_register_values()

(angr.simos.linux.SimLinux method), 879
set_fd_data() (angr.exploration_techniques.Tracer

method), 395
set_fd_data() (angr.exploration_techniques.tracer.Tracer

method), 415
set_fwd_chunk() (angr.PTChunk method), 210
set_fwd_chunk() (angr.state_plugins.heap.heap_freelist.Chunk

method), 300
set_fwd_chunk() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 303
set_heap() (angr.state_plugins.gdb.GDB method), 271
set_initial_regs() (angr.Block method), 170

set_initial_regs() (angr.block.Block method), 221
set_last_block_details()

(angr.state_plugins.unicorn_engine.Unicorn
method), 290

set_last_statement() (angr.annocfg.AnnotatedCFG
method), 874

set_library_names()
(angr.procedures.definitions.SimLibrary
method), 476

set_live_variables()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 564

set_manager() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 563

set_mode() (angr.sim_state.SimState method), 228
set_mode() (angr.SimState method), 184
set_non_returning()

(angr.procedures.definitions.SimLibrary
method), 476

set_object() (angr.keyed_region.KeyedRegion
method), 616

set_object() (angr.keyed_region.RegionObject
method), 614

set_prev_freeness() (angr.PTChunk method), 209
set_prev_freeness()

(angr.state_plugins.heap.heap_ptmalloc.PTChunk
method), 303

set_prototype() (angr.knowledge_plugins.callsite_prototypes.CallsitePrototypes
method), 523

set_prototype() (angr.procedures.definitions.SimLibrary
method), 476

set_prototype() (angr.procedures.definitions.SimSyscallLibrary
method), 481

set_prototypes() (angr.procedures.definitions.SimLibrary
method), 476

set_prototypes() (angr.procedures.definitions.SimSyscallLibrary
method), 481

set_regs() (angr.state_plugins.gdb.GDB method), 271
set_regs() (angr.state_plugins.unicorn_engine.Unicorn

method), 290
set_return_val() (angr.calling_conventions.SimCC

method), 489
set_return_val() (angr.calling_conventions.SimCCSyscall

method), 493
set_return_val() (angr.SimCC method), 187
set_simgr() (angr.analyses.congruency_check.CongruencyCheck

method), 861
set_size() (angr.PTChunk method), 209
set_size() (angr.state_plugins.heap.heap_freelist.Chunk

method), 300
set_size() (angr.state_plugins.heap.heap_ptmalloc.PTChunk

method), 302
set_stack() (angr.state_plugins.gdb.GDB method),

271

Index 1035

angr

set_stack_address_mapping()
(angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin
method), 367

set_stack_size() (angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin
method), 368

set_state() (angr.SimFile method), 190
set_state() (angr.SimFileDescriptor method), 199
set_state() (angr.SimFileDescriptorDuplex method),

201
set_state() (angr.SimFileStream method), 194
set_state() (angr.SimPackets method), 192
set_state() (angr.SimStatePlugin method), 161
set_state() (angr.state_plugins.callstack.CallStack

method), 264
set_state() (angr.state_plugins.concrete.Concrete

method), 293
set_state() (angr.state_plugins.filesystem.SimConcreteFilesystem

method), 252
set_state() (angr.state_plugins.filesystem.SimFilesystem

method), 249
set_state() (angr.state_plugins.globals.SimStateGlobals

method), 278
set_state() (angr.state_plugins.inspect.SimInspector

method), 236
set_state() (angr.state_plugins.light_registers.SimLightRegisters

method), 267
set_state() (angr.state_plugins.plugin.SimStatePlugin

method), 232
set_state() (angr.state_plugins.posix.SimSystemPosix

method), 245
set_state() (angr.state_plugins.uc_manager.SimUCManager

method), 280
set_state() (angr.state_plugins.unicorn_engine.Unicorn

method), 290
set_state() (angr.state_plugins.view.SimMemView

method), 311
set_state() (angr.storage.file.SimFile method), 317
set_state() (angr.storage.file.SimFileDescriptor

method), 328
set_state() (angr.storage.file.SimFileDescriptorDuplex

method), 330
set_state() (angr.storage.file.SimFileStream method),

319
set_state() (angr.storage.file.SimPackets method), 321
set_state() (angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin

method), 344
set_state() (angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin

method), 377
set_state() (angr.storage.memory_mixins.paged_memory.pages.ispo_mixin.ISPOMixin

method), 361
set_state() (angr.storage.memory_mixins.regioned_memory.regioned_address_concretization_mixin.RegionedAddressConcretizationMixin

method), 373
set_state() (angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin

method), 367

set_state() (angr.storage.memory_mixins.slotted_memory.SlottedMemoryMixin
method), 374

set_state_options()
(angr.analyses.congruency_check.CongruencyCheck
method), 861

set_states() (angr.analyses.congruency_check.CongruencyCheck
method), 861

set_stops() (angr.state_plugins.unicorn_engine.Unicorn
method), 290

set_strongref_state() (angr.SimStatePlugin
method), 161

set_strongref_state()
(angr.state_plugins.history.SimStateHistory
method), 267

set_strongref_state()
(angr.state_plugins.plugin.SimStatePlugin
method), 232

set_symbolization_for_all_pages()
(angr.state_plugins.symbolizer.SimSymbolizer
method), 307

set_symbolized_target_range()
(angr.state_plugins.symbolizer.SimSymbolizer
method), 307

set_tracking() (angr.state_plugins.unicorn_engine.Unicorn
method), 290

set_tyenv() (angr.state_plugins.scratch.SimStateScratch
method), 280

set_type() (angr.analyses.decompiler.structured_codegen.c.CExpression
method), 728

set_unified_variable()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 567

set_value() (angr.calling_conventions.SimArrayArg
method), 486

set_value() (angr.calling_conventions.SimComboArg
method), 486

set_value() (angr.calling_conventions.SimFunctionArgument
method), 484

set_value() (angr.calling_conventions.SimLyingRegArg
method), 491

set_value() (angr.calling_conventions.SimReferenceArgument
method), 487

set_value() (angr.calling_conventions.SimRegArg
method), 485

set_value() (angr.calling_conventions.SimStackArg
method), 485

set_value() (angr.calling_conventions.SimStructArg
method), 486

set_variable() (angr.keyed_region.KeyedRegion
method), 616

set_variable() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal
method), 563

set_variable_type()
(angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal

1036 Index

angr

method), 567
setstate() (angr.calling_conventions.ArgSession

method), 487
setstate() (angr.calling_conventions.SerializableCounter

method), 484
setstate() (angr.calling_conventions.SerializableIterator

method), 484
setstate() (angr.calling_conventions.SerializableListIterator

method), 484
setstate() (angr.calling_conventions.SimCC.ArgSession

method), 489
setstate() (angr.calling_conventions.UsercallArgSession

method), 487
setstate() (angr.SimCC.ArgSession method), 186
setup() (angr.exploration_techniques.DFS method),

398
setup() (angr.exploration_techniques.dfs.DFS method),

408
setup() (angr.exploration_techniques.driller_core.DrillerCore

method), 416
setup() (angr.exploration_techniques.DrillerCore

method), 393
setup() (angr.exploration_techniques.ExplorationTechnique

method), 390
setup() (angr.exploration_techniques.Explorer

method), 396
setup() (angr.exploration_techniques.explorer.Explorer

method), 409
setup() (angr.exploration_techniques.local_loop_seer.LocalLoopSeer

method), 422
setup() (angr.exploration_techniques.LocalLoopSeer

method), 406
setup() (angr.exploration_techniques.loop_seer.LoopSeer

method), 421
setup() (angr.exploration_techniques.LoopSeer

method), 394
setup() (angr.exploration_techniques.manual_mergepoint.ManualMergepoint

method), 410
setup() (angr.exploration_techniques.ManualMergepoint

method), 402
setup() (angr.exploration_techniques.memory_watcher.MemoryWatcher

method), 426
setup() (angr.exploration_techniques.MemoryWatcher

method), 405
setup() (angr.exploration_techniques.Slicecutor

method), 392
setup() (angr.exploration_techniques.slicecutor.Slicecutor

method), 417
setup() (angr.exploration_techniques.Symbion method),

404
setup() (angr.exploration_techniques.symbion.Symbion

method), 425
setup() (angr.exploration_techniques.Timeout method),

407

setup() (angr.exploration_techniques.timeout.Timeout
method), 407

setup() (angr.exploration_techniques.Tracer method),
395

setup() (angr.exploration_techniques.tracer.Tracer
method), 415

setup() (angr.exploration_techniques.unique.UniqueSearch
method), 423

setup() (angr.exploration_techniques.UniqueSearch
method), 403

setup() (angr.ExplorationTechnique method), 178
setup() (angr.state_plugins.unicorn_engine.Unicorn

method), 290
setup_arguments() (angr.engines.soot.engine.SootMixin

static method), 432
setup_callsite() (angr.calling_conventions.SimCC

method), 489
setup_callsite() (angr.calling_conventions.SimCCSoot

method), 500
setup_callsite() (angr.engines.soot.engine.SootMixin

class method), 432
setup_callsite() (angr.SimCC method), 187
setup_flags() (angr.state_plugins.unicorn_engine.Unicorn

method), 290
setup_gdt() (angr.SimOS method), 169
setup_gdt() (angr.simos.simos.SimOS method), 878
setup_gdt() (angr.state_plugins.unicorn_engine.Unicorn

method), 290
setup_terminal() (in module angr.utils.formatting),

894
shallow_reverse() (in module angr.utils.graph), 888
ShiftLeft (angr.analyses.cfg.indirect_jump_resolvers.jumptable.AddressTransferringTypes

attribute), 663
ShiftRight (angr.analyses.cfg.indirect_jump_resolvers.jumptable.AddressTransferringTypes

attribute), 663
short_reason (angr.knowledge_plugins.cfg.cfg_node.CFGNodeCreationFailure

attribute), 544
short_repr (angr.analyses.ddg.ProgramVariable prop-

erty), 747
short_repr (angr.code_location.CodeLocation prop-

erty), 613
should_abort (angr.analyses.forward_analysis.forward_analysis.ForwardAnalysis

property), 622
should_add_successors

(angr.sim_procedure.SimProcedure prop-
erty), 472

should_add_successors (angr.SimProcedure prop-
erty), 160

should_execute_statement()
(angr.annocfg.AnnotatedCFG method), 874

should_force_replace()
(angr.analyses.propagator.engine_ail.SimEnginePropagatorAIL
method), 756

should_take_exit() (angr.annocfg.AnnotatedCFG

Index 1037

angr

method), 874
show_demangled_name

(angr.analyses.decompiler.structured_codegen.c.CFunction
attribute), 727

show_demangled_name
(angr.analyses.decompiler.structured_codegen.c.CFunctionCall
attribute), 732

show_disambiguated_name
(angr.analyses.decompiler.structured_codegen.c.CFunctionCall
attribute), 732

shrink() (angr.analyses.reassembler.Data method), 857
SideEffectTag (class in

angr.knowledge_plugins.key_definitions.tag),
605

SIG_BLOCK (angr.state_plugins.posix.SimSystemPosix at-
tribute), 244

SIG_SETMASK (angr.state_plugins.posix.SimSystemPosix
attribute), 244

SIG_UNBLOCK (angr.state_plugins.posix.SimSystemPosix
attribute), 244

sigmask() (angr.state_plugins.posix.SimSystemPosix
method), 246

signed (angr.procedures.stubs.format_parser.FormatSpecifier
attribute), 474

signed (angr.sim_type.SimTypeFloat attribute), 515
SignedExtension (angr.analyses.cfg.indirect_jump_resolvers.jumptable.AddressTransferringTypes

attribute), 663
sigprocmask() (angr.state_plugins.posix.SimSystemPosix

method), 246
silence_logger() (in module

angr.state_plugins.heap.heap_ptmalloc),
302

sim_procedure (angr.code_location.CodeLocation at-
tribute), 613

sim_procedure (angr.codenode.HookNode attribute),
876

sim_procedure (angr.codenode.SyscallNode attribute),
876

SimAbstractMemoryError, 898
SimAction (class in angr.state_plugins.sim_action), 466
SimActionConstraint (class in

angr.state_plugins.sim_action), 467
SimActionData (class in

angr.state_plugins.sim_action), 467
SimActionError, 901
SimActionExit (class in

angr.state_plugins.sim_action), 466
SimActionObject (class in

angr.state_plugins.sim_action_object), 468
SimActionOperation (class in

angr.state_plugins.sim_action), 467
SimActLocation (class in

angr.analyses.data_dep.sim_act_location),
868

SimArrayArg (class in angr.calling_conventions), 486
SimCC (class in angr), 184
SimCC (class in angr.calling_conventions), 487
SimCC.ArgSession (class in angr), 185
SimCC.ArgSession (class in angr.calling_conventions),

488
SimCCAArch64 (class in angr.calling_conventions), 496
SimCCAArch64LinuxSyscall (class in

angr.calling_conventions), 497
SimCCallError, 900
SimCCAMD64LinuxSyscall (class in

angr.calling_conventions), 495
SimCCAMD64WindowsSyscall (class in

angr.calling_conventions), 495
SimCCARM (class in angr.calling_conventions), 495
SimCCARMHF (class in angr.calling_conventions), 496
SimCCARMLinuxSyscall (class in

angr.calling_conventions), 496
SimCCCdecl (class in angr.calling_conventions), 491
SimCCError, 901
SimCCM68k (class in angr.engines.pcode.cc), 464
SimCCMicrosoftAMD64 (class in

angr.calling_conventions), 492
SimCCMicrosoftCdecl (class in

angr.calling_conventions), 492
SimCCMicrosoftFastcall (class in

angr.calling_conventions), 492
SimCCN64 (class in angr.calling_conventions), 498
SimCCN64LinuxSyscall (class in

angr.calling_conventions), 498
SimCCO32 (class in angr.calling_conventions), 497
SimCCO32LinuxSyscall (class in

angr.calling_conventions), 498
SimCCO64 (in module angr.calling_conventions), 498
SimCCPARISC (class in angr.engines.pcode.cc), 465
SimCCPowerPC (class in angr.calling_conventions), 499
SimCCPowerPC (class in angr.engines.pcode.cc), 465
SimCCPowerPC64 (class in angr.calling_conventions),

499
SimCCPowerPC64LinuxSyscall (class in

angr.calling_conventions), 500
SimCCPowerPCLinuxSyscall (class in

angr.calling_conventions), 499
SimCCRISCV (class in angr.engines.pcode.cc), 464
SimCCRISCV64LinuxSyscall (class in

angr.calling_conventions), 497
SimCCS390X (class in angr.calling_conventions), 501
SimCCS390XLinuxSyscall (class in

angr.calling_conventions), 501
SimCCSH4 (class in angr.engines.pcode.cc), 465
SimCCSoot (class in angr.calling_conventions), 500
SimCCSPARC (class in angr.engines.pcode.cc), 465
SimCCStdcall (class in angr.calling_conventions), 492
SimCCSyscall (class in angr.calling_conventions), 493

1038 Index

angr

SimCCSystemVAMD64 (class in
angr.calling_conventions), 494

SimCCUnknown (class in angr.calling_conventions), 501
SimCCUsercall (class in angr.calling_conventions), 491
SimCCX86LinuxSyscall (class in

angr.calling_conventions), 493
SimCCX86WindowsSyscall (class in

angr.calling_conventions), 494
SimCCXtensa (class in angr.engines.pcode.cc), 466
SimCGC (class in angr.simos.cgc), 880
SimComboArg (class in angr.calling_conventions), 485
SimConcreteBreakpointError, 901
SimConcreteFilesystem (class in

angr.state_plugins.filesystem), 251
SimConcreteMemoryError, 901
SimConcreteRegisterError, 901
SimConcretizationStrategy (class in

angr.concretization_strategies), 335
SimConcretizationStrategyAny (class in

angr.concretization_strategies.any), 381
SimConcretizationStrategyControlledData (class

in angr.concretization_strategies.controlled_data),
381

SimConcretizationStrategyEval (class in
angr.concretization_strategies.eval), 379

SimConcretizationStrategyMax (class in
angr.concretization_strategies.max), 380

SimConcretizationStrategyNonzero (class in
angr.concretization_strategies.nonzero), 381

SimConcretizationStrategyNonzeroRange (class in
angr.concretization_strategies.nonzero_range),
380

SimConcretizationStrategyNorepeats (class in
angr.concretization_strategies.norepeats), 379

SimConcretizationStrategyNorepeatsRange (class
in angr.concretization_strategies.norepeats_range),
381

SimConcretizationStrategyRange (class in
angr.concretization_strategies.range), 380

SimConcretizationStrategySingle (class in
angr.concretization_strategies.single), 379

SimConcretizationStrategySolutions (class in
angr.concretization_strategies.solutions), 379

SimConcretizationStrategyUnlimitedRange (class
in angr.concretization_strategies.unlimited_range),
381

SimConstantVariable (class in angr.sim_variable),
503

SimCppClass (class in angr.sim_type), 517
SimCppClassValue (class in angr.sim_type), 517
SimCppLibrary (class in angr.procedures.definitions),

478
SimDebugVariable (class in

angr.state_plugins.debug_variables), 307

SimDebugVariablePlugin (class in
angr.state_plugins.debug_variables), 308

SimEmptyCallStackError, 901
SimEngine (class in angr.engines.engine), 427
SimEngineBase (class in angr.engines.engine), 427
SimEngineConcrete (class in angr.engines.concrete),

