angr

The angr Project

Feb 13, 2024

Introduction

1.1 Getting Support
1.2 Citingangr
1.3 Going further:
Getting Started

2.1 Installingangr,
2.2 ReportingBugs 0 L.
2.3 Developingangr
24 HelpWanted
Core Concepts

3.1 CoreConcepts oo v vv v v
3.2 LoadingaBinary,
3.3 Symbolic Expressions and Constraint Solving

3.4 Machine State - memory, registers, and so on

3.5 Simulation Managers

3.6 Simulation and Instrumentation

37 Analyses
3.8 Symbolic Execution

3.9 A final word of advice

Build-in Analyses

4.1 Control-flow Graph Recovery (CFG)

42 Backward Slicing L.
43 Identifier
44 angrDecompiler
Advanced Topics

5.1 Gotchas when using angr

5.2 Understanding the Execution Pipeline

5.3 What’s Up With Mixins, Anyway?

5.4 Optimization considerations

5.5 Working with File System, Sockets, and Pipes

5.6 Intermediate Representation

5.7 Working with Data and Conventions

5.8 SolverEngine.
5.9 Symbolic memory addressing

5.10 Java Support
5.11 Symbion: Interleaving symbolic and concrete execution

CONTENTS

A~ b WW

O 3 N L

9

5.12 Debug variable resolutiono e

5.13 Variable visibility L. e e e e e e e
Extending angr
6.1 Hooks and SimProcedures L
6.2 State Plugins e e e e e e e e
6.3 Extending the Environment Model L L
6.4 Writing Analyses e e e e e e e e
6.5 Scripting angr managemento u e i e e e e e e e e e e e e e e
angr examples
7.1 Introduction L e e e e e e e e e e e e e
T2 ReVEISING o o e e e e e e e e
7.3 Vulnerability DisCOVETY o o i e e e e e e e e e e e
7.4 EXploitation e e e e e e e e e e e e e e e
Frequently Asked Questions
8.1 Whyisitnamed angr? L e e e e e e
8.2 How should “angr” be stylized? e
8.3 Why isn’t symbolic execution doing the thing Iwant?
8.4 How can I get diagnostic information about what angr is doing?
85 Whyisangrsoslow? L e e
8.6 Howdolfindbugsusingangr? e
8.7 Why did you choose VEX instead of another IR (such as LLVM, REIL, BAP,etc)?
8.8 Why are some ARM addresses off-by-one? L o
8.9 How doIserialize angrobjects? L
8.10 What does UnsupportedIROpError("floating point support disabled") mean?
8.11 Why is angr’s CFG different from IDA’s? e
8.12 Why do I get incorrect register values when reading from a state during a SimInspect breakpoint? . .
Appendix
0.1 Cheatsheet e e
9.2 Listof Claripy Operations i v v it e e e e e e e e e e e e
9.3 Listof State Options i e e e e e e e e e e
9.4 CTF Challenge Examples e
9.5 Changelog e e
9.6 Migratingtoangr 9.1 L e e
0.7 Migrating to angr 8 L e e e e e e e e e e e e e e e e
0.8 Migrating to angr 7 e e e e e e e e e e e e e e e e e e e
10 API Reference
10.1 Project o o o e e e e e e e e e e e e
10.2 Plugin Ecosystem e e e e e e e e e
103 Program State e
104 Storage oL e e e e e e e e
10.5 Memory Mixins o o e e e e e e e e e e
10.6 Concretization Strate@ies v i e e e e e e e e e e e e e e e
10.7 Simulation Manager i i e e e e e e e e e e e e
10.8 Exploration Techniques e
10.9 Simulation Engines L
10.10 Simulation Logging o . e e e e e
10.11 Procedures ot i i e e e e e e e e
10.12 Calling Conventions and Types o o 0 i i e e e e e e e e
10.13 Knowledge Base e e e e e e
10.14 Serialization e e e e e e e e e e e e e e e e e

99
99
103
107
110
112

115
115
115
118
119

121
121
121
121
122
122
122
122
123
123
123
124
124

125
125
130
131
134
138
150
150
153

10,15 Analysis o e e e e e e e e e e e e e e e e e
10.16 SImOS
10.17 Function Signature Matching L
1018 Utils . . o o o e e
T0.19 Errors o o o o e
10.20 Distributed analysis e e e e

11 Indices and tables
Python Module Index

Index

angr

Welcome to angr’s documentation! This documentation is intended to be a guide for learning angr, as well as a reference
for the APIL. If you’re new to angr,

The angr team maintains a number of libraries that are used as part of angr. These libraries are:
* archinfo - Information about CPU architectures
* pyvex - Python bindings to the VEX IR
* pypcode - Python bindings to the Pcode IR
e ailment - angr’s high-level intermediate language
¢ cle - Many-platform binary loader

e claripy - Solver abstraction layer

CONTENTS 1

https://api.angr.io/projects/archinfo/en/latest/
https://api.angr.io/projects/pyvex/en/latest/
https://api.angr.io/projects/pypcode/en/latest/
https://api.angr.io/projects/ailment/en/latest/
https://api.angr.io/projects/cle/en/latest/
https://api.angr.io/projects/claripy/en/latest/

angr

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

angr is a multi-architecture binary analysis toolkit, with the capability to perform dynamic symbolic execution (like
Mayhem, KLEE, etc.) and various static analyses on binaries. If you’d like to learn how to use it, you’re in the right
place!

We’ve tried to make using angr as pain-free as possible - our goal is to create a user-friendly binary analysis suite,
allowing a user to simply start up iPython and easily perform intensive binary analyses with a couple of commands.
That being said, binary analysis is complex, which makes angr complex. This documentation is an attempt to help out
with that, providing narrative explanation and exploration of angr and its design.

Several challenges must be overcome to programmatically analyze a binary. They are, roughly:
* Loading a binary into the analysis program.
 Translating a binary into an intermediate representation (IR).
 Performing the actual analysis. This could be:
— A partial or full-program static analysis (i.e., dependency analysis, program slicing).
— A symbolic exploration of the program’s state space (i.e., “Can we execute it until we find an overflow?”).

— Some combination of the above (i.e., “Let’s execute only program slices that lead to a memory write, to
find an overflow.”)

angr has components that meet all of these challenges. This documentation will explain how each component works,
and how they can all be used to accomplish your goals.

1.1 Getting Support

To get help with angr, you can ask via:
¢ the slack channel: angr.slack.com, for which you can get an account here.

* opening an issue on the appropriate github repository

https://angr.slack.com
https://angr.io/invite/

angr

1.2 Citing angr

If you use angr in an academic work, please cite the papers for which it was developed:

@article{shoshitaishvili2®l6state,
title={SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis},
author={Shoshitaishvili, Yan and Wang, Ruoyu and Salls, Christopher and Stephens, Nick.,
—and Polino, Mario and Dutcher, Audrey and Grosen, Jessie and Feng, Siji and Hauser,.
—Christophe and Kruegel, Christopher and Vigna, Giovanni},
booktitle={IEEE Symposium on Security and Privacy},
year={2016}
}

@article{stephens20l6driller,
title={Driller: Augmenting Fuzzing Through Selective Symbolic Execution},
author={Stephens, Nick and Grosen, Jessie and Salls, Christopher and Dutcher, Audrey.
—and Wang, Ruoyu and Corbetta, Jacopo and Shoshitaishvili, Yan and Kruegel, Christopher.
—and Vigna, Giovanni},
booktitle={NDSS},
year={2016}
3

@article{shoshitaishvili2®15firmalice,

title={Firmalice - Automatic Detection of Authentication Bypass Vulnerabilities in.,
—Binary Firmware},

author={Shoshitaishvili, Yan and Wang, Ruoyu and Hauser, Christophe and Kruegel,..
—Christopher and Vigna, Giovanni},

booktitle={NDSS},

year={2015}
}

1.3 Going further:

You can read this paper, explaining some of the internals, algorithms, and used techniques to get a better understanding
on what’s going on under the hood.

If you enjoy playing CTFs and would like to learn angr in a similar fashion, angr_ctf will be a fun way for you to get
familiar with much of the symbolic execution capability of angr. The angr_ctf repo is maintained by @jakespringer.

4 Chapter 1. Introduction

https://www.cs.ucsb.edu/~vigna/publications/2016_SP_angrSoK.pdf
https://github.com/jakespringer/angr_ctf
https://github.com/jakespringer/angr_ctf
https://github.com/jakespringer

CHAPTER
TWO

GETTING STARTED

2.1 Installing angr

angr is a library for Python 3.8+, and must be installed into a Python environment before it can be used.

Tip: Itis recommended to use an isolated python environment rather than installing angr globally. Doing so reduces
dependency conflicts and aids in reproducibility while debugging. Some popular tools that accomplish this include:

* venv

* pipenv

e virtualenv

* virtualenvwrapper

e conda

2.1.1 Installing from PyPI

angr is published on PyPI, and using this is the easiest and recommended way to install angr. It can be installed angr
with pip:

[pip install angr

Note: The PyPI distribution includes binary packages for most popular system configurations. If you are using a
system that is not supported by the binary packages, you will need to build the C dependencies from source. See the
Installing from Source section for more information.

2.1.2 Installing from Source
angr is a collection of Python packages, each of which is published on GitHub. The easiest way to install angr from
source is to use angr-dev.

To set up a development environment manually, first ensure that build dependencies are installed. These consist of
python development headers, make, and a C compiler. On Ubuntu, these can be installed with:

[sudo apt-get install python3-dev build-essential]

https://docs.python.org/3/library/venv.html
https://pipenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://docs.conda.io/en/latest/
https://pypi.org/
https://github.com/angr/angr-dev

angr

Then, checkout and install the following packages, in order:

archinfo

* pyvex (clone with --recursive)
e cle

* claripy

* ailment

e angr (pip install with --no-build-isolation)

2.1.3 Troubleshooting

angr has no attribute Project, or similar

If angr can be imported but the Project class is missing, it is likely one of two problems:
1. There is a script named angr . py in the working directory. Rename it to something else.

2. There is a folder called angr in your working directory, possibly the cloned repository. Change the working
directory to somewhere else.

AttributeError: ‘module’ object has no attribute ‘KS_ARCH_X86’

The keystone package is installed, which conflicts with the keystone-engine package, an optional dependency of
angr. Uninstall keystone and install keystone-engine.

2.2 Reporting Bugs

If you’ve found something that angr isn’t able to solve and appears to be a bug, please let us know!
1. Create a fork off of angr/binaries and angr/angr
2. Give us a pull request with angr/binaries, with the binaries in question

3. Give us a pull request for angr/angr, with testcases that trigger the binaries in angr/tests/broken_x.py,
angr/tests/broken_y.py, etc

Please try to follow the testcase format that we have (so the code is in a test_blah function), that way we can very easily
merge that and make the scripts run.

An example is:

def test_some_broken_feature():
p = angr.Project("some_binary")
result = p.analyses.SomethingThatDoesNotWork ()
assert result == "what it should *actually* be if it worked"

if __name__ == '__main_

test_some_broken_feature()

This will greatly help us recreate your bug and fix it faster.

The ideal situation is that, when the bug is fixed, your testcases passes (i.e., the assert at the end does not raise an
AssertionError).

6 Chapter 2. Getting Started

https://github.com/angr/archinfo
https://github.com/angr/pyvex
https://github.com/angr/cle
https://github.com/angr/claripy
https://github.com/angr/ailment
https://github.com/angr/angr

angr

Then, we can just fix the bug and rename broken_x.py to test_x.py and the testcase will run in our internal CI at
every push, ensuring that we do not break this feature again.

2.3 Developing angr

These are some guidelines so that we can keep the codebase in good shape!

2.3.1 pre-commit

Many angr repos contain pre-commit hooks provided by pre-commit. Installing this is as easy as pip install
pre-commit. After git cloning an angr repository, if the repo contains a .pre-commit-config.yaml, run
pre-commit install. Future git commits will now invoke these hooks automatically.

2.3.2 Coding style

We format our code with black and otherwise try to get as close as the PEP8 code convention as is reasonable without
being dumb. If you use Vim, the python-mode plugin does all you need. You can also manually configure vim to adopt
this behavior.

Most importantly, please consider the following when writing code as part of angr:

» Try to use attribute access (see the @property decorator) instead of getters and setters wherever you can. This
isn’t Java, and attributes enable tab completion in iPython. That being said, be reasonable: attributes should be
fast. A rule of thumb is that if something could require a constraint solve, it should not be an attribute.

e Use our pylintrc from the angr-dev repo. It’s fairly permissive, but our CI server will fail your builds if pylint
complains under those settings.

e DO NOT, under ANY circumstances, raise Exception or assert False. Use the right exception type.
If there isn’t a correct exception type, subclass the core exception of the module that you’re working in (i.e.,
AngrError in angr, SimError in SimuVEX, etc) and raise that. We catch, and properly handle, the right types
of errors in the right places, but AssertionError and Exception are not handled anywhere and force-terminate
analyses.

* Avoid tabs; use space indentation instead. Even though it’s wrong, the de facto standard is 4 spaces. It is a good
idea to adopt this from the beginning, as merging code that mixes both tab and space indentation is awful.

* Avoid super long lines. It’s okay to have longer lines, but keep in mind that long lines are harder to read and
should be avoided. Let’s try to stick to 120 characters.

* Avoid extremely long functions, it is often better to break them up into smaller functions.

* Always use _ instead of __ for private members (so that we can access them when debugging). You might not
think that anyone has a need to call a given function, but trust us, you’re wrong.

* Format your code with black; config is already defined within pyproject.toml.

2.3. Developing angr 7

https://pre-commit.com/
https://github.com/psf/black
http://legacy.python.org/dev/peps/pep-0008/
https://github.com/klen/python-mode
https://wiki.python.org/moin/Vim
https://github.com/angr/angr-dev/blob/master/pylintrc

angr

2.3.3 Documentation

Document your code. Every class definition and public function definition should have some description of:
e What it does.
* What are the type and the meaning of the parameters.
* What it returns.

Class docstrings will be enforced by our linter. Do not under any circumstances write a docstring which doesn’t provide
more information than the name of the class. What you should try to write is a description of the environment that
the class should be used in. If the class should not be instantiated by end-users, write a description of where it will
be generated and how instances can be acquired. If the class should be instanciated by end-users, explain what kind
of object it represents at its core, what behavior is expected of its parameters, and how to safely manage objects of its

type.

We use Sphinx to generate the API documentation. Sphinx supports docstrings written in ReStructured Text with
special keywords to document function and class parameters, return values, return types, members, etc.

Here is an example of function documentation. Ideally the parameter descriptions should be aligned vertically to make
the docstrings as readable as possible.

def prune(self, filter_func=None, from_stash=None, to_stash=None):

e

Prune unsatisfiable paths from a stash.

:param filter_func: Only prune paths that match this filter.
:param from_stash: Prune paths from this stash. (default: 'active')

:param to_stash: Put pruned paths in this stash. (default: 'pruned’)
:returns: The resulting PathGroup.
:rtype: PathGroup

o

This format has the advantage that the function parameters are clearly identified in the generated documentation. How-
ever, it can make the documentation repetitive, in some cases a textual description can be more readable. Pick the
format you feel is more appropriate for the functions or classes you are documenting.

def read_bytes(self, addr, n):

i

Read 'n° bytes at address ‘addr’ in memory and return an array of bytes.

i

2.3.4 Unit tests

If you're pushing a new feature and it is not accompanied by a test case it will be broken in very short order. Please
write test cases for your stuff.

We have an internal CI server to run tests to check functionality and regression on each commit. In order to have our
server run your tests, write your tests in a format acceptable to nosetests in a file matching test_*.py in the tests
folder of the appropriate repository. A test file can contain any number of functions of the form def test_*(): or
classes of the form class Test*(unittest.TestCase):. Each of them will be run as a test, and if they raise any
exceptions or assertions, the test fails. Do not use the nose.tools.assert_* functions, as we are presently trying to
migrate to nose2. Use assert statements with descriptive messages or the unittest.TestCase assert methods.

Look at the existing tests for examples. Many of them use an alternate format where the test_* function is actually a
generator that yields tuples of functions to call and their arguments, for easy parametrization of tests.

8 Chapter 2. Getting Started

http://www.sphinx-doc.org/en/stable/
http://openalea.gforge.inria.fr/doc/openalea/doc/_build/html/source/sphinx/rest_syntax.html#auto-document-your-python-code
http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists
https://nose.readthedocs.org/en/latest/

angr

Finally, do not add docstrings to your test functions.

2.4 Help Wanted

Todo: This page is woefully out of date. We need to update it.

angr is a huge project, and it’s hard to keep up. Here, we list some big TODO items that we would love community
contributions for in the hope that it can direct community involvement. They (will) have a wide range of complexity,
and there should be something for all skill levels!

We tag issues on our github repositories that would be good for community involvement as “Help wanted”. To see the
exhaustive list of these, use this github search!

2.4.1 Documentation

There are many parts of angr that suffer from little or no documentation. We desperately need community help in this
area.

API
We are always behind on documentation. We’ve created several tracking issues on github to understand what’s still
missing:

1. angr

2. claripy

3. cle

4. pyvex

GitBook

This book is missing some core areas. Specifically, the following could be improved:
1. Finish some of the TODOs floating around the book.

2. Organize the Examples page in some way that makes sense. Right now, most of the examples are very redundant.
It might be cool to have a simple table of most of them so that the page is not so overwhelming.

angr course
Developing a “course” of sorts to get people started with angr would be really beneficial. Steps have already been made
in this direction here, but more expansion would be beneficial.

Ideally, the course would have a hands-on component, of increasing difficulty, that would require people to use more
and more of angr’s capabilities.

2.4. Help Wanted 9

https://github.com/search?utf8=%E2%9C%93&q=user%3Aangr+label%3A%22help+wanted%22+state%3Aopen&type=Issues&ref=advsearch&l=&l=
https://github.com/angr/angr/issues/145
https://github.com/angr/claripy/issues/17
https://github.com/angr/cle/issues/29
https://github.com/angr/pyvex/issues/34
https://github.com/angr/angr-doc/pull/74

angr

2.4.2 Research re-implementation

Unfortunately, not everyone bases their research on angr ;-). Until that’s remedied, we’ll need to periodically implement
related work, on top of angr, to make it reusable within the scope of the framework. This section lists some of this
related work that’s ripe for reimplementation in angr.

Redundant State Detection for Dynamic Symbolic Execution

Bugrara, et al. describe a method to identify and trim redundant states, increasing the speed of symbolic execution by
up to 50 times and coverage by 4%. This would be great to have in angr, as an ExplorationTechnique. The paper is
here: http://nsl.cs.columbia.edu/projects/minestrone/papers/atc13-bugrara.pdf

In-Vivo Multi-Path Analysis of Software Systems

Rather than developing symbolic summaries for every system call, we can use a technique proposed by S2E for con-
cretizing necessary data and dispatching them to the OS itself. This would make angr applicable to a much larger set
of binaries than it can currently analyze.

While this would be most useful for system calls, once it is implemented, it could be trivially applied to any location
of code (i.e., library functions). By carefully choosing which library functions are handled like this, we can greatly
increase angr’s scalability.

2.4.3 Development

We have several projects in mind that primarily require development effort.

angr-management
The angr GUI, angr-management needs a lot of work. Here is a non-exhaustive list of what is currently missing in
angr-management:

* A navigator toolbar showing content in a program’s memory space, just like IDA Pro’s navigator toolbar.

* A text-based disassembly view of the program.

* Better view showing details in program states during path exploration, including modifiable register view, mem-
ory view, file descriptor view, etc.

* A GUI for cross referencing.

Exposing angr’s capabilities in a usable way, graphically, would be really useful!

IDA Plugins

Much of angr’s functionality could be exposed via IDA. For example, angr’s data dependence graph could be exposed
in IDA through annotations, or obfuscated values can be resolved using symbolic execution.

10 Chapter 2. Getting Started

http://nsl.cs.columbia.edu/projects/minestrone/papers/atc13-bugrara.pdf
http://dslab.epfl.ch/pubs/s2e.pdf
https://github.com/angr/angr-management

angr

Additional architectures

More architecture support would make angr all the more useful. Supporting a new architecture with angr would involve:
1. Adding the architecture information to archinfo

Adding an IR translation. This may be either an extension to PyVEX, producing IRSBs, or another IR entirely.

If your IR is not VEX, add a SimEngine to support it.

Adding a calling convention (angr . SimCC) to support SimProcedures (including system calls)

Adding or modifying an angr.Sim0S to support initialization activities.

AN T

Creating a CLE backend to load binaries, or extending the CLE ELF backend to know about the new architecture
if the binary format is ELF.

ideas for new architectures:

¢ PIC, AVR, other embedded architectures

* SPARC (there is some preliminary libVEX support for SPARC here)
ideas for new IRs:

e LLVM IR (with this, we can extend angr from just a Binary Analysis Framework to a Program Analysis Frame-
work and expand its capabilities in other ways!)

* SOOT (there is no reason that angr can’t analyze Java code, although doing so would require some extensions to
our memory model)

Environment support

We use the concept of “function summaries” in angr to model the environment of operating systems (i.e., the effects
of their system calls) and library functions. Extending this would be greatly helpful in increasing angr’s utility. These
function summaries can be found here.

A specific subset of this is system calls. Even more than library function SimProcedures (without which angr can always
execute the actual function), we have very few workarounds for missing system calls. Every implemented system call
extends the set of binaries that angr can handle.

2.4.4 Design Problems

There are some outstanding design challenges regarding the integration of additional functionalities into angr.

Type annotation and type information usage

angr has fledgling support for types, in the sense that it can parse them out of header files. However, those types are
not well exposed to do anything useful with. Improving this support would make it possible to, for example, annotate
certain memory regions with certain type information and interact with them intelligently. Consider, for example,
interacting with a linked list like this: print state.mem[state.regs.rax].llist.next.next.value.

(editor’s note: you can actually already do this)

2.4. Help Wanted 11

https://github.com/angr/archinfo
https://bitbucket.org/iraisr/valgrind-solaris
https://github.com/angr/angr/tree/master/angr/procedures

angr

2.4.5 Research Challenges

Historically, angr has progressed in the course of research into novel areas of program analysis. Here, we list several
self-contained research projects that can be tackled.

Semantic function identification/diffing

Current function diffing techniques (TODO: some examples) have drawbacks. For the CGC, we created a semantic-
based binary identification engine (https://github.com/angr/identifier) that can identify functions based on testcases.
There are two areas of improvement, each of which is its own research project:

1. Currently, the testcases used by this component are human-generated. However, symbolic execution can be used
to automatically generate testcases that can be used to recognize instances of a given function in other binaries.

2. By creating testcases that achieve a “high-enough” code coverage of a given function, we can detect changes
in functionality by applying the set of testcases to another implementation of the same function and analyzing
changes in code coverage. This can then be used as a sematic function diff.

Applying AFL's path selection criteria to symbolic execution

AFL does an excellent job in identifying “unique” paths during fuzzing by tracking the control flow transitions taken
by every path. This same metric can be applied to symbolic exploration, and would probably do a depressingly good
job, considering how simple it is.

2.4.6 Overarching Research Directions

There are areas of program analysis that are not well explored. We list general directions of research here, but readers
should keep in mind that these directions likely describe potential undertakings of entire PhD dissertations.

Process interactions

Almost all work in the field of binary analysis deals with single binaries, but this is often unrealistic in the real world.
For example, the type of input that can be passed to a CGI program depend on pre-processing by a web server. Currently,
there is no way to support the analysis of multiple concurrent processes in angr, and many open questions in the field
(i.e., how to model concurrent actions).

Intra-process concurrency

Similar to the modeling of interactions between processes, little work has been done in understanding the interaction
of concurrent threads in the same process. Currently, angr has no way to reason about this, and it is unclear from the
theoretical perspective how to approach this.

A subset of this problem is the analysis of signal handlers (or hardware interrupts). Each signal handler can be modeled
as a thread that can be executed at any time that a signal can be triggered. Understanding when it is meaningful to analyze
these handlers is an open problem. One system that does reason about the effect of interrupts is FIE.

12 Chapter 2. Getting Started

https://github.com/angr/identifier
http://pages.cs.wisc.edu/~davidson/fie/

angr

Path explosion
Many approaches (such as Veritesting) attempt to mitigate the path explosion problem in symbolic execution. However,
despite these efforts, path explosion is still the main problem preventing symbolic execution from being mainstream.

angr provides an excellent base to implement new techniques to control path explosion. Most approaches can be easily
implemented as ExplorationTechnique s and quickly evaluated (for example, on the CGC dataset).

2.4. Help Wanted 13

https://users.ece.cmu.edu/~dbrumley/pdf/Avgerinosetal._2014_EnhancingSymbolicExecutionwithVeritesting.pdf
https://github.com/CyberGrandChallenge/samples

angr

14 Chapter 2. Getting Started

CHAPTER
THREE

CORE CONCEPTS

3.1 Core Concepts

To get started with angr, you’ll need to have a basic overview of some fundamental angr concepts and how to construct
some basic angr objects. We’ll go over this by examining what’s directly available to you after you’ve loaded a binary!

Your first action with angr will always be to load a binary into a project. We’ll use /bin/true for these examples.

>>> import angr
>>> proj = angr.Project('/bin/true')

A project is your control base in angr. With it, you will be able to dispatch analyses and simulations on the executable
you just loaded. Almost every single object you work with in angr will depend on the existence of a project in some
form.

Tip: Using and exploring angr in IPython (or other Python command line interpreters) is a main use case that we
design angr for. When you are not sure what interfaces are available, tab completion is your friend!

Sometimes tab completion in IPython can be slow. We find the following workaround helpful without degrading the
validity of completion results:

Drop this file in IPython profile's startup directory to avoid running it every time.
import IPython

py = IPython.get_ipython()

py.Completer.use_jedi = False

3.1.1 Basic properties

First, we have some basic properties about the project: its CPU architecture, its filename, and the address of its entry
point.

>>> import monkeyhex # this will format numerical results in hexadecimal
>>> proj.arch

<Arch AMD64 (LE)>

>>> proj.entry

0x401670

>>> proj.filename

'/bin/true’

15

angr

* archis an instance of an archinfo.Arch object for whichever architecture the program is compiled, in this case
little-endian amd64. It contains a ton of clerical data about the CPU it runs on, which you can peruse at your
leisure. The common ones you care about are arch.bits, arch.bytes (that one is a @property declaration
on the main Arch class), arch.name, and arch.memory_endness.

* entry is the entry point of the binary!

* filename is the absolute filename of the binary. Riveting stuff!

3.1.2 Loading

Getting from a binary file to its representation in a virtual address space is pretty complicated! We have a module
called CLE to handle that. CLE’s result, called the loader, is available in the .loader property. We’ll get into detail
on how to use this soon, but for now just know that you can use it to see the shared libraries that angr loaded alongside
your program and perform basic queries about the loaded address space.

>>> proj.loader
<Loaded true, maps [0x400000:0x5004000]>

>>> proj.loader.shared_objects # may look a little different for you!
{'1d-1linux-x86-64.s0.2"': <ELF Object 1d-2.24.so, maps [0x2000000:0x2227167]>,
'libc.so0.6': <ELF Object libc-2.24.so, maps [0x1000000:0x13c699f]>}

>>> proj.loader.min_addr
0x400000

>>> proj.loader.max_addr
0x5004000

>>> proj.loader.main_object # we've loaded several binaries into this project. Here's.
—the main one!
<ELF Object true, maps [0x400000:0x60721f]>

>>> proj.loader.main_object.execstack # sample query: does this binary have an.
—executable stack?

False

>>> proj.loader.main_object.pic # sample query: is this binary position-independent?
True

3.1.3 The factory

There are a lot of classes in angr, and most of them require a project to be instantiated. Instead of making you pass
around the project everywhere, we provide project.factory, which has several convenient constructors for common
objects you’ll want to use frequently.

This section will also serve as an introduction to several basic angr concepts. Strap in!

16 Chapter 3. Core Concepts

https://github.com/angr/archinfo/blob/master/archinfo/arch_amd64.py
https://github.com/angr/archinfo/blob/master/archinfo/arch_amd64.py
https://github.com/angr/archinfo/blob/master/archinfo/arch.py

angr

Blocks

First, we have project.factory.block(), which is used to extract a basic block of code from a given address. This
is an important fact - angr analyzes code in units of basic blocks. You will get back a Block object, which can tell you
lots of fun things about the block of code:

>>> block = proj.factory.block(proj.entry) # lift a block of code from the program's.
—entry point
<Block for 0x401670, 42 bytes>

>>> block.ppQ # pretty-print a disassembly to stdout
0x401670: xor ebp, ebp

0x401672: mov r9, rdx

0x401675: pop rsi

0x401676: mov rdx, rsp

0x401679: and rsp, Oxfffffffffffffff0

0x40167d: push rax

0x40167e: push rsp

0x40167f: lea r8, [rip + 0x2e2a]

0x401686: lea rcx, [rip + 0x2db3]

0x40168d: lea rdi, [rip - 0xd4]

0x401694: call gword ptr [rip + 0x205866]

>>> block.instructions # how many instructions are there?

0xb

>>> block.instruction_addrs # what are the addresses of the instructions?

[0x401670, 0x401672, 0x401675, 0x401676, 0x401679, 0x40167d, 0x40167e, 0x40167f,.
—0x401686, 0x40168d, 0x401694]

Additionally, you can use a Block object to get other representations of the block of code:

>>> block.capstone # capstone disassembly
<CapstoneBlock for 0x401670>
>>> block.vex # VEX IRSB (that's a Python internal address,.,

—not a program address)
<pyvex.block.IRSB at 0x7706330>

States

Here’s another fact about angr - the Project object only represents an “initialization image” for the program. When
you’re performing execution with angr, you are working with a specific object representing a simulated program state
- a SimState. Let’s grab one right now!

>>> state = proj.factory.entry_state()
<SimState @ 0x401670>

A SimState contains a program’s memory, registers, filesystem data... any “live data” that can be changed by execution
has a home in the state. We’ll cover how to interact with states in depth later, but for now, let’s use state.regs and
state.mem to access the registers and memory of this state:

>>> state.regs.rip # get the current instruction pointer
<BV64 0x401670>
>>> state.regs.rax

(continues on next page)

3.1. Core Concepts 17

https://en.wikipedia.org/wiki/Basic_block

angr

(continued from previous page)

<BV64 0x1lc>

>>> state.mem[proj.entry].int.resolved # interpret the memory at the entry point as a C.
—int

<BV32 0x8949ed31>

Those aren’t Python ints! Those are bitvectors. Python integers don’t have the same semantics as words on a CPU, e.g.
wrapping on overflow, so we work with bitvectors, which you can think of as an integer as represented by a series of
bits, to represent CPU data in angr. Note that each bitvector has a . length property describing how wide it is in bits.

We’ll learn all about how to work with them soon, but for now, here’s how to convert from Python ints to bitvectors
and back again:

>>> bv = state.solver.BVV(0x1234, 32) # create a 32-bit-wide bitvector with value.
—0x1234

<BV32 0x1234> # BVV stands for bitvector value

>>> state.solver.eval (bv) # convert to Python int

0x1234

You can store these bitvectors back to registers and memory, or you can directly store a Python integer and it’ll be
converted to a bitvector of the appropriate size:

>>> state.regs.rsi = state.solver.BVV(3, 64)
>>> state.regs.rsi
<BV64 0x3>

>>> state.mem[0x1000].long = 4
>>> state.mem[0x1000].long.resolved
<BV64 0x4>

The mem interface is a little confusing at first, since it’s using some pretty hefty Python magic. The short version of
how to use it is:

¢ Use array[index] notation to specify an address

* Use .<type> to specify that the memory should be interpreted as type (common values: char, short, int, long,
size_t, uint8_t, uint16_t...)

* From there, you can either:
— Store a value to it, either a bitvector or a Python int
— Use .resolved to get the value as a bitvector
— Use . concrete to get the value as a Python int
There are more advanced usages that will be covered later!

Finally, if you try reading some more registers you may encounter a very strange looking value:

>>> state.regs.rdi
<BV64 reg_48_11_64{UNINITIALIZED}>

This is still a 64-bit bitvector, but it doesn’t contain a numerical value. Instead, it has a name! This is called a symbolic
variable and it is the underpinning of symbolic execution. Don’t panic! We will discuss all of this in detail exactly two
chapters from now.

18 Chapter 3. Core Concepts

https://docs.python.org/3/library/functions.html#type

angr

Simulation Managers

If a state lets us represent a program at a given point in time, there must be a way to get it to the next point in time. A
simulation manager is the primary interface in angr for performing execution, simulation, whatever you want to call it,

with states. As a brief introduction, let’s show how to tick that state we created earlier forward a few basic blocks.

First, we create the simulation manager we're going to be using. The constructor can take a state or a list of states.

>>> simgr = proj.factory.simulation_manager(state)

<SimulationManager with 1 active>
>>> simgr.active
[<SimState @ 0x401670>]

A simulation manager can contain several stashes of states. The default stash, active, is initialized with the state we

passed in. We could look at simgr.active[0] to look at our state some more, if we haven’t had enough!

Now... get ready, we’re going to do some execution.

[>>> simgr.step()

]

We’ve just performed a basic block’s worth of symbolic execution! We can look at the active stash again, noticing that
it’s been updated, and furthermore, that it has not modified our original state. SimState objects are treated as immutable
by execution - you can safely use a single state as a “base” for multiple rounds of execution.

>>> simgr.active

[<SimState @ 0x1020300>]

>>> simgr.active[0].regs.rip
<BV64 0x1020300>

>>> state.regs.rip

<BV64 0x401670>

new and exciting!

still the same!

/bin/true isn’t a very good example for describing how to do interesting things with symbolic execution, so we’ll

stop here for now.

3.1.4 Analyses

angr comes pre-packaged with several built-in analyses that you can use to extract some fun kinds of information from

a program. Here they are:

>>> proj.analyses.

—o0f everything:
proj.analyses.BackwardSlice
—reload_analyses
proj.analyses.BinaryOptimizer
—StaticHooker
proj.analyses.BinDiff
—.VariableRecovery
proj.analyses.BoyScout
—VariableRecoveryFast
proj.analyses.CDG
—Veritesting
proj.analyses.CFG
proj.analyses.CFGEmulated
—DDG

proj.analyses.CFGFast

proj

proj.
proj.
proj.
proj.

proj.
proj.

proj.

Press TAB here in
.analyses.
analyses.
analyses.
analyses.
analyses.

analyses.
analyses.

analyses.

ipython to get an autocomplete-listing.,

CongruencyCheck
DDG

DFG

Disassembly
GirlScout

Identifier
LoopFinder

Reassembler

proj.analyses.

proj
proj
proj
proj

proj

proj.

.analyses.
.analyses.
.analyses.
.analyses.

.analyses.
analyses.

VEG
VSA_

3.1. Core Concepts

19

angr

A couple of these are documented later in this book, but in general, if you want to find how to use a given analysis, you
should look in the api documentation for angr. analyses. As an extremely brief example: here’s how you construct
and use a quick control-flow graph:

Originally, when we loaded this binary it also loaded all its dependencies into the.
—same virtual address space

This is undesirable for most analysis.

>>> proj = angr.Project('/bin/true', auto_load_libs=False)

>>> cfg = proj.analyses.CFGFast()

<CFGFast Analysis Result at 0x2d85130>

cfg.graph is a networkx DiGraph full of CFGNode instances

You should go look up the networkx APIs to learn how to use this!
>>> cfg.graph

<networkx.classes.digraph.DiGraph at 0x2da43a0>

>>> len(cfg.graph.nodes())

951

To get the CFGNode for a given address, use cfg.get_any_node
>>> entry_node = cfg.get_any_node(proj.entry)

>>> len(list(cfg.graph.successors(entry_node)))

2

3.1.5 Now what?

Having read this page, you should now be acquainted with several important angr concepts: basic blocks, states, bitvec-
tors, simulation managers, and analyses. You can’t really do anything interesting besides just use angr as a glorified
debugger, though! Keep reading, and you will unlock deeper powers. . .

3.2 Loading a Binary

Previously, you saw just the barest taste of angr’s loading facilities - you loaded /bin/true, and then loaded it again
without its shared libraries. You also saw proj.loader and a few things it could do. Now, we’ll dive into the nuances
of these interfaces and the things they can tell you.

We briefly mentioned angr’s binary loading component, CLE. CLE stands for “CLE Loads Everything”, and is respon-
sible for taking a binary (and any libraries that it depends on) and presenting it to the rest of angr in a way that is easy
to work with.

3.2.1 The Loader

Let’s load examples/fauxware/fauxware and take a deeper look at how to interact with the loader.

>>> import angr, monkeyhex

>>> proj = angr.Project('examples/fauxware/fauxware')
>>> proj.loader

<Loaded fauxware, maps [0x400000:0x5008000]>

20 Chapter 3. Core Concepts

angr

Loaded Objects

The CLE loader (cle.Loader) represents an entire conglomerate of loaded binary objects, loaded and mapped into
a single memory space. Each binary object is loaded by a loader backend that can handle its filetype (a subclass of
cle.Backend). For example, cle.ELF is used to load ELF binaries.

There will also be objects in memory that don’t correspond to any loaded binary. For example, an object used to provide
thread-local storage support, and an externs object used to provide unresolved symbols.

You can get the full list of objects that CLE has loaded with 1loader.all_objects, as well as several more targeted
classifications:

All loaded objects

>>> proj.loader.all_objects

[<ELF Object fauxware, maps [0x400000:0x60105f]>,

<ELF Object libc-2.23.so0, maps [0x1000000:0x13c999f]>,

<ELF Object 1d-2.23.so0, maps [0x2000000:0x2227167]>,
<ELFTLSObject Object cle##tls, maps [0x3000000:0x3015010]>,
<ExternObject Object cle##externs, maps [0x4000000:0x4008000]>,
<KernelObject Object cle##kernel, maps [0x5000000:0x5008000]>]

This is the "main" object, the one that you directly specified when loading the project
>>> proj.loader.main_object
<ELF Object fauxware, maps [0x400000:0x60105f]>

This is a dictionary mapping from shared object name to object

>>> proj.loader.shared_objects

{ '"fauxware': <ELF Object fauxware, maps [0x400000:0x60105f]>,
'libc.so.6"': <ELF Object libc-2.23.so, maps [0x1000000:0x13c999f]>,
'1d-1inux-x86-64.s0.2"': <ELF Object 1d-2.23.so, maps [0x2000000:0x2227167]1> }

Here's all the objects that were loaded from ELF files
If this were a windows program we'd use all_pe_objects!
>>> proj.loader.all_elf objects

[<ELF Object fauxware, maps [0x400000:0x60105f]>,

<ELF Object libc-2.23.so0, maps [0x1000000:0x13c999f]>,
<ELF Object 1d-2.23.so0, maps [0x2000000:0x2227167]>]

Here's the "externs object", which we use to provide addresses for unresolved imports.
—and angr internals

>>> proj.loader.extern_object

<ExternObject Object cle##externs, maps [0x4000000:0x4008000]>

This object is used to provide addresses for emulated syscalls
>>> proj.loader.kernel _object
<KernelObject Object cle##kernel, maps [0x5000000:0x5008000]>

Finally, you can to get a reference to an object given an address in it
>>> proj.loader.find_object_containing(0x400000)
<ELF Object fauxware, maps [0x400000:0x60105f]>

You can interact directly with these objects to extract metadata from them:

>>> obj = proj.loader.main_object

(continues on next page)

3.2. Loading a Binary 21

angr

(continued from previous page)

The entry point of the object
>>> obj.entry
0x400580

>>> obj.min_addr, obj.max_addr
(0x400000, 0x60105f)

Retrieve this ELF's segments and sections
>>> obj.segments
<Regions: [<ELFSegment memsize=0xa74, filesize=0xa74, vaddr=0x400000, flags=0x5,..
—o0ffset=0x0>,

<ELFSegment memsize=0x238, filesize=0x228, vaddr=0x600e28, flags=0x6,..
—offset=0xe28>]>
>>> obj.sections
<Regions: [<Unnamed | offset 0x0, vaddr 0x0, size 0x0>,

<.interp | offset 0x238, vaddr 0x400238, size Oxlc>,

<.note.ABI-tag | offset 0x254, vaddr 0x400254, size 0x20>,

..etc

You can get an individual segment or section by an address it contains:

>>> obj.find_segment_containing(obj.entry)

<ELFSegment memsize=0xa74, filesize=0xa74, vaddr=0x400000, flags=0x5, offset=0x0>
>>> obj.find_section_containing(obj.entry)

<.text | offset 0x580, vaddr 0x400580, size 0x338>

Get the address of the PLT stub for a symbol
>>> addr = obj.plt['strcmp']

>>> addr

0x400550

>>> obj.reverse_plt[addr]

'strcmp’

Show the prelinked base of the object and the location it was actually mapped into.
—memory by CLE

>>> obj.linked_base

0x400000

>>> obj.mapped_base

0x400000

Symbols and Relocations
You can also work with symbols while using CLE. A symbol is a fundamental concept in the world of executable
formats, effectively mapping a name to an address.

The easiest way to get a symbol from CLE is to use loader. find_symbol, which takes either a name or an address
and returns a Symbol object.

>>> strcmp = proj.loader.find_symbol('strcmp')
>>> strcmp
<Symbol "strcmp" in libc.so.6 at 0x1089cd®>

The most useful attributes on a symbol are its name, its owner, and its address, but the “address” of a symbol can be

22 Chapter 3. Core Concepts

angr

ambiguous. The Symbol object has three ways of reporting its address:
e .rebased_addr is its address in the global address space. This is what is shown in the print output.

e .linked_addr is its address relative to the prelinked base of the binary. This is the address reported in, for
example, readelf(1).

e .relative_addr is its address relative to the object base. This is known in the literature (particularly the
Windows literature) as an RVA (relative virtual address).

>>> strcmp.name
'strcmp’

>>> strcmp.owner
<ELF Object libc-2.23.s0, maps [0x1000000:0x13c999f]>

>>> strcmp.rebased_addr
0x1089cd®

>>> strcmp.linked_addr
0x89cd®

>>> strcmp.relative_addr
0x89cd®

In addition to providing debug information, symbols also support the notion of dynamic linking. libc provides the
strcmp symbol as an export, and the main binary depends on it. If we ask CLE to give us a strcmp symbol from
the main object directly, it’'ll tell us that this is an import symbol. Import symbols do not have meaningful addresses
associated with them, but they do provide a reference to the symbol that was used to resolve them, as .resolvedby.

>>> strcmp.is_export
True
>>> strcmp.is_import
False

On Loader, the method is find_symbol because it performs a search operation to find.
—the symbol.

On an individual object, the method is get_symbol because there can only be one symbol..
—with a given name.

>>> main_strcmp = proj.loader.main_object.get_symbol('strcmp')

>>> main_strcmp

<Symbol "strcmp" in fauxware (import)>

>>> main_strcmp.is_export

False

>>> main_strcmp.is_import

True

>>> main_strcmp.resolvedby

<Symbol "strcmp" in libc.so.6 at 0x1089cd®>

The specific ways that the links between imports and exports should be registered in memory are handled by another
notion called relocations. A relocation says, “when you match [import] up with an export symbol, please write the ex-
port’s address to [location], formatted as [format].” We can see the full list of relocations for an object (as Relocation
instances) as obj.relocs, or just a mapping from symbol name to Relocation as obj.imports. There is no corre-
sponding list of export symbols.

A relocation’s corresponding import symbol can be accessed as .symbol. The address the relocation will write to is
accessable through any of the address identifiers you can use for Symbol, and you can get a reference to the object
requesting the relocation with .owner as well.