433
SimEngineError, 900
SimEngineFailure (class in angr.engines.failure), 431
SimEngineInitFinderVEX (class in

angr.analyses.init_finder), 863
SimEngineLight (class in angr.engines.light.engine),

753
SimEngineLightAIL (in module

angr.engines.light.engine), 754
SimEngineLightAILMixin (class in

angr.engines.light.engine), 754
SimEngineLightMixin (class in

angr.engines.light.engine), 753
SimEngineLightVEX (in module

angr.engines.light.engine), 754
SimEngineLightVEXMixin (class in

angr.engines.light.engine), 754
SimEnginePropagatorAIL (class in

angr.analyses.propagator.engine_ail), 756
SimEnginePropagatorBase (class in

angr.analyses.propagator.engine_base), 755
SimEnginePropagatorVEX (class in

angr.analyses.propagator.engine_vex), 755
SimEngineRDAIL (class in

angr.analyses.reaching_definitions.engine_ail),
815

SimEngineRDVEX (class in
angr.analyses.reaching_definitions.engine_vex),
792

SimEngineSyscall (class in angr.engines.syscall), 431
SimEngineUnicorn (class in angr.engines.unicorn), 432
SimEngineVRAIL (class in

angr.analyses.variable_recovery.engine_ail),
828

SimEngineVRBase (class in
angr.analyses.variable_recovery.engine_base),
829

SimEngineVRVEX (class in
angr.analyses.variable_recovery.engine_vex),
828

SimEngineXRefsVEX (class in angr.analyses.xrefs), 863
SimError, 898
SimEvent (class in angr.state_plugins.sim_event), 468
SimEventError, 899
SimException, 901
SimExpressionError, 899
SimFastMemoryError, 899
SimFastPathError, 900

Index 1039

angr

SimFile (class in angr), 189
SimFile (class in angr.storage.file), 317
SimFileBase (class in angr), 188
SimFileBase (class in angr.storage.file), 315
SimFileDescriptor (class in angr), 198
SimFileDescriptor (class in angr.storage.file), 327
SimFileDescriptorBase (class in angr.storage.file),

325
SimFileDescriptorDuplex (class in angr), 200
SimFileDescriptorDuplex (class in angr.storage.file),

329
SimFileError, 899
SimFileStream (class in angr), 194
SimFileStream (class in angr.storage.file), 319
SimFilesystem (class in angr.state_plugins.filesystem),

249
SimFilesystemError, 899
SimFunctionArgument (class in

angr.calling_conventions), 484
simgr() (angr.factory.AngrObjectFactory method), 219
SimHeapBase (class in

angr.state_plugins.heap.heap_base), 297
SimHeapBrk (class in angr), 204
SimHeapBrk (class in angr.state_plugins.heap.heap_brk),

298
SimHeapError, 899
SimHeapFreelist (class in

angr.state_plugins.heap.heap_freelist), 301
SimHeapLibc (class in

angr.state_plugins.heap.heap_libc), 301
SimHeapPTMalloc (class in angr), 206
SimHeapPTMalloc (class in

angr.state_plugins.heap.heap_ptmalloc),
304

SimHostFilesystem (class in angr), 203
SimHostFilesystem (class in

angr.state_plugins.filesystem), 253
similarity() (angr.exploration_techniques.unique.UniqueSearch

static method), 424
similarity() (angr.exploration_techniques.UniqueSearch

static method), 404
SimInspector (class in angr.state_plugins.inspect), 233
SimIRSBError, 900
SimIRSBNoDecodeError, 900
SimJavaVM (class in angr.simos.javavm), 882
SimJavaVmClassloader (class in

angr.state_plugins.javavm_classloader),
294

SimLabeledMemoryObject (class in
angr.storage.memory_object), 334

SimLibrary (class in angr.procedures.definitions), 475
SimLightRegisters (class in

angr.state_plugins.light_registers), 266
SimLightState (class in angr.slicer), 873

SimLinux (class in angr.simos.linux), 879
SimLyingRegArg (class in angr.calling_conventions),

491
SimMemoryAddressError, 899
SimMemoryError, 898
SimMemoryLimitError, 899
SimMemoryMissingError, 898
SimMemoryObject (class in

angr.storage.memory_object), 334
SimMemoryVariable (class in angr.sim_variable), 505
SimMemView (class in angr.state_plugins.view), 310
SimMergeError, 898
SimMissingTempError, 900
SimMount (class in angr), 203
SimMount (class in angr.state_plugins.filesystem), 251
SimOperationError, 899
SimOS (class in angr), 168
SimOS (class in angr.simos.simos), 877
SIMOS_CGC (angr.state_plugins.unicorn_engine.SimOSEnum

attribute), 287
SIMOS_LINUX (angr.state_plugins.unicorn_engine.SimOSEnum

attribute), 287
SIMOS_OTHER (angr.state_plugins.unicorn_engine.SimOSEnum

attribute), 288
SimOSEnum (class in angr.state_plugins.unicorn_engine),

287
SimPackets (class in angr), 192
SimPackets (class in angr.storage.file), 321
SimPacketsSlots (class in angr.storage.file), 332
SimPacketsStream (class in angr), 196
SimPacketsStream (class in angr.storage.file), 323
SimpleInterfaceMixin (class in

angr.storage.memory_mixins.simple_interface_mixin),
342

SimpleSolver (class in
angr.analyses.typehoon.simple_solver), 830

SimplificationMixin (class in
angr.storage.memory_mixins.simplification_mixin),
347

simplified_data_graph (angr.analyses.ddg.DDG
property), 750

simplified_graph (angr.analyses.data_dep.data_dependency_analysis.DataDependencyGraphAnalysis
property), 868

SimplifierAILEngine (class in
angr.analyses.decompiler.optimization_passes.engine_base),
710

SimplifierAILState (class in
angr.analyses.decompiler.optimization_passes.engine_base),
710

simplify() (angr.sim_state.SimState method), 226
simplify() (angr.SimState method), 182
simplify() (angr.state_hierarchy.StateHierarchy

method), 389
simplify() (angr.state_plugins.solver.SimSolver

1040 Index

angr

method), 262
simplify() (angr.StateHierarchy method), 180
simplify_condition()

(angr.analyses.decompiler.condition_processor.ConditionProcessor
static method), 698

simplify_condition_deprecated()
(angr.analyses.decompiler.condition_processor.ConditionProcessor
static method), 698

simplify_else_scope
(angr.analyses.decompiler.structured_codegen.c.CIfElse
attribute), 730

simplify_lowered_switches() (in module
angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier),
722

simplify_lowered_switches_core() (in module
angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier),
723

simplify_switch_clusters() (in module
angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier),
722

SimPosixError, 899
SimProcedure (class in angr), 157
SimProcedure (class in angr.sim_procedure), 469
simprocedure_name (angr.knowledge_plugins.cfg.cfg_node.CFGNode

attribute), 545
simprocedure_name (angr.knowledge_plugins.cfg.CFGNode

attribute), 526
SimProcedureArgumentError, 900
SimProcedureError, 900
SimReferenceArgument (class in

angr.calling_conventions), 486
SimRegArg (class in angr.calling_conventions), 484
SimRegionMapError, 898
SimRegisterVariable (class in angr.sim_variable),

504
SimRegNameView (class in angr.state_plugins.view), 309
SimReliftException, 900
SimSegfaultError (in module angr.errors), 901
SimSegfaultException, 901
SimShadowStackError, 900
SimSlicer (class in angr.slicer), 873
SimSlicerError, 901
SimSolver (class in angr.state_plugins.solver), 254
SimSolverError, 899
SimSolverModeError, 899
SimSolverOptionError, 899
SimStackArg (class in angr.calling_conventions), 485
SimStackVariable (class in angr.sim_variable), 506
SimState (class in angr), 180
SimState (class in angr.sim_state), 224
SimStateCGC (class in angr.state_plugins.cgc), 271
SimStateError, 898
SimStateGlobals (class in angr.state_plugins.globals),

278

SimStateHistory (class in angr.state_plugins.history),
267

SimStateJNIReferences (class in
angr.state_plugins.jni_references), 296

SimStateLibc (class in angr.state_plugins.libc), 236
SimStateLog (class in angr.state_plugins.log), 262
SimStateLoopData (class in

angr.state_plugins.loop_data), 291
SimStatementError, 900
SimStateOptions (class in angr.sim_state_options),

228
SimStateOptionsError, 901
SimStatePlugin (class in angr), 161
SimStatePlugin (class in angr.state_plugins.plugin),

231
SimStatePreconstrainer (class in

angr.state_plugins.preconstrainer), 282
SimStateScratch (class in angr.state_plugins.scratch),

280
SimStruct (class in angr.sim_type), 516
SimStructArg (class in angr.calling_conventions), 486
SimStructValue (class in angr.sim_type), 516
SimSuccessors (class in angr.engines.successors), 428
SimSymbolicFilesystemError, 899
SimSymbolizer (class in

angr.state_plugins.symbolizer), 307
SimSyscallLibrary (class in

angr.procedures.definitions), 480
SimSystemPosix (class in angr.state_plugins.posix), 244
SimTemporaryVariable (class in angr.sim_variable),

504
SimTranslationError, 900
SimType (class in angr.sim_type), 507
simtype2tc() (angr.analyses.typehoon.translator.TypeTranslator

method), 830
SimTypeArray (class in angr.sim_type), 512
SimTypeBool (class in angr.sim_type), 511
SimTypeBottom (class in angr.sim_type), 509
SimTypeChar (class in angr.sim_type), 510
SimTypeCppFunction (class in angr.sim_type), 514
SimTypeDouble (class in angr.sim_type), 515
SimTypeFd (class in angr.sim_type), 511
SimTypeFixedSizeArray (in module angr.sim_type),

512
SimTypeFloat (class in angr.sim_type), 515
SimTypeFunction (class in angr.sim_type), 513
SimTypeInt (class in angr.sim_type), 510
SimTypeLength (class in angr.sim_type), 514
SimTypeLong (class in angr.sim_type), 510
SimTypeLongLong (class in angr.sim_type), 510
SimTypeNum (class in angr.sim_type), 509
SimTypeNumOffset (class in angr.sim_type), 518
SimTypePointer (class in angr.sim_type), 511
SimTypeReference (class in angr.sim_type), 511

Index 1041

angr

SimTypeReg (class in angr.sim_type), 509
SimTypeShort (class in angr.sim_type), 510
SimTypeString (class in angr.sim_type), 512
SimTypeTempRef (class in

angr.analyses.typehoon.translator), 830
SimTypeTop (class in angr.sim_type), 509
SimTypeWideChar (class in angr.sim_type), 511
SimTypeWString (class in angr.sim_type), 513
SimUCManager (class in

angr.state_plugins.uc_manager), 279
SimUCManagerAllocationError, 901
SimUCManagerError, 901
simulation_manager()

(angr.factory.AngrObjectFactory method),
219

SimulationManager (class in angr), 171
SimulationManager (class in angr.sim_manager), 382
SimulationManagerError, 896
SimUnicornError, 901
SimUnicornSymbolic, 901
SimUnicornUnsupport, 901
SimUninitializedAccessError, 900
SimUnion (class in angr.sim_type), 516
SimUnionValue (class in angr.sim_type), 517
SimUnsatError, 899
SimUnsupportedError, 899
SimUserland (class in angr.simos.userland), 880
SimValueError, 899
SimVariable (class in angr.sim_variable), 502
SimVariableSet (class in angr.sim_variable), 507
SimWindows (class in angr.simos.windows), 881
SimZeroDivisionException, 901
single_valued() (angr.state_plugins.solver.SimSolver

method), 262
SingleNodeGraphVisitor (class in

angr.analyses.forward_analysis.visitors.single_node_graph),
627

size (angr.analyses.cfg.segment_list.Segment property),
671

size (angr.analyses.propagator.values.Top attribute),
754

size (angr.analyses.propagator.vex_vars.VEXMemVar
attribute), 754

size (angr.analyses.propagator.vex_vars.VEXReg
attribute), 754

size (angr.analyses.reaching_definitions.Atom at-
tribute), 768

size (angr.analyses.reaching_definitions.Definition
property), 772

SIZE (angr.analyses.typehoon.typeconsts.Double at-
tribute), 837

SIZE (angr.analyses.typehoon.typeconsts.Float at-
tribute), 836

SIZE (angr.analyses.typehoon.typeconsts.Int1 attribute),

836
SIZE (angr.analyses.typehoon.typeconsts.Int128 at-

tribute), 836
SIZE (angr.analyses.typehoon.typeconsts.Int16 attribute),

836
SIZE (angr.analyses.typehoon.typeconsts.Int32 attribute),

836
SIZE (angr.analyses.typehoon.typeconsts.Int64 attribute),

836
SIZE (angr.analyses.typehoon.typeconsts.Int8 attribute),

836
SIZE (angr.analyses.typehoon.typeconsts.TypeConstant

attribute), 836
size (angr.analyses.typehoon.typeconsts.TypeConstant

property), 836
size (angr.Block attribute), 170
size (angr.block.Block attribute), 221
size (angr.block.CapstoneInsn property), 221
size (angr.block.DisassemblerInsn property), 220
size (angr.block.SootBlock property), 222
size (angr.codenode.CodeNode attribute), 875
size (angr.engines.pcode.lifter.IRSB property), 438
size (angr.engines.pcode.lifter.PcodeDisassemblerInsn

property), 435
size (angr.keyed_region.RegionObject attribute), 614
size (angr.keyed_region.StoredObject attribute), 614
size (angr.knowledge_plugins.cfg.cfg_node.CFGNode

attribute), 545
size (angr.knowledge_plugins.cfg.CFGNode attribute),

526
size (angr.knowledge_plugins.cfg.memory_data.MemoryData

attribute), 543
size (angr.knowledge_plugins.cfg.MemoryData at-

tribute), 525
size (angr.knowledge_plugins.functions.function.Function

property), 556
size (angr.knowledge_plugins.key_definitions.atoms.Atom

attribute), 585
size (angr.knowledge_plugins.key_definitions.Definition

property), 584
size (angr.knowledge_plugins.key_definitions.definition.Definition

property), 591
size (angr.procedures.stubs.format_parser.FormatSpecifier

attribute), 474
size (angr.sim_type.SimStruct property), 516
size (angr.sim_type.SimType property), 507
size (angr.sim_type.SimTypeArray property), 512
size (angr.sim_type.SimTypeFunction property), 514
size (angr.sim_type.SimTypeInt property), 510
size (angr.sim_type.SimTypeLength property), 515
size (angr.sim_type.SimTypePointer property), 511
size (angr.sim_type.SimTypeReference property), 512
size (angr.sim_type.SimTypeString property), 513
size (angr.sim_type.SimTypeWString property), 513

1042 Index

angr

size (angr.sim_type.SimUnion property), 516
size (angr.sim_type.TypeRef property), 508
size (angr.sim_variable.SimVariable attribute), 503
size (angr.SimFile property), 190
size (angr.SimFileBase property), 189
size (angr.SimPackets property), 192
size (angr.state_plugins.unicorn_engine.RegisterValue

attribute), 285
size (angr.storage.file.SimFile property), 317
size (angr.storage.file.SimFileBase property), 316
size (angr.storage.file.SimPackets property), 321
size (angr.storage.file.SimPacketsSlots property), 332
size() (angr.calling_conventions.AllocHelper method),

483
size() (angr.SimFileDescriptor method), 198
size() (angr.SimFileDescriptorDuplex method), 201
size() (angr.storage.file.SimFileDescriptor method),

327
size() (angr.storage.file.SimFileDescriptorBase

method), 326
size() (angr.storage.file.SimFileDescriptorDuplex

method), 330
size() (angr.storage.memory_object.SimMemoryObject

method), 334
SizeConcretizationMixin (class in

angr.storage.memory_mixins.size_resolution_mixin),
343

SizeNormalizationMixin (class in
angr.storage.memory_mixins.size_resolution_mixin),
343

skip_stmts (angr.engines.pcode.lifter.Lifter attribute),
440

skip_stmts (angr.engines.pcode.lifter.PcodeLifter at-
tribute), 442

slice (angr.Blade property), 168
slice (angr.blade.Blade property), 873
slice_callgraph() (in module

angr.analyses.cfg_slice_to_sink.graph), 817
slice_cfg_graph() (in module

angr.analyses.cfg_slice_to_sink.graph), 817
slice_function_graph() (in module

angr.analyses.cfg_slice_to_sink.graph), 818
slice_graph() (angr.analyses.decompiler.region_identifier.RegionIdentifier

static method), 715
Slicecutor (class in angr.exploration_techniques), 391
Slicecutor (class in angr.exploration_techniques.slicecutor),

417
SlottedMemoryMixin (class in

angr.storage.memory_mixins.slotted_memory),
374

SmartFindMixin (class in
angr.storage.memory_mixins.smart_find_mixin),
339

SMod() (angr.state_plugins.sim_action_object.SimActionObject

method), 468
snippet() (angr.factory.AngrObjectFactory method),

216
solution() (angr.state_plugins.solver.SimSolver

method), 258
solve() (angr.analyses.typehoon.simple_solver.SimpleSolver

method), 830
solver (angr.sim_state.SimState attribute), 225
solver (angr.SimState attribute), 181
soot (angr.block.SootBlock property), 222
soot_block (angr.knowledge_plugins.cfg.cfg_node.CFGNode

attribute), 545
soot_block (angr.knowledge_plugins.cfg.CFGNode at-

tribute), 526
SootBlock (class in angr.block), 222
SootBlockNode (class in angr.codenode), 876
SootBlockProcessor (class in

angr.analyses.loop_analysis), 839
SootClassHierarchy (class in

angr.analyses.soot_class_hierarchy), 637
SootClassHierarchyError, 636
SootExpression (class in angr.analyses.disassembly),

850
SootExpressionInvoke (class in

angr.analyses.disassembly), 850
SootExpressionStaticFieldRef (class in

angr.analyses.disassembly), 850
SootExpressionTarget (class in

angr.analyses.disassembly), 850
SootFunction (class in

angr.knowledge_plugins.functions.soot_function),
560

SootMixin (class in angr.engines.soot.engine), 431
SootStatement (class in angr.analyses.disassembly),

850
sort (angr.analyses.cfg.segment_list.Segment attribute),

671
sort (angr.analyses.decompiler.structuring.structurer_nodes.LoopNode

attribute), 688
sort (angr.knowledge_plugins.cfg.memory_data.MemoryData

attribute), 543
sort (angr.knowledge_plugins.cfg.MemoryData at-

tribute), 525
sort (angr.sim_type.SimTypeDouble attribute), 515
sort (angr.sim_type.SimTypeFloat attribute), 515
sort() (angr.exploration_techniques.spiller.PickledStatesBase

method), 410
sort() (angr.exploration_techniques.spiller.PickledStatesDb

method), 411
sort() (angr.exploration_techniques.spiller.PickledStatesList

method), 411
sort_nodes() (angr.analyses.forward_analysis.visitors.call_graph.CallGraphVisitor

method), 623
sort_nodes() (angr.analyses.forward_analysis.visitors.function_graph.FunctionGraphVisitor

Index 1043

angr

method), 624
sort_nodes() (angr.analyses.forward_analysis.visitors.graph.GraphVisitor

method), 625
sort_nodes() (angr.analyses.forward_analysis.visitors.loop.LoopVisitor

method), 627
sort_nodes() (angr.analyses.forward_analysis.visitors.single_node_graph.SingleNodeGraphVisitor

method), 628
sources (angr.analyses.reaching_definitions.function_handler.FunctionEffect

attribute), 800
sources_defns (angr.analyses.reaching_definitions.function_handler.FunctionEffect

attribute), 800
sp_delta (angr.knowledge_plugins.functions.function.Function

attribute), 553
sp_delta (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 561
sp_offset() (angr.engines.light.engine.SimEngineLightMixin

static method), 753
spec_type (angr.procedures.stubs.format_parser.FormatSpecifier

property), 474
Special (angr.analyses.disassembly.SootExpressionInvoke

attribute), 850
SPECIAL_THUNKS (angr.analyses.cfg.cfg_fast.CFGFast

attribute), 654
SpecialFillerMixin (class in

angr.storage.memory_mixins.default_filler_mixin),
340

Spiller (class in angr.exploration_techniques), 401
Spiller (class in angr.exploration_techniques.spiller),

411
split() (angr.keyed_region.RegionObject method), 614
split() (angr.sim_manager.SimulationManager

method), 388
split() (angr.SimulationManager method), 177
split_arm_op_string()

(angr.analyses.disassembly.Instruction static
method), 850

split_op_string() (angr.analyses.disassembly.Instruction
static method), 850

split_operands() (in module
angr.analyses.reassembler), 853

SpOffset (class in angr.engines.light.data), 753
squash_array_reference() (in module

angr.analyses.decompiler.structured_codegen.c),
726

src_block_id (angr.analyses.vfg.PendingJob attribute),
842

src_func_addr (angr.analyses.cfg.cfg_fast.FunctionEdge
attribute), 650

src_ins_addr (angr.analyses.cfg.cfg_fast.CFGJob at-
tribute), 653

src_ins_addr (angr.analyses.vfg.PendingJob attribute),
842

src_node (angr.analyses.cfg.cfg_fast.CFGJob attribute),
653

src_node (angr.analyses.cfg.cfg_fast.FunctionCallEdge
attribute), 651

src_node (angr.analyses.cfg.cfg_fast.FunctionFakeRetEdge
attribute), 651

src_node (angr.analyses.cfg.cfg_fast.FunctionTransitionEdge
attribute), 651

src_stmt_idx (angr.analyses.cfg.cfg_fast.CFGJob at-
tribute), 653

src_stmt_idx (angr.analyses.vfg.PendingJob attribute),
842

src_type (angr.analyses.decompiler.structured_codegen.c.CTypeCast
attribute), 737

sse_extend() (angr.calling_conventions.SimRegArg
method), 485

st_atime (angr.state_plugins.filesystem.Stat attribute),
248

st_atimensec (angr.state_plugins.filesystem.Stat
attribute), 248

st_blksize (angr.state_plugins.filesystem.Stat at-
tribute), 248

st_blocks (angr.state_plugins.filesystem.Stat attribute),
248

st_ctime (angr.state_plugins.filesystem.Stat attribute),
248

st_ctimensec (angr.state_plugins.filesystem.Stat
attribute), 248

st_dev (angr.state_plugins.filesystem.Stat attribute), 248
st_gid (angr.state_plugins.filesystem.Stat attribute), 248
st_ino (angr.state_plugins.filesystem.Stat attribute), 248
st_mode (angr.state_plugins.filesystem.Stat attribute),

248
st_mtime (angr.state_plugins.filesystem.Stat attribute),

248
st_mtimensec (angr.state_plugins.filesystem.Stat

attribute), 248
st_nlink (angr.state_plugins.filesystem.Stat attribute),

248
st_rdev (angr.state_plugins.filesystem.Stat attribute),

248
st_size (angr.state_plugins.filesystem.Stat attribute),

248
st_uid (angr.state_plugins.filesystem.Stat attribute), 248
StableVarExprHasher (class in

angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier),
708

stack (angr.analyses.reaching_definitions.LiveDefinitions
attribute), 760

stack (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
property), 811

stack (angr.analyses.reaching_definitions.ReachingDefinitionsState
property), 781

stack (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
attribute), 595

stack (angr.knowledge_plugins.key_definitions.LiveDefinitions

1044 Index

angr

attribute), 574
stack (angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin

property), 376
stack_actions (angr.state_plugins.history.SimStateHistory

property), 270
stack_addr_from_offset()

(angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
method), 824

stack_address() (angr.analyses.reaching_definitions.LiveDefinitions
method), 761

stack_address() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
method), 810

stack_address() (angr.analyses.reaching_definitions.ReachingDefinitionsState
method), 780

stack_address() (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
method), 823

stack_address() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 596

stack_address() (angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 575

STACK_ALIGNMENT (angr.calling_conventions.SimCC at-
tribute), 488

STACK_ALIGNMENT (angr.calling_conventions.SimCCMicrosoftAMD64
attribute), 493

STACK_ALIGNMENT (angr.calling_conventions.SimCCSystemVAMD64
attribute), 494

STACK_ALIGNMENT (angr.SimCC attribute), 185
stack_base (angr.storage.memory_mixins.regioned_memory.region_data.RegionMap

property), 369
stack_definitions (angr.analyses.reaching_definitions.LiveDefinitions

property), 760
stack_definitions (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

property), 595
stack_definitions (angr.knowledge_plugins.key_definitions.LiveDefinitions

property), 574
stack_id() (angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin

method), 368
stack_loc() (angr.calling_conventions.AllocHelper

class method), 483
stack_offset (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate

attribute), 590
stack_offset_to_stack_addr()

(angr.analyses.reaching_definitions.LiveDefinitions
method), 762

stack_offset_to_stack_addr()
(angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
method), 597

stack_offset_to_stack_addr()
(angr.knowledge_plugins.key_definitions.LiveDefinitions
method), 576

stack_offsets (angr.slicer.SimLightState attribute),
873

stack_pointer_as_atom()
(angr.analyses.reaching_definitions.function_handler.FunctionHandler

static method), 807
stack_pointer_as_atom()

(angr.analyses.reaching_definitions.FunctionHandler
static method), 787

stack_pop() (angr.sim_state.SimState method), 227
stack_pop() (angr.SimState method), 184
stack_push() (angr.sim_state.SimState method), 227
stack_push() (angr.SimState method), 183
stack_read() (angr.sim_state.SimState method), 227
stack_read() (angr.SimState method), 184
stack_region (angr.knowledge_plugins.variables.variable_manager.LiveVariables

attribute), 562
stack_space() (angr.calling_conventions.SimCC

method), 489
stack_space() (angr.SimCC method), 186
stack_suffix() (angr.state_plugins.callstack.CallStack

method), 266
stack_suffix_to_string()

(angr.state_plugins.callstack.CallStack static
method), 265

stack_uses (angr.analyses.reaching_definitions.LiveDefinitions
attribute), 760

stack_uses (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
property), 811

stack_uses (angr.analyses.reaching_definitions.ReachingDefinitionsState
property), 781

stack_uses (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions
attribute), 595

stack_uses (angr.knowledge_plugins.key_definitions.LiveDefinitions
attribute), 574

StackAllocationMixin (class in
angr.storage.memory_mixins.paged_memory.stack_allocation_mixin),
358

STACKARG_SP_BUFF (angr.calling_conventions.SimCC
attribute), 488

STACKARG_SP_BUFF (angr.calling_conventions.SimCCMicrosoftAMD64
attribute), 493

STACKARG_SP_BUFF (angr.calling_conventions.SimCCN64
attribute), 498

STACKARG_SP_BUFF (angr.calling_conventions.SimCCO32
attribute), 497

STACKARG_SP_BUFF (angr.calling_conventions.SimCCPowerPC
attribute), 499

STACKARG_SP_BUFF (angr.calling_conventions.SimCCPowerPC64
attribute), 500

STACKARG_SP_BUFF (angr.calling_conventions.SimCCS390X
attribute), 501

STACKARG_SP_BUFF (angr.engines.pcode.cc.SimCCPowerPC
attribute), 465

STACKARG_SP_BUFF (angr.SimCC attribute), 185
STACKARG_SP_DIFF (angr.calling_conventions.SimCC

attribute), 488
STACKARG_SP_DIFF (angr.calling_conventions.SimCCCdecl

attribute), 491

Index 1045

angr

STACKARG_SP_DIFF (angr.calling_conventions.SimCCMicrosoftAMD64
attribute), 493

STACKARG_SP_DIFF (angr.calling_conventions.SimCCMicrosoftFastcall
attribute), 492

STACKARG_SP_DIFF (angr.calling_conventions.SimCCSystemVAMD64
attribute), 494

STACKARG_SP_DIFF (angr.engines.pcode.cc.SimCCM68k
attribute), 464

STACKARG_SP_DIFF (angr.SimCC attribute), 185
StackCanarySimplifier (class in

angr.analyses.decompiler.optimization_passes.stack_canary_simplifier),
706

StackLocationAnnotation (class in
angr.analyses.variable_recovery.annotations),
820

StackPointerTracker (class in
angr.analyses.stack_pointer_tracker), 820

StackPointerTrackerState (class in
angr.analyses.stack_pointer_tracker), 819

STAGE (angr.analyses.decompiler.optimization_passes.base_ptr_save_simplifier.BasePointerSaveSimplifier
attribute), 706

STAGE (angr.analyses.decompiler.optimization_passes.const_derefs.ConstantDereferencesSimplifier
attribute), 703

STAGE (angr.analyses.decompiler.optimization_passes.div_simplifier.DivSimplifier
attribute), 707

STAGE (angr.analyses.decompiler.optimization_passes.expr_op_swapper.ExprOpSwapper
attribute), 712

STAGE (angr.analyses.decompiler.optimization_passes.ite_expr_converter.ITEExprConverter
attribute), 707

STAGE (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.LoweredSwitchSimplifier
attribute), 709

STAGE (angr.analyses.decompiler.optimization_passes.mod_simplifier.ModSimplifier
attribute), 710

STAGE (angr.analyses.decompiler.optimization_passes.multi_simplifier.MultiSimplifier
attribute), 710

STAGE (angr.analyses.decompiler.optimization_passes.optimization_pass.BaseOptimizationPass
attribute), 704

STAGE (angr.analyses.decompiler.optimization_passes.optimization_pass.SequenceOptimizationPass
attribute), 705

STAGE (angr.analyses.decompiler.optimization_passes.optimization_pass.StructuringOptimizationPass
attribute), 706

STAGE (angr.analyses.decompiler.optimization_passes.register_save_area_simplifier.RegisterSaveAreaSimplifier
attribute), 712

STAGE (angr.analyses.decompiler.optimization_passes.ret_addr_save_simplifier.RetAddrSaveSimplifier
attribute), 712

STAGE (angr.analyses.decompiler.optimization_passes.stack_canary_simplifier.StackCanarySimplifier
attribute), 706

STAGE (angr.analyses.decompiler.optimization_passes.x86_gcc_getpc_simplifier.X86GccGetPcSimplifier
attribute), 713

start (angr.analyses.cfg.segment_list.Segment at-
tribute), 671

start (angr.analyses.decompiler.structured_codegen.base.PositionMappingElement
attribute), 724

start (angr.keyed_region.RegionObject attribute), 614

start (angr.keyed_region.StoredObject attribute), 614
start() (angr.distributed.worker.Worker method), 903
start() (angr.state_plugins.unicorn_engine.Unicorn

method), 290
startpoint (angr.knowledge_plugins.functions.function.Function

attribute), 553
startpoint (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 561
stash (angr.exploration_techniques.spiller_db.PickledState

attribute), 412
stash() (angr.sim_manager.SimulationManager

method), 387
stash() (angr.SimulationManager method), 176
stashed (angr.sim_manager.SimulationManager at-

tribute), 383
stashed (angr.SimulationManager attribute), 172
stashes (angr.sim_manager.SimulationManager prop-

erty), 383
stashes (angr.SimulationManager property), 172
Stat (class in angr.state_plugins.filesystem), 248
state (angr.analyses.propagator.engine_ail.SimEnginePropagatorAIL

attribute), 756
state (angr.analyses.propagator.engine_vex.SimEnginePropagatorVEX

attribute), 755
state (angr.analyses.reaching_definitions.engine_ail.SimEngineRDAIL

attribute), 816
state (angr.analyses.variable_recovery.engine_ail.SimEngineVRAIL

attribute), 828
state (angr.analyses.variable_recovery.engine_base.SimEngineVRBase

attribute), 829
state (angr.analyses.variable_recovery.engine_vex.SimEngineVRVEX

attribute), 828
state (angr.analyses.vfg.PendingJob attribute), 842
state (angr.engines.UberEngine attribute), 427
state (angr.procedures.stubs.format_parser.FormatParser

attribute), 475
state (angr.procedures.stubs.format_parser.FormatString

property), 473
state (angr.procedures.stubs.format_parser.ScanfFormatParser

attribute), 475
state (angr.sim_procedure.SimProcedure attribute), 471
state (angr.SimFile attribute), 192
state (angr.SimFileBase attribute), 189
state (angr.SimFileDescriptor attribute), 200
state (angr.SimFileDescriptorDuplex attribute), 203
state (angr.SimFileStream attribute), 196
state (angr.SimHeapBrk attribute), 206
state (angr.SimHeapPTMalloc attribute), 208
state (angr.SimHostFilesystem attribute), 204
state (angr.SimMount attribute), 203
state (angr.SimPackets attribute), 194
state (angr.SimPacketsStream attribute), 198
state (angr.SimProcedure attribute), 159
state (angr.state_plugins.callstack.CallStack attribute),

1046 Index

angr

264
state (angr.state_plugins.cgc.SimStateCGC attribute),

273
state (angr.state_plugins.concrete.Concrete attribute),

294
state (angr.state_plugins.debug_variables.SimDebugVariablePlugin

attribute), 309
state (angr.state_plugins.filesystem.SimConcreteFilesystem

attribute), 253
state (angr.state_plugins.filesystem.SimFilesystem at-

tribute), 251
state (angr.state_plugins.filesystem.SimHostFilesystem

attribute), 254
state (angr.state_plugins.filesystem.SimMount at-

tribute), 251
state (angr.state_plugins.gdb.GDB attribute), 271
state (angr.state_plugins.globals.SimStateGlobals at-

tribute), 279
state (angr.state_plugins.heap.heap_base.SimHeapBase

attribute), 298
state (angr.state_plugins.heap.heap_brk.SimHeapBrk

attribute), 300
state (angr.state_plugins.heap.heap_freelist.SimHeapFreelist

attribute), 301
state (angr.state_plugins.heap.heap_libc.SimHeapLibc

attribute), 302
state (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

attribute), 306
state (angr.state_plugins.history.SimStateHistory

attribute), 270
state (angr.state_plugins.inspect.SimInspector at-

tribute), 236
state (angr.state_plugins.javavm_classloader.SimJavaVmClassloader

attribute), 296
state (angr.state_plugins.jni_references.SimStateJNIReferences

attribute), 297
state (angr.state_plugins.libc.SimStateLibc attribute),

240
state (angr.state_plugins.light_registers.SimLightRegisters

attribute), 267
state (angr.state_plugins.log.SimStateLog attribute),

263
state (angr.state_plugins.loop_data.SimStateLoopData

attribute), 292
state (angr.state_plugins.plugin.SimStatePlugin at-

tribute), 232
state (angr.state_plugins.posix.PosixDevFS attribute),

242
state (angr.state_plugins.posix.PosixProcFS attribute),

243
state (angr.state_plugins.posix.SimSystemPosix at-

tribute), 248
state (angr.state_plugins.preconstrainer.SimStatePreconstrainer

attribute), 284

state (angr.state_plugins.scratch.SimStateScratch
attribute), 280

state (angr.state_plugins.solver.SimSolver attribute),
260

state (angr.state_plugins.symbolizer.SimSymbolizer at-
tribute), 307

state (angr.state_plugins.trace_additions.ChallRespInfo
attribute), 276

state (angr.state_plugins.trace_additions.ZenPlugin at-
tribute), 278

state (angr.state_plugins.uc_manager.SimUCManager
attribute), 280

state (angr.state_plugins.unicorn_engine.Unicorn at-
tribute), 291

state (angr.state_plugins.view.SimMemView attribute),
312

state (angr.state_plugins.view.SimRegNameView
attribute), 310

state (angr.storage.file.SimFile attribute), 319
state (angr.storage.file.SimFileBase attribute), 317
state (angr.storage.file.SimFileDescriptor attribute),