3.2. Loading a Binary 23

angr

Relocations don't have a good pretty-printing, so those addresses are Python-internal,.
—unrelated to our program
>>> proj.loader.shared_objects['libc.so.6"'].imports
{'__libc_enable_secure': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at..
—0x7££f5c5fce780>,

'__tls_get_addr': <cle.backends.elf.relocation.amd64.R_X86_64_JUMP_SLOT at.
—0x7££5c6018358>,

'_dl_argv': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at 0x7ff5c5fd2e48>,
'_dl_find_dso_for_object': <cle.backends.elf.relocation.amd64.R_X86_64_JUMP_SLOT at..
—0x7££5c6018588>,

'_dl_starting_ up': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at..
—0x7££5c5£d2550>,

'_rtld_global': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at 0x7ff5c5fcedel>,
'_rtld_global_ro': <cle.backends.elf.relocation.amd64.R_X86_64_GLOB_DAT at.
—0x7ff5c5fcea20>}

If an import cannot be resolved to any export, for example, because a shared library could not be found, CLE will
automatically update the externs object (Loader.extern_obj) to claim it provides the symbol as an export.

3.2.2 Loading Options

If you are loading something with angr.Project and you want to pass an option to the cle.Loader instance that
Project implicitly creates, you can just pass the keyword argument directly to the Project constructor, and it will be
passed on to CLE. You should look at the CLE API docs. if you want to know everything that could possibly be passed
in as an option, but we will go over some important and frequently used options here.

We’ve discussed auto_load_libs already - it enables or disables CLE’s attempt to automatically resolve shared library
dependencies, and is on by default. Additionally, there is the opposite, except_missing_libs, which, if set to true,
will cause an exception to be thrown whenever a binary has a shared library dependency that cannot be resolved.

You can pass a list of strings to force_load_libs and anything listed will be treated as an unresolved shared library
dependency right out of the gate, or you can pass a list of strings to skip_libs to prevent any library of that name from
being resolved as a dependency. Additionally, you can pass a list of strings (or a single string) to 1d_path, which will
be used as an additional search path for shared libraries, before any of the defaults: the same directory as the loaded
program, the current working directory, and your system libraries.

If you want to specify some options that only apply to a specific binary object, CLE will let you do that too. The
parameters main_opts and 1ib_opts do this by taking dictionaries of options. main_opts is a mapping from option
names to option values, while 1ib_opts is a mapping from library name to dictionaries mapping option names to
option values.

The options that you can use vary from backend to backend, but some common ones are:
¢ backend - which backend to use, as either a class or a name
* base_addr - a base address to use
e entry_point - an entry point to use
e arch - the name of an architecture to use

Example:

>>> angr.Project('examples/fauxware/fauxware', main_opts={'backend': 'blob', 'arch':
—'1386"'}, lib_opts={'libc.so0.6': {'backend': 'elf'}})
<Project examples/fauxware/fauxware>

24 Chapter 3. Core Concepts

https://docs.angr.io/projects/cle/en/latest/api.html

angr

Backends

CLE currently has backends for statically loading ELF, PE, CGC, Mach-O and ELF core dump files, as well as loading
files into a flat address space. CLE will automatically detect the correct backend to use in most cases, so you shouldn’t
need to specify which backend you’re using unless you’re doing some pretty weird stuff.

You can force CLE to use a specific backend for an object by including a key in its options dictionary, as described
above. Some backends cannot autodetect which architecture to use and must have a arch specified. The key doesn’t
need to match any list of architectures; angr will identify which architecture you mean given almost any common
identifier for any supported arch.

To refer to a backend, use the name from this table:

backend description requires

name arch?

elf Static loader for ELF files based on PyELFTools no

pe Static loader for PE files based on PEFile no

mach-o Static loader for Mach-O files. Does not support dynamic linking or rebasing. no

cge Static loader for Cyber Grand Challenge binaries no

backedcgc Static loader for CGC binaries that allows specifying memory and register no
backers

elfcore Static loader for ELF core dumps no

blob Loads the file into memory as a flat image yes

3.2.3 Symbolic Function Summaries

By default, Project tries to replace external calls to library functions by using symbolic summaries termed SimPro-
cedures - effectively just Python functions that imitate the library function’s effect on the state. We’ve implemented
a whole bunch of functions as SimProcedures. These builtin procedures are available in the angr . SIM_PROCEDURES
dictionary, which is two-leveled, keyed first on the package name (libc, posix, win32, stubs) and then on the name of
the library function. Executing a SimProcedure instead of the actual library function that gets loaded from your system
makes analysis a LOT more tractable, at the cost of some potential inaccuracies <Gotchas when using angr>.

When no such summary is available for a given function:

e if auto_load_libs is True (this is the default), then the real library function is executed instead. This may or
may not be what you want, depending on the actual function. For example, some of libc’s functions are extremely
complex to analyze and will most likely cause an explosion of the number of states for the path trying to execute
them.

 if auto_load_libs is False, then external functions are unresolved, and Project will resolve them to a generic
“stub” SimProcedure called ReturnUnconstrained. It does what its name says: it returns a unique uncon-
strained symbolic value each time it is called.

* if use_sim_procedures (this is a parameter to angr.Project, not cle.Loader) is False (it is True by
default), then only symbols provided by the extern object will be replaced with SimProcedures, and they will be
replaced by a stub ReturnUnconstrained, which does nothing but return a symbolic value.

* you may specify specific symbols to exclude from being replaced with SimProcedures with the parameters to
angr.Project: exclude_sim_procedures_list and exclude_sim_procedures_func.

* Look at the code for angr.Project._register_object for the exact algorithm.

The mechanism by which angr replaces library code with a Python summary is called hooking, and you can do it too!
When performing simulation, at every step angr checks if the current address has been hooked, and if so, runs the hook
instead of the binary code at that address. The API to let you do this is proj.hook(addr, hook), where hook is a

3.2. Loading a Binary 25

https://github.com/angr/angr/tree/master/angr/procedures

angr

SimProcedure instance. You can manage your project’s hooks with .is_hooked, .unhook, and .hooked_by, which
should hopefully not require explanation.

There is an alternate API for hooking an address that lets you specify your own off-the-cuff function to use as a hook,
by using proj.hook(addr) as a function decorator. If you do this, you can also optionally specify a 1ength keyword
argument to make execution jump some number of bytes forward after your hook finishes.

>>> stub_func = angr.SIM_PROCEDURES['stubs']['ReturnUnconstrained'] # this is a CLASS
>>> proj.hook(0x10000, stub_func()) # hook with an instance of the class

>>> proj.is_hooked(0x10000) # these functions should be pretty self-
—explanitory

True

>>> proj.hooked_by(0x10000)

<ReturnUnconstrained>

>>> proj.unhook (0x10000)

>>> @proj.hook(0x20000, length=5)
. def my_hook(state):
state.regs.rax = 1

>>> proj.is_hooked(0x20000)
True

Furthermore, you can use proj.hook_symbol (name, hook), providing the name of a symbol as the first argument,
to hook the address where the symbol lives. One very important usage of this is to extend the behavior of angr’s built-in
library SimProcedures. Since these library functions are just classes, you can subclass them, overriding pieces of their
behavior, and then use your subclass in a hook.

3.2.4 So far so good!

By now, you should have a reasonable understanding of how to control the environment in which your analysis happens,
on the level of the CLE loader and the angr Project. You should also understand that angr makes a reasonable attempt
to simplify its analysis by hooking complex library functions with SimProcedures that summarize the effects of the
functions.

In order to see all the things you can do with the CLE loader and its backends, look at the CLE API docs.

3.3 Symbolic Expressions and Constraint Solving

angr’s power comes not from it being an emulator, but from being able to execute with what we call symbolic variables.
Instead of saying that a variable has a concrete numerical value, we can say that it holds a symbol, effectively just a
name. Then, performing arithmetic operations with that variable will yield a tree of operations (termed an abstract
syntax tree or AST, from compiler theory). ASTs can be translated into constraints for an SMT solver, like z3, in order
to ask questions like “given the output of this sequence of operations, what must the input have been?” Here, you’ll
learn how to use angr to answer this.

26 Chapter 3. Core Concepts

https://docs.angr.io/projects/cle/en/latest/api.html

angr

3.3.1 Working with Bitvectors

Let’s get a dummy project and state so we can start playing with numbers.

>>> import angr, monkeyhex
>>> proj = angr.Project('/bin/true')
>>> state = proj.factory.entry_state()

A bitvector is just a sequence of bits, interpreted with the semantics of a bounded integer for arithmetic. Let’s make a
few.

64-bit bitvectors with concrete values 1 and 100
>>> one = state.solver.BVV(l, 64)

>>> one

<BV64 0x1>

>>> one_hundred = state.solver.BVV(100, 64)

>>> one_hundred

<BV64 0x64>

create a 27-bit bitvector with concrete value 9
>>> weird_nine = state.solver.BVV(9, 27)

>>> weird_nine

<BV27 0x9>

As you can see, you can have any sequence of bits and call them a bitvector. You can do math with them too:

>>> one + one_hundred
<BV64 0x65>

You can provide normal Python integers and they will be coerced to the
appropriate type: >>> one_hundred + 0x100 <BV64 0x164>

The semantics of normal wrapping arithmetic apply
>>> one_hundred - one*200
<BV64 Oxffffffffffffffoc>

You cannot say one + weird_nine, though. It is a type error to perform an operation on bitvectors of differing
lengths. You can, however, extend weird_nine so it has an appropriate number of bits:

>>> weird_nine.zero_extend(64 - 27)

<BV64 0x9>

>>> one + weird_nine.zero_extend(64 - 27)
<BV64 0Oxa>

zero_extend will pad the bitvector on the left with the given number of zero bits. You can also use sign_extend
to pad with a duplicate of the highest bit, preserving the value of the bitvector under two’s complement signed integer
semantics.

Now, let’s introduce some symbols into the mix.

Create a bitvector symbol named "x" of length 64 bits
>>> x = state.solver.BVS("x", 64)

>>> X

<BV64 x_9_64>

>>> y = state.solver.BVS("y", 64)

(continues on next page)

3.3. Symbolic Expressions and Constraint Solving 27

angr

(continued from previous page)

>>> y
<BV64 y_10_64>

x and y are now symbolic variables, which are kind of like the variables you learned to work with in 7th grade algebra.
Notice that the name you provided has been mangled by appending an incrementing counter and You can do as much
arithmetic as you want with them, but you won’t get a number back, you’ll get an AST instead.

>>> X + one
<BV64 x_9_64 + 0x1>

>>> (x + one) / 2
<BV64 (x_9_64 + 0x1) / 0Ox2>

>>> X -y
<BV64 x_9_64 - y_10_64>

Technically x and y and even one are also ASTs - any bitvector is a tree of operations, even if that tree is only one layer
deep. To understand this, let’s learn how to process ASTs.

Each AST has a .op and a .args. The op is a string naming the operation being performed, and the args are the values
the operation takes as input. Unless the op is BVV or BVS (or a few others...), the args are all other ASTs, the tree
eventually terminating with BVVs or BVSs.

>>> tree = (x + 1) / (y + 2)

>>> tree

<BV64 (x_9_64 + 0x1) / (y_10_64 + 0x2)>
>>> tree.op

'__floordiv__"

>>> tree.args

(<BV64 x_9_64 + Ox1>, <BV64 y_10_64 + 0x2>)
>>> tree.args[0].op

'__add__'

>>> tree.args[0].args

(<BV64 x_9_64>, <BV64 0x1>)

>>> tree.args[0].args[1].op

'BVV'

>>> tree.args[0].args[1].args

(1, 64)

From here on out, we will use the word “bitvector” to refer to any AST whose topmost operation produces a bitvector.
There can be other data types represented through ASTs, including floating point numbers and, as we’re about to see,
booleans.

3.3.2 Symbolic Constraints

Performing comparison operations between any two similarly-typed ASTs will yield another AST - not a bitvector, but
now a symbolic boolean.

>>> X ==
<Bool x_9_64 == 0x1>
>>> X == onhe

<Bool x_9_64 == 0x1>

(continues on next page)

28 Chapter 3. Core Concepts

angr

(continued from previous page)

>>> x > 2
<Bool x_9_64 > 0x2>
>>> X + y == one_hundred + 5

<Bool (x_9_64 + y_10_64) == 0x69>
>>> one_hundred > 5

<Bool True>

>>> one_hundred > -5

<Bool False>

One tidbit you can see from this is that the comparisons are unsigned by default. The -5 in the last example is coerced
to <BV64 Oxfffffffffffffffb> which is definitely not less than one hundred. If you want the comparison to be
signed, you can say one_hundred.SGT(-5) (that’s “signed greater-than). A full list of operations can be found at
the end of this chapter.

This snippet also illustrates an important point about working with angr - you should never directly use a comparison
between variables in the condition for an if- or while-statement, since the answer might not have a concrete truth value.
Even if there is a concrete truth value, if one > one_hundred will raise an exception. Instead, you should use
solver.is_trueand solver.is_false, which test for concrete truthyness/falsiness without performing a constraint
solve.

>>> yes = one == 1

>>> no = one ==

>>> maybe = x ==

>>> state.solver.is_true(yes)
True

>>> state.solver.is_false(yes)
False

>>> state.solver.is_true(no)
False

>>> state.solver.is_false(no)
True

>>> state.solver.is_true(maybe)
False

>>> state.solver.is_false(maybe)
False

3.3.3 Constraint Solving

You can treat any symbolic boolean as an assertion about the valid values of a symbolic variable by adding it as a
constraint to the state. You can then query for a valid value of a symbolic variable by asking for an evaluation of a
symbolic expression.

An example will probably be more clear than an explanation here:

>>> state.solver.add(x > y)
>>> state.solver.add(y > 2)
>>> state.solver.add(10 > x)
>>> state.solver.eval (x)

4

By adding these constraints to the state, we’ve forced the constraint solver to consider them as assertions that must
be satisfied about any values it returns. If you run this code, you might get a different value for x, but that value will
definitely be greater than 3 (since y must be greater than 2 and x must be greater than y) and less than 10. Furthermore,

3.3. Symbolic Expressions and Constraint Solving 29

angr

if you then say state.solver.eval(y), you'll get a value of y which is consistent with the value of x that you got.
If you don’t add any constraints between two queries, the results will be consistent with each other.

From here, it’s easy to see how to do the task we proposed at the beginning of the chapter - finding the input that
produced a given output.

get a fresh state without constraints

>>> state = proj.factory.entry_state()

>>> input = state.solver.BVS('input', 64)

>>> operation = (((input + 4) * 3) >> 1) + input
>>> output = 200

>>> state.solver.add(operation == output)

>>> state.solver.eval (input)

0x3333333333333381

Note that, again, this solution only works because of the bitvector semantics. If we were operating over the domain of
integers, there would be no solutions!

If we add conflicting or contradictory constraints, such that there are no values that can be assigned to the variables such
that the constraints are satisfied, the state becomes unsatisfiable, or unsat, and queries against it will raise an exception.
You can check the satisfiability of a state with state.satisfiable().

>>> state.solver.add(input < 2%%32)
>>> state.satisfiable()
False

You can also evaluate more complex expressions, not just single variables.

fresh state

>>> state = proj.factory.entry_state()
>>> state.solver.add(x - y >= 4)

>>> state.solver.add(y > 0)

>>> state.solver.eval(x)

5

>>> state.solver.eval(y)

1

>>> state.solver.eval(x + y)

6

From this we can see that eval is a general purpose method to convert any bitvector into a Python primitive while
respecting the integrity of the state. This is why we use eval to convert from concrete bitvectors to Python ints, too!

Also note that the x and y variables can be used in this new state despite having been created using an old state. Variables
are not tied to any one state, and can exist freely.

3.3.4 Floating point numbers

73 has support for the theory of IEEE754 floating point numbers, and so angr can use them as well. The main difference
is that instead of a width, a floating point number has a sort. You can create floating point symbols and values with
FPV and FPS.

fresh state

>>> state = proj.factory.entry_state()

>>> a = state.solver.FPV(3.2, state.solver.fp.FSORT_DOUBLE)
>>> a

(continues on next page)

30 Chapter 3. Core Concepts

angr

(continued from previous page)

<FP64 FPV(3.2, DOUBLE)>

>>> b = state.solver.FPS('b', state.solver.fp.FSORT_DOUBLE)
>>> b
<FP64 FPS('FP_b_0_64", DOUBLE)>

>>>a + b
<FP64 fpAdd('RNE', FPV(3.2, DOUBLE), FPS('FP_b_0_64', DOUBLE))>

>>> a + 4.4
<FP64 FPV(7.6000000000000005, DOUBLE)>

>>b +2 <0
<Bool fpLT(fpAdd('RNE', FPS('FP_b_0_64', DOUBLE), FPV(2.0, DOUBLE)), FPV(0.0, DOUBLE))>

So there’s a bit to unpack here - for starters the pretty-printing isn’t as smart about floating point numbers. But past
that, most operations actually have a third parameter, implicitly added when you use the binary operators - the rounding
mode. The IEEE754 spec supports multiple rounding modes (round-to-nearest, round-to-zero, round-to-positive, etc),
s0 z3 has to support them. If you want to specify the rounding mode for an operation, use the fp operation explicitly
(solver. fpAdd for example) with a rounding mode (one of solver.fp.RM_*) as the first argument.

Constraints and solving work in the same way, but with eval returning a floating point number:

>>> state.solver.add(b + 2 < 0)
>>> state.solver.add(b + 2 > -1)
>>> state.solver.eval(b)
-2.4999999999999996

This is nice, but sometimes we need to be able to work directly with the representation of the float as a bitvector. You
can interpret bitvectors as floats and vice versa, with the methods raw_to_bv and raw_to_f£p:

>>> a.raw_to_bv(Q)

<BV64 0x400999999999999a>

>>> b.raw_to_bv()

<BV64 fpToIEEEBV(FPS('FP_b_0_64"', DOUBLE))>

>>> state.solver.BVV(0®, 64).raw_to_fpQ)
<FP64 FPV(0.0, DOUBLE)>

>>> state.solver.BVS('x', 64).raw_to_fp(Q)
<FP64 fpToFP(x_1_64, DOUBLE)>

These conversions preserve the bit-pattern, as if you casted a float pointer to an int pointer or vice versa. However, if
you want to preserve the value as closely as possible, as if you casted a float to an int (or vice versa), you can use a
different set of methods, val_to_£p and val_to_bv. These methods must take the size or sort of the target value as
a parameter, due to the floating-point nature of floats.

>>> a

<FP64 FPV(3.2, DOUBLE)>

>>> a.val_to_bv(12)

<BV12 0x3>

>>> a.val_to_bv(12).val_to_fp(state.solver. fp.FSORT_FLOAT)
<FP32 FPV(3.0, FLOAT)>

These methods can also take a signed parameter, designating the signedness of the source or target bitvector.

3.3. Symbolic Expressions and Constraint Solving 31

angr

3.3.5 More Solving Methods

eval will give you one possible solution to an expression, but what if you want several? What if you want to ensure
that the solution is unique? The solver provides you with several methods for common solving patterns:

* solver.eval (expression) will give you one possible solution to the given expression.

* solver.eval_one(expression) will give you the solution to the given expression, or throw an error if more
than one solution is possible.

e solver.eval_upto(expression, n) will give you up to n solutions to the given expression, returning fewer
than n if fewer than n are possible.

* solver.eval_atleast(expression, n) will give you n solutions to the given expression, throwing an error
if fewer than n are possible.

* solver.eval_exact(expression, n) will give you n solutions to the given expression, throwing an error if
fewer or more than are possible.

* solver.min(expression) will give you the minimum possible solution to the given expression.
* solver.max(expression) will give you the maximum possible solution to the given expression.
Additionally, all of these methods can take the following keyword arguments:

e extra_constraints can be passed as a tuple of constraints. These constraints will be taken into account for
this evaluation, but will not be added to the state.

e cast_to can be passed a data type to cast the result to. Currently, this can only be int and bytes, which
will cause the method to return the corresponding representation of the underlying data. For example, state.
solver.eval(state.solver.BVV(0x41424344, 32), cast_to=bytes) will return b'ABCD"'.

3.3.6 Summary

That was a lot!! After reading this, you should be able to create and manipulate bitvectors, booleans, and floating point
values to form trees of operations, and then query the constraint solver attached to a state for possible solutions under a
set of constraints. Hopefully by this point you understand the power of using ASTs to represent computations, and the
power of a constraint solver.

In the appendix, you can find a reference for all the additional operations you can apply to ASTs, in case you ever need
a quick table to look at.

3.4 Machine State - memory, registers, and so on

So far, we’ve only used angr’s simulated program states (SimState objects) in the barest possible way in order to
demonstrate basic concepts about angr’s operation. Here, you’ll learn about the structure of a state object and how to
interact with it in a variety of useful ways.

32 Chapter 3. Core Concepts

angr

3.4.1 Review: Reading and writing memory and registers

If you’ve been reading this book in order (and you should be, at least for this first section), you already saw the basics
of how to access memory and registers. state.regs provides read and write access to the registers through attributes
with the names of each register, and state.mem provides typed read and write access to memory with index-access
notation to specify the address followed by an attribute access to specify the type you would like to interpret the memory
as.

Additionally, you should now know how to work with ASTs, so you can now understand that any bitvector-typed AST
can be stored in registers or memory.

Here are some quick examples for copying and performing operations on data from the state:

>>> import angr, claripy
>>> proj = angr.Project('/bin/true')
>>> state = proj.factory.entry_state()

copy rsp to rbp
>>> state.regs.rbp = state.regs.rsp

store rdx to memory at 0x1000
>>> state.mem[0x1000] .uint64_t = state.regs.rdx

dereference rbp
>>> state.regs.rbp = state.mem[state.regs.rbp].uint64_t.resolved

add rax, gword ptr [rsp + 8]
>>> state.regs.rax += state.mem[state.regs.rsp + 8].uint64_t.resolved

3.4.2 Basic Execution

Earlier, we showed how to use a Simulation Manager to do some basic execution. We’ll show off the full capabilities
of the simulation manager in the next chapter, but for now we can use a much simpler interface to demonstrate how
symbolic execution works: state.step(). This method will perform one step of symbolic execution and return
an object called angr. engines. successors.SimSuccessors. Unlike normal emulation, symbolic execution can
produce several successor states that can be classified in a number of ways. For now, what we care about is the .
successors property of this object, which is a list containing all the “normal” successors of a given step.

Why a list, instead of just a single successor state? Well, angr’s process of symbolic execution is just the taking the
operations of the individual instructions compiled into the program and performing them to mutate a SimState. When
a line of code like if (x > 4) is reached, what happens if x is a symbolic bitvector? Somewhere in the depths of
angr, the comparison x > 4 is going to get performed, and the result is going to be <Bool x_32_1 > 4>.

That’s fine, but the next question is, do we take the “true” branch or the “false” one? The answer is, we take both! We
generate two entirely separate successor states - one simulating the case where the condition was true and simulating
the case where the condition was false. In the first state, we add x > 4 as a constraint, and in the second state, we add
I (x > 4) as aconstraint. That way, whenever we perform a constraint solve using either of these successor states, the
conditions on the state ensure that any solutions we get are valid inputs that will cause execution to follow the same
path that the given state has followed.

To demonstrate this, let’s use a fake firmware image <../examples/fauxware/fauxware> as an example. If you look at
the source code <../examples/fauxware/fauxware.c> for this binary, you’ll see that the authentication mechanism for
the firmware is backdoored; any username can be authenticated as an administrator with the password “SOSNEAKY”.
Furthermore, the first comparison against user input that happens is the comparison against the backdoor, so if we step

3.4. Machine State - memory, registers, and so on 33

angr

until we get more than one successor state, one of those states will contain conditions constraining the user input to be
the backdoor password. The following snippet implements this:

>>> proj = angr.Project('examples/fauxware/fauxware')
>>> state = proj.factory.entry_state(stdin=angr.SimFile) # ignore that argument for now.
- we're disabling a more complicated default setup for the sake of education
>>> while True:

succ = state.step()

if len(succ.successors) == 2:

break
state = succ.successors[0]

>>> statel, state2 = succ.successors
>>> statel

<SimState @ 0x400629>

>>> state2

<SimState @ 0x400699

Don’t look at the constraints on these states directly - the branch we just went through involves the result of strcmp,
which is a tricky function to emulate symbolically, and the resulting constraints are very complicated.

The program we emulated took data from standard input, which angr treats as an infinite stream of symbolic data
by default. To perform a constraint solve and get a possible value that input could have taken in order to satisfy the
constraints, we’ll need to get a reference to the actual contents of stdin. We’ll go over how our file and input subsystems
work later on this very page, but for now, just use state.posix.stdin.load(®, state.posix.stdin.size) to
retrieve a bitvector representing all the content read from stdin so far.

>>> input_data = statel.posix.stdin.load(®, statel.posix.stdin.size)

>>> statel.solver.eval(input_data, cast_to=bytes)
b'\x00\x00\x00\x00\x00\x00\x00\x00\xO00SOSNEAKY\x00\x00\x00"

>>> state2.solver.eval (input_data, cast_to=bytes)
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00S\x00\x8ON\x00\x00 \x00\x00\x00\x00'

As you can see, in order to go down the statel path, you must have given as a password the backdoor string “SOS-
NEAKY”. In order to go down the state2 path, you must have given something besides “SOSNEAKY”. z3 has
helpfully provided one of the billions of strings fitting this criteria.

Fauxware was the first program angr’s symbolic execution ever successfully worked on, back in 2013. By finding its
backdoor using angr you are participating in a grand tradition of having a bare-bones understanding of how to use
symbolic execution to extract meaning from binaries!

3.4.3 State Presets

So far, whenever we’ve been working with a state, we’ve created it with project.factory.entry_state(). Thisis
just one of several state constructors available on the project factory:

* .blank_state() constructs a “blank slate” blank state, with most of its data left uninitialized. When accessing
uninitialized data, an unconstrained symbolic value will be returned.

e .entry_state() constructs a state ready to execute at the main binary’s entry point.

e .full_init_state() constructs a state that is ready to execute through any initializers that need to be run
before the main binary’s entry point, for example, shared library constructors or preinitializers. When it is
finished with these it will jump to the entry point.

34 Chapter 3. Core Concepts

angr

.call_state() constructs a state ready to execute a given function.

You can customize the state through several arguments to these constructors:

All of these constructors can take an addr argument to specify the exact address to start.

If you’re executing in an environment that can take command line arguments or an environment, you can pass a
list of arguments through args and a dictionary of environment variables through env into entry_state and
full_init_state. The values in these structures can be strings or bitvectors, and will be serialized into the
state as the arguments and environment to the simulated execution. The default args is an empty list, so if the
program you’re analyzing expects to find at least an argv[0], you should always provide that!

If you’d like to have argc be symbolic, you can pass a symbolic bitvector as argc to the entry_state and
full_init_state constructors. Be careful, though: if you do this, you should also add a constraint to the
resulting state that your value for argc cannot be larger than the number of args you passed into args.

To use the call state, you should call it with .call_state(addr, argl, arg2, ...), where addr is the
address of the function you want to call and argN is the Nth argument to that function, either as a Python integer,
string, or array, or a bitvector. If you want to have memory allocated and actually pass in a pointer to an object,
you should wrap it in an PointerWrapper, i.e. angr.PointerWrapper("point to me!™). The results of this
API can be a little unpredictable, but we’re working on it.

To specify the calling convention used for a function with call_state, you can pass a SimCC instance as the
cc argument.:raw-html-m2r:
 We try to pick a sane default, but for special cases you will need to help angr
out.

There are several more options that can be used in any of these constructors! See the docs on the project.factory
object (an angr. factory.AngrObjectFactory) for more details.

3.4.4 Low level interface for memory

The state.mem interface is convenient for loading typed data from memory, but when you want to do raw loads and
stores to and from ranges of memory, it’s very cumbersome. It turns out that state.mem is actually just a bunch of logic
to correctly access the underlying memory storage, which is just a flat address space filled with bitvector data: state.
memory. You can use state.memory directly with the .load(addr, size) and .store(addr, val) methods:

>>> s = proj.factory.blank_state()

>>> s.memory.store(0x4000, s.solver.BVV(0x0123456789%9abcdef0123456789%abcdef, 128))
>>> s.memory.load(0x4004, 6) # load-size is in bytes

<BV48 0x89abcdef0123>

As you can see, the data is loaded and stored in a “big-endian” fashion, since the primary purpose of state.memory is
to load an store swaths of data with no attached semantics. However, if you want to perform a byteswap on the loaded
or stored data, you can pass a keyword argument endness - if you specify little-endian, byteswap will happen. The
endness should be one of the members of the Endness enum in the archinfo package used to hold declarative data
about CPU architectures for angr. Additionally, the endness of the program being analyzed can be found as arch.
memory_endness - for instance state.arch.memory_endness.

>>> import archinfo
>>> s.memory.load(0x4000, 4, endness=archinfo.Endness.LE)
<BV32 0x67452301>

There is also a low-level interface for register access, state.registers, that uses the exact same API as state.
memory, but explaining its behavior involves a dive into the abstractions that angr uses to seamlessly work with multiple
architectures. The short version is that it is simply a register file, with the mapping between registers and offsets defined
in archinfo.

3.4. Machine State - memory, registers, and so on 35

https://github.com/angr/archinfo

angr

3.4.5 State Options

There are a lot of little tweaks that can be made to the internals of angr that will optimize behavior in some situations
and be a detriment in others. These tweaks are controlled through state options.

On each SimState object, there is a set (state.options) of all its enabled options. Each option (really just a string)
controls the behavior of angr’s execution engine in some minute way. A listing of the full domain of options, along
with the defaults for different state types, can be found in tie appendix. You can access an individual option for adding
to a state through angr.options. The individual options are named with CAPITAL_LETTERS, but there are also
common groupings of objects that you might want to use bundled together, named with lowercase_letters.

When creating a SimState through any constructor, you may pass the keyword arguments add_options and
remove_options, which should be sets of options that modify the initial options set from the default.

Example: enable lazy solves, an option that causes state satisfiability to be checked.
—as infrequently as possible.

This change to the settings will be propagated to all successor states created from.
—this state after this line.

>>> s.options.add(angr.options.LAZY_SOLVES)

Create a new state with lazy solves enabled
>>> s = proj.factory.entry_state(add_options={angr.options.LAZY_SOLVES})

Create a new state without simplification options enabled
>>> s = proj.factory.entry_state(remove_options=angr.options.simplification)

3.4.6 State Plugins

With the exception of the set of options just discussed, everything stored in a SimState is actually stored in a plugin
attached to the state. Almost every property on the state we’ve discussed so far is a plugin - memory, registers, mem,
regs, solver, etc. This design allows for code modularity as well as the ability to easily implement new kinds of data
storage for other aspects of an emulated state, or the ability to provide alternate implementations of plugins.

For example, the normal memory plugin simulates a flat memory space, but analyses can choose to enable the “abstract
memory” plugin, which uses alternate data types for addresses to simulate free-floating memory mappings independent
of address, to provide state.memory. Conversely, plugins can reduce code complexity: state.memory and state.
registers are actually two different instances of the same plugin, since the registers are emulated with an address
space as well.

36 Chapter 3. Core Concepts

angr

The globals plugin

state.globals is an extremely simple plugin: it implements the interface of a standard Python dict, allowing you to
store arbitrary data on a state.

The history plugin

state.history is a very important plugin storing historical data about the path a state has taken during execution. It
is actually a linked list of several history nodes, each one representing a single round of execution—you can traverse
this list with state.history.parent.parent etc.

To make it more convenient to work with this structure, the history also provides several efficient iterators over the
history of certain values. In general, these values are stored as history.recent_NAME and the iterator over them
is just history.NAME. For example, for addr in state.history.bbl_addrs: print hex(addr) will print
out a basic block address trace for the binary, while state.history.recent_bbl_addrs is the list of basic blocks
executed in the most recent step, state.history.parent.recent_bbl_addrs is the list of basic blocks executed
in the previous step, etc. If you ever need to quickly obtain a flat list of these values, you can access .hardcopy,
e.g. state.history.bbl_addrs.hardcopy. Keep in mind though, index-based accessing is implemented on the
iterators.

Here is a brief listing of some of the values stored in the history:

* history.descriptions is a listing of string descriptions of each of the rounds of execution performed on the
state.

* history.bbl_addrs is a listing of the basic block addresses executed by the state. There may be more than one
per round of execution, and not all addresses may correspond to binary code - some may be addresses at which
SimProcedures are hooked.

e history. jumpkinds is a listing of the disposition of each of the control flow transitions in the state’s history,
as VEX enum strings.

* history. jump_guards is alisting of the conditions guarding each of the branches that the state has encountered.

e history.events is a semantic listing of “interesting events” which happened during execution, such as the
presence of a symbolic jump condition, the program popping up a message box, or execution terminating with
an exit code.

* history.actions is usually empty, but if you add the angr.options.refs options to the state, it will be
populated with a log of all the memory, register, and temporary value accesses performed by the program.

The callstack plugin

angr will track the call stack for the emulated program. On every call instruction, a frame will be added to the top of the
tracked callstack, and whenever the stack pointer drops below the point where the topmost frame was called, a frame
is popped. This allows angr to robustly store data local to the current emulated function.

Similar to the history, the callstack is also a linked list of nodes, but there are no provided iterators over the contents
of the nodes - instead you can directly iterate over state.callstack to get the callstack frames for each of the active
frames, in order from most recent to oldest. If you just want the topmost frame, this is state.callstack.

* callstack. func_addr is the address of the function currently being executed
e callstack.call_site_addr is the address of the basic block which called the current function
e callstack.stack_ptr is the value of the stack pointer from the beginning of the current function

e callstack.ret_addr is the location that the current function will return to if it returns

3.4. Machine State - memory, registers, and so on 37

angr

3.4.7 More about I/O: Files, file systems, and network sockets

Please refer to Working with File System, Sockets, and Pipes for a more complete and detailed documentation of how
I/0 is modeled in angr.

3.4.8 Copying and Merging

A state supports very fast copies, so that you can explore different possibilities:

>>> proj = angr.Project('/bin/true')
>>> s = proj.factory.blank_state()
>>> sl = s.copy(Q)

>>> s2 = s.copy(Q)

>>> s1.mem[0x1000] .uint32_t 0x41414141
>>> s2.mem[0x1000] .uint32_t = 0x42424242

States can also be merged together.

merge will return a tuple. the first element is the merged state

the second element is a symbolic variable describing a state flag

the third element is a boolean describing whether any merging was done
>>> (s_merged, m, anything merged) = sl.merge(s2)

this is now an expression that can resolve to "AAAA" *or* "BBBB"
>>> aaaa_or_bbbb = s_merged.mem[0x1000].uint32_t

Todo: describe limitations of merging

3.5 Simulation Managers

The most important control interface in angr is the SimulationManager, which allows you to control symbolic execution
over groups of states simultaneously, applying search strategies to explore a program’s state space. Here, you’ll learn
how to use it.

Simulation managers let you wrangle multiple states in a slick way. States are organized into “stashes”, which you can
step forward, filter, merge, and move around as you wish. This allows you to, for example, step two different stashes of
states at different rates, then merge them together. The default stash for most operations is the active stash, which is
where your states get put when you initialize a new simulation manager.

38 Chapter 3. Core Concepts

angr

3.5.1 Stepping

The most basic capability of a simulation manager is to step forward all states in a given stash by one basic block. You
do this with .step().

>>> import angr

>>> proj = angr.Project('examples/fauxware/fauxware', auto_load_libs=False)
>>> state = proj.factory.entry_state()

>>> simgr = proj.factory.simgr(state)

>>> simgr.active

[<SimState @ 0x400580>]

>>> simgr.step()
>>> simgr.active
[«<SimState @ 0x400540>]

Of course, the real power of the stash model is that when a state encounters a symbolic branch condition, both of the
successor states appear in the stash, and you can step both of them in sync. When you don’t really care about controlling
analysis very carefully and you just want to step until there’s nothing left to step, you can just use the .run() method.

Step until the first symbolic branch
>>> while len(simgr.active) == 1:
simgr.step()

>>> simgr

<SimulationManager with 2 active>

>>> simgr.active

[<SimState @ 0x400692>, <SimState @ 0x400699>]

Step until everything terminates
>>> simgr.run()

>>> simgr

<SimulationManager with 3 deadended>

We now have 3 deadended states! When a state fails to produce any successors during execution, for example, because
it reached an exit syscall, it is removed from the active stash and placed in the deadended stash.

3.5.2 Stash Management

Let’s see how to work with other stashes.

To move states between stashes, use .move(), which takes from_stash, to_stash, and filter_func (optional,
default is to move everything). For example, let’s move everything that has a certain string in its output:

>>> simgr.move(from_stash='deadended', to_stash="authenticated', filter_func=lambda s: b
— 'llelcome' in s.posix.dumps(1))

>>> simgr

<SimulationManager with 2 authenticated, 1 deadended>

‘We were able to just create a new stash named “authenticated” just by asking for states to be moved to it. All the states
in this stash have “Welcome” in their stdout, which is a fine metric for now.

Each stash is just a list, and you can index into or iterate over the list to access each of the individual states, but there
are some alternate methods to access the states too. If you prepend the name of a stash with one_, you will be given

3.5. Simulation Managers 39

angr

the first state in the stash. If you prepend the name of a stash with mp_, you will be given a mulpyplexed version of the
stash.

>>> for s in simgr.deadended + simgr.authenticated:
. print (hex(s.addr))

0x1000030
0x1000078
0x1000078

>>> simgr.one_deadended

<SimState @ 0x1000030>

>>> simgr.mp_authenticated

MP([<SimState @ 0x1000078>, <SimState @ 0x1000078>])

>>> simgr.mp_authenticated.posix.dumps(0)

MP(["\x00\x00\x00\x00\x00\x00\x00\x00\xOOSOSNEAKY\x00 "',
"\x00\x00\x00\x00\x00\x00\x00\x00\x00S\x80\x80\x80\x80@\x80@\x00"'])

Of course, step, run, and any other method that operates on a single stash of paths can take a stash argument,
specifying which stash to operate on.

There are lots of fun tools that the simulation manager provides you for managing your stashes. We won’t go into the
rest of them for now, but you should check out the API documentation. TODO: link

Stash types

You can use stashes for whatever you like, but there are a few stashes that will be used to categorize some special kinds
of states. These are:

Stasl Description

ac- This stash contains the states that will be stepped by default, unless an alternate stash is specified.

tive

dead- A state goes to the deadended stash when it cannot continue the execution for some reason, including no more

endec valid instructions, unsat state of all of its successors, or an invalid instruction pointer.

prune When using LAZY_SOLVES, states are not checked for satisfiability unless absolutely necessary. When a state
is found to be unsat in the presence of LAZY_SOLVES, the state hierarchy is traversed to identify when, in its
history, it initially became unsat. All states that are descendants of that point (which will also be unsat, since
a state cannot become un-unsat) are pruned and put in this stash.

un- If the save_unconstrained option is provided to the SimulationManager constructor, states that are deter-

con- mined to be unconstrained (i.e., with the instruction pointer controlled by user data or some other source of

strain symbolic data) are placed here.

un- If the save_unsat option is provided to the SimulationManager constructor, states that are determined to be

sat unsatisfiable (i.e., they have constraints that are contradictory, like the input having to be both “AAAA” and
“BBBB” at the same time) are placed here.

There is another list of states that is not a stash: errored. If, during execution, an error is raised, then the state will
be wrapped in an ErrorRecord object, which contains the state and the error it raised, and then the record will be
inserted into errored. You can get at the state as it was at the beginning of the execution tick that caused the error
with record.state, you can see the error that was raised with record. error, and you can launch a debug shell at
the site of the error with record.debug(). This is an invaluable debugging tool!

40 Chapter 3. Core Concepts

https://github.com/zardus/mulpyplexer

angr

3.5.3 Simple Exploration

An extremely common operation in symbolic execution is to find a state that reaches a certain address, while discarding
all states that go through another address. Simulation manager has a shortcut for this pattern, the . explore () method.

When launching .explore() with a find argument, execution will run until a state is found that matches the find
condition, which can be the address of an instruction to stop at, a list of addresses to stop at, or a function which takes
a state and returns whether it meets some criteria. When any of the states in the active stash match the £ind condition,
they are placed in the found stash, and execution terminates. You can then explore the found state, or decide to discard
it and continue with the other ones. You can also specify an avoid condition in the same format as find. When a state
matches the avoid condition, it is put in the avoided stash, and execution continues. Finally, the num_find argument
controls the number of states that should be found before returning, with a default of 1. Of course, if you run out of
states in the active stash before finding this many solutions, execution will stop anyway.

Let’s look at a simple crackme example <./examples.md#reverseme-modern-binary-exploitation—csci-4968>:

First, we load the binary.

[>>> proj = angr.Project('examples/CSCI-4968-MBE/challenges/crackme®x00a/crackme®x00a’')

Next, we create a SimulationManager.

[>>> simgr = proj.factory.simgr()

Now, we symbolically execute until we find a state that matches our condition (i.e., the “win” condition).

>>> simgr.explore(find=lambda s: b"Congrats" in s.posix.dumps(1))
<SimulationManager with 1 active, 1 found>

Now, we can get the flag out of that state!

>>> s = simgr.found[0]
>>> print(s.posix.dumps(1))
Enter password: Congrats!

>>> flag = s.posix.dumps(0)
>>> print(flag)
g00dIOB!

Pretty simple, isn’t it?

Other examples can be found by browsing the examples.

Exploration Techniques

angr ships with several pieces of canned functionality that let you customize the behavior of a simulation manager, called
exploration techniques. The archetypical example of why you would want an exploration technique is to modify the
pattern in which the state space of the program is explored - the default “step everything at once” strategy is effectively
breadth-first search, but with an exploration technique you could implement, for example, depth-first search. However,
the instrumentation power of these techniques is much more flexible than that - you can totally alter the behavior of
angr’s stepping process. Writing your own exploration techniques will be covered in a later chapter.

To use an exploration technique, call simgr.use_technique (tech), where tech is an instance of an ExplorationTech-
nique subclass. angr’s built-in exploration techniques can be found under angr.exploration_techniques.

Here’s a quick overview of some of the built-in ones:

3.5. Simulation Managers 41

angr

DFS: Depth first search, as mentioned earlier. Keeps only one state active at once, putting the rest in the deferred
stash until it deadends or errors.

Explorer: This technique implements the .explore() functionality, allowing you to search for and avoid ad-
dresses.

LengthLimiter: Puts a cap on the maximum length of the path a state goes through.

LoopSeer: Uses a reasonable approximation of loop counting to discard states that appear to be going through
a loop too many times, putting them in a spinning stash and pulling them out again if we run out of otherwise
viable states.

ManualMergepoint: Marks an address in the program as a merge point, so states that reach that address will be
briefly held, and any other states that reach that same point within a timeout will be merged together.

MemoryWatcher: Monitors how much memory is free/available on the system between simgr steps and stops
exploration if it gets too low.

Oppologist: The “operation apologist” is an especially fun gadget - if this technique is enabled and angr encoun-
ters an unsupported instruction, for example a bizzare and foreign floating point SIMD op, it will concretize all
the inputs to that instruction and emulate the single instruction using the unicorn engine, allowing execution to
continue.

Spiller: When there are too many states active, this technique can dump some of them to disk in order to keep
memory consumption low.

Threading: Adds thread-level parallelism to the stepping process. This doesn’t help much because of Python’s
global interpreter locks, but if you have a program whose analysis spends a lot of time in angr’s native-code
dependencies (unicorn, z3, libvex) you can seem some gains.

Tracer: An exploration technique that causes execution to follow a dynamic trace recorded from some other
source. The dynamic tracer repository has some tools to generate those traces.

Veritesting: An implementation of a CMU paper on automatically identifying useful merge points. This is so
useful, you can enable it automatically with veritesting=True in the SimulationManager constructor! Note
that it frequenly doesn’t play nice with other techniques due to the invasive way it implements static symbolic
execution.

Look at the API documentation for the SimulationManager and ExplorationTechnique classes for more infor-
mation.

3.6

Simulation and Instrumentation

When you ask for a step of execution to happen in angr, something has to actually perform the step. angr uses a series
of engines (subclasses of the SimEngine class) to emulate the effects that of a given section of code has on an input

state.

The execution core of angr simply tries all the available engines in sequence, taking the first one that is able to

handle the step. The following is the default list of engines, in order:

The failure engine kicks in when the previous step took us to some uncontinuable state

The syscall engine kicks in when the previous step ended in a syscall

The hook engine kicks in when the current address is hooked

The unicorn engine kicks in when the UNICORN state option is enabled and there is no symbolic data in the state

The VEX engine kicks in as the final fallback.

42

Chapter 3. Core Concepts

https://github.com/angr/tracer
https://users.ece.cmu.edu/~dbrumley/pdf/Avgerinos%20et%20al._2014_Enhancing%20Symbolic%20Execution%20with%20Veritesting.pdf

angr

3.6.1 SimSuccessors

The code that actually tries all the engines in turn is project.factory.successors(state, **kwargs),
which passes its arguments onto each of the engines. This function is at the heart of state.step() and
simulation_manager.step(). It returns a SimSuccessors object, which we discussed briefly before. The purpose
of SimSuccessors is to perform a simple categorization of the successor states, stored in various list attributes. They
are:

3.6. Simulation and Instrumentation 43

angr

At- Guarc In- Description

tribut Con- struc-
di- tion
tion Pointer

succ True Can be A normal, satisfiable successor state to the state processed by the engine. The instruction
(can sym- pointer of this state may be symbolic (i.e., a computed jump based on user input), so the
be bolic state might actually represent several potential continuations of execution going forward.
sym- (but
bolic, 256 so-
but lutions
con- or less;
strain¢ see
to unconst
True)

unsa False Can be Unsatisfiable successors. These are successors whose guard conditions can only be false
(can sym- (i.e., jumps that cannot be taken, or the default branch of jumps that must be taken).
be bolic.
sym-
bolic,
but
con-
straine
to
False)

flat True Con- As noted above, states in the successors list can have symbolic instruction pointers. This
(can crete is rather confusing, as elsewhere in the code (i.e., in SimEngineVEX.process, when it’s
be value. time to step that state forward), we make assumptions that a single program state only
sym- represents the execution of a single spot in the code. To alleviate this, when we encounter
bolic, states in successors with symbolic instruction pointers, we compute all possible concrete
but solutions (up to an arbitrary threshold of 256) for them, and make a copy of the state for
con- each such solution. We call this process “flattening”. These flat_successors are states,
straine each of which has a different, concrete instruction pointer. For example, if the instruction
to pointer of a state in successors was X+5, where X had constraints of X > 0x800000 and
True). X <= 0x800010, we would flatten it into 16 different flat_successors states, one with

an instruction pointer of 0x800006, one with 0x800007, and so on until 0x800015.

unco True Sym- During the flattening procedure described above, if it turns out that there are more than 256
(can bolic possible solutions for the instruction pointer, we assume that the instruction pointer has been
be (with overwritten with unconstrained data (i.e., a stack overflow with user data). This assumption
sym- more is not sound in general. Such states are placed in unconstrained_successors and not
bolic, than in successors.
but 256
con- solu-
strain¢ tions).
to
True).

all_ Any- Can be Thisis successors + unsat_successors + unconstrained_successors.
thing sym-

bolic.
44 Chapter 3. Core Concepts

angr

3.6.2 Breakpoints

Todo: rewrite this to fix the narrative

Like any decent execution engine, angr supports breakpoints. This is pretty cool! A point is set as follows:

>>> import angr
>>> b = angr.Project('examples/fauxware/fauxware')

get our state
>>> s = b.factory.entry_state()

add a breakpoint. This breakpoint will drop into ipdb right before a memory write.
—happens.
>>> s.inspect.b('mem_write")

on the other hand, we can have a breakpoint trigger right *after* a memory write.
—happens.
we can also have a callback function run instead of opening ipdb.
>>> def debug_func(state):
print("State %s is about to do a memory write!")

>>> s.inspect.b('mem_write', when=angr.BP_AFTER, action=debug_func)

or, you can have it drop you in an embedded IPython!
>>> s.inspect.b('mem_write', when=angr.BP_AFTER, action=angr.BP_IPYTHON)

There are many other places to break than a memory write. Here is the list. You can break at BP_BEFORE or
BP_AFTER for each of these events.

3.6. Simulation and Instrumentation 45

angr

Event type Event meaning

mem_read Memory is being read.

mem_write Memory is being written.

ad- A symbolic memory access is being resolved.

dress_concretization

reg_read A register is being read.

reg_write A register is being written.

tmp_read A temp is being read.

tmp_write A temp is being written.

expr An expression is being created (i.e., a result of an arithmetic operation or a constant in the
IR).

statement An IR statement is being translated.

instruction A new (native) instruction is being translated.

irsb A new basic block is being translated.

constraints New constraints are being added to the state.

exit A successor is being generated from execution.

fork A symbolic execution state has forked into multiple states.

symbolic_variable
call

return
simprocedure
dirty

syscall
engine_process

A new symbolic variable is being created.

A call instruction is hit.

A ret instruction is hit.

A simprocedure (or syscall) is executed.

A dirty IR callback is executed.

A syscall is executed (called in addition to the simprocedure event).

A SimEngine is about to process some code.

These events expose different attributes:

Event type Attribute name Attribute availability Attribute meaning
mem_read mem_read_address BP_BEFORE or BP_AFTER The address at which memory is
mem_read mem_read_expr BP_AFTER The expression at that address.
mem_read mem_read_length BP_BEFORE or BP_AFTER The length of the memory read.
mem_read mem_read_condition BP_BEFORE or BP_AFTER The condition of the memory rea
mem_write mem_write_address BP_BEFORE or BP_AFTER The address at which memory is
mem_write mem_write_length BP_BEFORE or BP_AFTER The length of the memory write.
mem_write mem_write_expr BP_BEFORE or BP_AFTER The expression that is being writ
mem_write mem_write_condition BP_BEFORE or BP_AFTER The condition of the memory wr
reg_read reg_read_offset BP_BEFORE or BP_AFTER The offset of the register being re
reg_read reg_read_length BP_BEFORE or BP_AFTER The length of the register read.
reg_read reg_read_expr BP_AFTER The expression in the register.
reg_read reg_read_condition BP_BEFORE or BP_AFTER The condition of the register reac
reg_write reg_write_offset BP_BEFORE or BP_AFTER The offset of the register being w
reg_write reg_write_length BP_BEFORE or BP_AFTER The length of the register write.
reg_write reg_write_expr BP_BEFORE or BP_AFTER The expression that is being writ
reg_write reg_write_condition BP_BEFORE or BP_AFTER The condition of the register writ
tmp_read tmp_read_num BP_BEFORE or BP_AFTER The number of the temp being re
tmp_read tmp_read_expr BP_AFTER The expression of the temp.
tmp_write tmp_write_num BP_BEFORE or BP_AFTER The number of the temp written.
tmp_write tmp_write_expr BP_AFTER The expression written to the ten
expr expr BP_BEFORE or BP_AFTER The IR expression.
expr expr_result BP_AFTER The value (e.g. AST) which the ¢
46 Chapter 3. Core Concepts

angr

Event type

Attribute name

Attribute availability

Attribute meaning

statement

instruction

irsb

constraints

call

exit

exit

exit

symbolic_variable
symbolic_variable
symbolic_variable
address_concretization
address_concretization
address_concretization
address_concretization
address_concretization
address_concretization
syscall

simprocedure
simprocedure
simprocedure
simprocedure

dirty

dirty

dirty

dirty

engine_process
engine_process

statement

instruction

address

added_constraints
function_address

exit_target

exit_guard

exit_jumpkind

symbolic_name

symbolic_size

symbolic_expr
address_concretization_strategy
address_concretization_action
address_concretization_memory
address_concretization_expr
address_concretization_add_constraints
address_concretization_result
syscall_name
simprocedure_name
simprocedure_addr
simprocedure_result
simprocedure

dirty_name

dirty_handler

dirty_args

dirty_result

sim_engine

successors

BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_AFTER

BP_AFTER

BP_AFTER

BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_AFTER

BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_AFTER

BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER
BP_BEFORE

BP_BEFORE or BP_AFTER
BP_AFTER

BP_BEFORE or BP_AFTER
BP_BEFORE or BP_AFTER

The index of the IR statement (in
The address of the native instruct
The address of the basic block.
The list of constraint expressions
The name of the function being c
The expression representing the f
The expression representing the |
The expression representing the |
The name of the symbolic variab
The size of the symbolic variable
The expression representing the 1
The SimConcretizationStrategy t
The SimAction object being usec
The SimMemory object on whic]
The AST representing the memo
Whether or not constraints shoul
The list of resolved memory adds
The name of the system call.
The name of the simprocedure.
The address of the simprocedure
The return value of the simproce
The actual SimProcedure object.
The name of the dirty call.

The function that will be run to b
The address of the dirty.

The return value of the dirty call.
The SimEngine that is processin;
The SimSuccessors object definis

These attributes can be accessed as members of state.inspect during the appropriate breakpoint callback to access
the appropriate values. You can even modify these value to modify further uses of the values!

>>> def track_reads(state):
print('Read', state.inspect.mem_read_expr,

—address)

>>> s.inspect.b('mem_read', when=angr.BP_AFTER, action=track_reads)

'from', state.inspect.mem_read_

Additionally, each of these properties can be used as a keyword argument to inspect.b to make the breakpoint con-

ditional:

This will break before a memory write if 0x1000 is a possible value of its target.,

—>expression

>>> s.inspect.b('mem_write', mem_write_address=0x1000)

This will break before a memory write if 0x1000 is the *only* value of its target.

—,expression

>>> s.inspect.b('mem_write', mem_write_address=0x1000, mem_write_address_unique=True)

This will break after instruction 0x8000, but only 0x1000 is a possible value of the.

—last expression that was read from memory

(continues on next page)

3.6. Simulation and Instrumentation

47

angr

(continued from previous page)

>>> s.inspect.b('instruction', when=angr.BP_AFTER, instruction=0x8000, mem_read_
—expr=0x1000)

Cool stuff! In fact, we can even specify a function as a condition:

this is a complex condition that could do anything! In this case, it makes sure that.
—RAX is 0x41414141 and
that the basic block starting at 0x8004 was executed sometime in this path's history
>>> def cond(state):

return state.eval(state.regs.rax, cast_to=str) == 'AAAA' and 0x8004 in state.
—.inspect.backtrace

>>> s.inspect.b('mem_write', condition=cond)

That is some cool stuff!

Caution about mem_read breakpoint

The mem_read breakpoint gets triggered anytime there are memory reads by either the executing program or the binary
analysis. If you are using breakpoint on mem_read and also using state.mem to load data from memory addresses,
then know that the breakpoint will be fired as you are technically reading memory.

So if you want to load data from memory and not trigger any mem_read breakpoint you have had set up, then use
state.memory.load with the keyword arguments disable_actions=True and inspect=False.

This is also true for state.find and you can use the same keyword arguments to prevent mem_read breakpoints from
firing.

3.7 Analyses

angr’s goal is to make it easy to carry out useful analyses on binary programs. To this end, angr allows you to package
analysis code in a common format that can be easily applied to any project. We will cover writing your own analyses
Writing Analyses, but the idea is that all the analyses appear under project.analyses (for example, project.
analyses.CFGFast()) and can be called as functions, returning analysis result instances.

48 Chapter 3. Core Concepts

angr

3.7.1 Built-in Analyses

Name Description

CFGFast Constructs a fast Control Flow Graph of the program
CFGEmu- Constructs an accurate Control Flow Graph of the program

lated

VFG Performs VSA on every function of the program, creating a Value Flow Graph and detecting stack
variables

DDG Calculates a Data Dependency Graph, allowing one to determine what statements a given value de-
pends on

Backward- Computes a Backward Slice of a program with respect to a certain target

Slice

Identifier Identifies common library functions in CGC binaries

More! angr has quite a few analyses, most of which work! If you’d like to know how to use one, please submit

an issue requesting documentation.

3.7.2 Resilience

Analyses can be written to be resilient, and catch and log basically any error. These errors, depending on how they’re
caught, are logged to the errors or named_errors attribute of the analysis. However, you might want to run an
analysis in “fail fast” mode, so that errors are not handled. To do this, the argument fail_fast=True can be passed
into the analysis constructor.

3.8 Symbolic Execution

Symbolic execution allows at a time in emulation to determine for a branch all conditions necessary to take a branch
or not. Every variable is represented as a symbolic value, and each branch as a constraint. Thus, symbolic execution
allows us to see which conditions allows the program to go from a point A to a point B, by resolving the constraints.

If you’ve read this far, you can see how the components of angr work together to make this possible. Read on to learn
about how to make the leap from tools to results.

Todo: A real introduction to the concept of symbolic execution.

3.9 A final word of advice

Congratulations! If you’ve read this far through the book (editor’s note: this comment only really applies when we’ve
actually finished writing all the TODOs so far) then you’ve been introduced to all the fundamental components of angr
necessary to get started with binary analysis.

Ultimately, angr is just an emulator. It is a highly instrumentable and very unique emulator with lots of considerations
for environment, true, but at its core, the work you do with angr is about extracting knowledge about how a bunch of
bytecode behaves on a CPU. In designing angr, we’ve tried to provide you with the tools and abstractions on top of
this emulator to make certain common tasks more useful, but there’s no problem you can’t solve just by working with
a SimState and observing the affects of .step().

As you read further into this book, we’ll describe more technical subjects and how to tune angr’s behavior for compli-
cated scenarios. This knowledge should inform your use of angr so you can take the quickest path to a solution to any

3.8. Symbolic Execution 49

angr

given problem, but ultimately, you will want to solve problems by exercising creativity with the tools at your disposal.
If you can take a problem and wrangle it into a form where it has defined and tractable inputs and outputs, you can
absolutely use angr to achieve your goals, given that these goals involve analyzing binaries. None of the abstractions
or instrumentations we provide are the end-all of how to use angr for a given task - angr is designed so it can be used
in as integrated or as ad-hoc of a manner as you desire. If you see a path from problem to solution, take it.

Of course, it’s very difficult to become well-acquainted with such a huge piece of technology as angr. To this end you
can absolutely lean on the community (through the angr slack is the best option) to discuss angr and solving problems
with it.

Good luck!

50 Chapter 3. Core Concepts

https://angr.io/invite

CHAPTER
FOUR

BUILD-IN ANALYSES

4.1 Control-flow Graph Recovery (CFG)

angr includes analyses to recover the control-flow graph of a binary program. This also includes recovery of function
boundaries, as well as reasoning about indirect jumps and other useful metadata.

4.1.1 General ideas

A basic analysis that one might carry out on a binary is a Control Flow Graph. A CFG is a graph with (conceptually)
basic blocks as nodes and jumps/calls/rets/etc as edges.

In angr, there are two types of CFG that can be generated: a static CFG (CFGFast) and a dynamic CFG (CFGEmulated).

CFGFast uses static analysis to generate a CFG. It is significantly faster, but is theoretically bounded by the fact that
some control-flow transitions can only be resolved at execution-time. This is the same sort of CFG analysis performed
by other popular reverse-engineering tools, and its results are comparable with their output.

CFGEmulated uses symbolic execution to capture the CFG. While it is theoretically more accurate, it is dramatically
slower. It is also typically less complete, due to issues with the accuracy of emulation (system calls, missing hardware
features, and so on)

If you are unsure which CFG to use, or are having problems with CFGEmulated, try CFGFast first.
A CFG can be constructed by doing:

>>> import angr
load your project
>>> p = angr.Project('/bin/true', load_options={'auto_load_libs': False})

Generate a static CFG
>>> cfg = p.analyses.CFGFast()

generate a dynamic CFG
>>> cfg = p.analyses.CFGEmulated(keep_state=True)

51

angr

4.1.2 Using the CFG

The CFQG, at its core, is a NetworkX di-graph. This means that all of the normal NetworkX APIs are available:

>>> print("This is the graph:", cfg.graph)
>>> print("It has nodes and edges" % (len(cfg.graph.nodes()), len(cfg.graph.
—edges()))

The nodes of the CFG graph are instances of class CFGNode. Due to context sensitivity, a given basic block can have
multiple nodes in the graph (for multiple contexts).

this grabs *any* node at a given location:
>>> entry_node = cfg.get_any_node(p.entry)

on the other hand, this grabs all of the nodes
>>> print("There were contexts for the entry block" % len(cfg.get_all_nodes(p.entry)))

we can also look up predecessors and successors

>>> print("Predecessors of the entry point:", entry_node.predecessors)
>>> print("Successors of the entry point:", entry_node.successors)
>>> print("Successors (and type of jump) of the entry point:", [jumpkind + " to " +.

—.str(node.addr) for node, jumpkind in cfg.get_successors_and_jumpkind(entry_node)])

Viewing the CFG

Control-flow graph rendering is a hard problem. angr does not provide any built-in mechanism for rendering the output
of a CFG analysis, and attempting to use a traditional graph rendering library, like matplotlib, will result in an unusable
image.

One solution for viewing angr CFGs is found in axt’s angr-utils repository.

4.1.3 Shared Libraries

The CFG analysis does not distinguish between code from different binary objects. This means that by default, it will
try to analyze control flow through loaded shared libraries. This is almost never intended behavior, since this will
extend the analysis time to several days, probably. To load a binary without shared libraries, add the following keyword
argument to the Project constructor: load_options={'auto_load_libs': False}

4.1.4 Function Manager

The CFG result produces an object called the Function Manager, accessible through cfg.kb.functions. The most
common use case for this object is to access it like a dictionary. It maps addresses to Function objects, which can tell
you properties about a function.

[>>> entry_func = cfg.kb. functions[p.entry]

Functions have several important properties!
* entry_func.block_addrs is a set of addresses at which basic blocks belonging to the function begin.

* entry_func.blocks is the set of basic blocks belonging to the function, that you can explore and disassemble
using capstone.

52 Chapter 4. Build-in Analyses

https://networkx.github.io/
https://github.com/axt/angr-utils

angr

e entry_func.string_references() returns a list of all the constant strings that were referred to at any point
in the function. They are formatted as (addr, string) tuples, where addr is the address in the binary’s data
section the string lives, and string is a Python string that contains the value of the string.

e entry_func.returning is a boolean value signifying whether or not the function can return. False indicates
that all paths do not return.

e entry_func.callable is an angr Callable object referring to this function. You can call it like a Python
function with Python arguments and get back an actual result (may be symbolic) as if you ran the function with
those arguments!

e entry_func.transition_graph is a NetworkX DiGraph describing control flow within the function itself. It
resembles the control-flow graphs IDA displays on a per-function level.

¢ entry_func.name is the name of the function.

e entry_func.has_unresolved_calls and entry.has_unresolved_jumps have to do with detecting im-
precision within the CFG. Sometimes, the analysis cannot detect what the possible target of an indirect call or
jump could be. If this occurs within a function, that function will have the appropriate has_unresolved_*
value set to True.

e entry_func.get_call_sites() returns a list of all the addresses of basic blocks which end in calls out to
other functions.

e entry_func.get_call_target(callsite_addr) will, given callsite_addr from the list of call site ad-
dresses, return where that callsite will call out to.

e entry_func.get_call_return(callsite_addr) will, given callsite_addr from the list of call site ad-
dresses, return where that callsite should return to.

and many more !

4.1.5 CFGFast details

CFGFast peforms a static control-flow and function recovery. Starting with the entry point (or any user-defined points)
roughly the following procedure is performed:

1) The basic block is lifted to VEX IR, and all its exits (jumps, calls, returns, or continuation to the next block) are
collected

2) For each exit, if this exit is a constant address, we add an edge to the CFG of the correct type, and add the
destination block to the set of blocks to be analyzed.

3) In the event of a function call, the destination block is also considered the start of a new function. If the target
function is known to return, the block after the call is also analyzed.

4) In the event of a return, the current function is marked as returning, and the appropriate edges in the callgraph
and CFG are updated.

5) For all indirect jumps (block exits with a non-constant destination) Indirect Jump Resolution is performed.

4.1. Control-flow Graph Recovery (CFG) 53

angr

Finding function starts

CFGFast supports multiple ways of deciding where a function starts and ends.

First the binary’s main entry point will be analyzed. For binaries with symbols (e.g., non-stripped ELF and PE binaries)
all function symbols will be used as possible starting points. For binaries without symbols, such as stripped binaries,
or binaries loaded using the blob loader backend, CFG will scan the binary for a set of function prologues defined for
the binary’s architecture. Finally, by default, the binary’s entire code section will be scanned for executable contents,
regardless of prologues or symbols.

In addition to these, as with CFGEmulated, function starts will also be considered when they are the target of a “call”
instruction on the given architecture.

All of these options can be disabled
FakeRets and function returns
When a function call is observed, we first assume that the callee function eventually returns, and treat the block after it
as part of the caller function. This inferred control-flow edge is known as a “FakeRet”. If, in analyzing the callee, we
find this not to be true, we update the CFG, removing this “FakeRet”, and updating the callgraph and function blocks

accordingly. As such, the CFG is recovered fwice. In doing this, the set of blocks in each function, and whether the
function returns, can be recovered and propagated directly.

Indirect Jump Resolution
Options

These are the most useful options when working with CFGFast:

Option Description

force_complete. (Default: True) Treat the entire binary as code for the purposes of function detection. If you have
a blob (e.g., mixed code and data) you want to turn this off.

func- A list of addresses, to use as entry points into the analysis.

tion_starts

normalize (Default: False) Normalize the resulting functions (e.g., each basic block belongs to at most one
function, back-edges point to the start of basic blocks)

re- (Default: True) Perform additional analysis to attempt to find targets for every indirect jump found

solve_indirect_j during CFG creation.

more! Examine the docstring on p.analyses.CFGFast for more up-to-date options

4.1.6 CFGEmulated details
Options

The most common options for CFGEmulated include:

54 Chapter 4. Build-in Analyses

angr

Option Description

con- This sets the context sensitivity level of the analysis. See the context sensitivity level section

text_sensitivity_level below for more information. This is 1 by default.

starts A list of addresses, to use as entry points into the analysis.

avoid_runs A list of addresses to ignore in the analysis.

call_depth Limit the depth of the analysis to some number calls. This is useful for checking which
functions a specific function can directly jump to (by setting call_depth to 1).

initial_state An initial state can be provided to the CFG, which it will use throughout its analysis.

keep_state To save memory, the state at each basic block is discarded by default. If keep_state is True,
the state is saved in the CFGNode.

en- Whether to enable an intensive technique for resolving indirect jumps

able_symbolic_back_

en- Whether to enable another intensive technique for resolving direct jumps

able_advanced_back:

more! Examine the docstring on p.analyses. CFGEmulated for more up-to-date options

Context Sensitivity Level

angr constructs a CFG by executing every basic block and seeing where it goes. This introduces some challenges: a
basic block can act differently in different contexts. For example, if a block ends in a function return, the target of that
return will be different, depending on different callers of the function containing that basic block.

The context sensitivity level is, conceptually, the number of such callers to keep on the callstack. To explain this
concept, let’s look at the following code:

void error(char *error)

{
puts(error) ;
1
void alpha()
{
puts('alpha");
error("alpha!");
}
void beta()
{
puts('beta");
error("beta!");
}
void main()
{
alpha(Q);
beta(Q);
}

The above sample has four call chains: main>alpha>puts, main>alpha>error>puts and main>beta>puts, and
main>beta>error>puts. While, in this case, angr can probably execute both call chains, this becomes unfeasible for
larger binaries. Thus, angr executes the blocks with states limited by the context sensitivity level. That is, each function
is re-analyzed for each unique context that it is called in.

4.1. Control-flow Graph Recovery (CFG) 55

angr

For example, the puts () function above will be analyzed with the following contexts, given different context sensitivity
levels:

Level Meaning Contexts

0 Callee-only puts

1 One caller, plus callee alpha>puts beta>puts error>puts

2 Two callers, plus alpha>error>puts main>alpha>puts beta>error>puts main>beta>puts
callee

3 Three callers, plus main>alpha>error>puts main>alpha>puts main>beta>error>puts
callee main>beta>puts

The upside of increasing the context sensitivity level is that more information can be gleaned from the CFG. For
example, with context sensitivity of 1, the CFG will show that, when called from alpha, puts returns to alpha, when
called from error, puts returns to error, and so forth. With context sensitivity of 0, the CFG simply shows that
puts returns to alpha, beta, and error. This, specifically, is the context sensitivity level used in IDA. The downside
of increasing the context sensitivity level is that it exponentially increases the analysis time.

4.2 Backward Slicing

A program slice is a subset of statements that is obtained from the original program, usually by removing zero or more
statements. Slicing is often helpful in debugging and program understanding. For instance, it’s usually easier to locate
the source of a variable on a program slice.

A backward slice is constructed from a target in the program, and all data flows in this slice end at the target.

angr has a built-in analysis, called BackwardSlice, to construct a backward program slice. This section will act as a
how-to for angr’s BackwardS1ice analysis, and followed by some in-depth discussion over the implementation choices
and limitations.

4.2.1 First Step First

To build a BackwardSlice, you will need the following information as input.

* Required CFG. A control flow graph (CFG) of the program. This CFG must be an accurate CFG (CFGEmu-
lated).

* Required Target, which is the final destination that your backward slice terminates at.

* Optional CDG. A control dependence graph (CDG) derived from the CFG. angr has a built-in analysis CDG for
that purpose.

* Optional DDG. A data dependence graph (DDG) built on top of the CFG. angr has a built-in analysis DDG for
that purpose.

A BackwardSlice can be constructed with the following code:

>>> import angr
Load the project
>>> b = angr.Project("examples/fauxware/fauxware", load_options={"auto_load_libs": False}

)

Generate a CFG first. In order to generate data dependence graph afterwards, you'll.
—have to:

(continues on next page)

56 Chapter 4. Build-in Analyses

angr

(continued from previous page)

- keep all input states by specifying keep_state=True.
- store memory, register and temporary values accesses by adding the angr.options.refs,,
—,option set.
Feel free to provide more parameters (for example, context_sensitivity_level) for CFG
recovery based on your needs.
>>> cfg = b.analyses.CFGEmulated(keep_state=True,

state_add_options=angr.sim_options.refs,

context_sensitivity_level=2)

Generate the control dependence graph
>>> cdg = b.analyses.CDG(cfg)

Build the data dependence graph. It might take a while. Be patient!
>>> ddg = b.analyses.DDG(cfg)

See where we wanna go... let's go to the exit() call, which is modeled as a
SimProcedure.

>>> target_func = cfg.kb.functions.function(name="exit")

We need the CFGNode instance

>>> target_node = cfg.get_any_node(target_func.addr)

Let's get a BackwardSlice out of them!

~“targets’ "~ is a list of objects, where each one is either a CodelLocation

object, or a tuple of CFGNode instance and a statement ID. Setting statement

ID to -1 means the very beginning of that CFGNode. A SimProcedure does not

have any statement, so you should always specify -1 for it.

>>> bs = b.analyses.BackwardSlice(cfg, cdg=cdg, ddg=ddg, targets=[(target_node, -1) 1)

Here is our awesome program slice!
>>> print (bs)

Sometimes it’s difficult to get a data dependence graph, or you may simply want build a program slice on top of a CFG.
That’s basically why DDG is an optional parameter. You can build a BackwardSlice solely based on CFG by doing:

>>> bs = b.analyses.BackwardSlice(cfg, control_flow_slice=True)
BackwardSlice (to [(<CFGNode exit (0x10000a0) [0]1>, -1)]1)

4.2.2 Using The BackwardSlice Object

Before you go ahead and use BackwardSlice object, you should notice that the design of this class is fairly arbitrary
right now, and it is still subject to change in the near future. We’ll try our best to keep this documentation up-to-date.

4.2. Backward Slicing 57

angr

Members

After construction, a BackwardSlice has the following members which describe a program slice:

Member Mode Meaning

runs_in_slice CFG- A networkx.DiGraph instance showing addresses of blocks and SimProcedures in the
only program slice, as well as transitions between them

cfg_nodes_in. CFG- A networkx.DiGraph instance showing CFGNodes in the program slice and transitions
only in between

cho- With A dict mapping basic block addresses to lists of statement IDs that are part of the program

sen_statement DDG slice

cho- With A dict mapping basic block addresses to a list of “exits”. Each exit in the list is a valid

sen_exits DDG transition in the program slice

Each “exit” in chosen_exit is a tuple including a statement ID and a list of target addresses. For example, an “exit”
might look like the following:

[(35, [0x400020 1) J

If the “exit” is the default exit of a basic block, it’ll look like the following:

[("default", [0x400085 1)]

Export an Annotated Control Flow Graph
User-friendly Representation

Take a look at BackwardSlice.dbg_repr()!

4.2.3 Implementation Choices
4.2.4 Limitations

Completeness

Soundness

4.3 Identifier

The identifier uses test cases to identify common library functions in CGC binaries. It prefilters by finding some basic
information about stack variables/arguments. The information of about stack variables can be generally useful in other
projects.

>>> import angr

get all the matches

>>> p = angr.Project("../binaries/tests/i386/identifiable")
note analysis is executed via the Identifier call

>>> idfer = p.analyses.Identifier()

(continues on next page)

58 Chapter 4. Build-in Analyses

angr

>>> for funcInfo in idfer. func_info:
print (hex(funcInfo.addr), funcInfo.name)

0x8048e60
0x8048e£f0
0x8048£60
0x8049030
0x8049320
0x8049a70
0x8049f40
0x804a0£f0
0x804a190
0x804a260
0x804a3d0
0x804a620
0x804aa00
0x80485b0
0x804aab0®
0x804aad®
0x8048660
0x80485b0

memcmp
memcpy
memmove
memset
fdprintf
sprintf
strcasecmp
strcmp
strcpy
strlen
strncmp
strtol
strtol
free

free

free
malloc
free

(continued from previous page)

4.3. |dentifier

59

angr

60 Chapter 4. Build-in Analyses

angr

4.4 angr Decompiler

4.4.1 Analysis Passes

Name Description Sub-analysis

CFG recovery Recover the control flow graph. Indirect branch resolving
Indirectbranchre- Resolve the targets of indirect branches. Jump table resolving
solving

Removing align-
ment blocks
Calling conven-
tion recovery
Stack pointer
analysis

IR Lifting

AIL graph build-
ing
Rewriting single-

target indirect
branches

Making return
statements

Simplifying AIL
blocks

Reaching defini-
tion analysis
Constant folding
Copy propagation
Dead assignment
elimination
Peephole
mizations
Simplifying AIL
function

opti-

Assignment ex-
pression folding

Unifying local
variables

Call expression
folding

Call site building

Variable recovery
Variable type in-
ference
Simplification
passes

Region identifica-
tion

Structure analysis

Determine values of stack pointer at each
instruction.

Lift the original representation to AIL,
block by block.

Replace single-target indirect branches
with direct branches.

Convert Ijk_Ret jump kinds into AIL Re-
turn statements.
Simplify each AIL block.

Simplify the entire AIL function.

Eliminate variables that are assigned to
once and used once.

Find local variables that are always equiv-
alent and eliminate redundant copies.
Fold call expressions into the variable
where its return value is stored.

Apply calling conventions to each call site
and rewrite call statements to ones with ar-
guments

Identify local and global variables.
Collect type constraints and infer variable

types.

Identify single-entry, single-exit regions.

Structure each identified region to create

Constant folding, copy propagation, dead assign-
ment elimination, peephole optimizations

Assignment expression folding, unifying local
variables, call expression folding, reaching def-
inition analysis

Copy propagation

Copy propagation

Copy propagation

Reaching definition analysis

.l
466dan rD .compll‘}e

e generafion

gh-level control flow structures.

61

angr

62 Chapter 4. Build-in Analyses

CHAPTER
FIVE

ADVANCED TOPICS

5.1 Gotchas when using angr

This section contains a list of gotchas that users/victims of angr frequently run into.

5.1.1 SimProcedure inaccuracy

To make symbolic execution more tractable, angr replaces common library functions with summaries written in Python.
We call these summaries SimProcedures. SimProcedures allow us to mitigate path explosion that would otherwise be
introduced by, for example, strlen running on a symbolic string.

Unfortunately, our SimProcedures are far from perfect. If angr is displaying unexpected behavior, it might be caused
by a buggy/incomplete SimProcedure. There are several things that you can do:

1. Disable the SimProcedure (you can exclude specific SimProcedures by passing options to the angr.Project
class. This has the drawback of likely leading to a path explosion, unless you are very careful about constraining
the input to the function in question. The path explosion can be partially mitigated with other angr capabilities
(such as Veritesting).

2. Replace the SimProcedure with something written directly to the situation in question. For example, our scanf
implementation is not complete, but if you just need to support a single, known format string, you can write a
hook to do exactly that.

3. Fix the SimProcedure.

5.1.2 Unsupported syscalls

System calls are also implemented as SimProcedures. Unfortunately, there are system calls that we have not yet imple-
mented in angr. There are several workarounds for an unsupported system call:

1. Implement the system call.

Todo: document this process

2. Hook the callsite of the system call (using project.hook) to make the required modifications to the state in an
ad-hoc way.

3. Use the state.posix.queued_syscall_returns list to queue syscall return values. If a return value is
queued, the system call will not be executed, and the value will be used instead. Furthermore, a function can be
queued instead as the “return value”, which will result in that function being applied to the state when the system
call is triggered.

63

angr

5.1.3 Symbolic memory model

The default memory model used by angr is inspired by Mayhem. This memory model supports limited symbolic reads
and writes. If the memory index of a read is symbolic and the range of possible values of this index is too wide, the
index is concretized to a single value. If the memory index of a write is symbolic at all, the index is concretized to a
single value. This is configurable by changing the memory concretization strategies of state.memory.

5.1.4 Symbolic lengths
SimProcedures, and especially system calls such as read () and write() might run into a situation where the length
of a buffer is symbolic. In general, this is handled very poorly: in many cases, this length will end up being concretized

outright or retroactively concretized in later steps of execution. Even in cases when it is not, the source or destination
file might end up looking a bit “weird”.

5.1.5 Division by Zero

73 has some issues with divisions by zero. For example:

>>> z = z3.Solver()

>>> a = z3.BitVec('a', 32)
>>> b = z3.BitVec('b', 32)
>>> ¢ = z3.BitVec('c', 32)
>>> z.add(a/b == c)

>>> z.add(b == 0)

>>> z.check()
>>> print(z.model() .eval(b), z.model().eval(a/b))
® 4294967295

This makes it very difficult to handle certain situations in Claripy. We post-process the VEX IR itself to explicitly
check for zero-divisions and create IRSB side-exits corresponding to the exceptional case, but SimProcedures and
custom analysis code may let occurrences of zero divisions split through, which will then cause weird issues in your
analysis. Be safe — when dividing, add a constraint against the denominator being zero.

5.2 Understanding the Execution Pipeline

If you’ve made it this far you know that at its core, angr is a highly flexible and intensely instrumentable emulator.
In order to get the most mileage out of it, you’ll want to know what happens at every step of the way when you say
simgr.run().

This is intended to be a more advanced document; you’ll need to understand the function and intent of
SimulationManager, ExplorationTechnique, SimState, and SimEngine in order to understand what we’re talk-
ing about at times! You may want to have the angr source open to follow along with this.

Atevery step along the way, each function will take **kwargs and pass them along to the next function in the hierarchy,
SO you can pass parameters to any point in the hierarchy and they will trickle down to everything below.

64 Chapter 5. Advanced Topics

https://users.ece.cmu.edu/~dbrumley/pdf/Cha%20et%20al._2012_Unleashing%20Mayhem%20on%20Binary%20Code.pdf

angr

5.2.1 Simulation Managers

So you’ve set your analysis in motion. Time to begin our journey.

runQ)

SimulationManager.run() takes several optional parameters, all of which control when to break out of the stepping
loop. Notably, n, and until. n is used immediately - the run function loops, calling the step () function and passing
on all its parameters until either n steps have happened or some other termination condition has occurred. If n is not
provided, it defaults to 1, unless an until function is provided, in which case there will be no numerical cap on the
loop. Additionally, the stash that is being used is taken into consideration, as if it becomes empty execution must
terminate.

So, in summary, when you call run(), step() will be called in a loop until any of the following:
1. The n number of steps have elapsed
2. The until function returns true

3. The exploration techniques complete() hooks (combined via the SimulationManager.completion_mode
parameter/attribute - it is by default the any builtin function but can be changed to all for example) indicate that
the analysis is complete

4. The stash being executed becomes empty

An aside: explore()

SimulationManager.explore() is a very thin wrapper around run() which adds the Explorer exploration tech-
nique, since performing one-off explorations is a very common action. Its code in its entirety is below:

num_find += len(self._stashes[find_stash]) if find_stash in self._stashes else 0
tech = self.use_technique(Explorer(find, avoid, find_stash, avoid_stash, cfg, num_£find))

try:

self.run(stash=stash, n=n, **kwargs)
finally:

self.remove_technique(tech)

return self

Exploration technique hooking

From here down, every function in the simulation manager can be instrumented by an exploration technique. The
exact mechanism through which this works is that when you call SimulationManager.use_technique(), angr
monkeypatches the simulation manager to replace any function implemented in the exploration technique’s body with
a function which will first call the exploration technique’s function, and then on the second call will call the original
function. This is somewhat messy to implement and certainly not thread safe by any means, but does produce a clean
and powerful interface for exploration techniques to instrument stepping behavior, either before or after the original
function is called, even choosing whether or not to call the original function whatsoever. Additionally, it allows mul-
tiple exploration techniques to hook the same function, as the monkeypatched function simply becomes the “original”
function for the next-applied hook.

5.2. Understanding the Execution Pipeline 65

angr

stepQ)

There is a lot of complicated logic in step() to handle degenerate cases - mostly implementing the population of
the deadended stash, the save_unsat option, and calling the filter () exploration technique hooks. Beyond this,
though, most of the logic is looping through the stash specified by the stash argument and calling step_state()
on each state, then applying the dict result of step_state() to the stash list. Finally, if the step_func parameter is
provided, it is called with the simulation manager as a parameter before the step ends.

step_state()

The default step_state(), which can be overridden or instrumented by exploration techniques, is also simple - it
calls successors (), which returns a SimSuccessors object, and then translates it into a dict mapping stash names to
new states which should be added to that stash. It also implements error handling - if successors() throws an error,
it will be caught and an ErrorRecord will be inserted into SimulationManager.errored.

successors()

We’ve almost made it out of SimulationManager. successors(), which can also be instrumented by exploration
techniques, is supposed to take a state and step it forward, returning a SimSuccessors object categorizing its successors
independently of any stash logic. If the successor_func parameter was provided, it is used and its return value is
returned directly. If this parameter was not provided, we use the project. factory.successors method to tick the
state forward and get our SimSuccessors.

5.2.2 The Engine

When we get to the actual successors generation, we need to figure out how to actually perform the execution. Hope-
fully, the angr documentation has been organized in a way such that by the time you reach this page, you know that a
SimEngine is a device that knows how to take a state and produce its successors. There is only one “default engine”
per project, but you can provide the engine parameter to specify which engine will be used to perform the step.

Keep in mind that this parameter can be provided way at the top, to .step(), .explore(), .run() or anything else
that starts execution, and they will be filtered down to this level. Any additional parameters will continue being passed
down, until they reach the part of the engine they are intended for. The engine will discard any parameters it doesn’t
understand.

Generally, the main entry point of an engine is SimEngine.process (), which can return whatever result it likes, but
for simulation managers, engines are required to use SuccessorsMixin, which provides a process () method, which
creates a SimSuccessors object and then calls process_successors() so that other mixins can fill it out.

angr’s default engine, the UberEngine, contains several mixins which provide the process_successors () method:
e SimEngineFailure - handles stepping states with degenerate jumpkinds
e SimEngineSyscall - handles stepping states which have performed a syscall and need it executed
* HooksMixin - handles stepping states which have reached a hooked address and need the hook executed
e SimEngineUnicorn - executes machine code via the unicorn engine
* SootMixin - executes java bytecode via the SOOT IR
e HeavyVEXMixin - executes machine code via the VEX IR

Each of these mixins is implemented to fill out the SimSuccessors object if they can handle the current state, otherwise
they call super () to pass the job on to the next class in the stack.

66 Chapter 5. Advanced Topics

angr

5.2.3 Engine mixins

SimEngineFailure handles error cases. It is only used when the previous jumpkind is one of Ijk_EmFail,
Ijk_MapFail, Ijk_Sig*, Ijk_NoDecode (but only if the address is not hooked), or Ijk_Exit. In the first four
cases, its action is to raise an exception. In the last case, its action is to simply produce no successors.

SimEngineSyscall services syscalls. It is used when the previous jumpkind is anything of the form Ijk_Sys*. It
works by making a call into SimOS to retrieve the SimProcedure that should be run to respond to this syscall, and then
running it! Pretty simple.

HooksMixin provides the hooking functionality in angr. It is used when a state is at an address that is hooked, and the
previous jumpkind is not Ijk_NoHook. It simply looks up the associated SimProcedure and runs it on the state! It also
takes the parameter procedure, which will cause the given procedure to be run for the current step even if the address
is not hooked.

SimEngineUnicorn performs concrete execution with the Unicorn Engine. It is used when the state option o . UNICORN
is enabled, and a myriad of other conditions designed for maximum efficiency (described below) are met.

SootMixin performs execution over the SOOT IR. Not very important unless you are analyzing java bytecode, in which
case it is very important.

SimEngineVEX is the big fellow. It is used whenever any of the previous can’t be used. It attempts to lift bytes from
the current address into an IRSB, and then executes that IRSB symbolically. There are a huge number of parameters
that can control this process, so it is best to reference the API doc for angr.engines.vex.engine.SimEngineVEX.
process() describing them.

The exact process by which SimEngineVEX digs into an IRSB is a little complicated, but essentially it runs all the
block’s statements in order. This code is worth reading if you want to see the true inner core of angr’s symbolic
execution.

5.2.4 When using Unicorn Engine

If you add the o .UNICORN state option, at every step SimEngineUnicorn will be invoked, and try to see if it is allowed
to use Unicorn to execute concretely.

What you REALLY want to do is to add the predefined set o.unicorn (lowercase) of options to your state:

unicorn = { UNICORN, UNICORN_SYM_REGS_SUPPORT, INITIALIZE_ZERO_REGISTERS, UNICORN_HANDLE_
—TRANSMIT_SYSCALL }

These will enable some additional functionalities and defaults which will greatly enhance your experience. Addition-
ally, there are a lot of options you can tune on the state.unicorn plugin.

A good way to understand how unicorn works is by examining the logging output (logging.getLogger('angr.
engines.unicorn_engine').setLevel ('DEBUG'); logging.getLogger('angr.state_plugins.
unicorn_engine').setLevel ('DEBUG'") from a sample run of unicorn.

INFO | 2017-02-25 08:19:48,012 | angr.state_plugins.unicorn | started emulation at.
—0x4012f9 (1000000 steps)

Here, angr diverts to unicorn engine, beginning with the basic block at 0x4012f9. The maximum step count is set to
1000000, so if execution stays in Unicorn for 1000000 blocks, it’ll automatically pop out. This is to avoid hanging in
an infinite loop. The block count is configurable via the state.unicorn.max_steps variable.

INFO | 2017-02-25 08:19:48,014 | angr.state_plugins.unicorn | mmap [0x401000,.
—0x401£££f], 5 (symbolic)
INFO | 2017-02-25 08:19:48,016 | angr.state_plugins.unicorn | mmap [0x7fffffffffe0000,

(continues on next page)

5.2. Understanding the Execution Pipeline 67

angr

(continued from previous page)

— Ox7fffffffffeffff], 3 (symbolic)

INFO | 2017-02-25 08:19:48,019 | angr.state_plugins.unicorn | mmap [0x6010000,.
~0x601£f£££f], 3

INFO | 2017-02-25 08:19:48,022 | angr.state_plugins.unicorn | mmap [0x602000,.
—0x602£f££f], 3 (symbolic)

INFO | 2017-02-25 08:19:48,023 | angr.state_plugins.unicorn | mmap [0x400000,..
~0x400f£f], 5

INFO | 2017-02-25 08:19:48,025 | angr.state_plugins.unicorn | mmap [0x7000000,.

—0x7000fff], 5

angr performs lazy mapping of data that is accessed by unicorn engine, as it is accessed. 0x401000 is the page of
instructions that it is executing, Ox7fFftfftfe0000 is the stack, and so on. Some of these pages are symbolic, meaning
that they contain at least some data that, when accessed, will cause execution to abort out of Unicorn.