329
state (angr.storage.file.SimFileDescriptorBase at-

tribute), 327
state (angr.storage.file.SimFileDescriptorDuplex

attribute), 332
state (angr.storage.file.SimFileStream attribute), 321
state (angr.storage.file.SimPackets attribute), 323
state (angr.storage.file.SimPacketsSlots attribute), 333
state (angr.storage.file.SimPacketsStream attribute), 325
state (angr.storage.memory_mixins.AbstractMemory at-

tribute), 339
state (angr.storage.memory_mixins.actions_mixin.ActionsMixinHigh

attribute), 342
state (angr.storage.memory_mixins.actions_mixin.ActionsMixinLow

attribute), 342
state (angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin

attribute), 346
state (angr.storage.memory_mixins.bvv_conversion_mixin.DataNormalizationMixin

attribute), 341
state (angr.storage.memory_mixins.clouseau_mixin.InspectMixinHigh

attribute), 346
state (angr.storage.memory_mixins.conditional_store_mixin.ConditionalMixin

attribute), 346
state (angr.storage.memory_mixins.convenient_mappings_mixin.ConvenientMappingsMixin

attribute), 348
state (angr.storage.memory_mixins.default_filler_mixin.DefaultFillerMixin

attribute), 340
state (angr.storage.memory_mixins.default_filler_mixin.ExplicitFillerMixin

attribute), 340
state (angr.storage.memory_mixins.default_filler_mixin.SpecialFillerMixin

attribute), 340
state (angr.storage.memory_mixins.dirty_addrs_mixin.DirtyAddrsMixin

attribute), 344

Index 1047

angr

state (angr.storage.memory_mixins.FastMemory at-
tribute), 338

state (angr.storage.memory_mixins.hex_dumper_mixin.HexDumperMixin
attribute), 341

state (angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin
attribute), 378

state (angr.storage.memory_mixins.JavaVmMemory at-
tribute), 339

state (angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin.KeyValueMemoryMixin
attribute), 376

state (angr.storage.memory_mixins.KeyValueMemory
attribute), 339

state (angr.storage.memory_mixins.label_merger_mixin.LabelMergerMixin
attribute), 347

state (angr.storage.memory_mixins.MemoryMixin at-
tribute), 338

state (angr.storage.memory_mixins.multi_value_merger_mixin.MultiValueMergerMixin
attribute), 352

state (angr.storage.memory_mixins.name_resolution_mixin.NameResolutionMixin
attribute), 339

state (angr.storage.memory_mixins.paged_memory.page_backer_mixins.ClemoryBackerMixin
attribute), 357

state (angr.storage.memory_mixins.paged_memory.page_backer_mixins.ConcreteBackerMixin
attribute), 357

state (angr.storage.memory_mixins.paged_memory.page_backer_mixins.DictBackerMixin
attribute), 358

state (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.LabeledPagesMixin
attribute), 355

state (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.ListPagesMixin
attribute), 356

state (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.ListPagesWithLabelsMixin
attribute), 356

state (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.MVListPagesMixin
attribute), 356

state (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.MVListPagesWithLabelsMixin
attribute), 356

state (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.UltraPagesMixin
attribute), 357

state (angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin.HistoryTrackingMixin
attribute), 361

state (angr.storage.memory_mixins.paged_memory.pages.ispo_mixin.ISPOMixin
attribute), 361

state (angr.storage.memory_mixins.paged_memory.pages.list_page.ListPage
attribute), 363

state (angr.storage.memory_mixins.paged_memory.pages.mv_list_page.MVListPage
attribute), 350

state (angr.storage.memory_mixins.paged_memory.pages.PageBase
attribute), 359

state (angr.storage.memory_mixins.paged_memory.pages.permissions_mixin.PermissionsMixin
attribute), 360

state (angr.storage.memory_mixins.paged_memory.pages.refcount_mixin.RefcountMixin
attribute), 360

state (angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage
attribute), 365

state (angr.storage.memory_mixins.paged_memory.privileged_mixin.PrivilegedPagingMixin
attribute), 359

state (angr.storage.memory_mixins.paged_memory.stack_allocation_mixin.StackAllocationMixin
attribute), 358

state (angr.storage.memory_mixins.regioned_memory.abstract_merger_mixin.AbstractMergerMixin
attribute), 373

state (angr.storage.memory_mixins.regioned_memory.region_category_mixin.RegionCategoryMixin
attribute), 370

state (angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin
attribute), 373

state (angr.storage.memory_mixins.regioned_memory.regioned_address_concretization_mixin.RegionedAddressConcretizationMixin
attribute), 374

state (angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin
attribute), 368

state (angr.storage.memory_mixins.regioned_memory.static_find_mixin.StaticFindMixin
attribute), 371

state (angr.storage.memory_mixins.simple_interface_mixin.SimpleInterfaceMixin
attribute), 342

state (angr.storage.memory_mixins.simplification_mixin.SimplificationMixin
attribute), 347

state (angr.storage.memory_mixins.size_resolution_mixin.SizeConcretizationMixin
attribute), 344

state (angr.storage.memory_mixins.size_resolution_mixin.SizeNormalizationMixin
attribute), 343

state (angr.storage.memory_mixins.slotted_memory.SlottedMemoryMixin
attribute), 375

state (angr.storage.memory_mixins.smart_find_mixin.SmartFindMixin
attribute), 340

state (angr.storage.memory_mixins.symbolic_merger_mixin.SymbolicMergerMixin
attribute), 342

state (angr.storage.memory_mixins.top_merger_mixin.TopMergerMixin
attribute), 352

state (angr.storage.memory_mixins.underconstrained_mixin.UnderconstrainedMixin
attribute), 342

state (angr.storage.memory_mixins.unwrapper_mixin.UnwrapperMixin
attribute), 347

state_blank() (angr.SimOS method), 168
state_blank() (angr.simos.cgc.SimCGC method), 880
state_blank() (angr.simos.javavm.SimJavaVM

method), 883
state_blank() (angr.simos.linux.SimLinux method),

879
state_blank() (angr.simos.simos.SimOS method), 877
state_blank() (angr.simos.windows.SimWindows

method), 881
state_call() (angr.SimOS method), 169
state_call() (angr.simos.javavm.SimJavaVM

method), 883
state_call() (angr.simos.simos.SimOS method), 877
state_entry() (angr.SimOS method), 168
state_entry() (angr.simos.cgc.SimCGC method), 880
state_entry() (angr.simos.javavm.SimJavaVM

method), 883
state_entry() (angr.simos.linux.SimLinux method),

1048 Index

angr

879
state_entry() (angr.simos.simos.SimOS method), 877
state_entry() (angr.simos.windows.SimWindows

method), 881
state_full_init() (angr.SimOS method), 168
state_full_init() (angr.simos.linux.SimLinux

method), 879
state_full_init() (angr.simos.simos.SimOS method),

877
state_priority() (angr.exploration_techniques.Spiller

static method), 402
state_priority() (angr.exploration_techniques.spiller.Spiller

static method), 412
StateHierarchy (class in angr), 180
StateHierarchy (class in angr.state_hierarchy), 389
statement_location()

(angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionLocation
method), 717

StatementLocation (class in
angr.analyses.decompiler.region_simplifiers.expr_folding),
716

statements (angr.analyses.decompiler.structured_codegen.c.CFunction
attribute), 727

statements (angr.analyses.decompiler.structured_codegen.c.CStatements
attribute), 728

statements (angr.engines.pcode.lifter.IRSB property),
439

StateOption (class in angr.sim_state_options), 228
Static (angr.analyses.disassembly.SootExpressionInvoke

attribute), 850
STATIC (angr.simos.windows.SecurityCookieInit at-

tribute), 881
static_exits() (angr.sim_procedure.SimProcedure

method), 472
static_exits() (angr.SimProcedure method), 159
StaticFindMixin (class in

angr.storage.memory_mixins.regioned_memory.static_find_mixin),
370

StaticHooker (angr.analyses.analysis.KnownAnalysesPlugin
attribute), 620

StaticHooker (class in angr.analyses.static_hooker),
861

StaticObjectFinder (class in
angr.analyses.find_objects_static), 848

status() (angr.knowledge_plugins.sync.sync_controller.SyncController
method), 609

step() (angr.distributed.worker.BadStatesDropper
method), 902

step() (angr.distributed.worker.ExplorationStatusNotifier
method), 903

step() (angr.exploration_techniques.DFS method), 398
step() (angr.exploration_techniques.dfs.DFS method),

408
step() (angr.exploration_techniques.Director method),

400
step() (angr.exploration_techniques.director.Director

method), 420
step() (angr.exploration_techniques.driller_core.DrillerCore

method), 416
step() (angr.exploration_techniques.DrillerCore

method), 393
step() (angr.exploration_techniques.ExplorationTechnique

method), 390
step() (angr.exploration_techniques.Explorer method),

397
step() (angr.exploration_techniques.explorer.Explorer

method), 409
step() (angr.exploration_techniques.LengthLimiter

method), 398
step() (angr.exploration_techniques.lengthlimiter.LengthLimiter

method), 409
step() (angr.exploration_techniques.manual_mergepoint.ManualMergepoint

method), 410
step() (angr.exploration_techniques.ManualMergepoint

method), 402
step() (angr.exploration_techniques.memory_watcher.MemoryWatcher

method), 426
step() (angr.exploration_techniques.MemoryWatcher

method), 405
step() (angr.exploration_techniques.Spiller method),

402
step() (angr.exploration_techniques.spiller.Spiller

method), 412
step() (angr.exploration_techniques.stochastic.StochasticSearch

method), 423
step() (angr.exploration_techniques.StochasticSearch

method), 403
step() (angr.exploration_techniques.Suggestions

method), 407
step() (angr.exploration_techniques.suggestions.Suggestions

method), 427
step() (angr.exploration_techniques.Symbion method),

404
step() (angr.exploration_techniques.symbion.Symbion

method), 425
step() (angr.exploration_techniques.Threading

method), 397
step() (angr.exploration_techniques.threading.Threading

method), 413
step() (angr.exploration_techniques.Timeout method),

407
step() (angr.exploration_techniques.timeout.Timeout

method), 408
step() (angr.exploration_techniques.Tracer method),

396
step() (angr.exploration_techniques.tracer.Tracer

method), 416
step() (angr.exploration_techniques.unique.UniqueSearch

Index 1049

angr

method), 423
step() (angr.exploration_techniques.UniqueSearch

method), 403
step() (angr.ExplorationTechnique method), 178
step() (angr.sim_manager.SimulationManager method),

385
step() (angr.sim_state.SimState method), 226
step() (angr.SimState method), 183
step() (angr.SimulationManager method), 174
step_back() (angr.analyses.reaching_definitions.call_trace.CallTrace

method), 792
step_state() (angr.exploration_techniques.ExplorationTechnique

method), 391
step_state() (angr.exploration_techniques.Slicecutor

method), 392
step_state() (angr.exploration_techniques.slicecutor.Slicecutor

method), 417
step_state() (angr.exploration_techniques.Symbion

method), 404
step_state() (angr.exploration_techniques.symbion.Symbion

method), 425
step_state() (angr.exploration_techniques.Tracer

method), 396
step_state() (angr.exploration_techniques.tracer.Tracer

method), 416
step_state() (angr.exploration_techniques.Veritesting

method), 399
step_state() (angr.exploration_techniques.veritesting.Veritesting

method), 413
step_state() (angr.ExplorationTechnique method),

179
step_state() (angr.sim_manager.SimulationManager

method), 386
step_state() (angr.SimulationManager method), 175
stmt (angr.analyses.decompiler.structured_codegen.c.CUnsupportedStatement

attribute), 732
stmt_classes (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationMultiStmtBase

attribute), 714
stmt_classes (angr.analyses.decompiler.peephole_optimizations.base.PeepholeOptimizationStmtBase

attribute), 713
stmt_comments (angr.angrdb.models.DbStructuredCode

attribute), 679
stmt_idx (angr.analyses.cfg.cfg_fast.FunctionEdge at-

tribute), 650
stmt_idx (angr.analyses.decompiler.clinic.DataRefDesc

attribute), 695
stmt_idx (angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionLocation

attribute), 717
stmt_idx (angr.analyses.decompiler.region_simplifiers.expr_folding.StatementLocation

attribute), 716
stmt_idx (angr.analyses.disassembly.SootStatement

property), 850
stmt_idx (angr.code_location.CodeLocation attribute),

613

stmt_idx (angr.engines.UberEngine attribute), 427
stmt_idx (angr.errors.SimError attribute), 898
stmt_idx (angr.knowledge_plugins.cfg.indirect_jump.IndirectJump

attribute), 548
stmt_idx (angr.knowledge_plugins.cfg.IndirectJump at-

tribute), 529
stmt_idx (angr.knowledge_plugins.xrefs.xref.XRef at-

tribute), 611
stmt_idx (angr.state_plugins.unicorn_engine.VEXStmtDetails

attribute), 285
stmt_observe() (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis

method), 795
stmt_observe() (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis

method), 775
stmts (angr.analyses.decompiler.structured_codegen.c.CMultiStatementExpression

attribute), 739
stmts (angr.codenode.SootBlockNode attribute), 876
stmts_to_instrument

(angr.analyses.cfg.indirect_jump_resolvers.jumptable.JumpTableProcessorState
attribute), 664

stmts_used (angr.engines.pcode.lifter.IRSB property),
438

StochasticSearch (class in
angr.exploration_techniques), 403

StochasticSearch (class in
angr.exploration_techniques.stochastic),
423

STOP (class in angr.state_plugins.unicorn_engine), 286
stop() (angr.distributed.server.Server method), 902
stop() (angr.Server method), 210
STOP_ERROR (angr.state_plugins.unicorn_engine.STOP

attribute), 286
STOP_EXECNONE (angr.state_plugins.unicorn_engine.STOP

attribute), 286
STOP_HLT (angr.state_plugins.unicorn_engine.STOP at-

tribute), 286
stop_message (angr.state_plugins.unicorn_engine.STOP

attribute), 287
STOP_NODECODE (angr.state_plugins.unicorn_engine.STOP

attribute), 286
STOP_NORMAL (angr.state_plugins.unicorn_engine.STOP

attribute), 286
STOP_NOSTART (angr.state_plugins.unicorn_engine.STOP

attribute), 286
stop_reason (angr.state_plugins.unicorn_engine.StopDetails

attribute), 287
STOP_SEGFAULT (angr.state_plugins.unicorn_engine.STOP

attribute), 286
STOP_STOPPOINT (angr.state_plugins.unicorn_engine.STOP

attribute), 286
STOP_SYMBOLIC_BLOCK_EXIT_CONDITION

(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_SYMBOLIC_BLOCK_EXIT_TARGET

1050 Index

angr

(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_SYMBOLIC_PC (angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_SYMBOLIC_READ_ADDR
(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_SYMBOLIC_READ_SYMBOLIC_TRACKING_DISABLED
(angr.state_plugins.unicorn_engine.STOP at-
tribute), 286

STOP_SYMBOLIC_WRITE_ADDR
(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_SYSCALL (angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_SYSCALL_ARM (angr.state_plugins.unicorn_engine.STOP
attribute), 287

STOP_UNKNOWN_MEMORY_WRITE_SIZE
(angr.state_plugins.unicorn_engine.STOP
attribute), 287

STOP_UNSUPPORTED_EXPR_GETI
(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_UNSUPPORTED_EXPR_UNKNOWN
(angr.state_plugins.unicorn_engine.STOP
attribute), 287

STOP_UNSUPPORTED_STMT_CAS
(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_UNSUPPORTED_STMT_DIRTY
(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_UNSUPPORTED_STMT_LLSC
(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_UNSUPPORTED_STMT_LOADG
(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_UNSUPPORTED_STMT_PUTI
(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_UNSUPPORTED_STMT_STOREG
(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_UNSUPPORTED_STMT_UNKNOWN
(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_VEX_LIFT_FAILED
(angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_X86_CPUID (angr.state_plugins.unicorn_engine.STOP
attribute), 287

STOP_ZERO_DIV (angr.state_plugins.unicorn_engine.STOP
attribute), 286

STOP_ZEROPAGE (angr.state_plugins.unicorn_engine.STOP
attribute), 286

StopDetails (class in
angr.state_plugins.unicorn_engine), 287

stopped (angr.distributed.server.Server property), 902
stopped (angr.Server property), 211
storage (angr.state_plugins.sim_action.SimActionData

property), 468
Store (class in angr.analyses.typehoon.typevars), 834
store() (angr.analyses.stack_pointer_tracker.StackPointerTrackerState

method), 820
store() (angr.sim_type.SimCppClass method), 517
store() (angr.sim_type.SimStruct method), 516
store() (angr.sim_type.SimTypeArray method), 512
store() (angr.sim_type.SimTypeBool method), 511
store() (angr.sim_type.SimTypeChar method), 510
store() (angr.sim_type.SimTypeFloat method), 515
store() (angr.sim_type.SimTypeNum method), 510
store() (angr.sim_type.SimTypeNumOffset method),

518
store() (angr.sim_type.SimTypeReg method), 509
store() (angr.sim_type.SimTypeWideChar method), 511
store() (angr.state_plugins.debug_variables.SimDebugVariable

method), 308
store() (angr.state_plugins.light_registers.SimLightRegisters

method), 267
store() (angr.state_plugins.view.SimMemView

method), 314
store() (angr.storage.memory_mixins.actions_mixin.ActionsMixinHigh

method), 342
store() (angr.storage.memory_mixins.actions_mixin.ActionsMixinLow

method), 342
store() (angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin

method), 346
store() (angr.storage.memory_mixins.bvv_conversion_mixin.DataNormalizationMixin

method), 341
store() (angr.storage.memory_mixins.clouseau_mixin.InspectMixinHigh

method), 346
store() (angr.storage.memory_mixins.conditional_store_mixin.ConditionalMixin

method), 346
store() (angr.storage.memory_mixins.convenient_mappings_mixin.ConvenientMappingsMixin

method), 348
store() (angr.storage.memory_mixins.dirty_addrs_mixin.DirtyAddrsMixin

method), 344
store() (angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin

method), 376
store() (angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin.KeyValueMemoryMixin

method), 375
store() (angr.storage.memory_mixins.MemoryMixin

method), 336
store() (angr.storage.memory_mixins.name_resolution_mixin.NameResolutionMixin

method), 339
store() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin

method), 353

Index 1051

angr

store() (angr.storage.memory_mixins.paged_memory.pages.history_tracking_mixin.HistoryTrackingMixin
method), 361

store() (angr.storage.memory_mixins.paged_memory.pages.list_page.ListPage
method), 362

store() (angr.storage.memory_mixins.paged_memory.pages.mv_list_page.MVListPage
method), 349

store() (angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage
method), 364

store() (angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin
method), 372

store() (angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin
method), 366

store() (angr.storage.memory_mixins.simple_interface_mixin.SimpleInterfaceMixin
method), 342

store() (angr.storage.memory_mixins.simplification_mixin.SimplificationMixin
method), 347

store() (angr.storage.memory_mixins.size_resolution_mixin.SizeConcretizationMixin
method), 344

store() (angr.storage.memory_mixins.size_resolution_mixin.SizeNormalizationMixin
method), 343

store() (angr.storage.memory_mixins.slotted_memory.SlottedMemoryMixin
method), 375

store() (angr.storage.memory_mixins.underconstrained_mixin.UnderconstrainedMixin
method), 342

store() (angr.storage.memory_mixins.unwrapper_mixin.UnwrapperMixin
method), 347

store() (angr.vaults.Vault method), 618
store() (angr.vaults.VaultDirShelf method), 619
store_array_element()

(angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin
method), 376

store_array_elements()
(angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin
method), 376

store_tmp() (angr.state_plugins.scratch.SimStateScratch
method), 280

store_variable() (angr.analyses.decompiler.optimization_passes.engine_base.SimplifierAILState
method), 710

stored_objects (angr.keyed_region.RegionObject at-
tribute), 614

StoredObject (class in angr.keyed_region), 614
StoreHook (class in angr.analyses.cfg.indirect_jump_resolvers.jumptable),

665
StoreStatementFinder (class in

angr.analyses.decompiler.region_simplifiers.expr_folding),
718

str_to_c_str() (angr.analyses.decompiler.structured_codegen.c.CConstant
static method), 737

Strict (angr.exploration_techniques.tracer.TracingMode
attribute), 414

strict_block_end (angr.engines.pcode.lifter.Lifter at-
tribute), 440

strict_block_end (angr.engines.pcode.lifter.PcodeLifter
attribute), 442

String (angr.analyses.proximity_graph.ProxiNodeTypes
attribute), 865

String (angr.knowledge_plugins.cfg.memory_data.MemoryDataSort
attribute), 542

String (angr.knowledge_plugins.cfg.MemoryDataSort
attribute), 524

string (angr.procedures.stubs.format_parser.FormatSpecifier
attribute), 474

string (angr.state_plugins.debug_variables.SimDebugVariable
property), 308

string_escape() (in module
angr.analyses.reassembler), 852

string_references()
(angr.knowledge_plugins.functions.function.Function
method), 555

StringProxiNode (class in
angr.analyses.proximity_graph), 866

STRONGREF_STATE (angr.SimStatePlugin attribute), 161
STRONGREF_STATE (angr.state_plugins.history.SimStateHistory

attribute), 267
STRONGREF_STATE (angr.state_plugins.plugin.SimStatePlugin

attribute), 231
struct (angr.sim_type.SimStructValue property), 516
struct (angr.state_plugins.view.SimMemView attribute),

313
Struct (class in angr.analyses.typehoon.typeconsts), 837
struct_name() (angr.analyses.typehoon.translator.TypeTranslator

method), 830
STRUCT_RETURN_THRESHOLD

(angr.calling_conventions.SimCCCdecl at-
tribute), 492

STRUCT_RETURN_THRESHOLD
(angr.calling_conventions.SimCCMicrosoftCdecl
attribute), 492

struct_type (angr.analyses.decompiler.structured_codegen.c.CStructField
attribute), 733

StructMode (class in angr.state_plugins.view), 314
structured_code (angr.angrdb.models.DbKnowledgeBase

attribute), 678
structured_code (angr.knowledge_base.knowledge_base.KnowledgeBase

attribute), 520
structured_code (angr.KnowledgeBase attribute), 211
structured_node_is_simple_return() (in module

angr.analyses.decompiler.utils), 745
StructuredCodeGenerator (in module

angr.analyses.decompiler.structured_codegen.c),
743

StructuredCodeManager (class in
angr.knowledge_plugins.structured_code.manager),
571

StructuredCodeManagerSerializer (class in
angr.angrdb.serializers.structured_code), 684

structurer_class_from_name() (in module
angr.analyses.decompiler.structuring), 685

1052 Index

angr

StructurerBase (class in
angr.analyses.decompiler.structuring.structurer_base),
690

STRUCTURING (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.LoweredSwitchSimplifier
attribute), 709

STRUCTURING (angr.analyses.decompiler.optimization_passes.optimization_pass.BaseOptimizationPass
attribute), 704

StructuringOptimizationPass (class in
angr.analyses.decompiler.optimization_passes.optimization_pass),
705

Sub (angr.engines.light.data.ArithmeticExpression
attribute), 752

Sub (class in angr.analyses.typehoon.typevars), 832
sub_graph (angr.analyses.data_dep.data_dependency_analysis.DataDependencyGraphAnalysis

property), 868
sub_type (angr.analyses.typehoon.typevars.Subtype at-

tribute), 832
subgraph() (angr.knowledge_plugins.functions.function.Function

method), 558
subgraph_between_nodes() (in module

angr.utils.graph), 889
subject (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis

property), 796
subject (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis

property), 775
Subject (class in angr.analyses.reaching_definitions.subject),

815
SubjectType (class in

angr.analyses.reaching_definitions.subject),
815

SubN (class in angr.analyses.typehoon.typevars), 834
subscribe_actions()

(angr.state_plugins.history.SimStateHistory
method), 269

Subtype (class in angr.analyses.typehoon.typevars), 831
successor_func() (angr.annocfg.AnnotatedCFG

method), 875
successors (angr.analyses.decompiler.graph_region.GraphRegion

attribute), 702
successors (angr.engines.UberEngine attribute), 427
successors (angr.knowledge_plugins.cfg.cfg_node.CFGNode

property), 545
successors (angr.knowledge_plugins.cfg.CFGNode

property), 526
successors() (angr.analyses.forward_analysis.visitors.call_graph.CallGraphVisitor

method), 623
successors() (angr.analyses.forward_analysis.visitors.function_graph.FunctionGraphVisitor

method), 624
successors() (angr.analyses.forward_analysis.visitors.graph.GraphVisitor

method), 625
successors() (angr.analyses.forward_analysis.visitors.loop.LoopVisitor

method), 627
successors() (angr.analyses.forward_analysis.visitors.single_node_graph.SingleNodeGraphVisitor

method), 627

successors() (angr.codenode.CodeNode method), 875
successors() (angr.exploration_techniques.Bucketizer

method), 406
successors() (angr.exploration_techniques.bucketizer.Bucketizer

method), 426
successors() (angr.exploration_techniques.ExplorationTechnique

method), 391
successors() (angr.exploration_techniques.local_loop_seer.LocalLoopSeer

method), 422
successors() (angr.exploration_techniques.LocalLoopSeer

method), 406
successors() (angr.exploration_techniques.loop_seer.LoopSeer

method), 421
successors() (angr.exploration_techniques.LoopSeer

method), 394
successors() (angr.exploration_techniques.Oppologist

method), 399
successors() (angr.exploration_techniques.oppologist.Oppologist

method), 420
successors() (angr.exploration_techniques.Slicecutor

method), 392
successors() (angr.exploration_techniques.slicecutor.Slicecutor

method), 418
successors() (angr.exploration_techniques.Threading

method), 398
successors() (angr.exploration_techniques.threading.Threading

method), 413
successors() (angr.ExplorationTechnique method),

179
successors() (angr.factory.AngrObjectFactory

method), 216
successors() (angr.sim_manager.SimulationManager

method), 386
successors() (angr.SimulationManager method), 175
successors_and_jumpkinds()

(angr.knowledge_plugins.cfg.cfg_node.CFGNode
method), 545

successors_and_jumpkinds()
(angr.knowledge_plugins.cfg.CFGNode
method), 526

SuccessorsMixin (class in angr.engines.engine), 428
Suggestions (class in angr.exploration_techniques),

407
Suggestions (class in

angr.exploration_techniques.suggestions),
426

super_type (angr.analyses.typehoon.typevars.Subtype
attribute), 832

SUPPORTS_CONCRETE_LOAD
(angr.storage.memory_mixins.MemoryMixin
attribute), 336

SUPPORTS_CONCRETE_LOAD
(angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin
attribute), 353

Index 1053

angr

SUPPORTS_CONCRETE_LOAD
(angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage
attribute), 363

switch (angr.analyses.decompiler.structured_codegen.c.CSwitchCase
attribute), 730

switch_expr (angr.analyses.decompiler.structuring.structurer_nodes.SwitchCaseNode
attribute), 689

switch_extract_cmp_bounds() (in module
angr.analyses.decompiler.utils), 744

switch_variable (angr.analyses.decompiler.structuring.structurer_nodes.IncompleteSwitchCaseHeadStatement
attribute), 690

SwitchCaseNode (class in
angr.analyses.decompiler.structuring.structurer_nodes),
689

SwitchCaseRegion (class in
angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier),
721

SwitchClusterFinder (class in
angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier),
721

SwitchClusterReplacer (class in
angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier),
721

SwitchExpressionSimplifier (class in
angr.analyses.decompiler.region_simplifiers.switch_expr_simplifier),
723

Symbion (class in angr.exploration_techniques), 404
Symbion (class in angr.exploration_techniques.symbion),

424
symbol (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 802
symbol (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
symbol (angr.knowledge_plugins.functions.function.Function

property), 556
symbol_hooked_by() (angr.Project method), 166
symbol_hooked_by() (angr.project.Project method),

215
symbol_name (angr.analyses.reassembler.NotypeLabel

property), 853
symbol_name (angr.analyses.reassembler.ObjectLabel

property), 853
symbolic (angr.analyses.reaching_definitions.MemoryLocation

property), 771
symbolic (angr.engines.light.data.RegisterOffset prop-

erty), 753
symbolic (angr.knowledge_plugins.key_definitions.atoms.MemoryLocation

property), 588
SYMBOLIC (angr.simos.windows.SecurityCookieInit at-

tribute), 881
symbolic (angr.storage.memory_object.SimMemoryObject

property), 334
symbolic() (angr.state_plugins.solver.SimSolver

method), 262

symbolic_stop_reasons
(angr.state_plugins.unicorn_engine.STOP
attribute), 287

symbolic_vex_stmts (angr.state_plugins.unicorn_engine.BlockDetails
attribute), 285

symbolic_vex_stmts_count
(angr.state_plugins.unicorn_engine.BlockDetails
attribute), 286

SymbolicMergerMixin (class in
angr.storage.memory_mixins.symbolic_merger_mixin),
342

symbolize() (angr.analyses.reassembler.Reassembler
method), 860

symbolized (angr.analyses.reassembler.Operand prop-
erty), 854

SymbolManager (class in angr.analyses.reassembler),
853

sympy_expr_to_claripy_ast()
(angr.analyses.decompiler.condition_processor.ConditionProcessor
static method), 698

sync() (angr.state_plugins.concrete.Concrete method),
294

SyncController (class in
angr.knowledge_plugins.sync.sync_controller),
608

syscall (angr.analyses.cfg.cfg_fast.CFGJob attribute),
653

syscall (angr.analyses.cfg.cfg_fast.FunctionCallEdge
attribute), 651

syscall (angr.knowledge_plugins.cfg.cfg_node.CFGENode
attribute), 547

syscall (angr.knowledge_plugins.cfg.CFGENode
attribute), 528

syscall() (angr.SimOS method), 169
syscall() (angr.simos.simos.SimOS method), 878
syscall() (angr.simos.userland.SimUserland method),

880
syscall_abi() (angr.SimOS method), 169
syscall_abi() (angr.simos.linux.SimLinux method),

879
syscall_abi() (angr.simos.simos.SimOS method), 878
syscall_abi() (angr.simos.userland.SimUserland

method), 880
syscall_cc() (angr.SimOS method), 169
syscall_cc() (angr.simos.simos.SimOS method), 878
syscall_cc() (angr.simos.userland.SimUserland

method), 880
SYSCALL_ERRNO_START

(angr.calling_conventions.SimCCN64LinuxSyscall
attribute), 499

SYSCALL_ERRNO_START
(angr.calling_conventions.SimCCO32LinuxSyscall
attribute), 498

SYSCALL_ERRNO_START

1054 Index

angr

(angr.calling_conventions.SimCCPowerPC64LinuxSyscall
attribute), 500

SYSCALL_ERRNO_START
(angr.calling_conventions.SimCCPowerPCLinuxSyscall
attribute), 499

SYSCALL_ERRNO_START
(angr.calling_conventions.SimCCSyscall
attribute), 493

syscall_from_addr() (angr.SimOS method), 169
syscall_from_addr() (angr.simos.simos.SimOS

method), 878
syscall_from_addr()

(angr.simos.userland.SimUserland method),
881

syscall_from_number() (angr.SimOS method), 169
syscall_from_number() (angr.simos.simos.SimOS

method), 878
syscall_from_number()

(angr.simos.userland.SimUserland method),
881

syscall_hook() (in module
angr.state_plugins.trace_additions), 274

syscall_name (angr.knowledge_plugins.cfg.cfg_node.CFGNode
attribute), 546

syscall_name (angr.knowledge_plugins.cfg.CFGNode
attribute), 527

syscall_num() (angr.calling_conventions.SimCCAArch64LinuxSyscall
static method), 497

syscall_num() (angr.calling_conventions.SimCCAMD64LinuxSyscall
static method), 495

syscall_num() (angr.calling_conventions.SimCCAMD64WindowsSyscall
static method), 495

syscall_num() (angr.calling_conventions.SimCCARMLinuxSyscall
static method), 496

syscall_num() (angr.calling_conventions.SimCCN64LinuxSyscall
static method), 499

syscall_num() (angr.calling_conventions.SimCCO32LinuxSyscall
static method), 498

syscall_num() (angr.calling_conventions.SimCCPowerPC64LinuxSyscall
static method), 500

syscall_num() (angr.calling_conventions.SimCCPowerPCLinuxSyscall
static method), 499

syscall_num() (angr.calling_conventions.SimCCRISCV64LinuxSyscall
static method), 497

syscall_num() (angr.calling_conventions.SimCCS390XLinuxSyscall
static method), 502

syscall_num() (angr.calling_conventions.SimCCSyscall
static method), 493

syscall_num() (angr.calling_conventions.SimCCX86LinuxSyscall
static method), 494

syscall_num() (angr.calling_conventions.SimCCX86WindowsSyscall
static method), 494