INFO | 2017-02-25 08:19:48,037 | angr.state_plugins.unicorn | finished emulation at.
—0x7000080 after 3 steps: STOP_STOPPOINT

Execution stays in Unicorn for 3 basic blocks (a computational waste, considering the required setup), after which it
reaches a simprocedure location and jumps out to execute the simproc in angr.

INFO | 2017-02-25 08:19:48,076 | angr.state_plugins.unicorn | started emulation at.
—0x40175d (1000000 steps)

INFO | 2017-02-25 08:19:48,077 | angr.state_plugins.unicorn | mmap [0x401000,.
—0x401£££f], 5 (symbolic)

INFO | 2017-02-25 08:19:48,079 | angr.state_plugins.unicorn | mmap [0x7fffffffffe0000,
— Ox7fffffffffeffff], 3 (symbolic)

INFO | 2017-02-25 08:19:48,081 | angr.state_plugins.unicorn | mmap [0x6010000,.

—0x601ffff], 3

After the simprocedure, execution jumps back into Unicorn.

WARNING | 2017-02-25 08:19:48,082 | angr.state_plugins.unicorn
- [0x0, Oxfff]
INFO | 2017-02-25 08:19:48,103 | angr.state_plugins.unicorn | finished emulation at..
—0x401777 after 1 steps: STOP_EXECNONE

fetching empty page.

Execution bounces out of Unicorn almost right away because the binary accessed the zero-page.

INFO | 2017-02-25 08:19:48,120 | angr.engines.unicorn_engine | not enough runs since.
—last unicorn (100)
INFO | 2017-02-25 08:19:48,125 | angr.engines.unicorn_engine | not enough runs since.

—last unicorn (99)

To avoid thrashing in and out of Unicorn (which is expensive), we have cooldowns (attributes of the state.unicorn
plugin) that wait for certain conditions to hold (i.e., no symbolic memory accesses for X blocks) before jumping back
into unicorn when a unicorn run is aborted due to anything but a simprocedure or syscall. Here, the condition it’s
waiting for is for 100 blocks to be executed before jumping back in.

68 Chapter 5. Advanced Topics

angr

5.3 What’s Up With Mixins, Anyway?

If you are trying to work more intently with the deeper parts of angr, you will need to understand one of the design
patterns we use frequently: the mixin pattern.

In brief, the mixin pattern is where Python’s subclassing features is used not to implement IS-A relationships (a Child is
a kind of Person) but instead to implement pieces of functionality for a type in different classes to make more modular
and maintainable code. Here’s an example of the mixin pattern in action:

class Base:
def add_one(self, v):
return v + 1

class StringsMixin(Base):
def add_one(self, v):
coerce = type(v) is str
if coerce:
v = int(v)
result = super().add_one(v)
if coerce:
result = str(result)
return result

class ArraysMixin(Base):
def add_one(self, v):
if type(v) is list:
return [super().add_one(v_x) for v_x in v]
else:
return super() .add_one(v)

class FinalClass(ArraysMixin, StringsMixin, Base):
pass

With this construction, we are able to define a very simple interface in the Base class, and by “mixing in” two mixins,
we can create the FinalClass which has the same interface but with additional features. This is accomplished through
Python’s powerful multiple inheritance model, which handles method dispatch by creating a method resolution order,
or MRO, which is unsuprisingly a list which determines the order in which methods are called as execution proceeds
through super () calls. You can view a class” MRO as such:

FinalClass. mro__

(FinalClass, ArraysMixin, StringsMixin, Base, object)

This means that when we take an instance of FinalClass and call add_one(), Python first checks to see if
FinalClass defines an add_one, and then ArraysMixin, and so on and so forth. Furthermore, when ArraysMixin
calls super () .add_one (), Python will skip past ArraysMixin in the MRO, first checking if StringsMixin defines
an add_one, and so forth.

Because multiple inheritance can create strange dependency graphs in the subclass relationship, there are rules for
generating the MRO and for determining if a given mix of mixins is even allowed. This is important to understand
when building complex classes with many mixins which have dependencies on each other. In short: left-to-right,
depth-first, but deferring any base classes which are shared by multiple subclasses (the merge point of a diamond
pattern in the inheritance graph) until the last point where they would be encountered in this depth-first search. For
example, if you have classes A, B(A), C(B), D(A), E(C, D), then the method resolution order will be E, C, B, D, A. If

5.3. What’s Up With Mixins, Anyway? 69

angr

there is any case in which the MRO would be ambiguous, the class construction is illegal and will throw an exception
at import time.

This is complicated! If you find yourself confused, the canonical document explaining the rationale, history, and
mechanics of Python’s multiple inheritence can be found here.

5.3.1 Mixins in Claripy Solvers

Todo: Write this section

5.3.2 Mixins in angr Engines

The main entry point to a SimEngine is process (), but how do we determine what that does?

The mixin model is used in SimEngine and friends in order to allow pieces of functionality to be reused between static
and symbolic analyses. The default engine, UberEngine, is defined as follows:

class UberEngine(SimEngineFailure,
SimEngineSyscall,
HooksMixin,
SimEngineUnicorn,
SuperFastpathMixin,
TrackActionsMixin,
SimInspectMixin,
HeavyResilienceMixin,
SootMixin,
HeavyVEXMixin

pass

Each of these mixins provides either execution through a different medium or some additional instrumentation fea-
ture. Though they are not listed here explicitly, there are some base classes implicit to this hierarchy which set up the
way this class is traversed. Most of these mixins inherit from SuccessorsMixin, which is what provides the basic
process() implementation. This function sets up the SimSuccessors for the rest of the mixins to fill in, and then
calls process_successors (), which each of the mixins which provide some mode of execution implement. If the
mixin can handle the step, it does so and returns, otherwise it calls super () .process_successors(). In this way,
the MRO for the engine class determines what the order of precedence for the engine’s pieces is.

HeavyVEXMixin and friends

Let’s take a closer look at the last mixin, HeavyVEXMixin. If you look at the module hierarchy of the angr engines
submodule, you will see that the vex submodule has a lot of pieces in it which are organized by how tightly tied to
particular state types or data types they are. The heavy VEX mixin is one version of the culmination of all of these.
Let’s look at its definition:

class HeavyVEXMixin(SuccessorsMixin, ClaripyDataMixin, SimStateStorageMixin, VEXMixin,.
VEXLifter):

a WHOLE lot of implementation

70 Chapter 5. Advanced Topics

https://www.python.org/download/releases/2.3/mro/

angr

So, the heavy VEX mixin is meant to provide fully instrumented symbolic execution on a SimState. What does this
entail? The mixins tell the tale.

First, the plain VEXMixin. This mixin is designed to provide the barest-bones framework for processing a VEX block.
Take a look at its source code. Its main purpose is to perform the preliminary digestion of the VEX IRSB and dispatch
processing of it to methods which are provided by mixins - look at the methods which are either pass or return
NotImplemented. Notice that absolutely none of its code makes any assumption whatsoever of what the type of
state is or even what the type of the data words inside state are. This job is delegated to other mixins, making the
VEXMixin an appropriate base class for literally any analysis on VEX blocks.

The next-most interesting mixin is the ClaripyDataMixin, whose source code is here. This mixin actually integrates
the fact that we are executing over the domain of Claripy ASTs. It does this by implementing some of the methods
which are unimplemented in the VEXMixin, most importantly the ITE expression, all the operations, and the clean
helpers.

In terms of what it looks like to actually touch the SimState, the SimStateStorageMixin provides the glue between
the VEXMixin’s interface for memory writes et al and SimState’s interface for memory writes and such. It is unre-
markable, except for a small interaction between it and the ClaripyDataMixin. The Claripy mixin also overrides
the memory/register read/write functions, for the purpose of converting between the bitvector and floating-point types,
since the vex interface expects to be able to load and store floats, but the SimState interface wants to load and store
only bitvectors. Because of this, the claripy mixin must come before the storage mixin in the MRO. This is very much
an interaction like the one in the add_one example at the start of this page - one mixin serves as a data filtering layer
for another mixin.

Instrumenting the data layer

Let’s turn our attention to a mixin which is not included in the HeavyVEXMixin but rather mixed into the UberEngine
formula explicitly: the TrackActionsMixin. This mixin implements “SimActions”, which is angr parlance for
dataflow tracking. Again, look at the source code. The way it does this is that it wraps and unwraps the data layer to
pass around additional information about data flows. Look at how it instruments RdTmp, for instance. It immediately
super ()-calls to the next method in the MRO, but instead of returning that data it returns a tuple of the data and its
dependencies, which depending on whether you want temporary variables to be atoms in the dataflow model, will either
be just the tmp which was read or the dependencies of the value written to that tmp.

This pattern continues for every single method that this mixin touches - any expression it receives must be unpacked
into the expression and its dependencies, and any result must be packaged with its dependencies before it is returned.
This works because the mixin above it makes no assumptions about what data it is passing around, and the mixin
below it never gets to see any dependencies whatsoever. In fact, there could be multiple mixins performing this kind
of wrap-unwrap trick and they could all coexist peacefully!

Note that a mixin which instruments the data layer in this way is obligated to override every single method which takes
or returns an expression value, even if it doesn’t perform any operation on the expression other than doing the wrapping
and unwrapping. To understand why, imagine that the mixin does not override the handle_vex_const expression,
so immediate value loads are not annotated with dependencies. The expression value which will be returned from the
mixin which does provide handle_vex_const will not be a tuple of (expression, deps), it will just be the expression.
Imagine this execution is taking place in the context of a WrTmp (t®, Const(8)). The const expression will be passed
down to the WrTmp handler along with the identifier of the tmp to write to. However, since handle_vex_stmt_WrTmp
will be overridden by our mixin which touches the data layer, it expects to be passed the tuple including the deps, and
so it will crash when trying to unpack the not-a-tuple value.

In this way, you can sort of imagine that a mixin which instruments the data layer in this way is actually creating a
contract within Python’s nonexistent typesystem - you are guaranteed to receive back any types you return, but you
must pass down any types you receive as return values from below.

5.3. What’s Up With Mixins, Anyway? 71

https://github.com/angr/angr/blob/master/angr/engines/vex/light/light.py
https://github.com/angr/angr/blob/master/angr/engines/vex/claripy/datalayer.py
https://github.com/angr/angr/blob/master/angr/engines/vex/heavy/actions.py

angr

5.3.3 Mixins in the memory model

Todo:

write this section

5.4

Optimization considerations

The performance of angr as an analysis tool or emulator is greatly handicapped by the fact that lots of it is written in
Python. Regardless, there are a lot of optimizations and tweaks you can use to make angr faster and lighter.

5.4.1 General speed tips

Use pypy. Pypy is an alternate Python interpreter that performs optimized jitting of Python code. In our tests,
it’s a 10x speedup out of the box.

Only use the SimEngine mixins that you need. SimEngine uses a mixin model which allows you to add and remove
features by constructing new classes. The default engine mixes in every possible features, and the consequence
of that is that it is slower than it needs to be. Look at the definition for UberEngine (the default SimEngine),
copy its declaration, and remove all the base classes which provide features you don’t need.

Don’t load shared libraries unless you need them. The default setting in angr is to try at all costs to find shared
libraries that are compatible with the binary you’ve loaded, including loading them straight out of your OS
libraries. This can complicate things in a lot of scenarios. If you're performing an analysis that’s anything more
abstract than bare-bones symbolic execution, ESPECIALLY control-flow graph construction, you might want
to make the tradeoff of sacrificing accuracy for tractability. angr does a reasonable job of making sane things
happen when library calls to functions that don’t exist try to happen.

Use hooking and SimProcedures. If you're enabling shared libraries, then you definitely want to have SimProce-
dures written for any complicated library function you’re jumping into. If there’s no autonomy requirement for
this project, you can often isolate individual problem spots where analysis hangs up and summarize them with a
hook.

Use SimInspect. SimInspect is the most underused and one of the most powerful features of angr. You can hook
and modify almost any behavior of angr, including memory index resolution (which is often the slowest part of
any angr analysis).

Write a concretization strategy. A more powerful solution to the problem of memory index resolution is a
concretization strategy.

Use the Replacement Solver. You can enable it with the angr.options.REPLACEMENT_SOLVER state option.
The replacement solver allows you to specify AST replacements that are applied at solve-time. If you add replace-
ments so that all symbolic data is replaced with concrete data when it comes time to do the solve, the runtime
is greatly reduced. The API for adding a replacement is state.se._solver.add_replacement (old, new).
The replacement solver is a bit finicky, so there are some gotchas, but it’1l definitely help.

72

Chapter 5. Advanced Topics

http://pypy.org/
https://github.com/angr/angr/tree/master/angr/concretization_strategies

angr

5.4.2 If you’re performing lots of concrete or partially-concrete execution

* Use the unicorn engine. If you have unicorn engine installed, angr can be built to take advantage of it for concrete
emulation. To enable it, add the options in the set angr.options.unicorn to your state. Keep in mind that
while most items under angr . options are individual options, angr.options.unicorn is a bundle of options,
and is thus a set. NOTE: At time of writing the official version of unicorn engine will not work with angr - we
have a lot of patches to it to make it work well with angr. They’re all pending pull requests at this time, so sit
tight. If you’re really impatient, ping us about uploading our fork!

» Enable fast memory and fast registers. The state options angr.options.FAST_MEMORY and angr.options.
FAST_REGISTERS will do this. These will switch the memory/registers over to a less intensive memory model
that sacrifices accuracy for speed. TODO: document the specific sacrifices. Should be safe for mostly concrete
access though. NOTE: not compatible with concretization strategies.

* Concretize your input ahead of time. This is the approach taken by driller. When creating a state with
entry_state or the like, you can create a SimFile filled with symbolic data, pass it to the initialization function
as an argument entry_state(..., stdin=my_simfile), and then constrain the symbolic data in the SimFile
to what you want the input to be. If you don’t require any tracking of the data coming from stdin, you can forego
the symbolic part and just fill it with concrete data. If there are other sources of input besides standard input, do
the same for those.

* Use the afterburner. While using unicorn, if you add the UNTCORN_THRESHOLD_CONCRETIZATION state option,
angr will accept thresholds after which it causes symbolic values to be concretized so that execution can spend
more time in Unicorn. Specifically, the following thresholds exist:

— state.unicorn.concretization_threshold_memory - this is the number of times a symbolic vari-
able, stored in memory, is allowed to kick execution out of Unicorn before it is forcefully concretized and
forced into Unicorn anyways.

— state.unicorn.concretization_threshold_registers - this is the number of times a symbolic
variable, stored in a register, is allowed to kick execution out of Unicorn before it is forcefully concretized
and forced into Unicorn anyways.

— state.unicorn.concretization_threshold_instruction - this is the number of times that any
given instruction can force execution out of Unicorn (by running into symbolic data) before any symbolic
data encountered at that instruction is concretized to force execution into Unicorn.

You can get further control of what is and isn’t concretized with the following sets:

— state.unicorn.always_concretize - a set of variable names that will always be concretized to force
execution into unicorn (in fact, the memory and register thresholds just end up causing variables to be added
to this list).

— state.unicorn.never_concretize - a set of variable names that will never be concretized and forced
into Unicorn under any condition.

— state.unicorn.concretize_at - a set of instruction addresses at which data should be concretized and
forced into Unicorn. The instruction threshold causes addresses to be added to this set.

Once something is concretized with the afterburner, you will lose track of that variable. The state will still be
consistent, but you’ll lose dependencies, as the stuff that comes out of Unicorn is just concrete bits with no
memory of what variables they came from. Still, this might be worth it for the speed in some cases, if you know
what you want to (or do not want to) concretize.

5.4. Optimization considerations 73

https://github.com/unicorn-engine/unicorn/
https://www.internetsociety.org/sites/default/files/blogs-media/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf

angr

5.4.3 Memory optimization

The golden rule for memory optimization is to make sure you’re not keeping any references to data you don’t care about
anymore, especially related to states which have been left behind. If you find yourself running out of memory during
analysis, the first thing you want to do is make sure you haven’t caused a state explosion, meaning that the analysis is
accumulating program states too quickly. If the state count is in control, then you can start looking for reference leaks.
A good tool to do this with is https://github.com/rhelmot/dumpsterdiver, which gives you an interactive prompt for
exploring the reference graph of a Python process.

One specific consideration that should be made when analyzing programs with very long paths is that the state history
is designed to accumulate data infinitely. This is less of a problem than it could be because the data is stored in a smart
tree structure and never copied, but it will accumulate infinitely. To downsize a state’s history and free all data related
to old steps, call state.history.trim(Q).

One particularly problematic member of the history dataset is the basic block trace and the stack pointer trace. When
using unicorn engine, these lists of ints can become huge very very quickly. To disable unicorn’s capture of ip and sp
data, remove the state options UNTCORN_TRACK_BBL_ADDRS and UNICORN_TRACK_STACK_POINTERS.

5.5 Working with File System, Sockets, and Pipes

It’s very important to be able to control the environment that emulated programs see, including how symbolic data is
introduced from the environment! angr has a robust series of abstractions to help you set up the environment you want.

The root of any interaction with the filesystem, sockets, pipes, or terminals is a SimFile object. A SimFile is a storage
abstraction that defines a sequence of bytes, symbolic or otherwise. There are several kinds of SimFiles which store
their data very differently - the two easiest examples are SimFile (the base class is actually called SimFileBase),
which stores files as a flat address-space of data, and SimPackets, which stores a sequence of variable-sized reads.
The former is best for modeling programs that need to perform seeks on their files, and is the default storage for opened
files, while the latter is best for modeling programs that depend on short-reads or use scanf, and is the default storage
for stdin/stdout/stderr.

Because SimFiles can have such diverse storage mechanisms, the interface for interacting with them is very abstracted.
You can read from the file from some position, you can write to the file at some position, you can ask how many bytes
are currently stored in the file, and you can concretize the file, generating a testcase for it. If you know specifically which
SimFile class you’re working with, you can take much more powerful control over it, and as a result you're encouraged
to manually create any files you want to work with when you create your initial state.

Specifically, each SimFile class creates its own abstraction of a “position”” within the file - each read and write takes
a position and returns a new position that you should use to continue from where you left off. If you’re working with
SimFiles of unknown type you have to treat this position as a totally opaque object with no semantics other than the
contract with the read/write functions.

However! This is a very poor match to how programs generally interact with files, so angr also has a SimFileDescriptor
abstraction, which provides the familiar read/write/seek/tell interfaces but will also return error conditions when the
underlying storage don’t support the appropriate operations - just like normal file descriptors!

You may access the mapping from file descriptor number to file descriptor object in state.posix.fd. See the API
document for angr. storage. file.SimFileDescriptorBase for more details.

74 Chapter 5. Advanced Topics

https://github.com/rhelmot/dumpsterdiver

angr

5.5.1 Just tell me how to do what | want to do!

Okay okay!!

To create a SimFile, you should just create an instance of the class you want to use. Refer to angr. storage. file for
the full instructions.

Let’s go through a few illustrative examples, which cover how you can work with a concrete file, a symbolic file, a file
with mixed concrete and symbolic content, or streams.

Example 1: Create a file with concrete content

>>> import angr
>>> simfile = angr.SimFile('myconcretefile', content='hello world!\n')

Here’s a nuance - you can’t use SimFiles without a state attached, because reasons. You’ll never have to do this in a
real scenario (this operation happens automatically when you pass a SimFile into a constructor or the filesystem) but
let’s mock it up:

>>> proj = angr.Project('/bin/true')
>>> state = proj.factory.blank_state()
>>> simfile.set_state(state)

To demonstrate the behavior of these files we’re going to use the fact that the default SimFile position is just the number
of bytes from the start of the file. SimFile.read returns a tuple (bitvector data, actual size, new pos):

>>> data, actual_size, new_pos = simfile.read(0, 5)
>>> import claripy

>>> assert claripy.is_true(data == 'hello')
>>> assert claripy.is_true(actual_size == 5)
>>> assert claripy.is_true(new_pos == 5)

Continue the read, trying to read way too much:

[>>> data, actual_size, new_pos = simfile.read(new_pos, 1000) }

angr doesn’t try to sanitize the data returned, only the size - we returned 1000 bytes! The intent is that you’re only
allowed to use up to actual_size of them.

>>> assert len(data) == 1000%8 # bitvector sizes are in bits
>>> assert claripy.is_true(actual_size == 8)

>>> assert claripy.is_true(data.get_bytes(0, 8) == ' world!\n'")
>>> assert claripy.is_true(new_pos == 13)

Example 2: Create a file with symbolic content and a defined size

>>> simfile = angr.SimFile('mysymbolicfile', size=0x20)
>>> simfile.set_state(state)

>>> data, actual_size, new_pos = simfile.read(0, 0x30)
>>> assert data.symbolic
>>> assert claripy.is_true(actual_size == 0x20)

5.5. Working with File System, Sockets, and Pipes 75

angr

The basic SimFile provides the same interface as state.memory, so you can load data directly:

[>>> assert simfile.load(®, actual_size) is data.get_bytes(®, 0x20)

Example 3: Create a file with constrained symbolic content

>>> bytes_list = [claripy.BVS('byte_%d' % i, 8) for i in range(32)]
>>> bytes_ast = claripy.Concat(*bytes_list)
>>> mystate = proj.factory.entry_state(stdin=angr.SimFile('/dev/stdin', content=bytes_
—ast))
>>> for byte in bytes_list:
mystate.solver.add(byte >= 0x20)
mystate.solver.add(byte <= 0x7e)

Example 4: Create a file with some mixed concrete and symbolic content, but no EOF

>>> variable = claripy.BVS('myvar', 10%8)

>>> simfile = angr.SimFile('mymixedfile', content=variable.concat(claripy.BVV('\n')),.
—has_end=False)

>>> simfile.set_state(state)

We can always query the number of bytes stored in the file:

[>>> assert claripy.is_true(simfile.size == 11)

Reads will generate additional symbolic data past the current frontier:

>>> data, actual_size, new_pos = simfile.read(®, 15)

>>> assert claripy.is_true(actual_size == 15)

>>> assert claripy.is_true(new_pos == 15)

>>> assert claripy.is_true(data.get_bytes(0®, 10) == variable)
>>> assert claripy.is_true(data.get_bytes(10, 1) == '\n')

>>> assert data.get_bytes(ll, 4).symbolic

Example 5: Create a file with a symbolic size (has_end is implicitly true here)

>>> symsize = claripy.BVS('mysize', 64)

>>> state.solver.add(symsize >= 10)

>>> state.solver.add(symsize < 20)

>>> simfile = angr.SimFile('mysymsizefile', size=symsize)
>>> simfile.set_state(state)

Reads will encode all possibilities:

>>> data, actual_size, new_pos = simfile.read(®, 30)
>>> assert set(state.solver.eval_ upto(actual_size, 30)) == set(range(10, 20))

The maximum size can’t be easily resolved, so the data returned is 30 bytes long, and we’re supposed to use it conjunc-
tion with actual_size.

76 Chapter 5. Advanced Topics

angr

[>>> assert len(data) == 30%8

Symbolic read sizes work too!

>>> symreadsize = claripy.BVS('myreadsize', 64)

>>> state.solver.add(symreadsize >= 5)

>>> state.solver.add(symreadsize < 30)

>>> data, actual_size, new_pos = simfile.read(®, symreadsize)

All sizes between 5 and 20 should be possible:

[>>> assert set(state.solver.eval_upto(actual_size, 30)) == set(range(5, 20)) J

Example 6: Working with streams (SimPackets)

So far, we’ve only used the SimFile class, which models a random-accessible file object. However, in real life, files are
not everything. Streams (standard I/O, TCP, etc.) are a great example: While they hold data like a normal file does,
they do not support random accesses, €.g., you cannot read out the second byte of stdin if you have already read passed
that position, and you cannot modify any byte that has been previously sent out to a network endpoint. This allows us
to design a simpler abstraction for streams in angr.

Believe it or not, this simpler abstraction for streams will benefit symbolic execution. Consider an example program
that calls scanf N times to read in N strings. With a traditional SimFile, as we do not know the length of each input
string, there does not exist any clear boundary in the file between these symbolic input strings. In this case, angr will
perform N symbolic reads where each read will generate a gigantic tree of claripy ASTs, with string lengths being
symbolic. This is a nightmare for constraint solving. Nevertheless, the fact that scanf is used on a stream (stdin)
dictates that there will be zero overlap between individual reads, regardless of the sizes of each symbolic input string.
We may as well model stdin as a stream that comprises of consecutive packets, instead of a file containing a sequence
of bytes. Each of the packet can be of a fixed length or a symbolic length. Since there will be absolutely no byte overlap
between packets, the constraints that angr will produce after executing this example program will be a lot simpler.

The key concept involved is “short reads”, i.e. when you ask for n bytes but actually get back fewer bytes than that.
We use a different class implementing SimFileBase, SimPackets, to automatically enable support for short reads. By
default, stdin, stdout, and stderr are all SimPackets objects.

>>> simfile = angr.SimPackets('mypackets")
>>> simfile.set_state(state)

This’1l just generate a single packet. For SimPackets, the position is just a packet number! If left unspecified,
short_reads is determined from a state option.

>>> data, actual_size, new_pos = simfile.read(®, 20, short_reads=True)
>>> assert len(data) == 20*8
>>> assert set(state.solver.eval_upto(actual_size, 30)) == set(range(21))

Data in a SimPackets is stored as tuples of (packet data, packet size) in .content.

>>> print(simfile.content)
[(<BV160 packet_0_mypackets>, <BV64 packetsize_0_mypackets>)]

>>> simfile.read(0®, 1, short_reads=False)

>>> print(simfile.content)

[(<BV160 packet_O_mypackets>, <BV64 packetsize_O0_mypackets>), (<BV8 packet_1_mypackets>,
—<BV64 0x1>)]

5.5. Working with File System, Sockets, and Pipes 77

angr

So hopefully you understand sort of the kind of data that a SimFile can store and what’ll happen when a program tries
to interact with it with various combinations of symbolic and concrete data. Those examples only covered reads, but
writes are pretty similar.

5.5.2 The filesystem, for real now
If you want to make a SimFile available to the program, we need to either stick it in the filesystem or serve stdin/stdout
from it.

The simulated filesystem is the state. fs plugin. You can store, load, and delete files from the filesystem, with the
insert, get, and delete methods. Refer to angr. state_plugins. filesystem for details.

So to make our file available as /tmp/myfile:

>>> state.fs.insert('/tmp/myfile', simfile)
>>> assert state.fs.get('/tmp/myfile') is simfile

Then, after execution, we would extract the file from the result state and use simfile.concretize() to generate a
testcase to reach that state. Keep in mind that concretize () returns different types depending on the file type - for a
SimFile it’s a bytestring and for SimPackets it’s a list of bytestrings.

The simulated filesystem supports a fun concept of “mounts”, where you can designate a subtree as instrumented by a
particular provider. The most common mount is to expose a part of the host filesystem to the guest, lazily importing
file data when the program asks for it:

[>>> state.fs.mount('/', angr.SimHostFilesystem('./guest_chroot'))

You can write whatever kind of mount you want to instrument filesystem access by subclassing angr . SimMount!

5.5.3 Stdio streams

For stdin and friends, it’s a little more complicated. The relevant plugin is state.posix, which stores all abstractions
relevant to a POSIX-compliant environment. You can always get a state’s stdin SimFile with state.posix.stdin,
but you can’t just replace it - as soon as the state is created, references to this file are created in the file descriptors.
Because of this you need to specify it at the time the POSIX plugin is created:

>>> state.register_plugin('posix', angr.state_plugins.posix.SimSystemPosix(stdin=simfile,
- stdout=simfile, stderr=simfile))

>>> assert state.posix.stdin is simfile

>>> assert state.posix.stdout is simfile

>>> assert state.posix.stderr is simfile

Or, there’s a nice shortcut while creating the state if you only need to specify stdin:

>>> state = proj.factory.entry_state(stdin=simfile)
>>> assert state.posix.stdin is simfile

Any of those places you can specify a SimFileBase, you can also specify a string or a bitvector (a flat SimFile with
fixed size will be created to hold it) or a SimFile type (it’ll be instantiated for you).

78 Chapter 5. Advanced Topics

angr

5.6 Intermediate Representation

In order to be able to analyze and execute machine code from different CPU architectures, such as MIPS, ARM, and
PowerPC in addition to the classic x86, angr performs most of its analysis on an intermediate representation, a structured
description of the fundamental actions performed by each CPU instruction. By understanding angr’s IR, VEX (which
we borrowed from Valgrind), you will be able to write very quick static analyses and have a better understanding of
how angr works.

The VEX IR abstracts away several architecture differences when dealing with different architectures, allowing a single
analysis to be run on all of them:

* Register names. The quantity and names of registers differ between architectures, but modern CPU designs hold
to a common theme: each CPU contains several general purpose registers, a register to hold the stack pointer, a
set of registers to store condition flags, and so forth. The IR provides a consistent, abstracted interface to registers
on different platforms. Specifically, VEX models the registers as a separate memory space, with integer offsets
(e.g., AMDG64’s rax is stored starting at address 16 in this memory space).

* Memory access. Different architectures access memory in different ways. For example, ARM can access mem-
ory in both little-endian and big-endian modes. The IR abstracts away these differences.

* Memory segmentation. Some architectures, such as x86, support memory segmentation through the use of
special segment registers. The IR understands such memory access mechanisms.

¢ Instruction side-effects. Most instructions have side-effects. For example, most operations in Thumb mode
on ARM update the condition flags, and stack push/pop instructions update the stack pointer. Tracking these
side-effects in an ad hoc manner in the analysis would be crazy, so the IR makes these effects explicit.

There are lots of choices for an IR. We use VEX, since the uplifting of binary code into VEX is quite well supported.
VEX is an architecture-agnostic, side-effects-free representation of a number of target machine languages. It abstracts
machine code into a representation designed to make program analysis easier. This representation has four main classes
of objects:

* Expressions. IR Expressions represent a calculated or constant value. This includes memory loads, register
reads, and results of arithmetic operations.

* Operations. IR Operations describe a modification of IR Expressions. This includes integer arithmetic, floating-
point arithmetic, bit operations, and so forth. An IR Operation applied to IR Expressions yields an IR Expression
as a result.

* Temporary variables. VEX uses temporary variables as internal registers: IR Expressions are stored in tempo-
rary variables between use. The content of a temporary variable can be retrieved using an IR Expression. These
temporaries are numbered, starting at t0. These temporaries are strongly typed (e.g., “64-bit integer” or “32-bit
float™).

 Statements. IR Statements model changes in the state of the target machine, such as the effect of memory stores
and register writes. IR Statements use IR Expressions for values they may need. For example, a memory store
IR Statement uses an IR Expression for the target address of the write, and another IR Expression for the content.

* Blocks. An IR Block is a collection of IR Statements, representing an extended basic block (termed “IR Super
Block” or “IRSB”) in the target architecture. A block can have several exits. For conditional exits from the
middle of a basic block, a special Exit IR Statement is used. An IR Expression is used to represent the target of
the unconditional exit at the end of the block.

VEX IR is actually quite well documented in the 1libvex_ir.h file (https://github.com/angr/vex/blob/master/pub/
libvex_ir.h) in the VEX repository. For the lazy, we’ll detail some parts of VEX that you’ll likely interact with fairly
frequently. To begin with, here are some IR Expressions:

5.6. Intermediate Representation 79

https://github.com/angr/vex/blob/master/pub/libvex_ir.h
https://github.com/angr/vex/blob/master/pub/libvex_ir.h

angr

IR Evaluated Value VEX
Expres- Output

sion Example
Con- A constant value. 0x4:132
stant

Read The value stored in a VEX temporary variable. RdTmp(t10)
Temp

Get The value stored in a register. GET:132(16)
Register

Load The value stored at a memory address, with the address specified by another IR Expres- LDle:I32 /
Mem- sion. LDbe:164
ory

Opera- A result of a specified IR Operation, applied to specified IR Expression arguments. Add32

tion

If-Then- If a given IR Expression evaluates to 0, return one IR Expression. Otherwise, return ITE

Else another.

Helper VEX uses C helper functions for certain operations, such as computing the conditional func-

Func- flags registers of certain architectures. These functions return IR Expressions. tion_name()
tion

These expressions are then, in turn, used in IR Statements. Here are some common ones:

IR Meaning VEX Output Example

State-

ment

Write Set a VEX temporary variable to the value of the given IR Expression. WrTmp(tl) = (IR Ex-

Temp pression)

Put Update a register with the value of the given IR Expression. PUT(16) = (IR Expres-

Regis- sion)

ter

Store Update a location in memory, given as an IR Expression, with a value, also STle(0x1000) = (IR Ex-

Mem- given as an IR Expression. pression)

ory

Exit A conditional exit from a basic block, with the jump target specified by an IR if (condition) goto (Bor-
Expression. The condition is specified by an IR Expression. ing) 0x4000A00:132

An example of an IR translation, on ARM, is produced below. In the example, the subtraction operation is translated
into a single IR block comprising 5 IR Statements, each of which contains at least one IR Expression (although, in real
life, an IR block would typically consist of more than one instruction). Register names are translated into numerical
indices given to the GET Expression and PUT Statement. The astute reader will observe that the actual subtraction
is modeled by the first 4 IR Statements of the block, and the incrementing of the program counter to point to the next
instruction (which, in this case, is located at 9x59FC8) is modeled by the last statement.

The following ARM instruction:

[subs R2, R2, #8

Becomes this VEX IR:

tl 0x8:1I32

‘t@ ~ GET:132(16)

(continues on next page)

80 Chapter 5. Advanced Topics

angr

(continued from previous page)
t3 = Sub32(t0,tl)
PUT(16) t3
PUT(68) 0x59FC8:I32

Now that you understand VEX, you can actually play with some VEX in angr: We use a library called PyVEX that
exposes VEX into Python. In addition, PyVEX implements its own pretty-printing so that it can show register names
instead of register offsets in PUT and GET instructions.

PyVEX is accessable through angr through the Project. factory.block interface. There are many different rep-
resentations you could use to access syntactic properties of a block of code, but they all have in common the trait of
analyzing a particular sequence of bytes. Through the factory.block constructor, you get a Block object that can be
easily turned into several different representations. Try .vex for a PyVEX IRSB, or . capstone for a Capstone block.

Let’s play with PyVEX:

>>> import angr

load the program binary
>>> proj = angr.Project("/bin/true")

translate the starting basic block

>>> irsb = proj.factory.block(proj.entry) .vex
and then pretty-print it

>>> irsb.pp(Q

translate and pretty-print a basic block starting at an address
>>> irsb = proj.factory.block(0x401340).vex
>>> irsb.pp(Q

this is the IR Expression of the jump target of the unconditional exit at the end of.
—the basic block
>>> print(irsb.next)

this is the type of the unconditional exit (e.g., a call, ret, syscall, etc)
>>> print(irsb. jumpkind)

you can also pretty-print it
>>> irsb.next.pp(Q)

iterate through each statement and print all the statements
>>> for stmt in irsb.statements:
stmt.pp()

pretty-print the IR expression representing the data, and the *type* of that IR.
—,expression written by every store statement
>>> import pyvex
>>> for stmt in irsb.statements:
if isinstance(stmt, pyvex.IRStmt.Store):

print("Data:",)

stmt.data.pp()

print("")

print("Type:",)

print(stmt.data.result_type)

(continues on next page)

5.6. Intermediate Representation 81

https://github.com/angr/pyvex

angr

(continued from previous page)

print("")

pretty-print the condition and jump target of every conditional exit from the basic.
—block
>>> for stmt in irsb.statements:
if isinstance(stmt, pyvex.IRStmt.Exit):

print("Condition:",)

stmt.guard.pp()

print("")

print("Target:",)

stmt.dst.ppQ

print("")

these are the types of every temp in the IRSB
>>> print(irsb.tyenv.types)

here is one way to get the type of temp O
>>> print(irsb.tyenv.types[0])

5.6.1 Condition flags computation (for x86 and ARM)

One of the most common instruction side-effects on x86 and ARM CPUs is updating condition flags, such as the
zero flag, the carry flag, or the overflow flag. Computer architects usually put the concatenation of these flags (yes,
concatenation of the flags, since each condition flag is 1 bit wide) into a special register (i.e. EFLAGS/RFLAGS on x86,
APSR/CPSR on ARM). This special register stores important information about the program state, and is critical for
correct emulation of the CPU.

VEX uses 4 registers as its “Flag thunk descriptors” to record details of the latest flag-setting operation. VEX has a
lazy strategy to compute the flags: when an operation that would update the flags happens, instead of computing the
flags, VEX stores a code representing this operation to the cc_op pseudo-register, and the arguments to the operation
in cc_depl and cc_dep2. Then, whenever VEX needs to get the actual flag values, it can figure out what the one bit
corresponding to the flag in question actually is, based on its flag thunk descriptors. This is an optimization in the flags
computation, as VEX can now just directly perform the relevant operation in the IR without bothering to compute and
update the flags’ value.

Amongst different operations that can be placed in cc_op, there is a special value 0 which corresponds to OP_COPY
operation. This operation is supposed to copy the value in cc_dep1 to the flags. It simply means that cc_dep1 contains
the flags” value. angr uses this fact to let us efficiently retrieve the flags’ value: whenever we ask for the actual flags,
angr computes their value, then dumps them back into cc_depl and sets cc_op = OP_COPY in order to cache the
computation. We can also use this operation to allow the user to write to the flags: we just set cc_op = OP_COPY to
say that a new value being set to the flags, then set cc_dep1 to that new value.

82 Chapter 5. Advanced Topics

angr

5.7 Working with Data and Conventions

Frequently, you’ll want to access structured data from the program you’re analyzing. angr has several features to make
this less of a headache.

5.7.1 Working with types

angr has a system for representing types. These SimTypes are found in angr.types - an instance of any of these
classes represents a type. Many of the types are incomplete unless they are supplamented with a SimState - their size
depends on the architecture you’re running under. You may do this with ty.with_arch(arch), which returns a copy
of itself, with the architecture specified.

angr also has a light wrapper around pycparser, which is a C parser. This helps with getting instances of type objects:

>>> import angr, monkeyhex

note that SimType objects have their __repr__ defined to return their c type name,
so this function actually returned a SimType instance.

>>> angr.types.parse_type('int')

int

>>> angr. types. parse_type('char **')
char#**

>>> angr.types.parse_type('struct aa {int x; long y;}")
struct aa

>>> angr.types.parse_type('struct aa {int x; long y;}').fields
OrderedDict([('x", int), ('y', long)])

Additionally, you may parse C definitions and have them returned to you in a dict, either of variable/function declarations
or of newly defined types:

>>> angr.types.parse_defns("int x; typedef struct 1list { char®* str; struct llist *next;.
—} list_node; list_node *y;")

{'x"'": int, 'y': struct llist*}

>>> defs = angr.types.parse_types("int x; typedef struct 1llist { char* str; struct 1llist.
—*next; } list_node; list_node *y;")

>>> defs

{'struct 1list': struct 1llist, 'list_node': struct 1list}

if you want to get both of these dicts at once, use parse_file, which returns both in.,
—a tuple.

>>> angr.types.parse_file("int x; typedef struct 1llist { char* str; struct 1list *next; }
< list_node; list_node *y;")

({'x': int, 'y': struct 1list*},

{'struct 1list': struct llist, 'list_node': struct 1list})

>>> defs['list_node'].fields
OrderedDict([('str', char*), ('next', struct 1llist*)])

>>> defs['list_node'].fields['next'].pts_to.fields
(continues on next page)

5.7. Working with Data and Conventions 83

angr

(continued from previous page)

OrderedDict([('str', char*), ('next', struct 1llist*)])

If you want to get a function type and you don't want to construct it manually,
you can use parse_type

>>> angr.types.parse_type("int (int y, double z)")

(int, double) -> int

And finally, you can register struct definitions for future use:

>>> angr.types.register_types(angr.types.parse_type('struct abcd { int x; int y; }'))
>>> angr.types.register_types(angr.types.parse_types('typedef long time_t;"'))

>>> angr.types.parse_defns('struct abcd a; time_t b;"')

{'a': struct abcd, 'b': long}

These type objects aren’t all that useful on their own, but they can be passed to other parts of angr to specify data types.

5.7.2 Accessing typed data from memory

Now that you know how angr’s type system works, you can unlock the full power of the state.mem interface! Any
type that’s registered with the types module can be used to extract data from memory.

>>> p = angr.Project('examples/fauxware/fauxware')
>>> s = p.factory.entry_state()

>>> s.mem[0x601048]

<<untyped> <unresolvable> at 0x601048>

>>> s.mem[0x601048] .1long
<long (64 bits) <BV64 0x4008d0> at 0x601048>

>>> s.mem[0x601048] .1long.resolved
<BV64 0x4008d0>

>>> s.mem[0x601048] .1long.concrete
0x4008d0

>>> s.mem[0x601048].struct.abcd
<struct abcd {

.X = <BV32 0x4008d0>,

.y = <BV32 0x0>
} at 0x601048>

>>> s.mem[0x601048].struct.abcd.x
<int (32 bits) <BV32 0x4008d0> at 0x601048>

>>> s.mem[0x601048] .struct.abcd.y
<int (32 bits) <BV32 0x0> at 0x60104c>

>>> s.mem[0x601048] .deref
<<untyped> <unresolvable> at 0x4008d0>

>>> s.mem[0x601048] .deref.string
<string_t <BV64 0x534f534e45414b59> at 0x4008d0>

(continues on next page)

84 Chapter 5. Advanced Topics

angr

(continued from previous page)

>>> s.mem[0x601048] .deref.string.resolved
<BV64 0x534f534e45414b59>

>>> s.mem[0x601048] .deref.string.concrete
b'SOSNEAKY'

The interface works like this:
* You first use [array index notation] to specify the address you’d like to load from

« If at that address is a pointer, you may access the deref property to return a SimMemView at the address present
in memory.

* You then specify a type for the data by simply accessing a property of that name. For a list of supported types,
look at state.mem. types.

* You can then refine the type. Any type may support any refinement it likes. Right now the only refinements
supported are that you may access any member of a struct by its member name, and you may index into a string
or array to access that element.

« If the address you specified initially points to an array of that type, you can say .array(n) to view the data as
an array of n elements.

* Finally, extract the structured data with .resolved or .concrete. .resolved will return bitvector values,
while . concrete will return integer, string, array, etc values, whatever best represents the data.

 Alternately, you may store a value to memory, by assigning to the chain of properties that you’ve constructed.
Note that because of the way Python works, x = s.mem[...].prop; x = val will NOT work, you must say
s.mem[...].prop = val.

If you define a struct using register_types(parse_type(struct_expr)), you can access it here as a type:

>>> s.mem[p.entry].struct.abcd
<struct abcd {

.X = <BV32 0x8949ed31>,

.y = <BV32 0x89485ed1>
} at 0x400580>

5.7.3 Working with Calling Conventions

A calling convention is the specific means by which code passes arguments and return values through function calls.
angr’s abstraction of calling conventions is called SImCC. You can construct new SimCC instances through the angr
object factory, with p.factory.cc(...). This will give a calling convention which is guessed based your guest
architecture and OS. If angr guesses wrong, you can explicitly pick one of the calling conventions in the angr.
calling_conventions module.

If you have a very wacky calling convention, you can use angr.calling_conventions.SimCCUsercall. This will
ask you to specify locations for the arguments and the return value. To do this, use instances of the SimRegArg or
SimStackArg classes. You can find them in the factory - p.factory.cc.Sim*Arg.

Once you have a SimCC object, you can use it along with a SimState object and a function prototype (a SimTypeFunc-
tion) to extract or store function arguments more cleanly. Take a look at the angr.calling_conventions.SimCC>
for details. Alternately, you can pass it to an interface that can use it to modify its own behavior, like p. factory.
call_state,or...

5.7. Working with Data and Conventions 85

angr

5.7.4 Callables

Callables are a Foreign Functions Interface (FFI) for symbolic execution. Basic callable usage is to create one with
myfunc = p.factory.callable(addr), and then call it! result = myfunc(args, ...) When you call the
callable, angr will set up a call_state at the given address, dump the given arguments into memory, and run a
path_group based on this state until all the paths have exited from the function. Then, it merges all the result states
together, pulls the return value out of that state, and returns it.