SyscallNode (class in angr.codenode), 876

T
T (angr.sim_state.SimState attribute), 226
T (angr.SimState attribute), 182
tag (angr.analyses.cfg.cfg_base.CFGBase attribute), 646
tag (angr.analyses.cfg.cfg_emulated.CFGEmulated at-

tribute), 642
tag (angr.analyses.cfg.cfg_fast.CFGFast attribute), 654
Tag (class in angr.knowledge_plugins.key_definitions.tag),

604
tags (angr.analyses.decompiler.structured_codegen.c.CAssignment

attribute), 731
tags (angr.analyses.decompiler.structured_codegen.c.CBinaryOp

attribute), 736
tags (angr.analyses.decompiler.structured_codegen.c.CBreak

attribute), 730
tags (angr.analyses.decompiler.structured_codegen.c.CConstant

attribute), 737
tags (angr.analyses.decompiler.structured_codegen.c.CContinue

attribute), 730
tags (angr.analyses.decompiler.structured_codegen.c.CDoWhileLoop

attribute), 729
tags (angr.analyses.decompiler.structured_codegen.c.CFakeVariable

attribute), 734
tags (angr.analyses.decompiler.structured_codegen.c.CForLoop

attribute), 729
tags (angr.analyses.decompiler.structured_codegen.c.CFunctionCall

attribute), 732
tags (angr.analyses.decompiler.structured_codegen.c.CGoto

attribute), 732
tags (angr.analyses.decompiler.structured_codegen.c.CIfBreak

attribute), 730
tags (angr.analyses.decompiler.structured_codegen.c.CIfElse

attribute), 730
tags (angr.analyses.decompiler.structured_codegen.c.CITE

attribute), 738
tags (angr.analyses.decompiler.structured_codegen.c.CLabel

attribute), 733
tags (angr.analyses.decompiler.structured_codegen.c.CMultiStatementExpression

attribute), 739
tags (angr.analyses.decompiler.structured_codegen.c.CRegister

attribute), 738
tags (angr.analyses.decompiler.structured_codegen.c.CReturn

attribute), 732
tags (angr.analyses.decompiler.structured_codegen.c.CStructField

attribute), 733
tags (angr.analyses.decompiler.structured_codegen.c.CSwitchCase

attribute), 731
tags (angr.analyses.decompiler.structured_codegen.c.CTypeCast

attribute), 737
tags (angr.analyses.decompiler.structured_codegen.c.CUnaryOp

attribute), 735
tags (angr.analyses.decompiler.structured_codegen.c.CVariable

attribute), 734
tags (angr.analyses.decompiler.structured_codegen.c.CWhileLoop

Index 1055

angr

attribute), 729
tags (angr.analyses.reaching_definitions.Definition at-

tribute), 772
tags (angr.analyses.reaching_definitions.function_handler.FunctionEffect

attribute), 800
tags (angr.knowledge_plugins.functions.function.Function

attribute), 553
tags (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 561
tags (angr.knowledge_plugins.key_definitions.Definition

attribute), 584
tags (angr.knowledge_plugins.key_definitions.definition.Definition

attribute), 591
TAINT_ENTITY_MEM (angr.state_plugins.unicorn_engine.TaintEntityEnum

attribute), 284
TAINT_ENTITY_NONE (angr.state_plugins.unicorn_engine.TaintEntityEnum

attribute), 284
TAINT_ENTITY_REG (angr.state_plugins.unicorn_engine.TaintEntityEnum

attribute), 284
TAINT_ENTITY_TMP (angr.state_plugins.unicorn_engine.TaintEntityEnum

attribute), 284
TaintEntityEnum (class in

angr.state_plugins.unicorn_engine), 284
taken (angr.exploration_techniques.spiller_db.PickledState

attribute), 412
tally() (angr.knowledge_plugins.sync.sync_controller.SyncController

method), 609
tally() (angr.sim_state_options.SimStateOptions

method), 231
target (angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink.CFGSliceToSink

property), 817
target (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.Case

attribute), 708
target (angr.analyses.decompiler.structured_codegen.c.CGoto

attribute), 732
target (angr.analyses.decompiler.structuring.structurer_nodes.BreakNode

attribute), 688
target (angr.analyses.decompiler.structuring.structurer_nodes.ContinueNode

attribute), 689
target (angr.analyses.reaching_definitions.call_trace.CallTrace

attribute), 792
target (angr.analyses.reaching_definitions.dep_graph.FunctionCallRelationships

attribute), 796
target (angr.analyses.reaching_definitions.GuardUse

attribute), 771
target (angr.knowledge_plugins.key_definitions.atoms.GuardUse

attribute), 587
target_idx (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.Case

attribute), 708
target_idx (angr.analyses.decompiler.structured_codegen.c.CGoto

attribute), 732
tc2simtype() (angr.analyses.typehoon.translator.TypeTranslator

method), 830
teardown_callsite()

(angr.calling_conventions.SimCC method),
490

teardown_callsite() (angr.SimCC method), 187
TechniqueBuilder (class in

angr.exploration_techniques), 402
TechniqueBuilder (class in

angr.exploration_techniques.tech_builder),
424

tell() (angr.SimFileDescriptor method), 198
tell() (angr.SimFileDescriptorDuplex method), 201
tell() (angr.storage.file.SimFileDescriptor method),

327
tell() (angr.storage.file.SimFileDescriptorBase

method), 326
tell() (angr.storage.file.SimFileDescriptorDuplex

method), 330
TemporaryNode (class in angr.utils.graph), 890
temps (angr.slicer.SimLightState attribute), 873
terminate_execution()

(angr.engines.soot.engine.SootMixin static
method), 432

terminate_execution() (angr.Project method), 166
terminate_execution() (angr.project.Project

method), 216
test_empty_condition_node()

(angr.analyses.decompiler.structuring.structurer_nodes.BaseNode
static method), 686

test_empty_node() (angr.analyses.decompiler.structuring.structurer_nodes.BaseNode
static method), 686

test_unsupported_overlap()
(angr.knowledge_plugins.debug_variables.DebugVariable
method), 569

text (angr.analyses.decompiler.structured_codegen.c.CArrayTypeLength
attribute), 739

Threading (class in angr.exploration_techniques), 397
Threading (class in angr.exploration_techniques.threading),

413
THUMB (angr.analyses.cfg.cfg_fast.ARMDecodingMode

attribute), 649
thumb (angr.Block attribute), 170
thumb (angr.block.Block attribute), 221
thumb (angr.block.DisassemblerBlock attribute), 220
thumb (angr.codenode.CodeNode attribute), 875
thumb (angr.engines.pcode.lifter.PcodeDisassemblerBlock

attribute), 435
thumb (angr.knowledge_plugins.cfg.cfg_node.CFGNode

attribute), 545
thumb (angr.knowledge_plugins.cfg.CFGNode attribute),

526
thumb (angr.sim_state.SimState property), 228
thumb (angr.SimState property), 184
tidy_data_references()

(angr.knowledge_plugins.cfg.cfg_model.CFGModel
method), 541

1056 Index

angr

tidy_data_references()
(angr.knowledge_plugins.cfg.CFGModel
method), 534

timed_function() (in module
angr.state_plugins.solver), 254

Timeout (class in angr.exploration_techniques), 407
Timeout (class in angr.exploration_techniques.timeout),

407
timestamp (angr.exploration_techniques.spiller_db.PickledState

attribute), 412
timethis() (in module angr.utils.timing), 894
TLSMixin (class in angr.engines.engine), 428
TLSProperty (class in angr.engines.engine), 428
Tmp (angr.analyses.data_dep.dep_nodes.DepNodeTypes

attribute), 869
tmp (angr.analyses.propagator.vex_vars.VEXTmp at-

tribute), 755
TMP (angr.analyses.reaching_definitions.AtomKind

attribute), 768
TMP (angr.knowledge_plugins.key_definitions.atoms.AtomKind

attribute), 585
TMP (angr.state_plugins.sim_action.SimAction attribute),

466
Tmp (class in angr.analyses.reaching_definitions), 771
Tmp (class in angr.knowledge_plugins.key_definitions.atoms),

587
tmp_deps (angr.state_plugins.sim_action.SimAction

property), 466
tmp_deps (angr.state_plugins.sim_action.SimActionData

property), 468
tmp_expr() (angr.state_plugins.scratch.SimStateScratch

method), 280
tmp_id (angr.sim_variable.SimTemporaryVariable

attribute), 504
tmp_idx (angr.analyses.reaching_definitions.Tmp

attribute), 771
tmp_idx (angr.knowledge_plugins.key_definitions.atoms.Tmp

attribute), 587
tmp_idx (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate

attribute), 590
tmp_uses (angr.analyses.reaching_definitions.LiveDefinitions

attribute), 760
tmp_uses (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

property), 811
tmp_uses (angr.analyses.reaching_definitions.ReachingDefinitionsState

property), 781
tmp_uses (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 595
tmp_uses (angr.knowledge_plugins.key_definitions.LiveDefinitions

attribute), 574
TmpDepNode (class in angr.analyses.data_dep.dep_nodes),

871
tmps (angr.analyses.reaching_definitions.LiveDefinitions

attribute), 760

tmps (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
property), 811

tmps (angr.analyses.reaching_definitions.ReachingDefinitionsState
property), 781

tmps (angr.engines.UberEngine attribute), 427
tmps (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 595
tmps (angr.knowledge_plugins.key_definitions.LiveDefinitions

attribute), 574
TmpvarFinder (class in

angr.analyses.propagator.tmpvar_finder),
758

to_acyclic_graph() (in module angr.utils.graph), 889
to_ail_supergraph() (in module

angr.analyses.decompiler.utils), 744
to_bits (angr.analyses.typehoon.typevars.ConvertTo at-

tribute), 834
to_bits (angr.analyses.typehoon.typevars.ReinterpretAs

attribute), 834
to_claripy() (angr.state_plugins.sim_action_object.SimActionObject

method), 468
to_codenode() (angr.knowledge_plugins.cfg.cfg_node.CFGNode

method), 546
to_codenode() (angr.knowledge_plugins.cfg.CFGNode

method), 527
to_engine() (angr.engines.concrete.SimEngineConcrete

method), 433
to_outside (angr.analyses.cfg.cfg_fast.FunctionTransitionEdge

attribute), 651
to_string() (angr.knowledge_plugins.xrefs.xref_types.XRefType

static method), 612
to_type (angr.analyses.typehoon.typevars.ReinterpretAs

attribute), 834
to_valueset() (angr.storage.memory_mixins.regioned_memory.region_data.AddressWrapper

method), 369
TOLOWER_LOC_ARRAY (angr.state_plugins.libc.SimStateLibc

attribute), 238
top (angr.state_plugins.callstack.CallStack property),

265
Top (class in angr.analyses.propagator.values), 754
top() (angr.analyses.reaching_definitions.LiveDefinitions

static method), 761
top() (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState

method), 809
top() (angr.analyses.reaching_definitions.ReachingDefinitionsState

method), 779
top() (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase

static method), 823
top() (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

static method), 595
top() (angr.knowledge_plugins.key_definitions.LiveDefinitions

static method), 575
TopCheckerMixin (class in

angr.analyses.propagator.top_checker_mixin),

Index 1057

angr

759
TopMergerMixin (class in

angr.storage.memory_mixins.top_merger_mixin),
351

TopType (class in angr.analyses.typehoon.typeconsts),
836

TOUPPER_LOC_ARRAY (angr.state_plugins.libc.SimStateLibc
attribute), 238

traceback (angr.knowledge_plugins.cfg.cfg_node.CFGNodeCreationFailure
attribute), 544

traceflags (angr.engines.pcode.lifter.Lifter attribute),
440

traceflags (angr.engines.pcode.lifter.PcodeLifter at-
tribute), 442

Tracer (class in angr.exploration_techniques), 394
Tracer (class in angr.exploration_techniques.tracer),

414
TracerDesyncError, 414
TracerEnvironmentError, 898
TracingMode (class in

angr.exploration_techniques.tracer), 414
track_tmps (angr.analyses.reaching_definitions.LiveDefinitions

attribute), 760
track_tmps (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 595
track_tmps (angr.knowledge_plugins.key_definitions.LiveDefinitions

attribute), 574
transition_graph (angr.knowledge_plugins.functions.function.Function

attribute), 553
transition_graph (angr.knowledge_plugins.functions.soot_function.SootFunction

attribute), 560
transition_graph_ex()

(angr.knowledge_plugins.functions.function.Function
method), 558

transitions (angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink.CFGSliceToSink
property), 816

transitions_as_tuples
(angr.analyses.cfg_slice_to_sink.cfg_slice_to_sink.CFGSliceToSink
property), 816

transitive_closure()
(angr.analyses.reaching_definitions.dep_graph.DepGraph
method), 798

translate() (angr.calling_conventions.AllocHelper
method), 483

TRANSMIT_RECORD (class in
angr.state_plugins.unicorn_engine), 284

TreeIter (class in angr.state_plugins.history), 270
trim() (angr.state_plugins.history.SimStateHistory

method), 268
true_node (angr.analyses.decompiler.structuring.structurer_nodes.ConditionNode

attribute), 687
Truncation (angr.analyses.cfg.indirect_jump_resolvers.jumptable.AddressTransferringTypes

attribute), 663
try_unpack_const() (angr.engines.light.data.ArithmeticExpression

static method), 753
ty_ptr() (angr.sim_procedure.SimProcedure method),

473
ty_ptr() (angr.SimProcedure method), 160
tyenv (angr.engines.pcode.lifter.IRSB property), 438
type (angr.analyses.data_dep.dep_nodes.BaseDepNode

property), 870
type (angr.analyses.decompiler.structured_codegen.c.CBinaryOp

property), 736
type (angr.analyses.decompiler.structured_codegen.c.CConstant

property), 737
type (angr.analyses.decompiler.structured_codegen.c.CDirtyExpression

property), 739
type (angr.analyses.decompiler.structured_codegen.c.CExpression

property), 728
type (angr.analyses.decompiler.structured_codegen.c.CFakeVariable

property), 734
type (angr.analyses.decompiler.structured_codegen.c.CFunctionCall

property), 732
type (angr.analyses.decompiler.structured_codegen.c.CIndexedVariable

property), 735
type (angr.analyses.decompiler.structured_codegen.c.CITE

property), 738
type (angr.analyses.decompiler.structured_codegen.c.CMultiStatementExpression

property), 739
type (angr.analyses.decompiler.structured_codegen.c.CRegister

property), 738
type (angr.analyses.decompiler.structured_codegen.c.CStructField

property), 733
type (angr.analyses.decompiler.structured_codegen.c.CTypeCast

property), 737
type (angr.analyses.decompiler.structured_codegen.c.CUnaryOp

property), 736
type (angr.analyses.decompiler.structured_codegen.c.CVariable

property), 734
type (angr.analyses.decompiler.structured_codegen.c.CVariableField

property), 735
type (angr.analyses.loop_analysis.AnnotatedVariable at-

tribute), 839
type (angr.analyses.reaching_definitions.subject.Subject

property), 815
type (angr.angrdb.models.DbComment attribute), 680
type (angr.knowledge_plugins.cfg.indirect_jump.IndirectJump

attribute), 549
type (angr.knowledge_plugins.cfg.IndirectJump at-

tribute), 529
type (angr.knowledge_plugins.xrefs.xref.XRef attribute),

611
type (angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin.TypedVariable

attribute), 375
type_ (angr.analyses.typehoon.typevars.Existence

attribute), 831
type_0 (angr.analyses.typehoon.typevars.Add attribute),

832

1058 Index

angr

type_0 (angr.analyses.typehoon.typevars.Sub attribute),
832

type_1 (angr.analyses.typehoon.typevars.Add attribute),
832

type_1 (angr.analyses.typehoon.typevars.Sub attribute),
832

type_a (angr.analyses.typehoon.typevars.Equivalence
attribute), 831

type_b (angr.analyses.typehoon.typevars.Equivalence
attribute), 831

type_constraints (angr.analyses.decompiler.decompilation_cache.DecompilationCache
attribute), 699

type_constraints (angr.analyses.variable_recovery.engine_base.RichR
attribute), 829

type_parser_singleton() (in module angr.sim_type),
518

type_r (angr.analyses.typehoon.typevars.Add attribute),
832

type_r (angr.analyses.typehoon.typevars.Sub attribute),
832

type_string (angr.knowledge_plugins.xrefs.xref.XRef
property), 611

type_to_c_repr_chunks() (in module
angr.analyses.decompiler.structured_codegen.c),
726

type_var (angr.analyses.typehoon.typevars.DerivedTypeVariable
attribute), 833

TypeConstant (class in
angr.analyses.typehoon.typeconsts), 836

TypeConstraint (class in
angr.analyses.typehoon.typevars), 831

TypedVariable (class in
angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin),
375

Typehoon (class in angr.analyses.typehoon.typehoon),
835

TypeLifter (class in angr.analyses.typehoon.lifter), 829
TypeRef (class in angr.sim_type), 508
types (angr.knowledge_base.knowledge_base.KnowledgeBase

attribute), 520
types (angr.KnowledgeBase attribute), 211
types (angr.sim_state_options.StateOption attribute),

228
types (angr.state_plugins.view.SimMemView attribute),

311
TypesStore (class in angr.knowledge_plugins.types),

549
TypeTranslator (class in

angr.analyses.typehoon.translator), 830
typevar (angr.analyses.variable_recovery.engine_base.RichR

attribute), 829
TypeVariable (class in

angr.analyses.typehoon.typevars), 833
TypeVariableReference (class in

angr.analyses.typehoon.typeconsts), 837
TypeVariables (class in

angr.analyses.typehoon.typevars), 833

U
UberEngine (class in angr.engines), 427
UberEnginePcode (class in angr.engines), 427
uc (angr.state_plugins.unicorn_engine.Unicorn prop-

erty), 290
UC_CONFIG (angr.state_plugins.unicorn_engine.Unicorn

attribute), 288
UltraPage (class in angr.storage.memory_mixins.paged_memory.pages.ultra_page),

363
UltraPagesMixin (class in

angr.storage.memory_mixins.paged_memory.paged_memory_mixin),
357

uncache_region() (angr.state_plugins.unicorn_engine.Unicorn
method), 290

unconstrained (angr.sim_manager.SimulationManager
attribute), 383

unconstrained (angr.SimulationManager attribute),
172

Unconstrained() (angr.state_plugins.solver.SimSolver
method), 255

Undefined (class in angr.knowledge_plugins.key_definitions.undefined),
606

UnderconstrainedMixin (class in
angr.storage.memory_mixins.underconstrained_mixin),
341

unfreeze() (angr.analyses.stack_pointer_tracker.FrozenStackPointerTrackerState
method), 819

unhook() (angr.Project method), 165
unhook() (angr.project.Project method), 215
unhook_symbol() (angr.Project method), 166
unhook_symbol() (angr.project.Project method), 216
UnicodeString (angr.knowledge_plugins.cfg.memory_data.MemoryDataSort

attribute), 542
UnicodeString (angr.knowledge_plugins.cfg.MemoryDataSort

attribute), 524
Unicorn (class in angr.state_plugins.unicorn_engine),

288
unified_local_vars (angr.analyses.decompiler.structured_codegen.c.CFunction

attribute), 727
unified_variable (angr.analyses.decompiler.structured_codegen.c.CVariable

attribute), 734
unified_variable() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal

method), 567
unify_arch_name() (in module

angr.calling_conventions), 502
unify_variables() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal

method), 567
uninit_read_base (angr.analyses.cfg.indirect_jump_resolvers.jumptable.UninitReadMeta

attribute), 663

Index 1059

angr

UninitReadMeta (class in
angr.analyses.cfg.indirect_jump_resolvers.jumptable),
663

union() (angr.state_plugins.sim_action_object.SimActionObject
method), 468

unique() (angr.state_plugins.solver.SimSolver method),
261

unique_type_name() (angr.knowledge_plugins.types.TypesStore
method), 549

UniqueSearch (class in angr.exploration_techniques),
403

UniqueSearch (class in
angr.exploration_techniques.unique), 423

Uniwrapper (class in angr.state_plugins.unicorn_engine),
288

Unknown (angr.analyses.proximity_graph.ProxiNodeTypes
attribute), 865

Unknown (angr.knowledge_plugins.cfg.indirect_jump.IndirectJumpType
attribute), 547

Unknown (angr.knowledge_plugins.cfg.IndirectJumpType
attribute), 529

Unknown (angr.knowledge_plugins.cfg.memory_data.MemoryDataSort
attribute), 542

Unknown (angr.knowledge_plugins.cfg.MemoryDataSort
attribute), 524

Unknown (class in angr.analyses.cfg.cfb), 638
UnknownProxiNode (class in

angr.analyses.proximity_graph), 866
UnknownSize (class in

angr.knowledge_plugins.key_definitions.unknown_size),
606

UnknownSizeTag (class in
angr.knowledge_plugins.key_definitions.tag),
606

unlinks (angr.state_plugins.filesystem.SimFilesystem
property), 249

unmap_by_address() (angr.storage.memory_mixins.regioned_memory.region_data.RegionMap
method), 370

unmap_region() (angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin
method), 346

unmap_region() (angr.storage.memory_mixins.MemoryMixin
method), 337

unmap_region() (angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin
method), 354

unmatched_blocks (angr.analyses.bindiff.FunctionDiff
property), 631

unmatched_functions (angr.analyses.bindiff.BinDiff
property), 633

UnmatchedStatementsException, 630
unmount() (angr.state_plugins.filesystem.SimFilesystem

method), 250
unpack_array() (in module

angr.analyses.decompiler.structured_codegen.c),
726

unpack_pointer() (in module
angr.analyses.decompiler.structured_codegen.c),
725

unpack_typeref() (in module
angr.analyses.decompiler.structured_codegen.c),
725

unqualified_name() (angr.sim_type.NamedTypeMixin
method), 509

unreachable_history()
(angr.state_hierarchy.StateHierarchy method),
390

unreachable_history() (angr.StateHierarchy
method), 180

unreachable_state()
(angr.state_hierarchy.StateHierarchy method),
390

unreachable_state() (angr.StateHierarchy method),
180

unresolvables (angr.analyses.cfg.cfg_emulated.CFGEmulated
property), 645

unresolved_indirect_jumps
(angr.knowledge_base.knowledge_base.KnowledgeBase
property), 520

unresolved_indirect_jumps (angr.KnowledgeBase
property), 211

unroll_loops() (angr.analyses.cfg.cfg_emulated.CFGEmulated
method), 644

unsat (angr.sim_manager.SimulationManager attribute),
383

unsat (angr.SimulationManager attribute), 172
unsat_core() (angr.state_plugins.solver.SimSolver

method), 259
unset_stack_address_mapping()

(angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin
method), 367

UnsignedExtension (angr.analyses.cfg.indirect_jump_resolvers.jumptable.AddressTransferringTypes
attribute), 663

unsilence_logger() (in module
angr.state_plugins.heap.heap_ptmalloc),
302

Unspecified (angr.knowledge_plugins.cfg.memory_data.MemoryDataSort
attribute), 542

Unspecified (angr.knowledge_plugins.cfg.MemoryDataSort
attribute), 524

unstash() (angr.sim_manager.SimulationManager
method), 387

unstash() (angr.SimulationManager method), 176
unsupported_reasons

(angr.state_plugins.unicorn_engine.STOP
attribute), 287

UnsupportedCCallError, 900
UnsupportedDirtyError, 900
UnsupportedIRExprError, 899
UnsupportedIROpError, 899

1060 Index

angr

UnsupportedIRStmtError, 900
UnsupportedNodeTypeError, 901
UnsupportedSyscallError (in module angr.errors),

900
UnwrapperMixin (class in

angr.storage.memory_mixins.unwrapper_mixin),
347

update() (angr.knowledge_plugins.sync.sync_controller.SyncController
method), 609

update() (angr.procedures.definitions.SimLibrary
method), 476

update() (angr.procedures.definitions.SimSyscallLibrary
method), 480

update() (angr.sim_state_options.SimStateOptions
method), 230

update_dbinfo() (angr.angrdb.db.AngrDB method),
676

update_labels() (in module
angr.analyses.decompiler.utils), 745

update_resolved_addrs()
(angr.knowledge_plugins.indirect_jumps.IndirectJumps
method), 549

update_switch_case_list() (in module
angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier),
722

update_variable_types()
(angr.analyses.typehoon.typehoon.Typehoon
method), 835

UpdateArgumentsOption (class in
angr.analyses.calling_convention), 633

UpdateWhenCCHasNoArgs
(angr.analyses.calling_convention.UpdateArgumentsOption
attribute), 633

use_plugin_preset() (angr.misc.plugins.PluginHub
method), 223

use_technique() (angr.sim_manager.SimulationManager
method), 384

use_technique() (angr.SimulationManager method),
173

UsercallArgSession (class in
angr.calling_conventions), 487

users() (angr.knowledge_plugins.sync.sync_controller.SyncController
method), 609

uses (angr.analyses.decompiler.region_simplifiers.expr_folding.ExpressionUseFinder
attribute), 718

Uses (class in angr.knowledge_plugins.key_definitions),
582

Uses (class in angr.knowledge_plugins.key_definitions.uses),
606

uses_by_codeloc (angr.analyses.reaching_definitions.LiveDefinitions
attribute), 760

uses_by_codeloc (angr.analyses.reaching_definitions.rd_state.ReachingDefinitionsState
property), 811

uses_by_codeloc (angr.analyses.reaching_definitions.ReachingDefinitionsState

property), 781
uses_by_codeloc (angr.knowledge_plugins.key_definitions.live_definitions.LiveDefinitions

attribute), 595
uses_by_codeloc (angr.knowledge_plugins.key_definitions.LiveDefinitions

attribute), 574

V
va_arg() (angr.sim_procedure.SimProcedure method),

472
va_arg() (angr.SimProcedure method), 160
val (angr.analyses.stack_pointer_tracker.Constant

attribute), 819
value (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.Case

attribute), 708
value (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.ConditionalRegion

attribute), 721
value (angr.analyses.decompiler.structured_codegen.c.CConstant

attribute), 737
value (angr.analyses.reaching_definitions.ConstantSrc

attribute), 772
value (angr.analyses.reaching_definitions.function_handler.FunctionEffect

attribute), 800
value (angr.angrdb.models.DbInformation attribute),

677
value (angr.knowledge_plugins.key_definitions.atoms.ConstantSrc

attribute), 587
value (angr.knowledge_plugins.key_definitions.heap_address.HeapAddress

property), 592
value (angr.sim_variable.SimConstantVariable at-

tribute), 503
value (angr.state_plugins.unicorn_engine.MemoryValue

attribute), 285
value (angr.state_plugins.unicorn_engine.RegisterValue

attribute), 285
value (angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin.TypedVariable

attribute), 375
Value (class in angr.analyses.disassembly), 851
value_tuple() (angr.analyses.data_dep.dep_nodes.BaseDepNode

method), 870
values() (angr.knowledge_plugins.patches.PatchManager

method), 522
values() (angr.state_plugins.globals.SimStateGlobals

method), 279
values() (angr.storage.memory_mixins.paged_memory.pages.multi_values.MultiValues

method), 351
var_collections (angr.angrdb.models.DbKnowledgeBase

attribute), 678
var_to_typevar (angr.analyses.decompiler.decompilation_cache.DecompilationCache

attribute), 699
VarDepNode (class in angr.analyses.data_dep.dep_nodes),

871
variable (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.ConditionalRegion

attribute), 721

Index 1061

angr

variable (angr.analyses.decompiler.region_simplifiers.switch_cluster_simplifier.SwitchCaseRegion
attribute), 721

variable (angr.analyses.decompiler.structured_codegen.c.CVariable
attribute), 734

variable (angr.analyses.loop_analysis.AnnotatedVariable
attribute), 839

Variable (angr.analyses.proximity_graph.ProxiNodeTypes
attribute), 865

variable (angr.analyses.variable_recovery.engine_base.RichR
attribute), 829

variable (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate
attribute), 589

variable (angr.knowledge_plugins.variables.variable_access.VariableAccess
attribute), 562

variable_hash (angr.analyses.decompiler.optimization_passes.lowered_switch_simplifier.Case
attribute), 708

variable_key_prefix
(angr.storage.memory_mixins.MemoryMixin
property), 336

variable_list_repr_chunks()
(angr.analyses.decompiler.structured_codegen.c.CFunction
method), 727

variable_manager (angr.analyses.decompiler.structured_codegen.c.CFunction
attribute), 727

variable_manager (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
property), 824

variable_manager (angr.knowledge_plugins.key_definitions.definition.DefinitionMatchPredicate
attribute), 590

variable_type (angr.analyses.decompiler.structured_codegen.c.CVariable
attribute), 734

VariableAccess (class in
angr.knowledge_plugins.variables.variable_access),
561

VariableAccessSort (class in
angr.knowledge_plugins.variables.variable_access),
561

VariableAnnotation (class in
angr.analyses.variable_recovery.variable_recovery_base),
821

VariableManager (class in
angr.knowledge_plugins.variables.variable_manager),
567

VariableManagerInternal (class in
angr.knowledge_plugins.variables.variable_manager),
563

VariableManagerSerializer (class in
angr.angrdb.serializers.variables), 683

VariableProxiNode (class in
angr.analyses.proximity_graph), 865

VariableRecovery (angr.analyses.analysis.KnownAnalysesPlugin
attribute), 620

VariableRecovery (class in
angr.analyses.variable_recovery.variable_recovery),
827

VariableRecoveryBase (class in
angr.analyses.variable_recovery.variable_recovery_base),
822

VariableRecoveryFast
(angr.analyses.analysis.KnownAnalysesPlugin
attribute), 620

VariableRecoveryFast (class in
angr.analyses.variable_recovery.variable_recovery_fast),
826

VariableRecoveryFastState (class in
angr.analyses.variable_recovery.variable_recovery_fast),
825

VariableRecoveryState (class in
angr.analyses.variable_recovery.variable_recovery),
827

VariableRecoveryStateBase (class in
angr.analyses.variable_recovery.variable_recovery_base),
822

variables (angr.analyses.variable_recovery.variable_recovery_base.VariableRecoveryStateBase
property), 824

variables (angr.knowledge_base.knowledge_base.KnowledgeBase
attribute), 520

variables (angr.KnowledgeBase attribute), 211
variables (angr.storage.memory_object.SimMemoryObject

property), 334
variables() (angr.state_plugins.solver.SimSolver

method), 262
variables_in_use (angr.analyses.decompiler.structured_codegen.c.CFunction

attribute), 727
VariableSourceAnnotation (class in

angr.analyses.variable_recovery.annotations),
821

VariableType (class in
angr.knowledge_plugins.variables.variable_manager),
562

VariableTypes (class in angr.analyses.loop_analysis),
839

Vault (class in angr.vaults), 618
VaultDict (class in angr.vaults), 618
VaultDir (class in angr.vaults), 618
VaultDirShelf (class in angr.vaults), 619
VaultPickler (class in angr.vaults), 617
VaultShelf (class in angr.vaults), 619
VaultUnpickler (class in angr.vaults), 618
VendorPreset (class in angr.misc.plugins), 224
Veritesting (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
Veritesting (class in angr.analyses.veritesting), 840
Veritesting (class in angr.exploration_techniques),

398
Veritesting (class in

angr.exploration_techniques.veritesting),
413

VeritestingError, 840

1062 Index

angr

VERSION (angr.angrdb.db.AngrDB attribute), 675
vex (angr.Block property), 170
vex (angr.block.Block property), 221
vex_nostmt (angr.Block property), 170
vex_nostmt (angr.block.Block property), 221
VEXIRSBScanner (class in

angr.analyses.variable_recovery.irsb_scanner),
829

VEXMemVar (class in angr.analyses.propagator.vex_vars),
754

VEXReg (class in angr.analyses.propagator.vex_vars), 754
VEXStmtDetails (class in

angr.state_plugins.unicorn_engine), 285
VEXTmp (class in angr.analyses.propagator.vex_vars), 754
VEXVariable (class in

angr.analyses.propagator.vex_vars), 754
VFG (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 620
VFG (class in angr.analyses.vfg), 844
VFGJob (class in angr.analyses.vfg), 841
VFGNode (class in angr.analyses.vfg), 844
Virtual (angr.analyses.disassembly.SootExpressionInvoke

attribute), 850
visited_blocks (angr.analyses.reaching_definitions.function_handler.FunctionCallData

attribute), 803
visited_blocks (angr.analyses.reaching_definitions.FunctionCallData

attribute), 789
visited_blocks (angr.analyses.reaching_definitions.reaching_definitions.ReachingDefinitionsAnalysis

property), 795
visited_blocks (angr.analyses.reaching_definitions.ReachingDefinitionsAnalysis

property), 774
visitor (angr.analyses.reaching_definitions.subject.Subject

property), 815
VSA_DDG (angr.analyses.analysis.KnownAnalysesPlugin

attribute), 619
VSA_DDG (class in angr.analyses.vsa_ddg), 846
Vtable (angr.knowledge_plugins.cfg.indirect_jump.IndirectJumpType

attribute), 547
Vtable (angr.knowledge_plugins.cfg.IndirectJumpType

attribute), 529
Vtable (class in angr.analyses.vtable), 847
VtableFinder (class in angr.analyses.vtable), 847