All the interaction with the state happens with the aid of a SimCC and a SimTypeFunction, to tell where to put
the arguments and where to get the return value. It will try to use a sane default for the architecture, but if you’d
like to customize it, you can pass a SimCC object in the cc keyword argument when constructing the callable. The
SimTypeFunction is required - you must pass the prototype parameter. If you pass a string to this parameter it will
be parsed as a function declaration.

You can pass symbolic data as function arguments, and everything will work fine. You can even pass more complicated
data, like strings, lists, and structures as native Python data (use tuples for structures), and it’ll be serialized as cleanly as
possible into the state. If you’d like to specify a pointer to a certain value, you can wrap it in a PointerWrapper object,
available as p. factory.callable.PointerWrapper. The exact semantics of how pointer-wrapping work are a little
confusing, but they can be boiled down to “unless you specify it with a PointerWrapper or a specific SimArrayType,
nothing will be wrapped in a pointer automatically unless it gets to the end and it hasn’t yet been wrapped in a pointer
yet and the original type is a string, array, or tuple.” The relevant code is actually in SimCC - it’s the setup_callsite
function.

If you don’t care for the actual return value of the call, you can say func.perform_call(arg, ...), and then the
properties func.result_state and func.result_path_group will be populated. They will actually be populated
even if you call the callable normally, but you probably care about them more in this case!

5.8 Solver Engine

angr’s solver engine is called Claripy. Claripy exposes the following design:

* Claripy ASTs (the subclasses of claripy.ast.Base) provide a unified way to interact with concrete and symbolic
expressions

» Frontends provide different paradigms for evaluating these expressions. For example, the Ful1Frontend solves
expressions using something like an SMT solver backend, while LightFrontend handles them by using an
abstract (and approximating) data domain backend.

e Each Frontend needs to, at some point, do actual operation and evaluations on an AST. ASTs don’t sup-
port this on their own. Instead, Backends translate ASTs into backend objects (i.e., Python primitives for
BackendConcrete, Z3 expressions for BackendZ3, strided intervals for BackendVSA, etc) and handle any ap-
propriate state-tracking objects (such as tracking the solver state in the case of BackendZ3). Roughly speaking,
frontends take ASTs as inputs and use backends to backend. convert () those ASTs into backend objects that
can be evaluated and otherwise reasoned about.

e FrontendMixins customize the operation of Frontends. For example, ModelCacheMixin caches solutions
from an SMT solver.

¢ The combination of a Frontend, a number of FrontendMixins, and a number of Backends comprise a claripy
Solver.

Internally, Claripy seamlessly mediates the co-operation of multiple disparate backends — concrete bitvectors, VSA
constructs, and SAT solvers. It is pretty badass.

Most users of angr will not need to interact directly with Claripy (except for, maybe, claripy AST objects, which
represent symbolic expressions) — angr handles most interactions with Claripy internally. However, for dealing with
expressions, an understanding of Claripy might be useful.

86 Chapter 5. Advanced Topics

angr

5.8.1 Claripy ASTs

Claripy ASTs abstract away the differences between mathematical constructs that Claripy supports. They define a tree
of operations (i.e., (a + b) / c) on any type of underlying data. Claripy handles the application of these operations
on the underlying objects themselves by dispatching requests to the backends.

Currently, Claripy supports the following types of ASTs:

Name

Description

Supported By (Claripy
Backends)

Example Code

BV

FP

Bool

This is a bitvector, whether
symbolic (with a name) or
concrete (with a value). It
has a size (in bits).

This is a floating-point
number, whether symbolic
(with a name) or concrete
(with a value).

This is a boolean operation
(True or False).

BackendConcrete, Back-
endVSA, BackendZ3

BackendConcrete, Back-
endZ3

BackendConcrete, Back-
endVSA, BackendZ3

Create a 32-bit symbolic
bitvector “x: clar-
ipy.BVS(‘x’, 32) Create a
32-bit bitvector with the
value Oxc001b3475: clar-
ipy.BVV(0xc001b3a75,
32) Create a
32-bit “strided interval”
(see VSA documentation)
that can be any divisible-
by-10 number between
1000 and 2000: ‘clar-
ipy.Sl(name="x’, bits=32,
lower_bound=1000,
upper_bound=2000,
stride=10) ‘

Create a clar-
ipy.fp.FSORT_DOUBLE
symbolic floating point
“b”: “claripy.FPS(‘b’,
clar-
ipy.fp.FSORT_DOUBLE) Create
a clar-
ipy.fp. FSORT_FLOAT
floating point with
value 3.2: clar-
ipy.FPV(3.2, clar-
ipy.fp.FSORT_FLOAT)

claripy.BoolV(True),
or claripy.true or
claripy.false, or by
comparing two ASTs (i.e.,
claripy.BVS('x', 32)
< claripy.BVS('y"',
32)

All of the above creation code returns claripy. AST objects, on which operations can then be carried out.

ASTs provide several useful operations.

>>> import claripy

(continues on next page)

5.8. Solver Engine

87

angr

(continued from previous page)

>>> bv = claripy.BVV(0x41424344, 32)

Size - you can get the size of an AST with .size()
>>> assert bv.size() == 32

Reversing - .reversed is the reversed version of the BVV
>>> assert bv.reversed is claripy.BVV(0x44434241, 32)
>>> assert bv.reversed.reversed is bv

Depth - you can get the depth of the AST
>>> print(bv.depth)

>>> assert bv.depth ==

>>> x = claripy.BVS('x', 32)

>>> assert (x+bv).depth ==

>>> assert ((x+bv)/10).depth ==

Applying a condition (==, !=, etc) on ASTs will return an AST that represents the condition being carried out. For
example:
>>>r = bv == x

>>> assert isinstance(r, claripy.ast.Bool)

>>> p = bv == bv
>>> assert isinstance(p, claripy.ast.Bool)
>>> assert p.is_true()

You can combine these conditions in different ways.

>>> q = claripy.And(claripy.Or(bv == x, bv * 2 == x, bv * 3 == x), x == 0)
>>> assert isinstance(p, claripy.ast.Bool)

The usefulness of this will become apparent when we discuss Claripy solvers.

In general, Claripy supports all of the normal Python operations (+, -, |, ==, etc), and provides additional ones via the
Claripy instance object. Here’s a list of available operations from the latter.

88 Chapter 5. Advanced Topics

angr

Name Description Example
LShR Logically shifts a bit expression (BVV, BV, SI) to the claripy.LShR(x, 10)
right.
SignExt Sign-extends a bit expression. claripy.SignExt(32, x) or X.
sign_extend(32)
Ze- Zero-extends a bit expression. claripy.ZeroExt (32, x) or X.
roExt zero_extend(32)
Extract Extracts the given bits (zero-indexed from the right, Extract the rightmost byte of x: claripy.
inclusive) from a bit expression. Extract(7, 0, x) orx[7:0]
Concat Concatenates several bit expressions together into a claripy.Concat(x, y, z)
new bit expression.
Ro- Rotates a bit expression left. claripy.RotatelLeft(x, 8)
tateLeft
Rota- Rotates a bit expression right. claripy.RotateRight(x, 8)
teRight
Re- Endian-reverses a bit expression. claripy.Reverse(x) or x.reversed
verse
And Logical And (on boolean expressions) claripy.And(x ==y, x > 0)
Or Logical Or (on boolean expressions) claripy.Or(x ==y, y < 10)
Not Logical Not (on a boolean expression) claripy.Not(x == y) isthesameasx !=y
If An If-then-else Choose the maximum of two expressions:
claripy.If(x > y, X, y)
ULE Unsigned less than or equal to. Check if x is less than or equal to y: claripy.
ULE(x, V)
ULT Unsigned less than. Check if x is less than y: claripy.ULT(x, y)
UGE Unsigned greater than or equal to. Check if x is greater than or equal to y:
claripy.UGE(x, y)
UGT Unsigned greater than. Check if x is greater than y: claripy.UGT(x,
y)
SLE Signed less than or equal to. Check if x is less than or equal to y: claripy.
SLE(x, V)
SLT Signed less than. Check if x is less than y: claripy.SLT(x, y)
SGE Signed greater than or equal to. Check if x is greater than or equal to y:
claripy.SGE(x, y)
SGT Signed greater than. Check if x is greater than y: claripy.SGT(x,

y)

Note: The default Python >, <, >=, and <= are unsigned in Claripy. This is different than their behavior in Z3, because
it seems more natural in binary analysis.

5.8. Solver Engine

89

angr

5.8.2 Solvers

The main point of interaction with Claripy are the Claripy Solvers. Solvers expose an API to interpret ASTs in different
ways and return usable values. There are several different solvers.

Name Description

Solver This is analogous to a z3.Solver(). It is a solver that tracks constraints on symbolic variables and
uses a constraint solver (currently, Z3) to evaluate symbolic expressions.

SolverVSA This solver uses VSA to reason about values. It is an approximating solver, but produces values without
performing actual constraint solves.

Solver- This solver acts as a pass-through to a child solver, allowing the replacement of expressions on-the-fly.

Replace- It is used as a helper by other solvers and can be used directly to implement exotic analyses.

ment

Solver- This solver combines the SolverReplacement and the Solver (VSA and Z3) to allow for approximating

Hybrid values. You can specify whether or not you want an exact result from your evaluations, and this solver
does the rest.

Solver- This solver implements optimizations that solve smaller sets of constraints to speed up constraint solving.

Com-

posite

Some examples of solver usage:

create the solver and an expression
>>> s = claripy.Solver()
>>> x = claripy.BVS('x', 8)

now let's add a constraint on x
>>> s.add(claripy.ULT(x, 5))

>>> assert sorted(s.eval(x, 10)) == [0, 1, 2, 3, 4]
>>> assert s.max(x) == 4
>>> assert s.min(x) == 0

we can also get the values of complex expressions
>>> y = claripy.BVV(65, 8)

>>> z = claripy.If(x == 1, x, y)

>>> assert sorted(s.eval(z, 10)) == [1, 65]

and, of course, we can add constraints on complex expressions
>>> s.add(z % 5 !'= 0)

>>> assert s.eval(z, 10) == (1,)
>>> assert s.eval(x, 10) == (1,) # interestingly enough, since z can't be y, x can only.
qbe 1!

Custom solvers can be built by combining a Claripy Frontend (the class that handles the actual interaction with SMT
solver or the underlying data domain) and some combination of frontend mixins (that handle things like caching,
filtering out duplicate constraints, doing opportunistic simplification, and so on).

90 Chapter 5. Advanced Topics

angr

5.8.3 Claripy Backends

Backends are Claripy’s workhorses. Claripy exposes ASTs to the world, but when actual computation has to be done,
it pushes those ASTs into objects that can be handled by the backends themselves. This provides a unified interface
to the outside world while allowing Claripy to support different types of computation. For example, BackendConcrete
provides computation support for concrete bitvectors and booleans, BackendVSA introduces VSA constructs such as
StridedIntervals (and details what happens when operations are performed on them, and BackendZ3 provides support
for symbolic variables and constraint solving.

There are a set of functions that a backend is expected to implement. For all of these functions, the “public” version is
expected to be able to deal with claripy’s AST objects, while the “private” version should only deal with objects specific
to the backend itself. This is distinguished with Python idioms: a public function will be named func() while a private
function will be _func(). All functions should return objects that are usable by the backend in its private methods. If
this can’t be done (i.e., some functionality is being attempted that the backend can’t handle), the backend should raise
a BackendError. In this case, Claripy will move on to the next backend in its list.

All backends must implement a convert () function. This function receives a claripy AST and should return an object
that the backend can handle in its private methods. Backends should also implement a convert () method, which will
receive anything that is nor a claripy AST object (i.e., an integer or an object from a different backend). If convert ()
or convert() receives something that the backend can’t translate to a format that is usable internally, the backend
should raise BackendError, and thus won’t be used for that object. All backends must also implement any functions of
the base Backend abstract class that currently raise NotImplementedError().

Claripy’s contract with its backends is as follows: backends should be able to handle, in their private functions, any
object that they return from their private or public functions. Claripy will never pass an object to any backend private
function that did not originate as a return value from a private or public function of that backend. One exception to this
is convert () and convert (), as Claripy can try to stuff anything it feels like into _convert() to see if the backend can
handle that type of object.

Backend Objects

To perform actual, useful computation on ASTs, Claripy uses backend objects. A BackendObject is a result of the
operation represented by the AST. Claripy expects these objects to be returned from their respective backends, and will
pass such objects into that backend’s other functions.

5.9 Symbolic memory addressing

angr supports symbolic memory addressing, meaning that offsets into memory may be symbolic. Our implementation
of this is inspired by “Mayhem”. Specifically, this means that angr concretizes symbolic addresses when they are
used as the target of a write. This causes some surprises, as users tend to expect symbolic writes to be treated purely
symbolically, or “as symbolically” as we treat symbolic reads, but that is not the default behavior. However, like most
things in angr, this is configurable.

The address resolution behavior is governed by concretization strategies, which are subclasses of angr.
concretization_strategies.SimConcretizationStrategy. Concretization strategies for reads are set in
state.memory.read_strategies and for writes in state.memory.write_strategies. These strategies are
called, in order, until one of them is able to resolve addresses for the symbolic index. By setting your own concretiza-
tion strategies (or through the use of SimInspect address_concretization breakpoints, described above), you can
change the way angr resolves symbolic addresses.

For example, angr’s default concretization strategies for writes are:

1. A conditional concretization strategy that allows symbolic writes (with a maximum range of 128 possible solu-
tions) for any indices that are annotated with angr.plugins. symbolic_memory.MultiwriteAnnotation.

5.9. Symbolic memory addressing 91

angr

2. A concretization strategy that simply selects the maximum possible solution of the symbolic index.

To enable symbolic writes for all indices, you can either add the SYMBOLIC_WRITE_ADDRESSES state option at state cre-
ation time or manually insert a angr.concretization_strategies.SimConcretizationStrategyRange object
into state.memory.write_strategies. The strategy object takes a single argument, which is the maximum range
of possible solutions that it allows before giving up and moving on to the next (presumably non-symbolic) strategy.

5.9.1 Writing concretization strategies

Todo: Write this section

5.10 Java Support

angr also supports symbolically executing Java code and Android apps! This also includes Android apps using a
combination of compiled Java and native (C/C++) code.

Warning: Java support is experimental! Contribution from the community is highly encouraged! Pull requests
are very welcomed!

We implemented Java support by lifting the compiled Java code, both Java and DEX bytecode, leveraging our Soot
Python wrapper: pysoot. pysoot extracts a fully serializable interface from Android apps and Java code (unfortunately,
as of now, it only works on Linux). For every class of the generated IR (for instance, SootMethod), you can nicely
print its instructions (in a format similar to Soot shimple) using print() or str().

We then leverage the generated IR in a new angr engine able to run code in Soot IR: angr/engines/soot/engine.py. This
engine is also able to automatically switch to executing native code if the Java code calls any native method using the
JNI interface.

Together with the symbolic execution, we also implemented some basic static analysis, specifically a basic CFG recon-
struction analysis. Moreover, we added support for string constraint solving, modifying claripy and using the CVC4
solver.

5.10.1 How to install

Enabling Java support requires few more steps than typical angr installation. Assuming you installed angr-dev, activate
the virtualenv and run:

pip install -e ./claripy[cvc4-solver]
./setup.sh pysoot

92 Chapter 5. Advanced Topics

https://github.com/angr/pysoot
https://github.com/angr/angr/blob/master/angr/engines/soot/engine.py
https://github.com/angr/angr-dev

angr

Analyzing Android apps.

Analyzing Android apps (. APK files, containing Java code compiled to the DEX format) requires the Android SDK. Typ-
ically, it is installed in <HOME>/Android/SDK/platforms/platform-XX/android. jar, where XX is the Android
SDK version used by the app you want to analyze (you may want to install all the platforms required by the Android
apps you want to analyze).

5.10.2 Examples

There are multiple examples available:
» Easy Java crackmes: java_crackmel, java_simple3, java_simple4
* A more complex example (solving a CTF challenge): ictf2017_javaisnotfun, blogpost
* Symbolically executing an Android app (using a mix of Java and native code): java_androidnativel

* Many other low-level tests: test_java

5.11 Symbion: Interleaving symbolic and concrete execution

Let’s suppose you want to symbolically analyze a specific function of a program, but there is a huge initialization step
that you want to skip because it is not necessary for your analysis, or cannot properly be emulated by angr. For example,
maybe your program is running on an embedded system and you have access to a debug interface, but you can’t easily
replicate the hardware in a simulated environment.

This is the perfect scenario for Symbion, our interleaved execution technique!

We implemented a built-in system that let users define a ConcreteTarget that is used to “import” a concrete state
of the target program from an external source into angr. Once the state is imported you can make parts of the state
symbolic, use symbolic execution on this state, run your analyses, and finally concretize the symbolic parts and resume
concrete execution in the external environment. By iterating this process it is possible to implement run-time and
interactive advanced symbolic analyses that are backed up by the real program’s execution!

Isn’t that cool?

5.11.1 How to install

To use this technique you’ll need an implementation of a ConcreteTarget (effectively, an object that is going to be the
“glue” between angr and the external process.) We ship a default one (the AvatarGDBConcreteTarget, which control
an instance of a program being debugged under GDB) in the following repo https://github.com/angr/angr-targets.

Assuming you installed angr-dev, activate the virtualenv and run:

git clone https://github.com/angr/angr-targets.git
cd angr-targets
pip install .

Now you’re ready to go!

5.11. Symbion: Interleaving symbolic and concrete execution 93

https://github.com/angr/angr-examples/tree/master/examples/java_crackme1
https://github.com/angr/angr-examples/tree/master/examples/java_simple3
https://github.com/angr/angr-examples/tree/master/examples/java_simple4
https://github.com/angr/angr-examples/tree/master/examples/ictf2017_javaisnotfun
https://angr.io/blog/java_angr/
https://github.com/angr/angr-examples/tree/master/examples/java_androidnative1
https://github.com/angr/angr/blob/master/tests/test_java.py
https://github.com/angr/angr-targets

angr

5.11.2 Gists

Once you have created an entry state, instantiated a SimulationManager, and specified a list of stop_points using the
Symbion interface we are going to resume the concrete process execution.

Instantiating the ConcreteTarget
avatar_gdb = AvatarGDBConcreteTarget(avatar2.archs.x86.X86_64,
GDB_SERVER_IP, GDB_SERVER_PORT)

Creating the Project
p = angr.Project(binary_x64, concrete_target=avatar_gdb,
use_sim_procedures=True)

Getting an entry_state
entry_state = p.factory.entry_state()

Forget about these options as for now, will explain later.
entry_state.options.add(angr.options.SYMBION_SYNC_CLE)
entry_state.options.add(angr.options.SYMBION_KEEP_STUBS_ON_SYNC)

Use Symbion!
simgr.use_technique(angr.exploration_techniques.Symbion(find=[0x85b853])

When one of your stop_points (effectively a breakpoint) is hit, we give control to angr. A new plugin called concrete
is in charge of synchronizing the concrete state of the program inside a new SimState.

Roughly, synchronization does the following:

* All the registers’ values (NOT marked with concrete=False in the respective arch file in archinfo) are copied
inside the new SimState.

¢ The underlying memory backend is hooked in a way that all the further memory accesses triggered during sym-
bolic execution are redirected to the concrete process.

* If the project is initialized with SimProcedure (use_sim_procedures=True) we are going to re-hook the external
functions’ addresses with a SimProcedure if we happen to have it, otherwise with a SimProcedure stub (you
can control this decision by using the Options SYMBION_KEEP_STUBS_ON_SYNC). Conversely, the real
code of the function is executed inside angr (Warning: do that at your own risk!)

Once this process is completed, you can play with your new SimState backed by the concrete process stopped at that
particular stop_point.

5.11.3 Options

The way we synchronize the concrete process inside angr is customizable by 2 state options:

* SYMBION_SYNC_CLE: this option controls the synchronization of the memory mapping of the program
inside angr. When the project is created, the memory mapping inside angr is different from the one inside the
concrete process (this will change as soon as Symbion will be fully compatible with archr). If you want the
process mapping to be fully synchronized with the one of the concrete process, set this option to the SimState
before initializing the SimulationManager (Note that this is going to happen at the first synchronization of the
concrete process inside angr, NOT before)

entry_state.options.add(angr.options.SYMBION_SYNC_CLE)
simgr = project.factory.simgr(state)

94 Chapter 5. Advanced Topics

angr

 SYMBION_KEEP_STUBS_ON_SYNC: this option controls how we re-hook external functions with SimPro-
cedures. If the project has been initialized to use SimProcedures (use_sim_procedures=True), we are going to
re-hook external functions with SimProcedures (if we have that particular implementation) or with a generic
stub. If you want to execute SimProcedures for functions for which we have an available implementation and a
generic stub SimProcedure for the ones we have not, set this option to the SimState before initializing the Sim-
ulationManager. In the other case, we are going to execute the real code for the external functions that miss a
SimProcedure (no generic stub is going to be used).

entry_state.options.add(angr.options.SYMBION_KEEP_STUBS_ON_SYNC)
simgr = project.factory.simgr(state)

5.11.4 Example

You can find more information about this technique and a complete example in our blog post: https://angr.io/blog/
angr_symbion/. For more technical details a public paper will be available soon, or, ping @degrigis on our angr Slack
channel.

5.12 Debug variable resolution

angr now support resolve source level variable (debug variable) in binary with debug information. This article will
introduce you how to use it.

5.12.1 Setting up

To use it you need binary that is compiled with dwarf debuging information (ex: gcc -g) and load in angr with the
option load_debug_info. After that you need to run project.kb.dvars.load_from_dwarf() to setup the feature
and we’re set.

Overall it looks like this:

compile your binary with debug information
gcc -g -o debug_var debug_var.c

>>> import angr
>>> project = angr.Project('./examples/debug_var/simple_var', load_debug_info = True)
>>> project.kb.dvars.load_from_dwarf()

5.12.2 Core feature

With things now set up you can view the value in the angr memory view of the debug variable within a state
with: state.dvars['variable_name'].mem or the value that it point to if it is a pointer with: state.
dvars['pointer_name'].deref.mem. Here are some example:

Given the source code in examples/debug_var/simple_var.c

#include<stdio.h>

int global_var = 100;
int main(void){

(continues on next page)

5.12. Debug variable resolution 95

https://angr.io/blog/angr_symbion/
https://angr.io/blog/angr_symbion/

angr

(continued from previous page)

int a = 10;
int* b = &a;
printf£("%d\n", *b);
{

int a = 24;

*b = *b + a;

int c[] = {5, 6, 7, 8};
printf("%d\n", a);
}

return 0;

Get a state before executing printf(%d\n", *b) (line 7)

the addr to line 7 is 0x401193 you can search for it with
>>> project.loader.main_object.addr_to_line

{...}

>>> addr = 0x401193

Create an simulation manager and run to that addr

>>> simgr = project.factory.simgr()

>>> simgr.explore(find = addr)

<SimulationManager with 1 found>

>>> state = simgr.found[0]

Resolve 'a' in state

>>> state.dvars['a'].mem

<int (32 bits) <BV32 0xa> at Ox7fffffffffeff30>

Dereference pointer b

>>> state.dvars['b'].deref.mem

<int (32 bits) <BV32 0xa> at Ox7fffffffffeff30>

It works as expected when resolving the value of b gives the address of a
>>> state.dvars['b'].mem

<regb4_t <BV64 Ox7fffffffffeff30> at Ox7fffffffffeff38>

Side-note: For string type you can use . string instead of .memto resolve it. For struct type you can resolve its member
by .member ("member_name") .mem. For array type you can use .array (index) .mem to access the element in array.

5.13 Variable visibility

If you have many variable with the same name but in different scope, calling state.dvars['var_name'] would
resolve the variable with the nearest scope.

Example:

Find the addr before executing printf("%d\n", a) (line 12)
with the same method to find addr
>>> addr = 0x4011e0
Explore until find state
>>> simgr.move(from_stash="'found', to_stash='active')
<SimulationManager with 1 active>
>>> simgr.explore(find = addr)
<SimulationManager with 1 found>
>>> state = simgr.found[0]
(continues on next page)

96 Chapter 5. Advanced Topics

angr

(continued from previous page)
Resolve 'a' in state before execute line 10
>>> state.dvars['a'].mem
<int (32 bits) <BV32 0x18> at Ox7fffffffffeff34>

Congratulation, you’ve now know how to resolve debug variable using angr, for more info check out the api-doc.

5.13. Variable visibility 97

angr

98 Chapter 5. Advanced Topics

CHAPTER
SIX

EXTENDING ANGR

6.1 Hooks and SimProcedures

Hooks in angr are very powerful! You can use them to modify a program’s behavior in any way you could imagine.
However, the exact way you might want to program a specific hook may be non-obvious. This chapter should serve as
a guide when programming SimProcedures.

6.1.1 Quick Start

Here’s an example that will remove all bugs from any program:

>>> from angr import Project, SimProcedure
>>> project = Project('examples/fauxware/fauxware')

>>> class BugFree(SimProcedure) :
def run(self, argc, argv):
print ('Program running with argc= and argv=%s' % (argc, argv))
return 0

this assumes we have symbols for the binary
>>> project.hook_symbol('main', BugFree())

Run a quick execution!

>>> simgr = project.factory.simulation_manager()

>>> simgr.run() # step until no more active states

Program running with argc=<SAO <BV64 0x0>> and argv=<SAO <BV64 Ox7fffffffffeffa®>>
<SimulationManager with 1 deadended>

Now, whenever program execution reaches the main function, instead of executing the actual main function, it will
execute this procedure! It just prints out a message, and returns.

Now, let’s talk about what happens on the edge of this function! When entering the function, where do the values
that go into the arguments come from? You can define your run() function with however many arguments you like,
and the SimProcedure runtime will automatically extract from the program state those arguments for you, via a calling
convention, and call your run function with them. Similarly, when you return a value from the run function, it is placed
into the state (again, according to the calling convention), and the actual control-flow action of returning from a function
is performed, which depending on the architecture may involve jumping to the link register or jumping to the result of
a stack pop.

It should be clear at this point that the SimProcedure we just wrote is meant to totally replace whatever function it is
hooked over top of. In fact, the original use case for SimProcedures was replacing library functions. More on that later.

99

angr

6.1.2 Implementation Context

On a Project class, the dict project._sim_procedures is a mapping from address to SimProcedure instances.
When the execution pipeline reaches an address that is present in that dict, that is, an address that is hooked, it will
execute project._sim_procedures[address].execute(state). This will consult the calling convention to ex-
tract the arguments, make a copy of itself in order to preserve thread safety, and run the run () method. It is important
to produce a new instance of the SimProcedure for each time it is run, since the process of running a SimProcedure
necessarily involves mutating state on the SimProcedure instance, so we need separate ones for each step, lest we run
into race conditions in multithreaded environments.

kwargs

This hierarchy implies that you might want to reuse a single SimProcedure in multiple hooks. What if you want to hook
the same SimProcedure in several places, but tweaked slightly each time? angr’s support for this is that any additional
keyword arguments you pass to the constructor of your SimProcedure will end up getting passed as keyword args to
your SimProcedure’s run() method. Pretty cool!

6.1.3 Data Types

If you were paying attention to the example earlier, you noticed that when we printed out the arguments to the run()
function, they came out as a weird <SAO <BV64 OxSTUFF>> class. This is a SimActionObject. Basically, you don’t
need to worry about it too much, it’s just a thin wrapper over a normal bitvector. It does a bit of tracking of what exactly
you do with it inside the SimProcedure—this is helpful for static analysis.

You may also have noticed that we directly returned the Python int ® from the procedure. This will automatically be
promoted to a word-sized bitvector! You can return a native number, a bitvector, or a SimActionObject.

When you want to write a procedure that deals with floating point numbers, you will need to spec-
ify the calling convention manually. It’s not too hard, just provide a cc to the hook: “cc =
project.factory.cc_from_arg_kinds((True, True), ret_fp=True) and project.hook(address,
ProcedureClass(cc=mycc)) This method for passing in a calling convention works for all calling conventions, so
if angr’s autodetected one isn’t right, you can fix that.

6.1.4 Control Flow

How can you exit a SimProcedure? We’ve already gone over the simplest way to do this, returning a value from run().
This is actually shorthand for calling self.ret(value). self.ret() is the function which knows how to perform
the specific action of returning from a function.

SimProcedures can use lots of different functions like this!
e ret(expr): Return from a function
e jump(addr): Jump to an address in the binary
* exit(code): Terminate the program
e call(addr, args, continue_at): Call a function in the binary
e inline_call(procedure, *args): Call another SimProcedure in-line and return the results

That second-last one deserves some looking-at. We’ll get there after a quick detour. ..

100 Chapter 6. Extending angr

angr

Conditional Exits

What if we want to add a conditional branch out of a SimProcedure? In order to do that, you’ll need to work directly
with the SimSuccessors object for the current execution step.

The interface for this is “self.successors.add_successor(state, addr, guard, jumpkind). All of these
parameters should have an obvious meaning if you’ve followed along so far. Keep in mind that the state you pass in
will NOT be copied and WILL be mutated, so be sure to make a copy beforehand if there will be more work to do!

SimProcedure Continuations

How can we call a function in the binary and have execution resume within our SimProcedure? There is a whole bunch
of infrastructure called the “SimProcedure Continuation” that will let you do this. When you use self.call(addr,
args, continue_at), addr is expected to be the address you'd like to call, args is the tuple of arguments you’d like
to call it with, and continue_at is the name of another method in your SimProcedure class that you’d like execution
to continue at when it returns. This method must have the same signature as the run() method. Furthermore, you can
pass the keyword argument cc as the calling convention that ought to be used to communicate with the callee.

When you do this, you finish your current step, and execution will start again at the next step at the function you’ve
specified. When that function returns, it has to return to some concrete address! That address is specified by the
SimProcedure runtime: an address is allocated in angr’s externs segment to be used as the return site for returning to
the given method call. It is then hooked with a copy of the procedure instance tweaked to run the specified continue_at
function instead of run(), with the same args and kwargs as the first time.

There are two pieces of metadata you need to attach to your SimProcedure class in order to use the continuation
subsystem correctly:

¢ Set the class variable IS_FUNCTION = True

* Set the class variable local_vars to a tuple of strings, where each string is the name of an instance variable on
your SimProcedure whose value you would like to persist to when you return. Local variables can be any type
so long as you don’t mutate their instances.

You may have guessed by now that there exists some sort of auxiliary storage in order to hold on to all this data.
You would be right! The state plugin state.callstack has an entry called .procedure_data which is used by the
SimProcedure runtime to store information local to the current call frame. angr tracks the stack pointer in order to make
the current top of the state.callstack a meaningful local data store. It’s stuff that ought to be stored in memory in
a stack frame, but the data can’t be serialized and/or memory allocation is hard.

As an example, let’s look at the SimProcedure that angr uses internally to run all the shared library initializers for a
full_init_state for a linux program:

class LinuxLoader(angr.SimProcedure) :
NO_RET = True
IS_FUNCTION = True
local_vars = ('initializers',)

def run(self):
self.initializers = self.project.loader.initializers
self.run_initializer()

def run_initializer(self):
if len(self.initializers) == 0:
self.project._simos.set_entry_register_values(self.state)
self.jump(self.project.entry)
else:

(continues on next page)

6.1. Hooks and SimProcedures 101

angr

(continued from previous page)

addr = self.initializers[0]

self.initializers = self.initializers[1:]

self.call(addr, (self.state.posix.argc, self.state.posix.argv, self.state.
—posix.environ), 'run_initializer')

This is a particularly clever usage of the SimProcedure continuations. First, notice that the current project is available
for use on the procedure instance. This is some powerful stuff you can get yourself into; for safety you generally only
want to use the project as a read-only or append-only data structure. Here we’re just getting the list of dynamic intializers
from the loader. Then, for as long as the list isn’t empty, we pop a single function pointer out of the list, being careful
not to mutate the list, since the list object is shared across states, and then call it, returning to the run_initializer
function again. When we run out of initializers, we set up the entry state and jump to the program entry point.

Very cool!

6.1.5 Global Variables

As a brief aside, you can store global variables in state.globals. This is a dictionary that just gets shallow-copied
from state to successor state. Because it’s only a shallow copy, its members are the same instances, so the same rules
as local variables in SimProcedure continuations apply. You need to be careful not to mutate any item that is used as a
global variable unless you know exactly what you’re doing.

6.1.6 Helping out static analysis

We’ve already looked at the class variable IS_FUNCTION, which allows you to use the SimProcedure continuation.
There are a few more class variables you can set, though these ones have no direct benefit to you - they merely mark
attributes of your function so that static analysis knows what it’s doing.

e NO_RET: Set this to true if control flow will never return from this function
e ADDS_EXITS: Set this to true if you do any control flow other than returning
e IS_SYSCALL: Self-explanatory

Furthermore, if you set ADDS_EXITS = True, you’ll need to define the method static_exits(). This function takes
a single parameter, a list of IRSBs that would be executed in the run-up to your function, and asks you to return a list
of all the exits that you know would be produced by your function in that case. The return value is expected to be a list
of tuples of (address (int), jumpkind (str)). This is meant to be a quick, best-effort analysis, and you shouldn’t try to do
anything crazy or intensive to get your answer.

6.1.7 User Hooks

The process of writing and using a SimProcedure makes a lot of assumptions that you want to hook over a whole
function. What if you don’t? There’s an alternate interface for hooking, a user hook, that lets you streamline the
process of hooking sections of code.

>>> @project.hook(0x1234, length=5)
. def set_rax(state):
state.regs.rax = 1

This is a lot simpler! The idea is to use a single function instead of an entire SimProcedure subclass. No extraction of
arguments is performed, no complex control flow happens.

102 Chapter 6. Extending angr

angr

Control flow is controlled by the length argument. After the function finishes executing in this example, the next step
will start at 5 bytes after the hooked address. If the length argument is omitted or set to zero, execution will resume
executing the binary code at exactly the hooked address, without re-triggering the hook. The Ijk_NoHook jumpkind
allows this to happen.

If you want more control over control flow coming out of a user hook, you can return a list of successor states. Each
successor will be expected to have state.regs.ip, state.scratch.guard, and state.scratch. jumpkind set.
The IP is the target instruction pointer, the guard is a symbolic boolean representing a constraint to add to the state related
to it being taken as opposed to the others, and the jumpkind is a VEX enum string, like Ijk_Boring, representing the
nature of the branch.

The general rule is, if you want your SimProcedure to either be able to extract function arguments or cause a program
return, write a full SimProcedure class. Otherwise, use a user hook.

6.1.8 Hooking Symbols

As you should recall from the section on loading a binary, dynamically linked programs have a list of symbols that
they must import from the libraries they have listed as dependencies, and angr will make sure, rain or shine, that
every import symbol gets resolved by some address, whether it’s a real implementaion of the function or just a dummy
address hooked with a do-nothing stub. As a result, you can just use the Project.hook_symbol API to hook the
address referred to by a symbol!

This means that you can replace library functions with your own code. For instance, to replace rand () with a function
that always returns a consistent sequence of values:

>>> class NotVeryRand(SimProcedure) :
def run(self, return_values=None):
rand_idx = self.state.globals.get('rand_idx', 0) % len(return_values)
out = return_values[rand_idx]
self.state.globals['rand_idx'] = rand_idx + 1
return out

>>> project.hook_symbol('rand', NotVeryRand(return_values=[413, 612, 1025, 1111]))

Now, whenever the program tries to call rand (), it'll return the integers from the return_values array in a loop.

6.2 State Plugins

If you want to store some data on a state and have that information propagated from successor to successor, the easiest
way to do this is with state.globals. However, this can become obnoxious with large amounts of interesting data,
doesn’t work at all for merging states, and isn’t very object-oriented.

The solution to these problems is to write a State Plugin - an appendix to the state that holds data and implements an
interface for dealing with the lifecycle of a state.

6.2. State Plugins 103

angr

6.2.1 My First Plugin

Let’s get started! All state plugins are implemented as subclasses of SimStatePlugin. Once you’'ve read this doc-
ument, you can use the API reference for this class angr.state_plugins.plugin.SimStatePlugin to quickly
review the semantics of all the interfaces you should implement.

The most important method you need to implement is copy: it should be annotated with the memo staticmethod and
take a dict called the “memo”—these’ll be important later—and returns a copy of the plugin. Short of that, you can do
whatever you want. Just make sure to call the superclass initializer!

>>> import angr
>>> class MyFirstPlugin(angr.SimStatePlugin):
def __init__(self, foo):
super (MyFirstPlugin, self).__init__Q
self.foo = foo

@angr.SimStatePlugin.memo
def copy(self, memo):
return MyFirstPlugin(self. foo)

>>> state = angr.SimState(arch="AMD64")
>>> state.register_plugin('my_plugin', MyFirstPlugin('bar'))

>>> assert state.my_plugin.foo == 'bar'

>>> state2 = state.copy()

>>> state.my_plugin.foo = 'baz'

>>> state3 = state.copy()

>>> assert state2.my_plugin.foo == 'bar'
>>> assert state3.my_plugin.foo == 'baz'

It works! Note that plugins automatically become available as attributes on the state. state.get_plugin(name) is
also available as a more programmatic interface.

6.2.2 Where’s the state?

State plugins have access to the state, right? So why isn’t it part of the initializer? It turns out, there are a plethora
of issues related to initialization order and dependency issues, so to simplify things as much as possible, the state is
not part of the initializer but is rather set onto the state in a separate phase, by using the set_state method. You can
override this state if you need to do things like propagate the state to subcomponents or extract architectural information.

>>> def set_state(self, state):
super (SimStatePlugin, self).set_state(state)
self.symbolic_word = claripy.BVS('my_variable', self.state.arch.bits)

Note the self.state! That’s what the super set_state sets up.

However, there’s no guarantee on what order the states will be set onto the plugins in, so if you need to interact with
other plugins for initialization, you need to override the init_state method.

Once again, there’s no guarantee on what order these will be called in, so the rule is to make sure you set yourself up
good enough during set_state so that if someone else tries to interact with you, no type errors will happen. Here’s
an example of a good use of init_state, to map a memory region in the state. The use of an instance variable
(presumably copied as part of copy()) ensures this only happens the first time the plugin is added to a state.

104 Chapter 6. Extending angr

angr

>>> def init_state(self):
if self.region is None:
self.region = self.state.memory.map_region(SOMEWHERE, 0x1000, 7)

Note: weak references

self.state is not the state itself, but rather a weak proxy to the state. You can still use this object as a normal state,
but attempts to store it persistently will not work.

6.2.3 Merging

The other element besides copying in the state lifecycle is merging. As input you get the plugins to merge and a list
of “merge conditions” - symbolic booleans that are the “guard conditions” describing when the values from each state
should actually apply.

The important properties of the merge conditions are:

* They are mutually exclusive and span an entire domain - exactly one may be satisfied at once, and there will be
additional constraints to ensure that at least one must be satisfied.

¢ len(merge_conditions) == len(others) + 1, since self counts too.
e zip(merge_conditions, [self] + others) will correctly pair merge conditions with plugins.

During the merge function, you should mutate self to become the merged version of itself and all the others, with
respect to the merge conditions. This involves using the if-then-else structure that claripy provides. Here is an example
of constructing this merged structure by merging a bitvector instance variable called myvar, producing a binary tree of
if-then-else expressions searching for the correct condition:

for other_plugin, condition in zip(others, merge_conditions[1:]): # chop off self's.,
—>condition
self.myvar = claripy.If(condition, other_plugin.myvar, self.myvar)

This is such a common construction that we provide a utility to perform it automatically: claripy.ite_cases. The
following code snippet is identical to the previous one:

self.myvar = claripy.ite_cases(zip(merge_conditions[1:], [o.myvar for o in others]),.
—self.myvar)

Keep in mind that like the rest of the top-level claripy functions, ite_cases and If are also available from state.
solver, and these versions will perform SimActionObject unwrapping if applicable.

Common Ancestor

The full prototype of the merge interface is def merge(self, others, merge_conditions,
common_ancestor=None). others and merge_conditions have been discussed in depth already.

The common ancestor is the instance of the plugin from the most recent common ancestor of the states being merged.
It may not be available for all merges, in which case it will be None. There are no rules for how exactly you should use
this to improve the quality of your merges, but you may find it useful in more complex setups.

6.2. State Plugins 105

https://docs.python.org/2/library/weakref.html

angr

6.2.4 Widening

There is another kind of merging called widening which takes several states and produces a more general state. It is
used during static analysis.

Todo: Explain what this means

6.2.5 Serialization

In order to support serialization of states which contain your plugin, you should implement the
__getstate__/__setstate__ magic method pair. Keep in mind the following guidelines:

¢ Your serialization result should not include the state.
» After deserialization, set_state() will be called again.

This means that plugins are “detached” from the state and serialized in an isolated environment, and then reattached to
the state on deserialization.

6.2.6 Plugins all the way down

You may have components within your state plugins which are large and complicated and start breaking object-
orientation in order to make copy/merge work well with the state lifecycle. You’re in luck! Things can be state plugins
even if they aren’t directly attached to a state. A great example of this is SimFile, which is a state plugin but is stored
in the filesystem plugin, and is never used with SimState.register_plugin. When you’re doing this, there are a
handful of rules to remember which will keep your plugins safe and happy:

* Annotate your copy function with @SimStatePlugin.memo.

* In order to prevent divergence while copying multiple references to the same plugin, make sure you’re passing
the memo (the argument to copy) to the .copy of any subplugins. This with the previous point will preserve
object identity.

* In order to prevent duplicate merging while merging multiple references to the same plugin, there should be a

concept of the “owner” of each instance, and only the owner should run the merge routine.

* While passing arguments down into sub-plugins merge() routines, make sure you unwrap others and
common_ancestor into the appropriate types. For example, if PluginA contains a PluginB, the former should
do the following:

>>> def merge(self, others, merge_conditions, common_ancestor=None):

... merge self

self.plugin_b.merge([o.plugin_b for o in others], merge_conditions,
common_ancestor=None if common_ancestor is None else common_ancestor.plugin_
—b)

106 Chapter 6. Extending angr

angr

6.2.7 Setting Defaults

To make it so that a plugin will automatically become available on a state when requested, without having to register
it with the state first, you can register it as a default. The following code example will make it so that whenever you
access state.my_plugin, a new instance of MyPlugin will be instanciated and registered with the state.

[MyPlugin .register_default('my_plugin')

6.3 Extending the Environment Model

One of the biggest issues you may encounter while using angr to analyze programs is an incomplete model of the
environment, or the APIs, surrounding your program. This usually takes the form of syscalls or dynamic library calls,
or in rare cases, loader artifacts. angr provides a convenient interface to do most of these things!

Everything discussed here involves writing SimProcedures, so make sure you know how to do that!.

Note that this page should be treated as a narrative document, not a reference document, so you should read it at least
once start to end.

6.3.1 Setup

You probably want to have a development install of angr, i.e. set up with the script in the angr-dev repository. It is
remarkably easy to add new API models by just implementing them in certain folders of the angr repository. This is
also desirable because any work you do in this field will almost always be useful to other people, and this makes it
extremely easy to submit a pull request.

However, if you want to do your development out-of-tree, you want to work against a production version of angr, or you
want to make customized versions of already-implemented API functions, there are ways to incorporate your extensions
programmatically. Both these techniques, in-tree and out-of-tree, will be documented at each step.

6.3.2 Dynamic library functions - import dependencies

This is the easiest case, and the case that SimProcedures were originally designed for.

First, you need to write a SimProcedure representing the function. Then you need to let angr know about it.

Case 1, in-tree development: SimLibraries and catalogues

angr has a magical folder in its repository, angr/procedures. Within it are all the SimProcedure implementations that
come bundled with angr as well as information about what libraries implement what functions.

Each folder in the procedures directory corresponds to some sort of standard, or a body that specifies the interface part
of an API and its semantics. We call each folder a catalog of procedures. For example, we have 1ibc which contains
the functions defined by the C standard library, and a separate folder posix which contains the functions defined by
the posix standard. There is some magic which automatically scrapes these folders in the procedures directory and
organizes them into the angr . STM_PROCEDURES dict. For example, angr/procedures/libc/printf.py contains
both class printfandclass __printf_chk, so there exists both angr.SIM_PROCEDURES['libc']['printf']
and angr.SIM_PROCEDURES['libc']['__printf chk'].

The purpose of this categorization is to enable easy sharing of procedures among different libraries. For example.
libc.s0.6 contains all the C standard library functions, but so does msvcrt.dll! These relationships are represented with
objects called SimLibraries which represent an actual shared library file, its functions, and their metadata. Take a
look at the API reference for SimLibrary along with the code for setting up glibc to learn how to use it.

6.3. Extending the Environment Model 107

https://github.com/angr/angr-dev
https://github.com/angr/angr/tree/master/angr/procedures
https://github.com/angr/angr/blob/master/angr/procedures/definitions/glibc.py

angr

SimLibraries are defined in a special folder in the procedures directory, procedures/definitions. Files in
here should contain an instance, not a subclass, of SimLibrary. The same magic that scrapes up SimProcedures
will also scrape up SimLibraries and put them in angr.SIM_LIBRARIES, keyed on each of their common names.
For example, angr/procedures/definitions/linux_loader.py contains lib = SimLibrary(); lib.
set_library_names('ld.so', 'ld-linux.so', 'ld.so.2', 'ld-linux.so.2', 'ld-linux-x86_64.
so0.2'), so you can access it via angr.SIM_LIBRARIES['ld.so'] or angr.SIM_LIBRARIES['ld-linux.so']
or any of the other names.

At load time, all the dynamic library dependencies are looked up in SIM_LIBRARIES and their procedures (or stubs!)
are hooked into the project’s address space to summarize any functions it can. The code for this process is found here.

SO, the bottom line is that you can just write your own SimProcedure and SimLibrary definitions, drop them into the
directory structure, and they’ll automatically be applied. If you're adding a procedure to an existing library, you can
just drop it into the appropriate catalog and it’ll be picked up by all the libraries using that catalog, since most libraries
construct their list of function implementation by batch-adding entire catalogs.

Case 2, out-of-tree development, tight integration

If you’d like to implement your procedures outside the angr repository, you can do that. You effectively do this by
just manually adding your procedures to the appropriate SimLibrary. Just call angr.SIM_LIBRARIES[libname].
add(name, proc_cls) to do the registration.

Note that this will only work if you do this before the project is loaded with angr.Project. Note also that adding the
procedure to angr . SIM_PROCEDURES, i.e. adding it directly to a catalog, will not work, since these catalogs are used
to construct the SimLibraries only at import and are used by value, not by reference.

Case 3, out-of-tree development, loose integration

Finally, if you don’t want to mess with SimLibraries at all, you can do things purely on the project level with
hook_symbol ().

6.3.3 Syscalls

Unlike dynamic library methods, syscall procedures aren’t incorporated into the project via hooks. Instead, whenever
a syscall instruction is encountered, the basic block should end with a jumpkind of Ijk_Sys. This will cause the next
step to be handled by the SimOS associated with the project, which will extract the syscall number from the state and
query a specialized SimLibrary with that.

This deserves some explanation.

There is a subclass of SimLibrary called SimSyscallLibrary which is used for collecting all the functions that are part
of an operating system’s syscall interface. SimSyscallLibrary uses the same system for managing implementations and
metadata as SimLibrary, but adds on top of it a system for managing syscall numbers for multiple ABIs (application
binary interfaces, like an API but lower level). The best example for an implementation of a SimSyscallLibrary is
the linux syscalls. It keeps its procedures in a normal SimProcedure catalog called 1inux_kernel and adds them to
the library, then adds several syscall number mappings, including separate mappings for mips-032, mips-n32, and
mips-n64.

In order for syscalls to be supported in the first place, the project’s SimOS must inherit from SimUserland, itself
a SimOS subclass. This requires the class to call SimUserland’s constructor with a super() call that includes the
syscall_library keyword argument, specifying the specific SimSyscallLibrary that contains the appropriate proce-
dures and mappings for the operating system. Additionally, the class’s configure_project must perform a super()
call including the abi_list keyword argument, which contains the list of ABIs that are valid for the current architec-
ture. If the ABI for the syscall can’t be determined by just the syscall number, for example, that amd64 linux programs
can use either int 0x80 or syscall to invoke a syscall and these two ABIs use overlapping numbers, the SimOS cal

108 Chapter 6. Extending angr

https://github.com/angr/angr/blob/master/angr/project.py#L244
https://github.com/angr/angr/blob/master/angr/procedures/definitions/linux_kernel.py

angr

override syscall_abi (), which takes a SimState and returns the name of the current syscall ABI. This is determined
for int80/syscall by examining the most recent jumpkind, since libVEX will produce different syscall jumpkinds for the
different instructions.

Calling conventions for syscalls are a little weird right now and they ought to be refactored. The current situa-
tion requires that angr.SYSCALL_CC be a map of maps {arch_name: {os_name: cc_cls}}, where os_name
is the value of project.simos.name, and each of the calling convention classes must include an extra method
called syscall_number which takes a state and return the current syscall number. Look at the bottom of call-
ing_conventions.py to learn more about it. Not very object-oriented at all. ..

As a side note, each syscall is given a unique address in a special object in CLE called the “kernel object”. Upon a
syscall, the address for the specific syscall is set into the state’s instruction pointer, so it will show up in the logs. These
addresses are not hooked, they are just used to identify syscalls during analysis given only an address trace. The test
for determining if an address corresponds to a syscall is project.simos.is_syscall_addr(addr) and the syscall
corresponding to the address can be retrieved with project.simos.syscall_from_addr(addr).

Case 1, in-tree development

SimSyscallLibraries are stored in the same place as the normal SimLibraries, angr/procedures/definitions.
These libraries don’t have to specify any common name, but they can if they’d like to show up in SIM_LIBRARIES
for easy access.

The same thing about adding procedures to existing catalogs of dynamic library functions also applies to syscalls -
implementing a linux syscall is as easy as writing the SimProcedure and dropping the implemementation into angr/
procedures/linux_kernel. As long as the class name matches one of the names in the number-to-name mapping
of the SimLibrary (all the linux syscall numbers are included with recent releases of angr), it will be used.

To add a new operating system entirely, you need to implement the SimOS as well, as a subclass of SimUserland. To
integrate it into the tree, you should add it to the simos directory, but this is not a magic directory like procedures.
Instead, you should add a line to angr/simos/__init__.py calling register_simos() with the OS name as it
appears in project.loader.main_object.os and the SimOS class. Your class should do everything described
above.

Case 2, out-of-tree development, tight integration

You can add syscalls to a SimSyscallLibrary the same way you can add functions to a normal SimLibrary, by tweaking
the entries in angr . SIM_LIBRARIES. If you’re this for linux you want angr . SIM_LIBRARIES['linux'] .add(name,
proc_cls).

You can register a SimOS with angr from out-of-tree as well - the same register_simos method is just sitting there
waiting for you as angr.simos.register_simos(name, simos_cls).

Case 3, out-of-tree development, loose integration
The SimSyscallLibrary the SimOS uses is copied from the original during setup, so it is safe to mutate. You can directly
fiddle with project.simos.syscall_library to manipulate an individual project’s syscalls.

You can provide a SimOS class (not an instance) directly to the Project constructor via the simos keyword argument,
so you can specify the SimOS for a project explicitly if you like.

6.3. Extending the Environment Model 109

https://github.com/angr/angr/blob/master/angr/calling_conventions.py
https://github.com/angr/angr/blob/master/angr/calling_conventions.py

angr

6.3.4 SimData

What about when there is an import dependency on a data object? This is easily resolved when the given library is
actually loaded into memory - the relocation can just be resolved as normal. However, when the library is not loaded
(for example, auto_load_libs=False, or perhaps some dependency is simply missing), things get tricky. It is not
possible to guess in most cases what the value should be, or even what its size should be, so if the guest program ever
dereferences a pointer to such a symbol, emulation will go off the rails.

CLE will warn you when this might happen:

[22:26:58] [cle.backends.externs] | WARNING: Symbol was allocated without a known size;.
—emulation will fail if it is used non-opaquely: _rtld_global

[22:26:58] [cle.backends.externs] | WARNING: Symbol was allocated without a known size;..
—emulation will fail if it is used non-opaquely: __libc_enable_secure

[22:26:58] [cle.backends.externs] | WARNING: Symbol was allocated without a known size;..
—emulation will fail if it is used non-opaquely: _rtld_global_ro

[22:26:58] [cle.backends.externs] | WARNING: Symbol was allocated without a known size;.
—emulation will fail if it is used non-opaquely: _dl_argv

If you see this message and suspect it is causing issues (i.e. the program is actually introspecting the value of these
symbols), you can resolve it by implementing and registering a SimData class, which is like a SimProcedure but for
data. Simulated data. Very cool.

A SimData can effectively specify some data that must be used to provide an unresolved import symbol. It has a number
of mechanisms to make this more useful, including the ability to specify relocations and subdependencies.

Look at the SimData cle.backends.externs.simdata.SimData class reference and the existing SimData sub-
classes for guidelines on how to do this.

6.4 Writing Analyses

An analysis can be created by subclassing the angr.Analysis class. In this section, we’ll create a mock analysis to
show off the various features. Let’s start with something simple:

>>> import angr

>>> class MockAnalysis(angr.Analysis):
def __init__(self, option):
self.option = option

>>> angr.AnalysesHub.register_default('MockAnalysis', MockAnalysis) # register the class.
—with angr's global analysis list

This is a very simple analysis — it takes an option, and stores it. Of course, it’s not useful, but this is just a demonstration.

Let’s see how to run our new analysis:

>>> proj = angr.Project("/bin/true")
>>> mock = proj.analyses.MockAnalysis('this is my option')
>>> assert mock.option == 'this is my option'

110 Chapter 6. Extending angr

https://docs.angr.io/projects/cle/en/latest/api/backend.html#cle.backends.externs.simdata.SimData
https://github.com/angr/cle/tree/master/cle/backends/externs/simdata
https://github.com/angr/cle/tree/master/cle/backends/externs/simdata

angr

6.4.1 Working with projects

Via some Python magic, your analysis will automatically have the project upon which you are running it under the
self.project property. Use this to interact with your project and analyze it!

>>> class ProjectSummary(angr.Analysis):

def __init__(self):
self.result = 'This project is a binary with an entry point at %
-, (self.project.arch.name, self.project.entry)

>>> angr.AnalysesHub.register_default('ProjectSummary', ProjectSummary)
>>> proj = angr.Project("/bin/true")

>>> summary = proj.analyses.ProjectSummary()
>>> print(summary.result)
This project is a AMD64 binary with an entry point at 0x401410.

6.4.2 Analysis Resilience

Sometimes, your (or our) code might suck and analyses might throw exceptions. We understand, and we also understand
that oftentimes a partial result is better than nothing. This is specifically true when, for example, running an analysis on
all of the functions in a program. Even if some of the functions fails, we still want to know the results of the functions
that do not.

To facilitate this, the Analysis base class provides a resilience context manager under self._resilience. Here’s
an example:

>>> class ComplexFunctionAnalysis(angr.Analysis):
def __init__(self):
self._cfg = self.project.analyses.CFG()
self.results = { }
for addr, func in self._cfg.function_manager.functions.items():
with self._resilience():
if addr % 2 == 0:
raise ValueError("can't handle functions at even addresses')
else:
self.results[addr] = "GOOD"

The context manager catches any exceptions thrown and logs them (as a tuple of the exception type, message, and
traceback) to self.errors. These are also saved and loaded when the analysis is saved and loaded (although the
traceback is discarded, as it is not picklable).

You can tune the effects of the resilience with two optional keyword parameters to self._resilience().

The first is name, which affects where the error is logged. By default, errors are placed in self.errors, but if name
is provided, then instead the error is logged to self.named_errors, which is a dict mapping name to a list of all the
errors that were caught under that name. This allows you to easily tell where thrown without examining its traceback.

The second argument is exception, which should be the type of the exception that resilience should catch. This
defaults to Exception, which handles (and logs) almost anything that could go wrong. You can also pass a tuple of
exception types to this option, in which case all of them will be caught.

Using resilience has a few advantages:

1. Your exceptions are gracefully logged and easily accessible afterwards. This is really nice for writing testcases.

6.4. Writing Analyses 111

angr

2. When creating your analysis, the user can pass fail_fast=True, which transparently disable the resilience,
which is really nice for manual testing.

3. It’s prettier than having try except everywhere.

Have fun with analyses! Once you master the rest of angr, you can use analyses to understand anything computable!

6.5 Scripting angr management

Warning: Please note that the documentation and the API for angr management are highly in-flux. You will need
to spend time reading the source code. Grep is your friend. If you have questions, please ask in the angr slack.

If you build something which uses an API and you want to make sure it doesn’t break, you can contribute a testcase
for the API!

This codebase is absolutely filled to the brim with one-off hacks. If you see some code and think, “hm, that doesn’t
seem like an extensible or best-practices way to code that”, you’re probably right. Cleaning up angr management’s
code is a top priority for us, so if you have some ideas to fix these sorts of issues, please let us know, either in an
issue or a pull request!

6.5.1 The console, and the basic objects

angr management opens with an IPython console ready for input. This console has in its namespace several objects
which are important for manipulating angr management and its data.

* First, the main_window. This is the QMainWindow instance for the application. It contains basic functions that
correspond to top-level buttons, such as loading a binary.

» Next, the workspace. This is a light object which coordinates the Ul elements and manages the tabbed environ-
ment. You can use it to access any analysis-related GUI element, such as the disassembly view.

¢ Finally, the instance. This is angr management’s data model. It contains mechanisms for synchronizing com-
ponents on shared data sources, as well as logic for creating long-running jobs.

workspace is also available as an attribute on main_window and instance is available as an attribute on workspace.
If you are programming in a namespace where none of these objects are available, you can import the angrmanagment .
logic.GlobalInfo object, which contains a reference to main_window.

6.5.2 The ObjectContainer

angr management uses a class called ObjectContainer to implement a pub-sub model and synchronize changing object
references. Let’s use instance.project as an example. This is an ObjectContainer that contains the current project.
You can use it in every way that you would normally use a project - you can access project. factory, project.kb,
etc. However, it also has two very important features that are helpful for building Uls.

First, the pub-sub model. You can subscribe to changes to this object by calling instance.project.
am_subscribe(callback). Then, you can notify listeners of changes by calling instance.project.am_event().
Note that events are NEVER automatically triggered - you must call am_event in order to trigger the callbacks. One
useful feature of this model is that you can provide arbitrary keyword arguments to am_event, and they will be passed
on to each callback. This means that you should always have your callbacks take **kwargs in order to account for un-
known parameters. This feature is particularly useful to prevent feedback loops - if you ever find yourself in a situation
where you need to broadcast an event from your callback, you can add an argument that you can use as a flag not to
recurse any further.

112 Chapter 6. Extending angr

angr

Next, object reference mutability. Let’s say you have a widget that displays information about the project. Following the
principle of least access, you should only provide as much information as is necessary to do the job - in this case, just
the project object. If you provide the basic project object, this will cause issues when a new project is loaded. Notably,
there will be a dangling reference held to the original project, preventing it from being garbage collected, and the widget
will not update, continuing to show the old project’s information. Now, if you provide the project’s ObjectContainer, a
new project can be created and inserted into the container and the reference will instantly be available to your widget.
If you ever wanted to load a new project yourself, all you have to do is assign to instance.project.am_obj and then
send off an event. Combined with the event publication model, this provides an efficient way to build responsive Uls
that follow the principle of least access.

One important way that you can’t use the object container the same way that you would a normal object is that is
None will obviously not work. To resolve this, you can use instance.project.am_none - this will be True when no
project is loaded.

One interesting feature of the ObjectContainer is that they can nest. If you have a container which contains a container
which contains an object, any events sent to the inner container will also be sent to subscribers to the outer container.
This allows patterns such as the list of SimStates actually containing a list of ObjectContainers which contain states,
and the “current state” container actually contains one of these containers. The result of this is that UI elements can
either subscribe to the current state, no matter

A full list of standard ObjectContainers that can be found in the instance __init__ method. There are more containers
floating around for synchronizing on non-global elements - for example, the current state of the disassembly view is
synchronized through its InfoDock object. Given a disassembly view instance, you can subscribe to, for example, its
current selected instructions through view.infodock.selected_insns.

6.5.3 Manipulating Ul elements

The workspace contains methods to manipulate Ul elements. Notably, you can manipulate all open tabs with the
workspace.view_manager reference. Additionally, you can pass any sort of object you like to workspace.viz () and
it will attempt to visualize the object in the current window.

6.5.4 Writing plugins

angr management has a very flexible plugin framework. A plugin is a Python file containing a subclass of
angrmanagement .plugins.BasePlugin. Plugin files will be automatically loaded from the plugins module of
angr management, and also from ~/.local/share/angr-management/plugins. These paths are configurable
through the program configuration, but at the time of writing, this is not exposed in the Ul

The best way to see the tools you can use while building a plugin is to read the plugin base class source code. Any
method or attribute can be overridden from a base class and will be automatically called on relevant events.

6.5.5 Writing tests

Look at the existing tests for examples. Generally, you can test Ul components by creating the component and driving
input to it via QTest. You can create a headless MainWindow instance by passing show=False to its constructor - this
will also get you access to a workspace and an instance.

6.5. Scripting angr management 113

https://github.com/angr/angr-management/blob/master/angrmanagement/data/instance.py
https://github.com/angr/angr-management/blob/master/angrmanagement/ui/view_manager.py
https://github.com/angr/angr-management/blob/master/angrmanagement/ui/view_manager.py
https://github.com/angr/angr-management/blob/master/angrmanagement/plugins/base_plugin.py
https://github.com/angr/angr-management/tree/master/tests

angr

114 Chapter 6. Extending angr

CHAPTER
SEVEN

ANGR EXAMPLES

To help you get started with angr, we’ve created several examples. We’ve tried to organize them into major categories,
and briefly summarize that each example will expose you to. Enjoy!

If you want a high-level cheatsheet of the “techniques” used in the examples, see the angr strategies cheatsheet by
Florent Bordignon.

To jump to a specific category:
e Introduction - examples showing off the very basics of angr’s functionality
* Reversing - examples showing angr being used in reverse engineering tasks
» Vulnerability Discovery - examples of angr being used to search for vulnerabilities

* Exploitation - examples of angr being used as an exploitation assistance tool

7.1 Introduction
These are some introductory examples to give an idea of how to use angr’s APL

7.1.1 Fauxware

This is a basic script that explains how to use angr to symbolically execute a program and produce concrete input
satisfying certain conditions.

Binary, source, and script are found here.

7.2 Reversing

These are examples that use angr to solve reverse engineering challenges. There are a lot of these. We’ve chosen the
most unique ones, and relegated the rest to the CTF Challenges section below.

115

https://github.com/angr/angr
https://github.com/bordig-f/angr-strategies/blob/master/angr_strategies.md
https://github.com/bordig-f
https://github.com/angr/angr-examples/tree/master/examples/fauxware

angr

7.2.1 Beginner reversing example: little_engine

Script author: Michael Reeves (github: @mastermjr)
Script runtime: 3 min 26 seconds (206 seconds)
Concepts presented:

stdin constraining, concrete optimization with Unicorn

This challenge is similar to the csaw challenge below, however the reversing is much more simple. The original code,
solution, and writeup for the challenge can be found at the bOllers github here.

The angr solution script is here and the binary is here.

7.2.2 Whitehat CTF 2015 - Crypto 400

Script author: Yan Shoshitaishvili (github: @Zardus)

Script runtime: 30 seconds

Concepts presented: statically linked binary (manually hooking with function summaries),.
—commandline argument, partial solutions

We solved this crackme with angr’s help. The resulting script will help you understand how angr can be used for
crackme assistance, not a full-out solve. Since angr cannot solve the actual crypto part of the challenge, we use it just
to reduce the keyspace, and brute-force the rest.

You can find this script here and the binary here.

7.2.3 CSAW CTF 2015 Quals - Reversing 500, “wyvern”

Script author: Audrey Dutcher (github: @rhelmot)
Script runtime: 15 mins
Concepts presented: stdin constraining, concrete optimization with Unicorn

angr can outright solve this challenge with very little assistance from the user. The script to do so is here
<https://github.com/angr/angr-examples/tree/master/examples/csaw_wyvern/solve.py>_ and the binary is here.

7.2.4 TUMCTF 2016 - zwiebel

Script author: Fish

Script runtime: 2 hours 31 minutes with pypy and Unicorn - expect much longer with.
—CPython only

Concepts presented: self-modifying code support, concrete optimization with Unicorn

This example is of a self-unpacking reversing challenge. This example shows how to enable Unicorn support and self-
modification support in angr. Unicorn support is essential to solve this challenge within a reasonable amount of time
- simulating the unpacking code symbolically is very slow. Thus, we execute it concretely in unicorn/qemu and only
switch into symbolic execution when needed.

You may refer to other writeup about the internals of this binary. I didn’t reverse too much since I was pretty confident
that angr is able to solve it :-)

The long-term goal of optimizing angr is to execute this script within 10 minutes. Pretty ambitious :P

Here is the binary and the script.

116 Chapter 7. angr examples

https://github.com/b01lers/b01lers-ctf-2020/tree/master/rev/100_little_engine
https://github.com/angr/angr-examples/tree/master/examples/b01lersctf2020_little_engine/solve.py
https://github.com/angr/angr-examples/tree/master/examples/b01lersctf2020_little_engine/engine
https://github.com/angr/angr-examples/tree/master/examples/whitehat_crypto400/solve.py
https://github.com/angr/angr-examples/tree/master/examples/whitehat_crypto400/whitehat_crypto400
https://github.com/angr/angr-examples/tree/master/examples/csaw_wyvern/wyvern
https://github.com/angr/angr-examples/tree/master/examples/tumctf2016_zwiebel/zwiebel
https://github.com/angr/angr-examples/tree/master/examples/tumctf2016_zwiebel/solve.py

angr

7.2.5 FlareOn 2015 - Challenge 5

Script author: Adrian Tang (github: @tangabc)
Script runtime: 2 mins 10 secs
Concepts presented: Windows support

This is another reversing challenge from the FlareOn challenges.

“The challenge is designed to teach you about PCAP file parsing and traffic decryption by reverse engineering an
executable used to generate it. This is a typical scenario in our malware analysis practice where we need to figure out
precisely what the malware was doing on the network”™

For this challenge, the author used angr to represent the desired encoded output as a series of constraints for the SAT
solver to solve for the input.

For a detailed write-up please visit the author’s post here and you can also find the solution from the FireEye here

7.2.6 Octf quals 2016 - trace

Script author: WGH (wgh@bushwhackers.ru)
Script runtime: 1 min 50 secs (CPython 2.7.10), 1 min 12 secs (PyPy 4.0.1)
Concepts presented: guided symbolic tracing

In this challenge we’re given a text file with trace of a program execution. The file has two columns, address and
instruction executed. So we know all the instructions being executed, and which branches were taken. But the initial
data is not known.

Reversing reveals that a buffer on the stack is initialized with known constant string first, then an unknown string is
appended to it (the flag), and finally it’s sorted with some variant of quicksort. And we need to find the flag somehow.

angr easily solves this problem. We only have to direct it to the right direction at every branch, and the solver finds the
flag at a glance.

Files are here.

7.2.7 ASIS CTF Finals 2015 - license

Script author: Fish Wang (github: @ltfish)
Script runtime: 3.6 sec
Concepts presented: using the filesystem, manual symbolic summary execution

This is a crackme challenge that reads a license file. Rather than hooking the read operations of the flag file, we actually
pass in a filesystem with the correct file created.

Here is the binary and the script.

7.2. Reversing 117

https://github.com/angr/angr-examples/tree/master/examples/flareon2015_5/sender
http://0x0atang.github.io/reversing/2015/09/18/flareon5-concolic.html
https://www.fireeye.com/content/dam/fireeye-www/global/en/blog/threat-research/flareon/2015solution5.pdf
https://github.com/angr/angr-examples/tree/master/examples/0ctf_trace
https://github.com/angr/angr-examples/tree/master/examples/asisctffinals2015_license/license
https://github.com/angr/angr-examples/tree/master/examples/asisctffinals2015_license/solve.py

angr

7.2.8 DEFCON Quals 2017 - Crackme2000

Script author: Shellphish
Script runtime: varies, but on the order of seconds
Concepts presented: automated reverse engineering

DEFCON Quals had a whole category for automatic reversing in 2017. Our scripts are here.

7.3 Vulnerability Discovery

These are examples of angr being used to identify vulnerabilities in binaries.

7.3.1 Beginner vulnerability discovery example: strcpy_find

Script author: Kyle Ossinger (github: @kOss)
Concepts presented: exploration to vulnerability, programmatic find condition

This is the first in a series of “tutorial scripts” I'll be making which use angr to find exploitable conditions in binaries.
The first example is a very simple program. The script finds a path from the main entry point to strcpy, but only when
we control the source buffer of the strcpy operation. To hit the right path, angr has to solve for a password argument,
but angr solved this in less than 2 seconds on my machine using the standard Python interpreter. The script might look
large, but that’s only because I’ve heavily commented it to be more helpful to beginners. The challenge binary is here
and the script is here.

7.3.2 CGC crash identification

Script author: Antonio Bianchi, Jacopo Corbetta
Concepts presented: exploration to vulnerability

This is a very easy binary containing a stack buffer overflow and an easter egg. CADET_00001 is one of the challenge
released by DARPA for the Cyber Grand Challenge: link The binary can run in the DECREE VM: link A copy of
the original challenge and the angr solution is provided here CADET_00001.adapted (by Jacopo Corbetta) is the same
program, modified to be runnable in an Intel x86 Linux machine.

7.3.3 Grub “back to 28” bug

Script author: Audrey Dutcher (github: @rhelmot)
Concepts presented: unusal target (custom function hooking required), use of exploration.
—.techniques to categorize and prune the program's state space

This is the demonstration presented at 32c3. The script uses angr to discover the input to crash grub’s password entry
prompt.

script - vulnerable module

118 Chapter 7. angr examples

https:////github.com/angr/angr-examples/tree/master/examples/defcon2017quals_crackme2000
https://github.com/angr/angr-examples/tree/master/examples/strcpy_find/strcpy_test
https://github.com/angr/angr-examples/tree/master/examples/strcpy_find/solve.py
https://github.com/CyberGrandChallenge/samples/tree/master/examples/CADET_00001
http://repo.cybergrandchallenge.com/boxes/
https://github.com/angr/angr-examples/tree/master/examples/CADET_00001
https://github.com/angr/angr-examples/tree/master/examples/grub/solve.py
https://github.com/angr/angr-examples/tree/master/examples/grub/crypto.mod

angr

7.4 Exploitation

These are examples of angr’s use as an exploitation assistance engine.

7.4.1 Insomnihack Simple AEG

Script author: Nick Stephens (github: @NickStephens)
Concepts presented: automatic exploit generation, global symbolic data tracking

Demonstration for Insomni’hack 2016. The script is a very simple implementation of AEG.

script

7.4.2 Seculnside 2016 Quals - mbrainfuzz - symbolic exploration for exploitability
conditions

Script author: nsr (nsr@tasteless.eu)
Script runtime: ~15 seconds per binary
Concepts presented: symbolic exploration guided by static analysis, using the CFG

Originally, a binary was given to the ctf-player by the challenge-service, and an exploit had to be crafted automatically.
Four sample binaries, obtained during the ctf, are included in the example. All binaries follow the same format; the
command-line argument is validated in a bunch of functions, and when every check succeeds, a memcpy() resulting
into a stack-based buffer overflow is executed. angr is used to find the way through the binary to the memcpy() and to
generate valid inputs to every checking function individually.

The sample binaries and the script are located here and additional information be found at the author’s Write-Up.

7.4.3 SECCON 2016 Quals - ropsynth

Script author: Yan Shoshitaishvili (github @zardus) and Nilo Redini

Script runtime: 2 minutes

Concepts presented: automatic ROP chain generation, binary modification, reasoning over.
—,constraints, reasoning over action history

This challenge required the automatic generation of ropchains, with the twist that every ropchain was succeeded by an
input check that, if not passed, would terminate the application. We used symbolic execution to recover those checks,
removed the checks from the binary, used angrop to build the ropchains, and instrumented them with the inputs to pass
the checks.

The various challenge files are located here, with the actual solve script here.

7.4. Exploitation 119

https://github.com/angr/angr-examples/tree/master/examples/insomnihack_aeg/solve.py
https://github.com/angr/angr-examples/tree/master/examples/secuinside2016mbrainfuzz
https://tasteless.eu/post/2016/07/secuinside-mbrainfuzz/
https://github.com/angr/angr-examples/tree/master/examples/secconquals2016_ropsynth
https://github.com/angr/angr-examples/tree/master/examples/secconquals2016_ropsynth/solve.py

angr

120 Chapter 7. angr examples

CHAPTER
EIGHT

FREQUENTLY ASKED QUESTIONS

This is a collection of commonly-asked “how do I do X?” questions and other general questions about angr, for those
too lazy to read this whole document.

If your question is of the form “how do I fix X issue after installing”, see also the Troubleshooting section of the
:ref:"install instructions <Installing angr>"_.

8.1 Why is it named angr?

The core of angr’s analysis is on VEX IR, and when something is vexing, it makes you angry.

8.2 How should “angr” be stylized?

All lowercase, even at the beginning of sentences. It’s an anti-proper noun.

8.3 Why isn’t symbolic execution doing the thing | want?

The universal debugging technique for symbolic execution is as follows:

* Check your simulation manager for errored states. print (simgr) is a good place to start, and if you see anything
to do with “errored”, go for print (simgr.errored).

* If you have any errored states and it’s not immediately obvious what you did wrong, you can get a pdb shell at
the crash site by going simgr.errored[n] .debug().

* If no state has reached an address you care about, you should check the path each state has gone down: import
pprint; pprint.pprint(state.history.descriptions.hardcopy). This will show you a high-level
summary of what the symbolic execution engine did at each step along the state’s history. You will be able to see
from this a basic block trace and also a list of executed simprocedures. If you’re using unicorn engine, you can
check state.history.bbl_addrs.hardcopy to see what blocks were executed in each invocation of unicorn.

* If a state is going down the wrong path, you can check what constraints caused it to go that way: print(state.
solver.constraints). If a state has just gone past a branch, you can check the most recent branch condition
with state.history.events[-1].

121

https://docs.python.org/3/library/pdb.html

angr

8.4 How can | get diagnostic information about what angr is doing?

angr uses the standard logging module for logging, with every package and submodule creating a new logger.

The simplest way to get debug output is the following:

import logging
logging.getLogger('angr') .setLevel (' DEBUG")

You may want to use INFO or whatever else instead. By default, angr will enable logging at the WARNING level.

Each angr module has its own logger string, usually all the Python modules above it in the hierarchy, plus itself, joined
with dots. For example, angr.analyses.cfg. Because of the way the Python logging module works, you can set the
verbosity for all submodules in a module by setting a verbosity level for the parent module. For example, logging.
getLogger('angr.analyses').setLevel ('INFO') will make the CFG, as well as all other analyses, log at the
INFO level.

8.5 Why is angr so slow?

It’s complicated! Optimization considerations

8.6 How do I find bugs using angr?

It’s complicated! The easiest way to do this is to define a “bug condition”, for example, “the instruction pointer has
become a symbolic variable”, and run symbolic exploration until you find a state matching that condition, then dump
the input as a testcase. However, you will quickly run into the state explosion problem. How you address this is up
to you. Your solution may be as simple as adding an avoid condition or as complicated as implementing CMU’s
MAYHEM system as an Exploration Technique.

8.7 Why did you choose VEX instead of another IR (such as LLVM,
REIL, BAP, etc)?

We had two design goals in angr that influenced this choice:

1. angr needed to be able to analyze binaries from multiple architectures. This mandated the use of an IR to preserve
our sanity, and required the IR to support many architectures.

2. We wanted to implement a binary analysis engine, not a binary lifter. Many projects start and end with the
implementation of a lifter, which is a time consuming process. We needed to take something that existed and
already supported the lifting of multiple architectures.

Searching around the internet, the major choices were:

e LLVM is an obvious first candidate, but lifting binary code to LLVM cleanly is a pain. The two solutions are
either lifting to LLVM through QEMU, which is hackish (and the only implementation of it seems very tightly
integrated into S2E), or McSema, which only supported x86 at the time but has since gone through a rewrite and
gotten support for x86-64 and aarch64.

* TCG is QEMU’s IR, but extracting it seems very daunting as well and documentation is very scarce.

122 Chapter 8. Frequently Asked Questions

angr

* REIL seems promising, but there is no standard reference implementation that supports all the architectures that
we wanted. It seems like a nice academic work, but to use it, we would have to implement our own lifters, which
we wanted to avoid.

¢ BAP was another possibility. When we started work on angr, BAP only supported lifting x86 code, and up-
to-date versions of BAP were only available to academic collaborators of the BAP authors. These were two
deal-breakers. BAP has since become open, but it still only supports x86_64, x86, and ARM.

* VEX was the only choice that offered an open library and support for many architectures. As a bonus, it is very
well documented and designed specifically for program analysis, making it very easy to use in angr.

While angr uses VEX now, there’s no fundamental reason that multiple IRs cannot be used. There are two parts of
angr, outside of the angr. engines.vex package, that are VEX-specific:

¢ the jump labels (i.e., the Ijk_Ret for returns, Ijk_Call for calls, and so forth) are VEX enums.

* VEX treats registers as a memory space, and so does angr. While we provide accesses to state.regs.rax and
friends, on the backend, this does state.registers.load(8, 8), where the first 8 is a VEX-defined offset
for rax to the register file.

To support multiple IRs, we’ll either want to abstract these things or translate their labels to VEX analogues.

8.8 Why are some ARM addresses off-by-one?

In order to encode THUMB-ness of an ARM code address, we set the lowest bit to one. This convention comes from
LibVEX, and is not entirely our choice! If you see an odd ARM address, that just means the code at address - 1is
in THUMB mode.

8.9 How do | serialize angr objects?

Pickle will work. However, Python will default to using an extremely old pickle protocol that does not support more
complex Python data structures, so you must specify a more advanced data stream format. The easiest way to do this
is pickle.dumps(obj, -1).

8.10 What does UnsupportedIROpError("floating point support
disabled") mean?

This might crop up if you’re using a CGC analysis such as driller or rex. Floating point support in angr has been
disabled in the CGC analyses for a tight-knit nebula of reasons:

 Libvex’s representation of floating point numbers is imprecise - it converts the 80-bit extended precision format
used by the x87 for computation to 64-bit doubles, making it impossible to get precise results

 There is very limited implementation support in angr for the actual primitive operations themselves as reported
by libvex, so you will often get a less friendly “unsupported operation” error if you go too much further

» For what operations are implemented, the basic optimizations that allow tractability during symbolic computation
(AST deduplication, operation collapsing) are not implemented for floating point ops, leading to gigantic ASTs

¢ There are memory corruption bugs in z3 that get triggered frighteningly easily when you’re using huge workloads
of mixed floating point and bitvector ops. We haven’t been able to get a testcase that doesn’t involve “just run
angr” for the z3 guys to investigate.

8.8. Why are some ARM addresses off-by-one? 123

https://docs.python.org/2/library/pickle.html
https://docs.python.org/2/library/pickle.html#data-stream-format

angr

Instead of trying to cope with all of these, we have simply disabled floating point support in the symbolic execution
engine. To allow for execution in the presence of floating point ops, we have enabled an exploration technique called the
https://github.com/angr/angr/blob/master/angr/exploration_techniques/oppologist.py <oppologist> that is supposed
to catch these issues, concretize their inputs, and run the problematic instructions through gemu via unicorn engine,
allowing execution to continue. The intuition is that the specific values of floating point operations don’t typically affect
the exploitation process.

If you’re seeing this error and it’s terminating the analysis, it’s probably because you don’t have unicorn installed or
configured correctly. If you’re seeing this issue just in a log somewhere, it’s just the oppologist kicking in and you have
nothing to worry about.

8.11 Why is angr’s CFG different from IDA’s?

Two main reasons:

* IDA does not split basic blocks at function calls. angr will, because they are a form of control flow and basic
blocks end at control flow instructions. You generally do not need the supergraph for performing automated
analyses.

 IDA will split basic blocks if another block jumps into the middle of it. This is called basic block normalization,
and angr does not do it by default since it is unnecessary for most static analyses. You may enable it by passing
normalize=True to the CFG analysis.

8.12 Why do | get incorrect register values when reading from a state
during a Siminspect breakpoint?

libVEX will eliminate duplicate register writes within a single basic block when optimizations are enabled. Turn off
IR optimization to make everything look right at all times.

In the case of the instruction pointer, libVEX will frequently omit mid-block writes even when optimizations are
disabled. In this case, you should use state.scratch.ins_addr to get the current instruction pointer.

124 Chapter 8. Frequently Asked Questions

CHAPTER
NINE

APPENDIX

9.1 Cheatsheet

The following cheatsheet aims to give an overview of various things you can do with angr and act as a quick reference
to check the syntax for something without having to dig through the deeper docs.

9.1.1 General getting started

Some useful imports

import angr #the main framework
import claripy #the solver engine

Loading the binary

proj = angr.Project("/path/to/binary", auto_load_libs=False) # auto_load_libs False for.
—improved performance

9.1.2 States

Create a SimState object

[state = proj.factory.entry_state()]

9.1.3 Simulation Managers

Generate a simulation manager object

[simgr = proj.factory.simulation_manager(state)]

125

angr

9.1.4 Exploring and analysing states

Choosing a different Exploring strategy

{simgr .use_technique(angr.exploration_techniques.DFS())]

Symbolically execute until we find a state satisfying our find= and avoid= parameters

avoid_addr = [0x400c06, 0x400bc7]
find_addr = 0x400c10d
simgr.explore(find=find_addr, avoid=avoid_addr)

found = simgr.found[®] # A state that reached the find condition from explore
found.solver.eval(sym_arg, cast_to=bytes) # Return a concrete string value for the sym.
—,arg to reach this state

Symbolically execute until lambda expression is True

[simgr.step(until:lambda sm: sm.active[0].addr >= first_jmp)]

This is especially useful with the ability to access the current STDOUT or STDERR (1 here is the File Descriptor for
STDOUT)

[simgr.explore(find:lambda s: "correct" in s.posix.dumps(1))]

Memory Managment on big searches (Auto Drop Stashes):

simgr.explore(find=find_addr, avoid=avoid_addr, step_func=lambda 1lsm: 1lsm.drop(stash= ’
—'avoid'))

Manually Exploring

simgr.step(step_func=step_func, until=lambda 1lsm: len(sm.found) > 0)

def step_func(lsm):

Ism.stash(filter_func=lambda state: state.addr == 0x400c06, from_stash-='active', to_
—stash="avoid")

1sm.stash(filter_func=lambda state: state.addr == 0x400bc7, from_stash='active', to_
—.stash="avoid")

Ism.stash(filter_func=lambda state: state.addr == 0x400c1®, from_stash='active', to_
—stash="found")

return lsm

Enable Logging output from Simulation Manager:

import logging
logging.getLogger('angr.sim_manager').setLevel (logging.DEBUG)

126 Chapter 9. Appendix

angr

Stashes

Move Stash:

{simgr .stash(from_stash="found", to_stash="active")

Drop Stashes:

[simgr .drop(stash="avoid")

9.1.5 Constraint Solver (claripy)

Create symbolic object

sym_arg_size = 15 #Length in Bytes because we will multiply with 8 later
sym_arg = claripy.BVS('sym_arg', 8*sym_arg_size)

Restrict sym_arg to typical char range

for byte in sym_arg.chop(8):
initial_state.add_constraints(byte >= '\x20') #
initial_state.add_constraints(byte <= '\x7e') #

()

"o

Create a state with a symbolic argument

argv = [proj.filename]
argv.append(sym_arg)
state = proj.factory.entry_state(args=argv)

Use argument for solving:

sym_arg = angr.claripy.BVS("sym_arg", flag_size * 8)

argv = [proj.filename]

argv.append(sym_arg)

initial_state = proj.factory.full_init_state(args=argv, add_options=angr.options.unicorn,
— remove_options={angr.options.LAZY_SOLVES})

9.1.6 FFl and Hooking

Calling a function from ipython

f = proj.factory.callable(address)

£(10)

x=claripy.BVS('x"', 64)

f(x) #TODO: Find out how to make that result readable

If what you are interested in is not directly returned because for example the function returns the pointer to a buffer you
can access the state after the function returns with

>>> f.result_state
<SimState @ 0x1000550>

9.1. Cheatsheet 127

angr

Hooking

There are already predefined hooks for libc functions (useful for statically compiled libraries)

proj = angr.Project('/path/to/binary', use_sim_procedures=True)
proj.hook(addr, angr.SIM_PROCEDURES['libc']['atoi']JQ))

Hooking with Simprocedure:

class fixpid(angr.SimProcedure):
def run(self):
return 0x30

proj.hook (0x4008cd, fixpid())

9.1.7 Other useful tricks

Drop into an ipython if a ctr+c is recieved (useful for debugging scripts that are running forever)

import signal
def killmyself(Q):
os.system('kill %d' % os.getpid())
def sigint_handler(signum, frame):
print 'Stopping Execution for Debug. If you want to kill the programm issue:.,
—killmyself(Q)'
if not "IPython" in sys.modules:
import IPython
IPython.embed()

signal.signal(signal.SIGINT, sigint_handler)

Get the calltrace of a state to find out where we got stuck

state = simgr.active[0]
print state.callstack

Get a basic block

block = proj.factory.block(address)

block.capstone.pp() # Capstone object has pretty print and other data about the.
—dissassembly

block.vex.pp(Q) # Print vex representation

9.1.8 State manipulation

Write to state:

aaaa = claripy.BVV(0x41414141, 32) # 32 = Bits
state.memory.store(0x6021f2, aaaa)

Read Pointer to Pointer from Frame:

128 Chapter 9. Appendix

angr

poil = new_state.solver.eval(new_state.regs.rbp)-0x10
poil = new_state.mem[poil].long.concrete

poil += 0x8

ptrl = new_state.mem[poil].long.concrete

Read from State:

key = []
for i in range(38):
key.append(extractkey.mem[0x602140 + i*4].int.concrete)

Alternatively, the below expression is equivalent

[key = extractkey.mem[0x602140] .int.array(38).concrete

9.1.9 Debugging angr

Set Breakpoint at every Memory read/write:

new_state.inspect.b('mem_read', when=angr.BP_AFTER, action=debug_funcRead)
def debug_funcRead(state):
print 'Read', state.inspect.mem_read_expr, 'from', state.inspect.mem_read_address

Set Breakpoint at specific Memory location:

new_state.inspect.b('mem_write', mem_write_address=0x6021f1, when=angr.BP_AFTER, .
—~action=debug_funcWirite)

9.1. Cheatsheet 129

angr

9.2 List of Claripy Operations

9.2.1 Arithmetic and Logic

Name Description

Example

LShR Logically shifts an expression to the right. (the de-

fault shifts are arithmetic)

Ro- Rotates an expression left

tateLeft

Rota- Rotates an expression right

teRight

And Logical And (on boolean expressions)
Or Logical Or (on boolean expressions)
Not Logical Not (on a boolean expression)
It An If-then-else

ULE Unsigned less than or equal to
ULT Unsigned less than

UGE Unsigned greater than or equal to
UGT Unsigned greater than

SLE Signed less than or equal to
SLT Signed less than
SGE Signed greater than or equal to

SGT Signed greater than

x.LShR(10)
x.RotateLeft(8)
x.RotateRight (8)

solver.And(x ==y, x > 0)

solver.Or(x ==y, y < 10)
solver.Not(x == y) isthesameasx !=y
Choose the maximum of two expressions:
solver.If(x >y, X, y)

Check if x is less than or equal to y: x.ULE(y)
Check if x is less than y: x.ULT (y)

Check if x is greater than or equal to y: x.UGE (y)
Check if x is greater than y: x.UGT (y)

Check if x is less than or equal to y: x.SLE(y)
Check if x is less than y: x.SLT(y)

Check if x is greater than or equal to y: x.SGE(y)
Check if x is greater than y: x.SGT (y)

Todo: Add the floating point ops

9.2.2 Bitvector Manipulation

Name Description

Example

SignExt Pad a bitvector on the left with n sign bits

x.sign_extend(n)

Ze- Pad a bitvector on the left with n zero bits x.zero_extend(n)
roExt
Ex- Extracts the given bits (zero-indexed from the right, inclusive) Extract the least significant byte of x:
tract from an expression. x[7:0]
Con- Concatenates any number of expressions together into a new ex- x.concat(y, ...)
cat pression.
130 Chapter 9. Appendix

angr

9.2.3 Extra Functionality
There’s a bunch of prepackaged behavior that you could implement by analyzing the ASTs and composing sets of
operations, but here’s an easier way to do it:

* You can chop a bitvector into a list of chunks of n bits with val.chop(n)

* You can endian-reverse a bitvector with x.reversed

* You can get the width of a bitvector in bits with val.length

* You can test if an AST has any symbolic components with val.symbolic

* You can get a set of the names of all the symbolic variables implicated in the construction of an AST with
val.variables

9.3 List of State Options

9.3.1 State Modes

These may be enabled by passing mode=xxx to a state constructor.