W
walk() (angr.analyses.decompiler.ailgraph_walker.AILGraphWalker

method), 693
walk() (angr.analyses.decompiler.optimization_passes.const_derefs.BlockWalker

method), 703
walk() (angr.analyses.decompiler.region_walker.RegionWalker

method), 723
walk() (angr.analyses.decompiler.sequence_walker.SequenceWalker

method), 724
walk_node() (angr.analyses.decompiler.optimization_passes.ite_expr_converter.BlockLocator

method), 707

walk_node() (angr.analyses.decompiler.region_walker.RegionWalker
method), 723

whitelist (angr.analyses.veritesting.CallTracingFilter
attribute), 840

widen() (angr.sim_state.SimState method), 227
widen() (angr.SimFile method), 191
widen() (angr.SimFileDescriptor method), 200
widen() (angr.SimFileDescriptorDuplex method), 202
widen() (angr.SimHeapBrk method), 206
widen() (angr.SimHeapPTMalloc method), 208
widen() (angr.SimPackets method), 194
widen() (angr.SimState method), 183
widen() (angr.SimStatePlugin method), 162
widen() (angr.state_plugins.callstack.CallStack

method), 265
widen() (angr.state_plugins.cgc.SimStateCGC method),

273
widen() (angr.state_plugins.concrete.Concrete method),

293
widen() (angr.state_plugins.filesystem.SimConcreteFilesystem

method), 253
widen() (angr.state_plugins.filesystem.SimFilesystem

method), 250
widen() (angr.state_plugins.globals.SimStateGlobals

method), 278
widen() (angr.state_plugins.heap.heap_brk.SimHeapBrk

method), 299
widen() (angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc

method), 306
widen() (angr.state_plugins.history.SimStateHistory

method), 268
widen() (angr.state_plugins.inspect.SimInspector

method), 235
widen() (angr.state_plugins.javavm_classloader.SimJavaVmClassloader

method), 295
widen() (angr.state_plugins.jni_references.SimStateJNIReferences

method), 297
widen() (angr.state_plugins.libc.SimStateLibc method),

239
widen() (angr.state_plugins.log.SimStateLog method),

263
widen() (angr.state_plugins.loop_data.SimStateLoopData

method), 292
widen() (angr.state_plugins.plugin.SimStatePlugin

method), 233
widen() (angr.state_plugins.posix.PosixDevFS method),

241
widen() (angr.state_plugins.posix.PosixProcFS

method), 243
widen() (angr.state_plugins.posix.SimSystemPosix

method), 247
widen() (angr.state_plugins.preconstrainer.SimStatePreconstrainer

method), 283
widen() (angr.state_plugins.scratch.SimStateScratch

Index 1063

angr

method), 281
widen() (angr.state_plugins.sim_action_object.SimActionObject

method), 468
widen() (angr.state_plugins.solver.SimSolver method),

257
widen() (angr.state_plugins.trace_additions.ChallRespInfo

method), 275
widen() (angr.state_plugins.trace_additions.ZenPlugin

method), 277
widen() (angr.state_plugins.unicorn_engine.Unicorn

method), 290
widen() (angr.state_plugins.view.SimMemView

method), 314
widen() (angr.state_plugins.view.SimRegNameView

method), 310
widen() (angr.storage.file.SimFile method), 319
widen() (angr.storage.file.SimFileDescriptor method),

329
widen() (angr.storage.file.SimFileDescriptorDuplex

method), 331
widen() (angr.storage.file.SimPackets method), 323
widen() (angr.storage.file.SimPacketsSlots method), 333
widen() (angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin

method), 378
widen() (angr.storage.memory_mixins.MemoryMixin

method), 337
widen() (angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin

method), 372
widened_jobs (angr.analyses.forward_analysis.job_info.JobInfo

property), 623
width (angr.analyses.data_dep.dep_nodes.MemDepNode

property), 870
width() (angr.analyses.disassembly.DisassemblyPiece

method), 848
with_arch() (angr.sim_type.SimType method), 508
with_arch() (angr.sim_type.TypeRef method), 508
with_condition (angr.sim_state.SimState property),

228
with_condition (angr.SimState property), 184
with_type() (angr.state_plugins.debug_variables.SimDebugVariable

method), 308
with_type() (angr.state_plugins.view.SimMemView

method), 313
work() (angr.analyses.complete_calling_conventions.CompleteCallingConventionsAnalysis

method), 636
Worker (class in angr.distributed.worker), 903
WRITE (angr.knowledge_plugins.variables.variable_access.VariableAccessSort

attribute), 561
Write (angr.knowledge_plugins.xrefs.xref_types.XRefType

attribute), 612
WRITE (angr.state_plugins.sim_action.SimActionData at-

tribute), 467
write() (angr.SimFile method), 190
write() (angr.SimFileBase method), 189

write() (angr.SimFileStream method), 195
write() (angr.SimPackets method), 193
write() (angr.SimPacketsStream method), 196
write() (angr.storage.file.SimFile method), 318
write() (angr.storage.file.SimFileBase method), 316
write() (angr.storage.file.SimFileDescriptorBase

method), 325
write() (angr.storage.file.SimFileStream method), 320
write() (angr.storage.file.SimPackets method), 322
write() (angr.storage.file.SimPacketsSlots method), 332
write() (angr.storage.file.SimPacketsStream method),

324
write_data() (angr.SimFileDescriptor method), 198
write_data() (angr.SimFileDescriptorDuplex method),

201
write_data() (angr.storage.file.SimFileDescriptor

method), 327
write_data() (angr.storage.file.SimFileDescriptorBase

method), 326
write_data() (angr.storage.file.SimFileDescriptorDuplex

method), 330
write_msr() (angr.state_plugins.unicorn_engine.Unicorn

method), 290
write_pos (angr.SimFileDescriptor property), 199
write_pos (angr.SimFileDescriptorDuplex property),

201
write_pos (angr.storage.file.SimFileDescriptor prop-

erty), 328
write_pos (angr.storage.file.SimFileDescriptorBase

property), 326
write_pos (angr.storage.file.SimFileDescriptorDuplex

property), 330
write_storage (angr.SimFileDescriptor property), 199
write_storage (angr.SimFileDescriptorDuplex prop-

erty), 201
write_storage (angr.storage.file.SimFileDescriptor

property), 328
write_storage (angr.storage.file.SimFileDescriptorBase

property), 326
write_storage (angr.storage.file.SimFileDescriptorDuplex

property), 330
write_to() (angr.knowledge_plugins.variables.variable_manager.VariableManagerInternal

method), 563

X
X86ElfPicPltResolver (class in

angr.analyses.cfg.indirect_jump_resolvers.x86_elf_pic_plt),
662

X86GccGetPcSimplifier (class in
angr.analyses.decompiler.optimization_passes.x86_gcc_getpc_simplifier),
713

X86PeIatResolver (class in
angr.analyses.cfg.indirect_jump_resolvers.x86_pe_iat),
660

1064 Index

angr

Xor (angr.engines.light.data.ArithmeticExpression
attribute), 752

XRef (class in angr.knowledge_plugins.xrefs.xref), 610
XRefManager (class in

angr.knowledge_plugins.xrefs.xref_manager),
612

XRefs (angr.analyses.analysis.KnownAnalysesPlugin at-
tribute), 620

xrefs (angr.angrdb.models.DbKnowledgeBase at-
tribute), 677

xrefs (angr.knowledge_base.knowledge_base.KnowledgeBase
attribute), 520

xrefs (angr.knowledge_plugins.functions.function.Function
property), 554

xrefs (angr.KnowledgeBase attribute), 211
XRefsAnalysis (class in angr.analyses.xrefs), 864
XRefsSerializer (class in

angr.angrdb.serializers.xrefs), 683
XRefType (class in angr.knowledge_plugins.xrefs.xref_types),

611

Z
zen_hook() (in module

angr.state_plugins.trace_additions), 276
zen_memory_write() (in module

angr.state_plugins.trace_additions), 276
zen_register_write() (in module

angr.state_plugins.trace_additions), 276
ZenPlugin (class in angr.state_plugins.trace_additions),

276

Index 1065

	Introduction
	Getting Support
	Citing angr
	Going further:

	Getting Started
	Installing angr
	Installing from PyPI
	Installing from Source
	Troubleshooting
	angr has no attribute Project, or similar
	AttributeError: ‘module’ object has no attribute ‘KS_ARCH_X86’

	Reporting Bugs
	Developing angr
	pre-commit
	Coding style
	Documentation
	Unit tests

	Help Wanted
	Documentation
	API
	GitBook
	angr course

	Research re-implementation
	Redundant State Detection for Dynamic Symbolic Execution
	In-Vivo Multi-Path Analysis of Software Systems

	Development
	angr-management
	IDA Plugins
	Additional architectures
	Environment support

	Design Problems
	Type annotation and type information usage

	Research Challenges
	Semantic function identification/diffing
	Applying AFL’s path selection criteria to symbolic execution

	Overarching Research Directions
	Process interactions
	Intra-process concurrency
	Path explosion

	Core Concepts
	Core Concepts
	Basic properties
	Loading
	The factory
	Blocks
	States
	Simulation Managers

	Analyses
	Now what?

	Loading a Binary
	The Loader
	Loaded Objects
	Symbols and Relocations

	Loading Options
	Backends

	Symbolic Function Summaries
	So far so good!

	Symbolic Expressions and Constraint Solving
	Working with Bitvectors
	Symbolic Constraints
	Constraint Solving
	Floating point numbers
	More Solving Methods
	Summary

	Machine State - memory, registers, and so on
	Review: Reading and writing memory and registers
	Basic Execution
	State Presets
	Low level interface for memory
	State Options
	State Plugins
	The globals plugin
	The history plugin
	The callstack plugin

	More about I/O: Files, file systems, and network sockets
	Copying and Merging

	Simulation Managers
	Stepping
	Stash Management
	Stash types

	Simple Exploration
	Exploration Techniques

	Simulation and Instrumentation
	SimSuccessors
	Breakpoints
	Caution about mem_read breakpoint

	Analyses
	Built-in Analyses
	Resilience

	Symbolic Execution
	A final word of advice

	Build-in Analyses
	Control-flow Graph Recovery (CFG)
	General ideas
	Using the CFG
	Viewing the CFG

	Shared Libraries
	Function Manager
	CFGFast details
	Finding function starts
	FakeRets and function returns
	Indirect Jump Resolution
	Options

	CFGEmulated details
	Options
	Context Sensitivity Level

	Backward Slicing
	First Step First
	Using The BackwardSlice Object
	Members
	Export an Annotated Control Flow Graph
	User-friendly Representation

	Implementation Choices
	Limitations
	Completeness
	Soundness

	Identifier
	angr Decompiler
	Analysis Passes

	Advanced Topics
	Gotchas when using angr
	SimProcedure inaccuracy
	Unsupported syscalls
	Symbolic memory model
	Symbolic lengths
	Division by Zero

	Understanding the Execution Pipeline
	Simulation Managers
	run()
	An aside: explore()

	Exploration technique hooking
	step()
	step_state()
	successors()

	The Engine
	Engine mixins
	When using Unicorn Engine

	What’s Up With Mixins, Anyway?
	Mixins in Claripy Solvers
	Mixins in angr Engines
	HeavyVEXMixin and friends
	Instrumenting the data layer

	Mixins in the memory model

	Optimization considerations
	General speed tips
	If you’re performing lots of concrete or partially-concrete execution
	Memory optimization

	Working with File System, Sockets, and Pipes
	Just tell me how to do what I want to do!
	Example 1: Create a file with concrete content
	Example 2: Create a file with symbolic content and a defined size
	Example 3: Create a file with constrained symbolic content
	Example 4: Create a file with some mixed concrete and symbolic content, but no EOF
	Example 5: Create a file with a symbolic size (has_end is implicitly true here)
	Example 6: Working with streams (SimPackets)

	The filesystem, for real now
	Stdio streams

	Intermediate Representation
	Condition flags computation (for x86 and ARM)

	Working with Data and Conventions
	Working with types
	Accessing typed data from memory
	Working with Calling Conventions
	Callables

	Solver Engine
	Claripy ASTs
	Solvers
	Claripy Backends
	Backend Objects

	Symbolic memory addressing
	Writing concretization strategies

	Java Support
	How to install
	Analyzing Android apps.

	Examples

	Symbion: Interleaving symbolic and concrete execution
	How to install
	Gists
	Options
	Example

	Debug variable resolution
	Setting up
	Core feature

	Variable visibility

	Extending angr
	Hooks and SimProcedures
	Quick Start
	Implementation Context
	kwargs

	Data Types
	Control Flow
	Conditional Exits
	SimProcedure Continuations

	Global Variables
	Helping out static analysis
	User Hooks
	Hooking Symbols

	State Plugins
	My First Plugin
	Where’s the state?
	Note: weak references

	Merging
	Common Ancestor

	Widening
	Serialization
	Plugins all the way down
	Setting Defaults

	Extending the Environment Model
	Setup
	Dynamic library functions - import dependencies
	Case 1, in-tree development: SimLibraries and catalogues
	Case 2, out-of-tree development, tight integration
	Case 3, out-of-tree development, loose integration

	Syscalls
	Case 1, in-tree development
	Case 2, out-of-tree development, tight integration
	Case 3, out-of-tree development, loose integration

	SimData

	Writing Analyses
	Working with projects
	Analysis Resilience

	Scripting angr management
	The console, and the basic objects
	The ObjectContainer
	Manipulating UI elements
	Writing plugins
	Writing tests

	angr examples
	Introduction
	Fauxware

	Reversing
	Beginner reversing example: little_engine
	Whitehat CTF 2015 - Crypto 400
	CSAW CTF 2015 Quals - Reversing 500, “wyvern”
	TUMCTF 2016 - zwiebel
	FlareOn 2015 - Challenge 5
	0ctf quals 2016 - trace
	ASIS CTF Finals 2015 - license
	DEFCON Quals 2017 - Crackme2000

	Vulnerability Discovery
	Beginner vulnerability discovery example: strcpy_find
	CGC crash identification
	Grub “back to 28” bug

	Exploitation
	Insomnihack Simple AEG
	SecuInside 2016 Quals - mbrainfuzz - symbolic exploration for exploitability conditions
	SECCON 2016 Quals - ropsynth

	Frequently Asked Questions
	Why is it named angr?
	How should “angr” be stylized?
	Why isn’t symbolic execution doing the thing I want?
	How can I get diagnostic information about what angr is doing?
	Why is angr so slow?
	How do I find bugs using angr?
	Why did you choose VEX instead of another IR (such as LLVM, REIL, BAP, etc)?
	Why are some ARM addresses off-by-one?
	How do I serialize angr objects?
	What does UnsupportedIROpError("floating point support disabled") mean?
	Why is angr’s CFG different from IDA’s?
	Why do I get incorrect register values when reading from a state during a SimInspect breakpoint?

	Appendix
	Cheatsheet
	General getting started
	States
	Simulation Managers
	Exploring and analysing states
	Manually Exploring
	Stashes

	Constraint Solver (claripy)
	FFI and Hooking
	Other useful tricks
	State manipulation
	Debugging angr

	List of Claripy Operations
	Arithmetic and Logic
	Bitvector Manipulation
	Extra Functionality

	List of State Options
	State Modes
	Option Sets
	Options

	CTF Challenge Examples
	ReverseMe example: HackCon 2016 - angry-reverser
	ReverseMe example: SecurityFest 2016 - fairlight
	ReverseMe example: DEFCON Quals 2016 - baby-re
	ReverseMe example: Google CTF - Unbreakable Enterprise Product Activation (150 points)
	ReverseMe example: EKOPARTY CTF - Fuckzing reverse (250 points)
	ReverseMe example: WhiteHat Grant Prix Global Challenge 2015 - Re400
	ReverseMe example: EKOPARTY CTF 2015 - rev 100
	ReverseMe example: ASIS CTF Finals 2015 - fake
	ReverseMe example: Defcamp CTF Qualification 2015 - Reversing 100
	ReverseMe example: Defcamp CTF Qualification 2015 - Reversing 200
	ReverseMe example: MMA CTF 2015 - HowToUse
	CrackMe example: MMA CTF 2015 - SimpleHash
	ReverseMe example: FlareOn 2015 - Challenge 10
	ReverseMe example: FlareOn 2015 - Challenge 2
	ReverseMe example: 0ctf 2016 - momo
	CrackMe example: 9447 CTF 2015 - Reversing 330, “nobranch”
	CrackMe example: ais3_crackme
	ReverseMe: Modern Binary Exploitation - CSCI 4968
	CrackMe example: Android License Check

	Changelog
	angr 9.1
	angr 9.0
	angr 8.19.7.25
	angr 8.19.4.5
	angr 8.19.2.4
	angr 8.18.10.25
	angr 8.18.10.5
	angr 8.18.10.1
	angr 7.8.7.1
	angr 7.8.6.23
	angr 7.8.6.16
	angr 7.8.2.21
	angr 7.7.12.16
	angr 7.7.9.8
	angr 6.7.6.9
	angr 6.7.3.26
	angr 6.7.1.13
	angr 5.6.12.3
	angr 5.6.8.22
	angr 4.6.6.28
	angr
	SimuVEX
	Claripy

	angr 4.6.6.4
	angr 4.6.5.25
	angr 4.6.3.28
	angr 4.6.3.15
	angr 4.5.12.?
	angr 4.5.12.12
	angr 4.5.11.23

	Migrating to angr 9.1
	Calling Conventions and Prototypes
	SimCCs can no longer be customized
	Passing SimTypes is now mandatory
	PointerWrapper has a new parameter
	func_ty -> prototype

	Migrating to angr 8
	What do I need to know for migrating my scripts to Python 3?
	Clemory API changes
	CLE symbols changes
	Deprecations and name changes

	Migrating to angr 7
	SimuVEX is gone
	Removal of angr.Path
	Path Group -> Simulation Manager
	Errored Paths

	Changes to SimProcedures
	Changes to hooking
	Changes to loading
	Changes to the solver interface

	API Reference
	Project
	Plugin Ecosystem
	Program State
	Storage
	Memory Mixins
	Concretization Strategies
	Simulation Manager
	Exploration Techniques
	Simulation Engines
	Simulation Logging
	Procedures
	Calling Conventions and Types
	Knowledge Base
	Serialization
	Analysis
	}

	SimOS
	Function Signature Matching
	Utils
	Errors
	Distributed analysis

	Indices and tables
	Python Module Index
	Index