Mode name Description

symbolic The default mode. Useful for most emulation and analysis tasks.

symbolic_appr Symbolic mode, but enables approximations for constraint solving.

static A preset useful for static analysis. The memory model becomes an abstract region-mapping sys-
tem, “fake return” successors skipping calls are added, and more.

fastpath A preset for extremely lightweight static analysis. Executing will skip all intensive processing to
give a quick view of the behavior of code.

tracing A preset for attempting to execute concretely through a program with a given input. Enables

unicorn, enables resilience options, and will attempt to emulate access violations correctly.

9.3.2 Option Sets

These are sets of options, found as angr.options.xxx.

Set Description
name

common_o Options necessary for basic execution

symbolic Options necessary for basic symbolic execution

resilien Options that harden angr’s emulation against unsupported operations, attempting to carry on by treating
the result as an unconstrained symbolic value and logging the occasion to state.history.events.

refs Options that cause angr to keep a log of all the memory, register, and temporary references complete
with dependency information in history.actions. This option consumes a lot of memory, so be
careful!

approxim Options that enable approximations of constraint solves via value-set analysis instead of calling into z3

simplifi Options that cause data to be run through z3’s simplifiers before it reaches memory or register storage

unicorn Options that enable the unicorn engine for executing on concrete data

9.3. List of State Options 131

angr

9.3.3 Options

These are individual option objects, found as angr.options.XXX.

Option name

Description

ABSTRACT_MEMORY
ABSTRACT_SOLVER

ACTION_DEPS
APPROXIMATE_GUARDS
APPROXIMATE_MEMORY_INDICES
APPROXIMATE_MEMORY_SIZES
APPROXTMATE_SATISFIABILITY
AST_DEPS

AUTO_REFS
AVOID_MULTIVALUED_READS
AVOID_MULTIVALUED_WRITES
BEST_EFFORT_MEMORY_STORING
BREAK_SIRSB_END
BREAK_SIRSB_START
BREAK_SIRSTMT_END
BREAK_SIRSTMT_START
BYPASS_ERRORED_IRCCALL
BYPASS_ERRORED_IROP
BYPASS_UNSUPPORTED_IRCCALL
BYPASS_UNSUPPORTED_IRDIRTY
BYPASS_UNSUPPORTED_IREXPR
BYPASS_UNSUPPORTED_IROP
BYPASS_UNSUPPORTED_IRSTMT
BYPASS_UNSUPPORTED_SYSCALL
BYPASS_VERITESTING_EXCEPTIONS
CACHELESS_SOLVER

CALLLESS

CGC_ENFORCE_FD
CGC_NON_BLOCKING_FDS
CGC_NO_SYMBOLIC_RECEIVE_LENGTH
COMPOSITE_SOLVER

CONCRETIZE
CONCRETIZE_SYMBOLIC_FILE_READ_SIZES
CONCRETIZE_SYMBOLIC_WRITE_SIZES
CONSERVATIVE_READ_STRATEGY
CONSERVATIVE_WRITE_STRATEGY
CONSTRAINT_TRACKING_IN_SOLVER
COW_STATES

DOWNSIZE_Z3

DO_CCALLS

DO_GETS

DO_LOADS

DO_OPS

DO_PUTS

DO_RET_EMULATION

DO_STORES
EFFICIENT_STATE_MERGING

Use SimAbstractMemory to model memory as discrete regions

Allow splitting constraint sets during simplification

Track dependencies in SimActions

Use VSA when evaluating guard conditions

Use VSA when evaluating memory indices

Use VSA when evaluating memory load/store sizes

Use VSA when evaluating state satisfiability

Enables dependency tracking for all claripy ASTs

An internal option used to track dependencies in SimProcedures

Return a symbolic value without touching memory for any read that has a symbolic a
Do not perfrom any write that has a symbolic address

Handle huge writes of symbolic size by pretending they are actually smaller
Debug: trigger a breakpoint at the end of each block

Debug: trigger a breakpoint at the start of each block

Debug: trigger a breakpoint at the end of each IR statement

Debug: trigger a breakpoint at the start of each IR statement

Treat clean helpers that fail with errors as returning unconstrained symbolic values
Treat operations that fail with errors as returning unconstrained symbolic values
Treat unsupported clean helpers as returning unconstrained symbolic values
Treat unsupported dirty helpers as returning unconstrained symbolic values
Treat unsupported IR expressions as returning unconstrained symbolic values
Treat unsupported operations as returning unconstrained symbolic values

Treat unsupported IR statements as returning unconstrained symbolic values
Treat unsupported syscalls as returning unconstrained symbolic values

Discard emulation errors during veritesting

enable SolverCacheless

Emulate call instructions as an unconstraining of the return value register

CGC: make sure all reads and writes go to stdin and stdout, respectively

CGC: always report “data available” in fdwait

CGC: always read the maximum amount of data requested in the receive syscall
Enable SolverComposite for independent constraint set optimization
Concretize all symbolic expressions encountered during emulation

Concreteize the sizes of file reads

Concretize the sizes of symbolic writes to memory

Do not use SimConcretizationStrategy Any for reads; in case of read address concreti:
Do not use SimConcretizationStrategy Any for writes; in case of write address concre
Set track=True for making claripy Solvers; enable use of unsat_core

Copy states instead of mutating the initial state directly

Downsize the claripy solver whenever possible to save memory

Perform IR clean calls

Perform IR register reads

Perform IR memory loads

Perform IR computation operations

Perform IR register writes

For each Ijk_Call successor, add a corresponding Ijk_FakeRet successor
Perform IR memory stores

Keep in memory any state that might be a common ancestor in a merge

132

Chapter 9. Appendix

angr

Option name

Description

ENABLE_NX
EXCEPTION_HANDLING
FAST_MEMORY
FAST_REGISTERS
INITTALIZE_ZERO_REGISTERS
KEEP_TP_SYMBOLIC

KEEP_MEMORY_READS_DISCRETE

LAZY_SOLVES
MEMORY_SYMBOLIC_BYTES_MAP

NO_SYMBOLIC_JUMP_RESOLUTION
NO_SYMBOLIC_SYSCALL_RESOLUTION

OPTIMIZE_IR
REGION_MAPPING
REPLACEMENT_SOLVER
REVERSE_MEMORY_HASH_MAP
REVERSE_MEMORY_NAME_MAP
SIMPLIFY_CONSTRAINTS
SIMPLIFY_EXIT_GUARD
SIMPLIFY_EXIT_STATE
SIMPLIFY_EXIT_TARGET
SIMPLIFY_EXPRS
SIMPLIFY_MEMORY_READS
SIMPLIFY_MEMORY_WRITES
SIMPLIFY_REGISTER_READS
SIMPLIFY_REGISTER_WRITES
SIMPLIFY_RETS
STRICT_PAGE_ACCESS
SUPER_FASTPATH
SUPPORT_FLOATING_POINT
SYMBOLIC
SYMBOLIC_INITIAL_VALUES
SYMBOLIC_TEMPS
SYMBOLIC_WRITE_ADDRESSES
TRACK_CONSTRAINTS
TRACK_CONSTRAINT_ACTIONS
TRACK_JMP_ACTIONS
TRACK_MEMORY_ACTIONS
TRACK_MEMORY_MAPPING
TRACK_OP_ACTIONS
TRACK_REGISTER_ACTIONS
TRACK_SOLVER_VARIABLES
TRACK_TMP_ACTIONS
TRUE_RET_EMULATION_GUARD
UNDER_CONSTRAINED_SYMEXEC
UNICORN

When in conjunction with STRICT_PAGE_ACCESS, raise a SimSegfaultException on
Ask all SimExceptions raised during execution to be handled by the SimOS

Use SimFastMemory for memory storage

Use SimFastMemory for register storage

Treat the initial value of registers as zero instead of unconstrained symbolic

Don’t try to concretize successor states with symbolic instruction pointers

In abstract memory, handle failed loads by returning a DCIS?

Don’t check satisfiability until absolutely necessary

Maintain a mapping of symbolic variable to which memory address it “really” corres
Do not attempt to flatten symbolic-ip successors into discrete targets

Do not attempt to flatten symbolic-syscall-number successors into discrete targets
Use LibVEX’s optimization

Maintain a mapping of symbolic variable to which memory region it corresponds to,
Enable SolverReplacement

Maintain a mapping from AST hash to which addresses it is present in

Maintain a mapping from symbolic variable name to which addresses it is present in,
Run added constraints through z3’s simplifcation

Run branch guards through z3’s simplification

Perform simplification on all successor states generated

Run jump/call/branch targets through z3’s simplification

Run the results of IR expressions through z3’s simplification

Run the results of memory reads through z3’s simplification

Run values stored to memory through z3’s simplification

Run values read from registers through z3’s simplification

Run values written to registers through z3’s simplification

Run values returned from SimProcedures through z3’s simplification

Raise a SimSegfaultException when attempting to interact with memory in a way not
Only execute the last four instructions of each block

When disabled, throw an UnsupportedIROpError when encountering floating point o
Enable constraint solving?

make state.solver.Unconstrained return a symbolic value instead of zero
Treat each IR temporary as a symbolic variable; treat stores to them as constraint add
Allow writes with symbolic addresses to be processed by concretization strategies; w
When disabled, don’t keep any constraints added to the state

Keep a SimAction for each constraint added

Keep a SimAction for each jump or branch

Keep a SimAction for each memory read and write

Keep track of which pages are mapped into memory and which are not

Keep a SimAction for each IR operation

Keep a SimAction for each register read and write

Maintain a listing of all the variables in all the constraints in the solver

Keep a SimAction for each temporary variable read and write

With DO_RET_EMULATION, add fake returns with guard condition true instead of falsc
Enable under-constrained symbolic execution

Use unicorn engine to execute symbolically when data is concrete

UNICORN_AGGRESSIVE_CONCRETIZATION Concretize any register variable unicorn tries to access
UNICORN_HANDLE_TRANSMIT_SYSCALL CGC: handle the transmit syscall without leaving unicorn
UNICORN_SYM_REGS_SUPPORT Attempt to stay in unicorn even in the presence of symbolic registers by checking tha
UNICORN_THRESHOLD_CONCRETIZATION Concretize variables if they prevent unicorn from executing too often
UNICORN_TRACK_BBL_ADDRS Keep state.history.bbl_addrs up to date when using unicorn

9.3. List of State Options 133

angr

Option name Description

UNICORN_TRACK_STACK_POINTERS Track a list of the stack pointer’s value at each block in state.scratch.stack_posi
UNICORN_ZEROPAGE_GUARD Prevent unicorn from mapping the zero page into memory
UNINITIALIZED_ACCESS_AWARENESS Broken/unused?

UNSUPPORTED_BYPASS_ZERO_DEFAULT When using the resilience options, return zero instead of an unconstrained symbol
USE_SIMPLIFIED_CCALLS Use a “simplified” set of ccalls optimized for specific cases

USE_SYSTEM_TIMES In library functions and syscalls and hardware instructions accessing clock data, retri
VALIDATE_APPROXIMATIONS Debug: When performing approximations, ensure that the approximation is sound by
ZERO_FILL_UNCONSTRAINED_MEMORY Make the value of memory read from an uninitialized address zero instead of an uncc

9.4 CTF Challenge Examples

angr is very often used in CTFs. These are example scripts resulting from that use, mostly from Shellphish but also
from many others.

9.4.1 ReverseMe example: HackCon 2016 - angry-reverser

Script author: Stanislas Lejay (github: @Plkachu)
Script runtime: ~31 minutes

Here is the binary and the script

9.4.2 ReverseMe example: SecurityFest 2016 - fairlight

Script author: chuckleberryfinn (github: @chuckleberryfinn)
Script runtime: ~20 seconds

A simple reverse me that takes a key as a command line argument and checks it against 14 checks. Possible to solve
the challenge using angr without reversing any of the checks.

Here is the binary and the script

9.4.3 ReverseMe example: DEFCON Quals 2016 - baby-re

Authors David Manouchehri (github: @Manouchehri), Stanislas Lejay (github: @Plkachu) and Audrey Dutcher
(github: @rhelmot).

Script runtime: 10 sec

Here is the binary and the script

134 Chapter 9. Appendix

https://github.com/P1kachu
https://github.com/angr/angr-examples/tree/master/examples/hackcon2016_angry-reverser/yolomolo
https://github.com/angr/angr-examples/tree/master/examples/hackcon2016_angry-reverser/solve.py
https://github.com/chuckleberryfinn
https://github.com/angr/angr-examples/tree/master/examples/securityfest_fairlight/fairlight
https://github.com/angr/angr-examples/tree/master/examples/securityfest_fairlight/solve.py
https://github.com/Manouchehri
https://github.com/P1kachu
https://github.com/angr/angr-examples/tree/master/examples/defcon2016quals_baby-re/baby-re
https://github.com/angr/angr-examples/tree/master/examples/defcon2016quals_baby-re/solve.py

angr

9.4.4 ReverseMe example: Google CTF - Unbreakable Enterprise Product Activa-
tion (150 points)
Script 0 author: David Manouchehri (github: @Manouchehri)
Script runtime: 4.5 sec
Script 1 author: Adam Van Prooyen (github: @docileninja)
Script runtime: 6.7 sec
A Linux binary that takes a key as a command line argument and checks it against a series of constraints.
Challenge Description:
We need help activating this product — we’ve lost our license key :(
You’re our only hope!

Here are the binary and scripts: script 0, script_I

9.4.5 ReverseMe example: EKOPARTY CTF - Fuckzing reverse (250 points)

Author: Adam Van Prooyen (github: @docileninja)
Script runtime: 29 sec
A Linux binary that takes a team name as input and checks it against a series of constraints.
Challenge Description:
Hundreds of conditions to be meet, will you be able to surpass them?

Both sample binaries and the script are located here and additional information be found at the author’s write-up.

9.4.6 ReverseMe example: WhiteHat Grant Prix Global Challenge 2015 - Re400

Author: Fish Wang (github: @1Itfish)
Script runtime: 5.5 sec
A Windows binary that takes a flag as argument, and tells you if the flag is correct or not.

“I have to patch out some checks that are difficult for angr to solve (e.g., it uses some bytes of the flag to decrypt some
data, and see if those data are legit Windows APIs). Other than that, angr works really well for solving this challenge.”

The binary and the script.

9.4.7 ReverseMe example: EKOPARTY CTF 2015 - rev 100

Author: Fish Wang (github: @Itfish)
Script runtime: 5.5 sec
This is a painful challenge to solve with angr. I should have done things in a smarter way.

Here is the binary and the script.

9.4. CTF Challenge Examples 135

https://github.com/Manouchehri
https://github.com/docileninja
https://github.com/angr/angr-examples/tree/master/examples/google2016_unbreakable_0
https://github.com/angr/angr-examples/tree/master/examples/google2016_unbreakable_1
https://github.com/docileninja
https://github.com/angr/angr-examples/tree/master/examples/ekopartyctf2016_rev250
http://van.prooyen.com/reversing/2016/10/30/Fuckzing-reverse-Writeup.html
https://github.com/angr/angr-examples/tree/master/examples/whitehatvn2015_re400/re400.exe
https://github.com/angr/angr-examples/tree/master/examples/whitehatvn2015_re400/solve.py
https://github.com/angr/angr-examples/tree/master/examples/ekopartyctf2015_rev100/counter
https://github.com/angr/angr-examples/tree/master/examples/ekopartyctf2015_rev100/solve.py

angr

9.4.8 ReverseMe example: ASIS CTF Finals 2015 - fake

Author: Fish Wang (github: @Itfish)
Script runtime: 1 min 57 sec
The solution is pretty straight-forward.

The binary and the script.

9.4.9 ReverseMe example: Defcamp CTF Qualification 2015 - Reversing 100

Author: Fish Wang (github: @1ltfish)
angr solves this challenge with almost zero user-interference.

See the script and the binary.

9.4.10 ReverseMe example: Defcamp CTF Qualification 2015 - Reversing 200

Author: Fish Wang (github: @ltfish)
angr solves this challenge with almost zero user-interference. Veritesting is required to retrieve the flag promptly.

The script and the binary. It takes a few minutes to run on my laptop.

9.4.11 ReverseMe example: MMA CTF 2015 - HowToUse

Author: Audrey Dutcher (github: @rhelmot)

We solved this simple reversing challenge with angr, since we were too lazy to reverse it or run it in Windows. The
resulting script shows how we grabbed the flag out of the DLL.

9.4.12 CrackMe example: MMA CTF 2015 - SimpleHash

Author: Chris Salls (github: @salls)

This crackme is 95% solvable with angr, but we did have to overcome some difficulties. The script describes the
difficulties that were encountered and how we worked around them. The binary can be found here.

9.4.13 ReverseMe example: FlareOn 2015 - Challenge 10

Author: Fish Wang (github: @Itfish)

angr acts as a binary loader and an emulator in solving this challenge. I didn’t have to load the driver onto my Windows
box.

The script demonstrates how to hook at arbitrary program points without affecting the intended bytes to be executed (a
zero-length hook). It also shows how to read bytes out of memory and decode as a string.

By the way, here is the link to the intended solution from FireEye.

136 Chapter 9. Appendix

https://github.com/angr/angr-examples/tree/master/examples/asisctffinals2015_fake/fake
https://github.com/angr/angr-examples/tree/master/examples/asisctffinals2015_fake/solve.py
https://github.com/angr/angr-examples/tree/master/examples/defcamp_r100/solve.py
https://github.com/angr/angr-examples/tree/master/examples/defcamp_r100/r100
https://github.com/angr/angr-examples/tree/master/examples/defcamp_r200/solve.py
https://github.com/angr/angr-examples/tree/master/examples/defcamp_r200/r200
https://github.com/angr/angr-examples/tree/master/examples/mma_howtouse/solve.py
https://github.com/angr/angr-examples/tree/master/examples/mma_howtouse/howtouse.dll
https://github.com/angr/angr-examples/tree/master/examples/mma_simplehash/solve.py
https://github.com/angr/angr-examples/tree/master/examples/mma_simplehash/simple_hash
https://github.com/angr/angr-examples/tree/master/examples/flareon2015_10/solve.py
https://www.fireeye.com/content/dam/fireeye-www/global/en/blog/threat-research/flareon/2015solution10.pdf

angr

9.4.14 ReverseMe example: FlareOn 2015 - Challenge 2

Author: Chris Salls (github: @salls)

This reversing challenge is simple to solve almost entirely with angr, and a lot faster than trying to reverse the password
checking function. The script is here

9.4.15 ReverseMe example: Octf 2016 - momo

Author: Fish Wang (github: @]Itfish), ocean (github: @oceanl)

This challenge is a movfuscated binary. To find the correct password after exploring the binary with Qira it is possible
to understand how to find the places in the binary where every character is checked using capstone and using angr to
load the binary and brute-force the single characters of the flag. Be aware that the script is really slow. Runtime: > 1
hour.

9.4.16 CrackMe example: 9447 CTF 2015 - Reversing 330, “nobranch”

Author: Audrey Dutcher (github: @rhelmot)

angr cannot currently solve this problem natively, as the problem is too complex for z3 to solve. Formatting the con-
straints to z3 a little differently allows z3 to come up with an answer relatively quickly. (I was asleep while it was
solving, so I don’t know exactly how long!) The script for this is here and the binary is here.

9.4.17 CrackMe example: ais3_crackme

Author: Antonio Bianchi, Tyler Nighswander

ais3_crackme has been developed by Tyler Nighswander (tylerni7) for ais3 summer school. It is an easy crackme
challenge, checking its command line argument.

9.4.18 ReverseMe: Modern Binary Exploitation - CSCI 4968

Author: David Manouchehri (GitHub @Manouchehri)

This folder contains scripts used to solve some of the challenges with angr. At the moment it only contains the examples
from the IOLI crackme suite, but eventually other solutions will be added.

9.4.19 CrackMe example: Android License Check

Author: Bernhard Mueller (GitHub @b-mueller)

A native binary for Android/ARM that validates a license key passed as a command line argument. It was created for
the symbolic execution tutorial in the OWASP Mobile Testing Guide.

9.4. CTF Challenge Examples 137

https://github.com/angr/angr-examples/tree/master/examples/flareon2015_2/very_success
https://github.com/angr/angr-examples/tree/master/examples/flareon2015_2/solve.py
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/angr/angr-examples/tree/master/examples/0ctf_momo_3/solve.py
https://github.com/angr/angr-examples/tree/master/examples/0ctf_momo_3/solve.py
https://github.com/angr/angr-examples/tree/master/examples/9447_nobranch/solve.py
https://github.com/angr/angr-examples/tree/master/examples/9447_nobranch/nobranch
https://github.com/Manouchehri
https://github.com/angr/angr-examples/tree/master/examples/CSCI-4968-MBE/challenges
https://github.com/angr/angr-examples/tree/master/examples/
https://github.com/angr/angr-examples/tree/master/examples/android_arm_license_validation
https://github.com/OWASP/owasp-mstg/

angr

9.5 Changelog

This lists the major changes in angr. Tracking minor changes are left as an exercise for the reader :-)

9.5.1 angr 9.1

* (#2961) Refactored SimCC to support passing and returning structs and arrays by value
e (#2964) Functions from the knowledge base may now be pretty-printed, showing colors and reference arrows
* Improved import angr speed substantially

e (#2948) RDA’s dep_graph can now be used to track dependencies between temporaries, constants, guard con-
ditions, and function calls - if you want it!

* (#2929) Basic support for structs with bitfields in SimType

* There’s a decompiler now

9.5.2 angr 9.0

» Switched to a new versioning scheme: major.minor.build_id

9.5.3 angr 8.19.7.25

e (#1503) Implement necessary helpers and information storage for call pretty printing
e (#1546) Add a new state option MEMORY_FIND_STRICT_SIZE _LIMIT

* (#1548) SimProcedure.static_exits: Allow providing name hints

* (cle#177) Use Enums for Symbol Types

* (cle#193) Add support for “named regions”

* (claripy#151) Implement operator precedence in claripy op rendering

* Added support for interaction recording in angr-management

* Several new simprocedure implementations

* Substantial imporvments to our CFG

9.5.4 angr 8.19.4.5

* (#1234) Massive improvements to CFG recovery for ARM and ARM cortex-m binaries.

e (#1416) Added support for analyzing Java programs via the Soot IR, including the ability to analyze interplay
between Java code and JNI libraries. This branch was two years old!

e (#1427) Added a MemoryWatcher exploration technique to take action when the system is running out of RAM.
Thanks @bannsec.

e (#1432) Added a state.heap plugin which manages the heap (with pluggable heap schemes!) and provides
malloc functionality. Thanks @tgduckworth.

» Speed improvements for using the VEX engine and working with concrete data.

138 Chapter 9. Appendix

angr

Added SimLightRegisters, an alternate registers plugin that eliminates the abstraction of the register file for
performance improvements at the cost of removing all instrumentability.

e version__ variable has been added to all modules.
* The stack_base kwarg for call_state is not broken for the first time ever

* https://github.com/python/cpython/pull/11384

9.5.5 angr 8.19.2.4

* (#1279) Support C++ function name demangling via itanium-demangler. Thanks @fmagin.
e (#1283) security_cookie is initialized for SimWindows. Thanks @zeroSteiner.

e (#1298) Introduce SimData. It’s a cleaner interface to deal with data imports in CLE — especially for those data
entries that are not imported because of missing or unloaded libraries. This commit fixes long-standing issues
#151 and #693.

o (#1299, #1300, #1301, #1313, #1314, #1315, #1336, #1337, #1343, ...) Multiple CFGFast-related improve-
ments and bug fixes.

e (#1332) UnresolvableTarget is now split into two classes: UnresolvableJumpTarget and
UnresolvableCallTarget. Thanks @Kyle-Kyle.

* (#1382) Add a preliminary implementation of angr decompiler. Give it a try! p = angr.
Project("cfg_loop_unrolling", auto_load_libs=False); p.analyses.CFG(); print(p.
analyses.Decompiler(p.kb.functions['test_func']).codegen.text).

e (#1421) SimActions now have incrementing IDs. Thanks @bannsec.

* (#1408) ANA, angr’s old identity-aware serialization backend, has been removed. Instead of non-obvious serial-
ization behavior, all angr objects should now be pickleable. If one is not, please file an issue. For use-cases that
require identity-awareness (i.e., deduplicating ASTs across states serialized at different times), an angr.vaults
module has been introduced.

* Added a facility to synchronize state between angr and a running target a la avatar2

* Changed unconstrained registers/memory warning to be less obnoxious and contain useful information. Also
added SYMBOL_FILL_UNCONSTRAINED_REGISTERS and SYMBOL_FILL_UNCONSTRAINED_MEMORY state op-
tions to silence them.

9.5.6 angr 8.18.10.25

* The IDA backend for CLE has been removed. It has been broken for quite some time, but now it has been disabled
for your own safety.

 Surveyors have been removed! Finally! This is thanks to @danse-macabre who contributed an Exploration
Technique for the Slicecutor. Backwards slicing has now been brought out of the angr dark ages.

» SimCC can now be initialized with a string containing C function prototype in its func_ty argument
 Similarly, Callable can now be run with its arguments instanciated from a string containing C expressions

* Tracer has been substantially refactored - it will now handle more kinds of desyncs, ASLR slides, and is much
more friendly for hacking. We will be continuing to improve it!

* The Oppologist and Driller have been refactored to play nice with other exploration techniques

9.5. Changelog 139

https://github.com/python/cpython/pull/11384
http://angr.io/blog/angr_symbion/

angr

» SimProcedure continuations now have symbols in the externs object, so describe_addr will work on them.
Additionally, the representation for SimProcedure (appearing in history.descriptions and project.
_sim_procedures among other places) has been improved to show this information.

9.5.7 angr 8.18.10.5

Largely a bugfix release, but with a few bonus treats:
* API documentation has been rewritten for Exploration Technique. It should be much easier to use now.
* Simulation Manager will throw an error if you pass incorrect keyword arguments (??? why was it like this)
* The save_unconstrained flag of Simulation Manager is now on by default

« If a step produces only unsatisfiable states, they will appear in the 'unsat' stash regardless of the save_unsat
setting, since this usually indicates a bug. Add unsat to the auto_drop parameter to restore the old behavior.

9.5.8 angr 8.18.10.1

Welcome to angr 8! The biggest change for this major version bump is the transition to Python 3. You can read about
this, as well as a few other breaking changes, in the Migrating to angr 8.

» Switch to Python 3
* Refactor to Clemory to clean up the API and speed things up drastically

* Remove object.symbols_by_addr (dict) and add object.symbols (sorted list); add fuzzy parameter to
loader. find_symbol

¢ CFGFast is much, much faster now. CFGAccurate has been renamed to CFGEmulated.
* Support for avx2 unpack instructions, courtesy of D. J. Bernstein

* Removed support for immutable simulation managers

* angr will now show you a warning when using uninitialized memory or registers

¢ angr will now NOT show you a warning if you have a capstone 3.x install unless you’re actually interacting with
the relevant missing parts

* Many, many, many bug fixes

9.5.9 angr 7.8.7.1

¢ Remove LoopLimiter and DFG.

* (#1063) CFGAccurate can now leverage indirect jump resolvers to resolve indirect jumps.

140 Chapter 9. Appendix

angr

9.5.10 angr 7.8.6.23

* (PyVEX!#134) We now recognize LDMDB rl1, {xxx, pc} as a ret instruction for ARM.
¢ (#1053) CFGFast spends less time running next_pos_with_sort_not_in(), thus it runs faster on large binaries.
* (#1080) Jump table resolvers now support resolving ARM jump tables.

e (#1081, together with the PyVEX commit 61efbdcf6303a936aa3de35011d2d1e3fe5fdeaS) The memory foot-
print of CFGFast is noticeably smaller, especially on large binaries (over 10 MB in size).

* (#1034) Concretizing a SimFile with unconstrained size can no longer run you out of memory.

 Other minor changes and bug fixes.

9.5.11 angr 7.8.6.16

* The modeling of file system is refactored.

* (#808) Add a new class Control flow blanket (CFBlanket) to support generating a linear view of a control flow
graph.

e (#863) Add support to AIL, the new angr intermediate language (still pretty WIP though). Merged in several
static analyses (reaching definition analysis, VEX-to-AIL translation, redundant assignment elimination, code
region identification, conrol flow structuring, etc.) that support the development of decompilation in the near
future.

* (#888) SimulationManager is extensively refactored and cleaned up.

* (#892) Keystone is integrated. You can assemble instructions inside angr now.

* (#897) A new class PluginHub is added. Plugins (analyses, engines) are refactored to be based on PluginHub.
* (#899) Support of bidirectional mapping between syscall numbers and syscalls.

o (#925, #941, #942) A bunch of library function prototypes (including glibc) are added to angr.

* (#953) Fix the issue where evaluating the jump target of a jump table that contains many entries (e.g., > 512) is
extremely slow.

* (#964) State options are now stored in insances of SimStateOptions. state.options isno longer a set of strings.
* (#973) Add two new exploration techniques: Stochastic and unique.

* (#996) SimType structs are now much easier to use.

* (#998) Add a new state option PRODUCE_ZERODIV_SUCCESSORS to generate divide-by-zero successors.

* Speed improvements and bug fixes in CFG generation (CFGFast and CFGAccurate).

9.5.12 angr 7.8.2.21

* Refactor of how syscall handling and SimSyscallLibrary work - it is now possible to handle syscalls using multiple
ABIs in the same process

* Added syscall name-number mappings from all linux ABIs, parsed from gdb

Add ManualMergepoint exploration technique for when veritesting is too mysterious for your tastes
* Add LoopSeer exploration technique for managing loops during symbolic exploration (credit @tyb0807)

¢ Add ProxyTechnique exploration technique for easily composing simple lambda-based instrumentations (credit
@danse-macabre)

9.5. Changelog 141

angr

9.5.13 angr 7.7.12.16

You can now tell where the variables implicitly created by angr come from! state.solver.BVS now can take a
key parameter, which describes its meaning in relation to the emulated environment. You can then use state.
solver.get_variables(...) and state.solver.describe_variables(...) to map tags and ASTs to
and from each other. Check out the API docs!

The SimOS for a project is now a public property - project.simos instead of project._simos. Additionally,
the SimOS code structure has been shuffled around a bit - it’s now a subpackage instead of a submodule.

The core components of Tracer and Driller have been refactored into Exploration Techniques and integrated into
angr proper, so you can now follow instrution traces without installing another repostory! (credit @tyb0807)

Archinfo now contains a byte_width parameter and angr supports emulation of platforms with non-octet bytes,
lord help us

Upgraded to networkx 2 (credit @tyb0807)
Hopefully installation issues with capstone should be fixed FOREVER

Minor fixes to gender

9.5.14 angr 7.7.9.8

Welcome to angr 7! We worked long and hard all summer to make this release the best ever. It introduces several
breaking changes, so for a quick guide on the most common ways you’ll need to update your scripts, take a look at the
Migrating to angr 7.

SimuVEX has been removed and its components have been integrated into angr

Path has been removed and its components have been integrated into SimState, notably the new history state
plugin

PathGroup has been renamed to SimulationManager

SimState and SimProcedure now have a reference to their parent Project, though it is verboten to use it in anything
other than an append-only fashion

A new class SimLibrary is used to track SimProcedure and metadata corresponding to an individual shared
library

Several CLE interfaces have been refactored up for consistency

Hook has been removed. Hooking is now done with individual SimProcedure instances, which are shallow-
copied at execution time for thread-safety.

The state.solver interface has been cleaned up drastically

These are the major refactor-y points. As for the improvements:

Greatly improved support for analyzing 32 bit windows binaries (partial credit @schieb)
Unicorn will now stop for stop points and breakpoints in the middle of blocks (credit @bennofs)

The processor flags for a state can now be accessed through state.regs.eflags on x86 and state.regs.
flags on ARM (partial credit @tyb0807)

Fledgling support for emulating exception handling. Currently the only implementation of this is support for
Structured Exception Handling on Windows, see angr. Sim0S.handle_exception for details

Fledgling support for runtime library loading by treating the CLE loader as an append-only interface,
though only implemented for windows. See cle.Loader.dynamic_load and angr.procedures.win32.
dynamic_loading for details.

142

Chapter 9. Appendix

http://angr.io/api-doc/angr.html#angr.state_plugins.solver.SimSolver

angr

* The knowledge base has been refactored into a series of plugins similar to SimState (credit @danse-macabre)

* The testcase-based function identifier we wrote for CGC has been integrated into angr as the Identifier analysis

* Improved support for writing custom VEX lifters

9.5.15 angr 6.7.6.9

angr: A static data-flow analysis framework has been introduced, and implemented as part of the
ForwardAnalysis class. Additionally, a few exemplary data-flow analyses, like VariableRecovery and
VariableRecoveryFast, have been implemented in angr.

angr: We introduced the notion of variable to the angr world. Now a VariableManager is available in the knowl-
edge base. Variable information can be recovered by running a variable recovery analysis. Currently the variable
information recovered for each function is still pretty coarse. More updates to it will arrive soon.

angr: Fix a bug in the topological sorting in CFGUtils, which resulted in suboptimal graph node ordering after
sorting.

SimuVEX: LAZY_SOLVES is no longer enabled by default during symbolic execution. It’s still there if it’s wanted,
but it just caused confusion when on by default.

SimuVEX: Thanks to @ekilmer, a few new libc SimProcedures are added.

SimuVEX: The default memory model has been refactored for expandability. Custom pages can now be created
(derive the simuvex.storage.ListPage class) and used instead of the default page classes to implement custom
memory behavior for specific pages. The user-friendly API for this is pending the next release.

angr-management: Implemented our own graph layout and edge routing algorithm. We do not rely on grandalf
anymore.

angr-management: Added support for displaying variable information for operands.

angr-management: Added support for highlighting dependent operands when an operand is highlighted.

9.5.16 angr 6.7.3.26

Building off of the engine changes from the last release, we have begun to extend angr to other architectures. AVR and
MSP430 are in progress. In the meantime, subwire has created a reference implementation of BrainFuck support in
angr, done two different ways! Check out angr-platforms for more info!

We have rebased our fork of VEX on the latest master branch from Valgrind (as of 2 months ago, at least...).
We have also submitted our patches to VEX to upstream, so we should be able to stop maintaining a fork pretty
soon.

The way we interact with VEX has changed substancially, and should speed things up a bit.
Loading sets of binaries with many import symbols has been sped up

Many, many improvements to angr-management, including the switch away from enaml to using pyside directly.

9.5. Changelog 143

https://github.com/angr/angr-platforms

angr

9.5.17 angr 6.7.1.13

For the last month, we have been working on a major refactor of the angr to change the way that angr reasons about
the code that it analyzes. Until now, angr has been bound to the VEX intermediate representation to lift native code,
supporting a wide range of architectures but not being very expandable past them. This release represents the ground
work for what we call translation and execution engines. These engines are independent backends, pluggable into
the angr framework, that will allow angr to reason about a wide range of targets. For now, we have restructured the
existing VEX and Unicorn Engine support into this engine paradigm, but as we discuss in our blog post, the plan is
to create engines to enable angr’s reasoning of Java bytecode and source code, and to augment angr’s environment
support through the use of external dynamic sandboxes.

For now, these changes are mostly internal. We have attempted to maintain compatibility for end-users, but those
building systems atop angr will have to adapt to the modern codebase. The following are the major changes:

* simuvex: we have introduced SimEngine. SimEngine is a base class for abstractions over native code. For
example, angr’s VEX-specific functionality is now concentrated in SimEngineVEX, and new engines (such as
SimEngineLLVM) can be implemented (even outside of simuvex itself) to support the analysis of new types of
code.

» simuvex: as part of the engines refactor, the SimRun class has been eliminated. Instead of different subclasses
of SimRun that would be instantiated from an input state, engines each have a process function that, from
an input state, produces a SimSuccessors instance containing lists of different successor states (normal, unsat,
unconstrained, etc) and any engine-specific artifacts (such as the VEX statements. Take a look at successors.
artifacts).

e simuvex: state.mem[x:] = y now requires a type for storage (for example state.mem[x:].dword = y).

e simuvex: the way of calling inline SimProcedures has been changed. Now you have to create a SimProcedure,
and then call execute () on it and pass in a program state as well as the arguments.

* simuvex: accessing registers through SimRegNameView (like state.regs.eax) always triggers Simlnspect
breakpoints and creates new actions. Now you can access a register by prefixing its name with an underscore
(e.g. state.regs._eax or state._ip) to avoid triggering breakpoints or creating actions.

e angr: the way hooks work has slightly changed, though is backwards-compatible. The new angr.Hook
class acts as a wrapper for hooks (SimProcedures and functions), keeping things cleaner in the project.
_sim_procedures dict.

e angr: we have deprecated the keyword argument max_size and changed it to to size in the angr.
Block constructor (i.e., the argument to project. factory.block and more upstream methods (path.step,
path_group.step, etc).

 angr: we have deprecated project.factory.sim_run and changed it to to project.factory.successors,
and it now generates a SimSuccessors object.

e angr: project.factory.sim_block has been deprecated and replaced with project.factory.
successors(default_engine=True).

* angr: angr syscalls are no longer hooks. Instead, the syscall table is now in project._simos.syscall_table.
This will be made “public” after a usability refactor. If you were using project.is_hooked(addr) to see if an
address has a related SimProcedure, now you probably want to check if there is a related syscall as well (using
project._simos.syscall_table.get_by_addr(addr) is not None).

* pyvex: to support custom lifters to VEX, pyvex has introduced the concept of backend lifters. Lifters can be
written in pure Python to produce VEX IR, allowing for extendability of angr’s VEX-based analyses to other
hardware architectures.

As usual, there are many other improvements and minor bugfixes.

144 Chapter 9. Appendix

http://angr.io/blog/2017_01_10.html

angr

claripy: support unsat_core() to get the core of unsatness of constraints. It is in fact a thin wrapper of the
unsat_core() function provided by Z3. Also a new state option CONSTRAINT_TRACKING_IN_SOLVER is added
to SimuVEX. That state option must be enabled if you want to use unsat_core () on any state.

simuvex: SimMemory.load() and SimMemory.store() now takes a new parameter disable_actions. Set-
ting it to True will prevent any SimAction creation.

angr: CFGFast has a better support for ARM binaries, especially for code in THUMB mode.
angr: thanks to an improvement in SimuVEX, CFGAccurate now uses slightly less memory than before.
angr: len() on path trace or addr_trace is made much faster.

angr: Fix a crash during CFG generation or symbolic execution on platforms/architectures with no syscall de-
fined.

angr: as part of the refactor, BackwardSlicing is temporarily disabled. It will be re-enabled once all DDG-
related refactor are merged to master.

Additionally, packaging and build-system improvements coordinated between the angr and Unicorn Engine projects
have allowed angr’s Unicorn support to be built on Windows. Because of this, unicorn is now a dependency for
simuvex.

Looking forward, angr is poised to become a program analysis engine for binaries and more!

9.5.18 angr 5.6.12.3

It has been over a month since the last release 5.6.10.12. Again, we’ve made some significant changes and improvements
on the code base.

angr: Labels are now stored in KnowledgeBase.

angr: Add a new analysis: Disassembly. The new Disassembly analysis provides an easy-to-use interface to
render assembly of functions.

angr: Fix the issue that ForwardAnalysis may prematurely terminate while there are still un-processed jobs.
angr: Many small improvements and bug fixes on CFGFast.

angr: Many small improvements and bug fixes on VFG. Bring back widening support. Fix the issue that VFG may
not terminate under certain cases. Implement a new graph traversal algorithm to have an optimal traversal order.
Allow state merging at non-merge-points, which allows faster convergence.

angr-management: Display a progress during initial CFG recovery.

angr-management: Display a “Load binary” window upon binary loading. Some analysis options can be adjusted
there.

angr-management: Disassembly view: Edge routing on the graph is improved.

angr-management: Disassembly view: Support starting a new symbolic execution task from an arbitrary address
in the program.

angr-management: Disassembly view: Support renaming of function names and labels.
angr-management: Disassembly view: Support “Jump to address”.

angr-management: Disassembly view: Display resolved and unresolved jump targets. All jump targets are
double-clickable.

SimuVEX: Move region mapping from SimAbstractMemory to SimMemory. This will allow an easier conver-
sion between SimAbstractMemory and SimSymbolicMemory, which is to say, conversion between symbolic
states and static states is now possible.

9.5.

Changelog 145

angr

9.5

* SimuVEX & claripy: Provide support for unsat_core in Z3. It returns a set of constraints that led to unsatness
of the constraint set on the current state.

e archinfo: Add a new Boolean variable branch_delay_slot for each architecture. It is set to True on MIPS32.

.19 angr 5.6.8.22

Major point release! An incredible number of things have changed in the month run-up to the Cyber Grand Challenge.

¢ Integration with Unicorn Engine supported for concrete execution. A new SimRun type, SimUnicorn, may step
through many basic blocks at once, so long as there is no operation on symbolic data. Please use our fork of
unicorn engine, which has many patches applied. All these patches are pending merge into upstream.

e Lots of improvements and bug fixes to CFGFast. Rumors are angr’s CFG was only “optimized” for x86-64
binaries (which is really because most of our test cases are compiled as 64-bit ELFs). Now it is also “optimized”
for x86 binaries :) (editor’s note: angr is built with cross-architecture analysis in mind. CFG construction is
pretty much the only component which has architecture-specific behavior.)

Lots of improvements to the VFG analysis, including speed and accuracy. However, there is still a lot to be done.

Lots of speed optimizations in general - CFGFast should be 3-6x faster under CPython with much less memory
usage.

» Now data dependence graph gives you a real dependence graph between variable definitions. Try data_graph
and simplified_data_graph on a DDG object!

New state option simuvex.o.STRICT_PAGE_ACCESS will cause a SimSegfaultError to be raised whenever
the guest reads/writes/executes memory that is either unmapped or doesn’t have the appropriate permissions.

Merging of paths (as opposed to states) is performed in a much smarter way.

* The behavior of the support_selfmodifying_code project option is changed: Before, this would allow the
state to be used as a fallback source of instruction bytes when no backer from CLE is available. Now, this option
makes instruction lifting use the state as the source of bytes always. When the option is disabled and execution
jumps outside the normal binary, the state will be used automatically.

Actually support self-modifying code - if a basic block of code modifies itself, the block will be re-lifted before
the next instruction starts.

Syscalls are handled differently now - Before you would see a SimRun for a syscall helper, now you’ll just see a
SimProcedure for the given syscall. Additionally, each syscall has its own address in a “syscalls segment”, and
syscalls are treated as jumps to this segment. This simplifies a lot of things analysis-wise.

* CFGAccurate accepts a base_graph keyword to its constructor, e.g. CFGFast () .graph, or even .graph of a
function, to use as a base for analysis.

* New fast memory model for cases where symbolic-addressed reads and writes are unlikely.

Conflicts between the find and avoid parameters to the Explorer otiegnqwvk are resolved correctly. (credit
clslgrnc)

New analysis StaticHooker which hooks library functions in unstripped statically linked binaries.

e Lifter can be used without creating an angr Project. You must manually specify the architecture and bytestring
in calls to .1ift () and .fresh_block(). If you like, you can also specify the architecture as a parameter to
the constructor and omit it from the lifting calls.

¢ Add two new analyses developed for the CGC (mostly as examples of doing static analysis with angr): Reassem-
bler and BinaryOptimizer.

146

Chapter 9. Appendix

https://github.com/unicorn-engine/unicorn
https://github.com/angr/unicorn
https://github.com/angr/unicorn

angr

9.5.20 angr 4.6.6.28

In general, there have been enormous amounts of speed improvements in this release. Depending on the workload,
angr should run about twice as fast. Aside from this, there have also been many submodule-specific changes:

angr

Quite a few changes and improvements are made to CFGFast and CFGAccurate in order to have better and faster CFG
recovery. The two biggest changes in CFGFast are jump table resolution and data references collection, respectively.
Now CFGFast resolves indirect jumps by default. You may get a list of indirect jumps recovered in CFGFast by
accessing the indirect_jumps attribute. For many cases, it resolves the jump table accurately. Data references
collection is still in alpha mode. To test data references collection, just pass collect_data_references=True when
creating a fast CFG, and access the memory_data attribute after the CFG is constructed.

CFG recovery on ARM binaries is also improved.

A new paradigm called an “otiegnqwvk”, or an “exploration technique”, allows the packaging of special logic related
to path group stepping.

SimuVEX

Reads/writes to the x87 fpu registers now work correctly - there is special logic that rotates a pointer into part of the
register file to simulate the x87 stack.

With the recent changes to Claripy, we have configured SimuVEX to use the composite solver by default. This should
be transparent, but should be considered if strange issues (or differences in behavior) arise during symbolic execution.

Claripy

Fixed a bug in claripy where div__ was not always doing unsigned division, and added new methods SDiv and SMod
for signed division and signed remainder, respectively.

Claripy frontends have been completely rewritten into a mixin-centric solver design. Basic frontend functionality
(i.e., calling into the solver or dealing with backends) is handled by frontends (in claripy.frontends), and addi-
tional functionality (such as caching, deciding when to simplify, etc) is handled by frontend mixins (in claripy.
frontend_mixins). This makes it considerably easier to customize solvers to your specific needE. For examples,
look at claripy/solver.py.

Alongside the solver rewrite, the composite solver (which splits constraints into independent constraint sets for faster
solving) has been immensely improved and is now functional and fast.

9.5.21 angr 4.6.6.4

Syscalls are no longer handled by simuvex.procedures.syscalls.handler. Instead, syscalls are now handled
by angr.SimOS.handle_syscall(). Previously, the address of a syscall SimProcedure is the address right after
the syscall instruction (e.g. int 8O0h), which collides with the real basic block starting at that address, and is very
confusing. Now each syscall SimProcedure has its own address, just as a normal SimProcedure. To support this, there
is another region mapped for the syscall addresses, Project._syscall_obj.

Some refactoring and bug fixes in CFGFast.

Claripy has been given the ability to handle annotations on ASTs. An annotation can be used to customize the behavior
of some backends without impacting others. For more information, check the docstrings of claripy.Annotation
and claripy.Backend.apply_annotation.

9.5. Changelog 147

angr

9.5.22 angr 4.6.5.25

New state constructor - call_state. Comes with a refactor to SimCC, a refactor to callable, and the re-
moval of PathGroup.call. All these changes are thoroughly documented, in angr/docs/advanced-topics/
structured_data.md

Refactor of SimType to make it easier to use types - they can be instanciated without a SimState and one can be added
later. Comes with some usability improvements to SimMemView. Also, there’s a better wrapper around PyCParser for
generating SimType instances from c declarations and definitions. Again, thoroughly documented, still in the structured
data doc.

CFG is now an alias to CFGFast instead of CFGAccurate. In general, CFGFast should work under most cases, and it’s
way faster than CFGAccurate. We believe such a change is necessary, and will make angr more approachable to new
users. You will have to change your code from CFG to CFGAccurate if you are relying on specific functionalities that
only exist in CFGAccurate, for example, context-sensitivity and state-preserving. An exception will be raised by angr
if any parameter passed to CFG is only supported by CFGAccurate. For more detailed explanation, please take a look
at the documentation of angr.analyses.CFG.

9.5.23 angr 4.6.3.28

PyVEX has a structural overhaul. The IRExpr, IRStmt, and IRConst modules no longer exist as submodules, and
those module names are deprecated. Use pyvex.expr, pyvex.stmt, and pyvex.const if you need to access the
members of those modules.

The names of the first three parameters to pyvex . IRSB (the required ones) have been changed. If you were passing the
positional args to IRSB as keyword args, consider switching to positional args. The order is data, mem_addr, arch.

The optional parameter sargc to the entry_state and full_init_state constructors has been removed and re-
placed with an argc parameter. sargc predates being able to have claripy ASTs independent from a solver. The new
system is to pass in the exact value, ast or integer, that you’d like to have as the guest program’s arg count.

CLE and angr can now accept file-like streams, that is, objects that support stream.read() and stream.seek() can
be passed in wherever a filepath is expected.

Documentation is much more complete, especially for PyVEX and angr’s symbolic execution control components.

9.5.24 angr 4.6.3.15

There have been several improvements to claripy that should be transparent to users:

* There’s been a refactoring of the VSA StridedInterval classes to fix cases where operations were not sound.
Precision might suffer as a result, however.

* Some general speed improvements.

e We’ve introduced a new backend into claripy: the ReplacementBackend. This frontend generates replacement
sets from constraints added to it, and uses these replacement sets to increase the precision of VSA. Additionally,
we have introduced the HybridBackend, which combines this functionality with a constraint solver, allowing for
memory index resolution using VSA.

angr itself has undergone some improvements, with API changes as a result:

* We are moving toward a new way to store information that angr has recovered about a program: the knowledge
base. When an analysis recovers some truth about a program (i.e., “there’s a basic block at 0x400400”, or “the
block at 0x400400 has a jump to 0x400500”), it gets stored in a knowledge-base. Analysis that used to store data
(currently, the CFG) now store them in a knowledge base and can share the global knowledge base of the project,
now accessible via project.kb. Over time, this knowledge base will be expanded in the course of any analysis
or symbolic execution, so angr is constantly learning more information about the program it is analyzing.

148 Chapter 9. Appendix

angr

¢ A forward data-flow analysis framework (called ForwardAnalysis) has been introduced, and the CFG was rewrit-
ten on top of it. The framework is still in alpha stage - expect more changes to be made. Documentation and
more details will arrive shortly. The goal is to refactor other data-flow analysis, like CFGFast, VFG, DDG, etc.
to use ForwardAnalysis.

* We refactored the CFG to a) improve code readability, and b) eliminate some bad designs that linger due to
historical reasons.

9.5.25 angr 4.5.12.?

Claripy has a new manager for backends, allowing external backends (i.e., those implemented by other modules)
to be used. The result is that claripy.backend_concrete is now claripy.backends.concrete, claripy.
backend_vsa is now claripy.backends.vsa, and so on.

9.5.26 angr 4.5.12.12

Improved the ability to recover from failures in instruction decoding. You can now hook specific addresses at which
VEX fails to decode with project.hook, even if those addresses are not the beginning of a basic block.

9.5.27 angr 4.5.11.23

This is a pretty beefy release, with over half of claripy having been rewritten and major changes to other analyses.
Internally, Claripy has been unified — the VSA mode and symbolic mode now work on the same structures instead of
requiring structures to be created differently. This opens the door for awesome capabilities in the future, but could also
result in unexpected behavior if we failed to account for something.

Claripy has had some major interface changes:

e claripy.BV has been renamed to claripy.BVS (bit-vector symbol). It can now create bitvectors out of strings (i.e.,
claripy.BVS(0x41, 8) and claripy. BVS(“A”) are identical).

* state.BV and state.BVV are deprecated. Please use state.se.BVS and state.se.BVV.

* BV.model is deprecated. If you’re using it, you're doing something wrong, anyways. If you really need a specific
model, convert it with the appropriate backend (i.e., claripy.backend_concrete.convert(bv)).

There have also been some changes to analyses:

¢ Interface: CFG argument keep_input_state has been renamed to keep_state. With this option enabled,
both input and final states are kept.

¢ Interface: Two arguments cfg_node and stmt_id of BackwardSlicing have been deprecated. Instead,
BackwardSlicing takes a single argument, targets. This means that we now support slicing from multi-
ple sources.

 Performance: The speed of CFG recovery has been slightly improved. There is a noticeable speed improvement
on MIPS binaries.

* Several bugs have been fixed in DDG, and some sanity checks were added to make it more usable.
And some general changes to angr itself:

» StringSpec is deprecated! You can now pass claripy bitvectors directly as arguments.

9.5. Changelog 149

angr

9.6 Migrating to angr 9.1

angr 9.1 is here!

9.6.1 Calling Conventions and Prototypes

The main change motivating angr 9.1 is this large refactor of SimCC. Here are the breaking changes:

SimCCs can no longer be customized

If you were using the sp_delta, args, or ret_val parameters to SimCC, you should use the new class
SimCCUsercall, which lets (requires) you to be explicit about the locations of each argument.

Passing SimTypes is how mandatory

Every method call on SimCC which interacts with typed data now requires a SimType to be passed in. Previously,
the use of is_fp and size was optional, but now these parameters will no longer be accepted and a SimType will be
required.

This has some fairly non-intuitive consequences - in order to accommodate more esoteric calling conventions (think:
passing large structs by value via an “invisible reference”) you have to specify a function’s return type before you can
extract any of its arguments.

Additionally, some non-cc interfaces, such as call_state and callable and SimProcedure.call(), now require
a prototype to be passed to them. You’d be surprised how many bugs we found in our own code from enforcing this
requirement!

PointerWrapper has a new parameter

Imagine you’re passing something into a function which has a parameter of type char¥*. Is this a pointer to a single
char or a pointer to an array of chars? The answer changes how we typecheck the values you pass in. If you’re passing
a PointerWrapper wrapping a large value which should be treated as an array of chars, you should construct your
pointerwrapper as PointerWrapper (foo, buffer=True). The buffer argument to PointerWrapper now instructs
SimCC to treat the data to be serialized as an array of the child type instead of as a scalar.

func_ty -> prototype

Every usage of the name func_ty has been replaced with the name prototype. This was done for consistency between
the static analysis code and the dynamic FFI.

9.7 Migrating to angr 8

angr has moved from Python 2 to Python 3! We took this opportunity of a major version bump to make a few breaking
API changes that improve quality-of-life.

150 Chapter 9. Appendix

https://github.com/angr/angr/pull/2961

angr

9.7.1 What do | need to know for migrating my scripts to Python 3?

To begin, just the standard py3k changes, the relevant parts of which we’ll rehash here as a reference guide:

 Strings and bytestrings

Strings are now unicode by default, a new bytes type holds bytestrings
Bytestring literals can be constructued with the b prefix, like b'ABCD'

Conversion between strings and bytestrings happens with . encode () and .decode(), which use utf-8 as
a default. The 1atin-1 codec will map byte values to their equivilant unicode codepoints

The ord() and chr () functions operate on strings, not bytestrings
Enumerating over or indexing into bytestrings produces an unsigned 8 bit integer, not a 1-byte bytestring

Bytestrings have all the string manipulation functions present on strings, including join, upper/lower,
translate, etc

hex and base64 are no longer string encoding codecs. For hex, use bytes. fromhex() and bytes.hex().
For base64 use the base64 module.

¢ Builtin functions

print and exec are now builtin functions instead of statements

Many builtin functions previously returning lists now return iterators, such as map, filter, and zip.
reduce is no longer a builtin; you have to import it from functools.

¢ Numbers

The / operator is explicitly floating-point division, the // operator is expliclty integer division. The magic
functions for overriding these ops are truediv__ and floordiv__

The int and long types have been merged, there is only int now

* Dictionary objects have had their .iterkeys, .itervalues, and .iteritems methods removed, and then
non-iter versions have been made to return efficient iterators

» Comparisons between objects of very different types (such as between strings and ints) will raise an exception

In terms of how this has affected angr, any string that represents data from the emulated program will be a

bytestring.

This means that where you previously said state.solver.eval(x, cast_to=str) you should now

say cast_to=bytes. When creating concrete bitvectors from strings (including implicitly by just making a compar-
ison against a string) these should be bytestrings. If they are not they will be utf-8 converted and a warning will be
printed. Symbol names should be unicode strings.

For division, however, ASTs are strongly typed so they will treat both division operators as the kind of division that
makes sense for their type.

9.7.2 Clemory API changes

The memory object in CLE (project.loader.memory, not state.memory) has had a few breaking API changes since the
bytes type is much nicer to work with than the py?2 string for this specific case, and the old API was an inconsistent

mess.

9.7. Migrating to angr 8 151

angr

Before After

memory.read_bytes(addr, n) -> list[str] memory.load(addr, n) -> bytes
memory .write_bytes(addr, list[str]) memory.store(addr, bytes)
memory.get_byte(addr) -> str memory[addr] -> int
memory.read_addr_at(addr) -> int memory .unpack_word(addr) -> int
memory .write_addr_at(addr, value) -> int memory .pack_word(addr, value)
memory.stride_repr -> list[(start, end, memory .backers() -> iter[(start,
str)] bytearray)]

Additionally, pack_word and unpack_word now take optional size, endness, and signed parameters. We have
also added memory.pack(addr, fmt, *data) and memory.unpack(addr, fmt), which take format strings for
use with the struct module.

If you were using the cbackers or read_bytes_c functions, the conversion is a little more complicated - we were
able to remove the split notion of “backers” and “updates” and replaced all backers with bytearrays that we mutate, so
we can work directly with the backer objects. The backers () function iterates through all bottom-level backer objects
and their start addresses. You can provide an optional address to the function, and it will skip over all backers that end
before that address.

Here is some sample code for producing a C-pointer to a given address:

import cffi, cle
ffi = c££fi.FFIQO
1d = cle.Loader('/bin/true')

addr = ld.main_object.entry
try:

backer_start, backer = next(ld.memory.backers(addr))
except Stoplteration:

raise Exception("not mapped")

if backer_start > addr:
raise Exception("not mapped")

cbacker = ffi.from_buffer(backer)
addr_pointer = cbacker + (addr - backer_start)

You should not have to use this if you aren’t passing the data to a native library - the normal load methods should now
be more than fast enough for intensive use.

9.7.3 CLE symbols changes

Previously, your mechanisms for looking up symbols by their address were loader. find_symbol () and object.
symbols_by_addr, where there was clearly some overlap. However, symbols_by_addr stayed because it was the
only way to enumerate symbols in an object. This has changed! symbols_by_addr is deprecated and here is now
object.symbols, a sorted list of Symbol objects, to enumerate symbols in a binary.

Additionally, you can now enumerate all symbols in the entire project with 1loader.symbols. This change has also
enabled us to add a fuzzy parameter to find_symbol (returns the first symbol before the given address) and make the
output of loader.describe_addr much nicer (shows offset from closest symbol).

152 Chapter 9. Appendix

angr

9.7.4 Deprecations and name changes

e All parameters in cle that started with custom_ - so, custom_base_addr, custom_entry_point,
custom_offset, custom_arch, and custom_ld_path - have had the custom_ removed from the beginning
of their names.

* All the functions that were deprecated more than a year ago (at or before the angr 7 release) have been removed.
* state.se has been deprecated. You should have been using state.solver for the past few years.

 Support for immutable simulation managers has been removed. So far as we’re aware, nobody was actually using
this, and it was making debugging a pain.

9.8 Migrating to angr 7

The release of angr 7 introduces several departures from long-standing angr-isms. While the community has created a
compatibility layer to give external code written for angr 6 a good chance of working on angr 7, the best thing to do is
to port it to the new version. This document serves as a guide for this.

9.8.1 SimuVEX is gone

angr versions up through angr 6 split the program analysis into two modules: simuvex, which was responsible for
analyzing the effects of a single piece of code (whether a basic block or a SimProcedure) on a program state, and angr,
which aggregated analyses of these basic blocks into program-level analysis such as control-flow recovery, symbolic
execution, and so forth. In theory, this would encourage for the encapsulation of block-level analyses, and allow other
program analysis frameworks to build upon simuvex for their needs. In practice, no one (to our knowledge) used
simuvex without angr, and the separation introduced frustrating limitations (such as not being able to reference the
history of a state from a SimInspect breakpoint) and duplication of code (such as the need to synchronize data from
state.scratch into path.history).

Realizing that SimuVEX wasn’t a usable independent package, we brainstormed about merging it into angr and further
noticed that this would allow us to address the frustrations resulting from their separation.

All of the SimuVEX concepts (SimStates, SimProcedures, calling conventions, types, etc) have been migrated into
angr. The migration guide for common classes is bellow:

Before After
simuvex.SimState angr.SimState
simuvex.SimProcedure angr.SimProcedure
simuvex.SimEngine angr.SimEngine
simuvex.SimCC angr.SimCC
And for common modules:
Before After
simuvex.s_cc angr.calling_conventions
simuvex.s_state angr.sim_state
simuvex.s_procedure angr.sim_procedure
simuvex.plugins angr.state_plugins
simuvex.engines angr.engines

simuvex.concretization_strategies — angr.concretization_strategies

9.8. Migrating to angr 7 153

angr

Additionally, simuvex.SimProcedures has been renamed to angr.SIM_PROCEDURES, since it is a global variable
and not a class. There have been some other changes to its semantics, see the section on SimProcedures for details.

9.8.2 Removal of angr.Path

In angr, a Path object maintained references to a SimState and its history. The fact that the history was separated
from the state caused a lot of headaches when trying to analyze states inside a breakpoint, and caused overhead in
synchronizing data from the state to its history.

In the new model, a state’s history is maintained in a SimState plugin: state.history. Since the path would now
simply point to the state, we got rid of it. The mapping of concepts is roughly as follows:

Before After

path state

path.state state

path.history state.history
path.callstack state.callstack

path.trace state.history.descriptions
path.addr_trace state.history.bbl_addrs
path.jumpkinds state.history.jumpkinds
path.guards state.history.jump_guards
path.targets state.history.jump_targets

path.actions
path.events

state.history.actions
state.history.events

path.recent_actions state.history.recent_actions
path.reachable state.history.reachable()

An important behavior change about path.actions and path.recent_actions - actions are no longer tracked by
default. If you would like them to be tracked again, please add angr.options.refs to your state.

Path Group -> Simulation Manager

Since there are no paths, there cannot be a path group. Instead, we have a Simulation Manager now (we recommend
using the abbreviation “simgr” in places you were previously using “pg”), which is exactly the same as a path group
except it holds states instead of paths. You can make one with project.factory.simulation_manager(...).

Errored Paths

Before, error resilience was handled at the path level, where stepping a path that caused an error would return a subclass
of Path called ErroredPath, and these paths would be put in the errored stash of a path group. Now, error resilience
is handled at the simulation manager level, and any state that throws an error during stepping will be wrapped in an
ErrorRecord object, which is not a subclass of SimState, and put into the errored list attribute of the simulation
manager, which is not a stash.

An ErrorRecord object has attributes for .state (the initial state that caused the error), .error (the error that was
thrown), and . traceback (the traceback from the error). To debug these errors you can call .debug().

These changes are because we were uncomfortable making a subclass of SimState, and the ErrorRecord class then has
sufficiently different semantics from a normal state that it cannot be placed in a stash.

154 Chapter 9. Appendix

angr

9.8.3 Changes to SimProcedures

The most noticeable difference from the old version to the new version is that the catalog of built-in simpro-
cedures are no longer organized strictly according to which library they live in. Now, they are organized ac-
cording to which standards they conform to, which helps with re-using procedures between different libraries.
For instance, the old SimProcedures['libc.so.6'] has been split up between SIM_PROCEDURES['libc'],
SIM_PROCEDURES['posix'], and SIM_PROCEDURES['glibc'], depending on what specifications each function
conforms to. This allows us to reuse the 1ibc catalog in msvcrt.dl1 and the MUSL libc, for example.

In order to group SimProcedures together by libraries, we have introduced a new abstraction called the SimLibrary,
the definitions for which are stored in angr.procedures.definitions. Each SimLibrary object stores information
about a single shared library, and can contain SimProcedure implementations, calling convention information, and
type information. SimLibraries are scraped from the filesystem at import time, just like SimProcedures, and placed
into angr . STM_LIBRARIES.

Syscalls are now categorized through a subclass of SimLibrary called SimSyscallLibrary. The API for managing
syscalls through SimOS has been changed - check the API docs for the SimUserspace class.

One important implication of this change is that if you previously used a trick where you changed one of the Sim-
Procedures present in the SimProcedures dict in order to change which SimProcedures would be used to hook over
library functions by default, this will no longer work. Instead of SimProcedures[lib][func_name] = proc, you
now need to say SIM_LIBRARIES[1ib].add(func_name, proc). Butreally you should just be using hook_symbol
anyway.

9.8.4 Changes to hooking

The Hook class is gone. Instead, we now can hook with individual instances of SimProcedure objects, as opposed to
just the classes. A shallow copy of the SimProcedure will be made at runtime to preserve thread safety.

So, previously, where you would have done project.hook(addr, Hook(proc, ...)) or project.hook(addr,
proc), you can now do project.hook(addr, proc(...)). In order to use simple functions as hooks, you can
either say project.hook(addr, func) or decorate the declaration of your function with @project.hook(addr).

Having simprocedures as instances and letting them have access to the project cleans up a lot of other hacks that were
present in the codebase, mostly related to the self.call(...) SimProcedure continuation system. It is no longer
required to set IS_FUNCTION = True if you intend to use self.call() while writing a SimProcedure, and each
call-return target you use will have a unique address associated with it. These addresses will be allocated lazily, which
does have the side effect of making address allocation nondeterministic, sometimes based on dictionary-iteration order.

9.8.5 Changes to loading

The hook_symbol method will no longer attempt to redo relocations for the given symbol, instead just hooking directly
over the address of the symbol in whatever library it comes from. This speeds up loading substancially and ensures
more consistent behavior for when mixing and matching native library code and SimProcedure summaries.

The angr externs object has been moved into CLE, which will ALWAYS make sure that every dependency is resolved
to something, never left unrelocated. Similarly, CLE provides the “kernel object” used to provide addresses for syscalls
now.

Before After

project._extern_obj loader.extern_object
project._syscall_obj loader.kernel object

9.8. Migrating to angr 7 155

angr

Several properties and methods have been renamed in CLE in order to maintain a more consistent and explicit APIL.
The most common changes are listed below:

Before After

loader.whats_at() loader.describe_addr

loader.addr_belongs_to_object() loader.find_object_containing()

loader. find_symbol_name () loader. find_symbol () .name

whatever the hell you were doing before to look up a symbol loader.find_symbol (name or addr)

loader. find_module_name() loader.find_object_containing().
provides

loader. find_symbol_got_entry() loader.find_relevant_relocations()

loader.main_bin loader.main_object

anything.get_min_addr() anything.min_addr

symbol . addr symbol.linked_addr

9.8.6 Changes to the solver interface
We cleaned up the menagerie of functions present on state.solver (if you're still referring to it as state.se you
should stop) and simplified it into a cleaner interface:

* solver.eval (expression) will give you one possible solution to the given expression.

* solver.eval_one(expression) will give you the solution to the given expression, or throw an error if more
than one solution is possible.

e solver.eval_upto(expression, n) will give you up to n solutions to the given expression, returning fewer
than n if fewer than n are possible.

* solver.eval_atleast(expression, n) will give you n solutions to the given expression, throwing an error
if fewer than n are possible.

e solver.eval_exact(expression, n) will give you n solutions to the given expression, throwing an error if
fewer or more than are possible.

* solver.min(expression) will give you the minimum possible solution to the given expression.
* solver.max(expression) will give you the maximum possible solution to the given expression.
Additionally, all of these methods can take the following keyword arguments:

e extra_constraints can be passed as a tuple of constraints. These constraints will be taken into account for
this evaluation, but will not be added to the state.

* cast_to can be passed a data type to cast the result to. Currently, this can only be str, which will cause the
method to return the byte representation of the underlying data. For example, state.solver.eval(state.
solver.BVV(0x41424344, 32, cast_to=str) will return "ABCD".

156 Chapter 9. Appendix

CHAPTER
TEN

API REFERENCE

class angr.SimProcedure (project=None, cc=None, prototype=None, symbolic_return=None, returns=None,

is_syscall=False, is_stub=False, num_args=None, display_name=None,
library_name=None, is_function=None, **kwargs)

Bases: object

A SimProcedure is a wonderful object which describes a procedure to run on a state.

You may subclass SimProcedure and override run(), replacing it with mutating self.state however you like,
and then either returning a value or jumping away somehow.

A detailed discussion of programming SimProcedures may be found at https://docs.angr.io/extending-angr/
simprocedures

Parameters
arch — The architecture to use for this procedure

The following parameters are optional:

Parameters

symbolic_return — Whether the procedure’s return value should be stubbed into a single
symbolic variable constratined to the real return value

returns — Whether the procedure should return to its caller afterwards

is_syscall — Whether this procedure is a syscall

num_args — The number of arguments this procedure should extract

display_name — The name to use when displaying this procedure

library_name — The name of the library from which the function we’re emulating comes
cc — The SimCC to use for this procedure

sim_kwargs — Additional keyword arguments to be passed to run()

is_function — Whether this procedure emulates a function

The following class variables should be set if necessary when implementing a new SimProcedure:

Variables

NO_RET — Set this to true if control flow will never return from this function

DYNAMIC_RET - Set this to true if whether the control flow returns from this function or not
depends on the context (e.g., libc’s error() call). Must implement dynamic_returns() method.

ADDS_EXITS — Set this to true if you do any control flow other than returning
IS_FUNCTION — Does this procedure simulate a function? True by default

157

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/extending-angr/simprocedures
https://docs.angr.io/extending-angr/simprocedures

angr

* ARGS_MISMATCH — Does this procedure have a different list of arguments than what is pro-
vided in the function specification? This may happen when we manually extract arguments
in the run() method of a SimProcedure. False by default.

* local_vars — If you use self.call(), set this to a list of all the local variable names in
your class. They will be restored on return.

The following instance variables are available when working with simprocedures from the inside or the outside:
Variables
» project — The associated angr project
» arch — The associated architecture
* addr — The linear address at which the procedure is executing
* cc — The calling convention in use for engaging with the ABI

» canonical — The canonical version of this SimProcedure. Procedures are deepcopied for
many reasons, including to be able to store state related to a specific run and to be able to
hook continuations.

» kwargs — Any extra keyword arguments used to construct the procedure; will be passed to
run

» display_name — See the eponymous parameter

e library_name — See the eponymous parameter

* abi - If this is a syscall simprocedure, which ABI are we using to map the syscall numbers?
» symbolic_return — See the eponymous parameter

* syscall_number - If this procedure is a syscall, the number will be populated here.

* returns — See eponymous parameter and NO_RET cvar

» is_syscall — See eponymous parameter

» is_function - See eponymous parameter and cvar

e is_stub - See eponymous parameter

» is_continuation — Whether this procedure is the original or a continuation resulting from
self.call()

» continuations — A mapping from name to each known continuation

e run_func — The name of the function implementing the procedure. “run” by default, but
different in continuations.

e num_args — The number of arguments to the procedure. If not provided in the parameter,
extracted from the definition of self.run

The following instance variables are only used in a copy of the procedure that is actually executing on a state:
Variables
» state — The SimState we should be mutating to perform the procedure
» successors — The SimSuccessors associated with the current step
* arguments — The function arguments, deserialized from the state

» arg_session — The ArgSession that was used to parse arguments out of the state, in case
you need it for varargs

158 Chapter 10. API Reference

angr

* use_state_arguments — Whether we’re using arguments extracted from the state or man-
ually provided

e ret_to — The current return address
» ret_expr — The computed return value
» call_ret_expr — The return value from having used self.call()

e inhibit_autoret — Whether we should avoid automatically adding an exit for returning
once the run function ends

* arg_session - The ArgSession object that was used to extract the runtime argument values.
Useful for if you want to extract variadic args.

__init__ (project=None, cc=None, prototype=None, symbolic_return=None, returns=None,
is_syscall=False, is_stub=False, num_args=None, display_name=None, library_name=None,
is_function=None, **kwargs)

state: SimState
execute (state, successors=None, arguments=None, ret_to=None)

Call this method with a SimState and a SimSuccessors to execute the procedure.

Alternately, successors may be none if this is an inline call. In that case, you should provide arguments to
the function.

make_continuation(name)
NO_RET = False
DYNAMIC_RET = False
ADDS_EXITS = False
IS_FUNCTION = True
ARGS_MISMATCH = False
ALT_NAMES = None
local_vars: Tuple[str, ...] = QO
run(*args, **kwargs)
Implement the actual procedure here!

static_exits(blocks, **kwargs)

Get new exits by performing static analysis and heuristics. This is a fast and best-effort approach to get new
exits for scenarios where states are not available (e.g. when building a fast CFG).

Parameters
blocks (1ist) — Blocks that are executed before reaching this SimProcedure.

Returns
A list of dicts. Each dict should contain the following entries: ‘address’, ‘jumpkind’, and
‘namehint’.

Return type
list

159

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

angr

dynamic_returns (blocks, **kwargs)

Determines if a call to this function returns or not by performing static analysis and heuristics.

Parameters
blocks — Blocks that are executed before reaching this SimProcedure.

Return type
bool

Returns
True if the call returns, False otherwise.

property should_add_successors
set_args(args)
va_arg(ty, index=None)

inline_call (procedure, *arguments, **kwargs)

Call another SimProcedure in-line to retrieve its return value. Returns an instance of the procedure with
the ret_expr property set.

Parameters
¢ procedure — The class of the procedure to execute

* arguments — Any additional positional args will be used as arguments to the procedure
call

¢ sim_kwargs — Any additional keyword args will be passed as sim_kwargs to the procedure
construtor

fix_prototype_returnty (ret_size)

ret(expr=None)

Add an exit representing a return from this function. If this is not an inline call, grab a return address from
the state and jump to it. If this is not an inline call, set a return expression with the calling convention.

call (addr, args, continue_at, cc=None, prototype=None, jumpkind="Ijk_Call")
Add an exit representing calling another function via pointer.

Parameters
¢ addr — The address of the function to call
* args — The list of arguments to call the function with

e continue_at — Later, when the called function returns, execution of the current procedure
will continue in the named method.

* cc — Optional: use this calling convention for calling the new function. Default is to use
the current convention.

» prototype — Optional: The prototype to use for the call. Will default to all-ints.
jump Caddr, jumpkind='"Ijk_Boring")
Add an exit representing jumping to an address.
exit (exit_code)

Add an exit representing terminating the program.

ty_ptr(zy)

160 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

property is_java
property argument_types
property return_type
class angr.BP(when="before', enabled=None, condition=None, action=None, **kwargs)
Bases: object
A breakpoint.
__init__ (when="before', enabled=None, condition=None, action=None, **kwargs)
check (state, when)
Checks state state to see if the breakpoint should fire.
Parameters
* state — The state.
¢ when — Whether the check is happening before or after the event.

Returns
A boolean representing whether the checkpoint should fire.

fire(state)
Trigger the breakpoint.

Parameters
state — The state.

class angr.SimStatePlugin

Bases: object

This is a base class for SimState plugins. A SimState plugin will be copied along with the state when the state is
branched. They are intended to be used for things such as tracking open files, tracking heap details, and providing
storage and persistence for SimProcedures.

STRONGREF_STATE = False
__init__QO
set_state(state)
Sets a new state (for example, if the state has been branched)
set_strongref_state(state)

copy (_memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

161

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

static memo(f)
A decorator function you should apply to copy

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self. foo.merge(
[0.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

162

Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

classmethod register_default (name, xtr=None)

init_state()

Use this function to perform any initialization on the state at plugin-add time

class angr.Project(thing, default_analysis_mode=None, ignore_functions=None, use_sim_procedures=True,

Bases: object

exclude_sim_procedures_func=None, exclude_sim_procedures_list=(), arch=None,
simos=None, engine=None, load_options=None, translation_cache=True,
selfmodifying_code=False, support_selfmodifying_code=None, store_function=None,
load_function=None, analyses_preset=None, concrete_target=None,
eager_ifunc_resolution=None, **kwargs)

This is the main class of the angr module. It is meant to contain a set of binaries and the relationships between
them, and perform analyses on them.

Parameters

 thing - The path to the main executable object to analyze, or a CLE Loader object.

e arch (Arch) -

e load_options (Dict[str, Any] | None) -

e selfmodifying_code (bool) -

» support_selfmodifying_code (bool | None) -

The following parameters are optional.

Parameters

* default_analysis_mode — The mode of analysis to use by default. Defaults to ‘symbolic’.

» ignore_functions — A list of function names that, when imported from shared libraries,
should never be stepped into in analysis (calls will return an unconstrained value).

» use_sim_procedures — Whether to replace resolved dependencies for which simproce-
dures are available with said simprocedures.

» exclude_sim_procedures_func — A function that, when passed a function name, returns
whether or not to wrap it with a simprocedure.

* exclude_sim_procedures_list — A list of functions to not wrap with simprocedures.

* arch - The target architecture (auto-detected otherwise).

* simos — a SimOS class to use for this project.

» engine — The SimEngine class to use for this project.

e translation_cache (bool) — If True, cache translated basic blocks rather than re-
translating them.

» selfmodifying_code (bool) — Whether we aggressively support self-modifying code.
When enabled, emulation will try to read code from the current state instead of the origi-
nal memory, regardless of the current memory protections.

* store_function - A function that defines how the Project should be stored. Default to
pickling.

* load_function — A function that defines how the Project should be loaded. Default to
unpickling.

163

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

» analyses_preset (angr.misc.PluginPreset) — The plugin preset for the analyses
provider (i.e. Analyses instance).

e load_options (Dict[str, Any] | None)-
e support_selfmodifying_code (bool | None) -
Any additional keyword arguments passed will be passed onto cle.Loader.
Variables
* analyses — The available analyses.
* entry — The program entrypoint.

» factory — Provides access to important analysis elements such as path groups and symbolic
execution results.

» filename — The filename of the executable.

* loader — The program loader.

* storage — Dictionary of things that should be loaded/stored with the Project.
Parameters

e arch (Arch) -

e load_options (Dict[str, Any] | None) -

e selfmodifying_code (bool) —

» support_selfmodifying_code (bool | None)-

__init__(thing, default_analysis_mode=None, ignore_functions=None, use_sim_procedures=True,
exclude_sim_procedures_func=None, exclude_sim_procedures_list=(), arch=None, simos=None,
engine=None, load_options=None, translation_cache=True, selfmodifying_code=False,
support_selfmodifying_code=None, store_function=None, load_function=None,
analyses_preset=None, concrete_target=None, eager_ifunc_resolution=None, **kwargs)

Parameters
¢ load_options (Dict[str, Any] | None) -
¢ selfmodifying_code (bool) —
e support_selfmodifying_code (bool | None)-—

arch: Arch
property analyses: AnalysesHubWithDefault

hook (addr, hook=None, length=0, kwargs=None, replace=False)

Hook a section of code with a custom function. This is used internally to provide symbolic summaries of
library functions, and can be used to instrument execution or to modify control flow.

When hook is not specified, it returns a function decorator that allows easy hooking. Usage:

Assuming proj is an instance of angr.Project, we will add a custom hook at.
—the entry
point of the project.
@proj.hook(proj.entry)
def my_hook(state):
print("Welcome to execution!")

164 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch

angr

Parameters
¢ addr — The address to hook.

* hook — A angr.project.Hook describing a procedure to run at the given address. You
may also pass in a SimProcedure class or a function directly and it will be wrapped in a
Hook object for you.

* length - If you provide a function for the hook, this is the number of bytes that will be
skipped by executing the hook by default.

» kwargs — If you provide a SimProcedure for the hook, these are the keyword arguments
that will be passed to the procedure’s run method eventually.

¢ replace (Optional[bool]) — Control the behavior on finding that the address is already
hooked. If true, silently replace the hook. If false (default), warn and do not replace the
hook. If none, warn and replace the hook.

is_hooked (addr)
Returns True if addr is hooked.

Parameters
addr — An address.

Return type
bool

Returns
True if addr is hooked, False otherwise.

hooked_by (addr)
Returns the current hook for addr.

Parameters
addr — An address.

Return type
Optional[SimProcedure]

Returns
None if the address is not hooked.
unhook (addr)
Remove a hook.
Parameters
addr — The address of the hook.
hook_symbol (symbol_name, simproc, kwargs=None, replace=None)

Resolve a dependency in a binary. Looks up the address of the given symbol, and then hooks that address.
If the symbol was not available in the loaded libraries, this address may be provided by the CLE externs
object.

Additionally, if instead of a symbol name you provide an address, some secret functionality will kick in
and you will probably just hook that address, UNLESS you’re on powerpc64 ABIv1 or some yet-unknown
scary ABI that has its function pointers point to something other than the actual functions, in which case
it’'ll do the right thing.

Parameters

* symbol_name — The name of the dependency to resolve.

165

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional

angr

 simproc — The SimProcedure instance (or function) with which to hook the symbol

¢ kwargs — If you provide a SimProcedure for the hook, these are the keyword arguments
that will be passed to the procedure’s run method eventually.

» replace (Optional[bool]) — Control the behavior on finding that the address is already
hooked. If true, silently replace the hook. If false, warn and do not replace the hook. If
none (default), warn and replace the hook.

Returns
The address of the new symbol.

Return type
int
symbol_hooked_by (symbol_name)

Return the SimProcedure, if it exists, for the given symbol name.

Parameters
symbol_name (str)— Name of the symbol.

Return type
Optional[SimProcedure]

Returns
None if the address is not hooked.

is_symbol_hooked (symbol_name)
Check if a symbol is already hooked.

Parameters
symbol_name (str) — Name of the symbol.

Returns
True if the symbol can be resolved and is hooked, False otherwise.

Return type
bool

unhook_symbol (symbol_name)

Remove the hook on a symbol. This function will fail if the symbol is provided by the extern object, as that
would result in a state where analysis would be unable to cope with a call to this symbol.

rehook_symbol (new_address, symbol_name, stubs_on_sync)

Move the hook for a symbol to a specific address :type new_address: :param new_address: the new address
that will trigger the SimProc execution :type symbol_name: :param symbol_name: the name of the symbol
(f.i. strcmp) :return: None

execute (*args, **kwargs)

This function is a symbolic execution helper in the simple style supported by triton and manticore. It
designed to be run after setting up hooks (see Project.hook), in which the symbolic state can be checked.

This function can be run in three different ways:
e When run with no parameters, this function begins symbolic execution from the entrypoint.
* It can also be run with a “state” parameter specifying a SimState to begin symbolic execution from.

e Finally, it can accept any arbitrary keyword arguments, which are all passed to
project.factory.full_init_state.

If symbolic execution finishes, this function returns the resulting simulation manager.

166 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

angr

terminate_execution()

Terminates a symbolic execution that was started with Project.execute().

angr.load_shellcode (shelicode, arch, start_offset=0, load_address=0, thumb=False, **kwargs)

Load a new project based on a snippet of assembly or bytecode.
Parameters

» shellcode (Union[bytes, str]) — The data to load, as either a bytestring of instructions
or a string of assembly text

¢ arch — The name of the arch to use, or an archinfo class

» start_offset — The offset into the data to start analysis (default 0)
* load_address — The address to place the data in memory (default 0)
* thumb — Whether this is ARM Thumb shellcode

class angr.Blade(graph, dst_run, dst_stmt_idx, direction="backward', project=None, cfg=None,
ignore_sp=Fualse, ignore_bp=False, ignored_regs=None, max_level=3, base_state=None,
stop_at_calls=False, cross_insn_opt=False, max_predecessors=10, include_imarks=True)

Bases: object

Blade is a light-weight program slicer that works with networkx DiGraph containing CFGNodes. It is meant to
be used in angr for small or on-the-fly analyses.

Parameters
e graph (DiGraph) —
e dst_run (int) —
e dst_stmt_idx (int) -
e direction (str) —
e ignore_sp (bool) —
e ignore_bp (bool) -
e max_level (int) -
e stop_at_calls (bool) -
e max_predecessors (int) —
e include_imarks (bool) —

__init__(graph, dst_run, dst_stmt_idx, direction="backward', project=None, cfg=None, ignore_sp=False,
ignore_bp=False, ignored_regs=None, max_level=3, base_state=None, stop_at_calls=False,
cross_insn_opt=False, max_predecessors=10, include_imarks=True)

Parameters

 graph (DiGraph) — A graph representing the control flow graph. Note that it does not take
angr.analyses. CFGEmulated or angr.analyses.CFGFast.

e dst_run (int) — An address specifying the target SimRun.

e dst_stmt_idx (int) — The target statement index. -1 means executing until the last state-
ment.

e direction (str) — ‘backward’ or ‘forward’ slicing. Forward slicing is not yet supported.

e project (angr.Project) — The project instance.

167

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

* cfg (angr.analyses.CFGBase) — the CFG instance. It will be made mandatory later.

¢ ignore_sp (bool) — Whether the stack pointer should be ignored in dependency tracking.
Any dependency from/to stack pointers will be ignored if this options is True.

* ignore_bp (bool) — Whether the base pointer should be ignored or not.
¢ max_level (int) — The maximum number of blocks that we trace back for.

e stop_at_calls (bool) — Limit slicing within a single function. Do not proceed when
encounters a call edge.

¢ include_imarks (bool) — Should IMarks (instruction boundaries) be included in the
slice.

e max_predecessors (int) —

Returns
None

property slice
dbg_repr (arch=None)
class angr.SimOS (project, name=None)
Bases: object
A class describing OS/arch-level configuration.

Parameters
project (angr.Project) —

__init__(project, name=None)

Parameters
project (Project) —

configure_project()
Configure the project to set up global settings (like SimProcedures).

state_blank (addr=None, initial_prefix=None, brk=None, stack_end=None, stack_size=8388608,
stdin=None, thread_idx=None, permissions_backer=None, **kwargs)

Initialize a blank state.
All parameters are optional.
Parameters
* addr — The execution start address.
e initial_prefix -
» stack_end — The end of the stack (i.e., the byte after the last valid stack address).
¢ stack_size — The number of bytes to allocate for stack space
¢ brk — The address of the process’ break.

Returns
The initialized SimState.

Any additional arguments will be passed to the SimState constructor

state_entry(**kwargs)

168 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

state_full_init (**kwargs)
state_call (addr, *args, **kwargs)

prepare_call_state(calling_state, initial_state=None, preserve_registers=(), preserve_memory=())

This function prepares a state that is executing a call instruction. If given an initial_state, it copies over all
of the critical registers to it from the calling_state. Otherwise, it prepares the calling_state for action.

This is mostly used to create minimalistic for CFG generation. Some ABIs, such as MIPS PIE and x86 PIE,
require certain information to be maintained in certain registers. For example, for PIE MIPS, this function
transfer t9, gp, and ra to the new state.

prepare_function_symbol (symbol_name, basic_addr=None)

Prepare the address space with the data necessary to perform relocations pointing to the given symbol

Returns a 2-tuple. The first item is the address of the function code, the second is the address of the
relocation target.

handle_exception(successors, engine, exception)

Perform exception handling. This method will be called when, during execution, a SimException is thrown.
Currently, this can only indicate a segfault, but in the future it could indicate any unexpected exceptional
behavior that can’t be handled by ordinary control flow.

The method may mutate the provided SimSuccessors object in any way it likes, or re-raise the exception.
Parameters
» successors — The SimSuccessors object currently being executed on
¢ engine — The engine that was processing this step
e exception — The actual exception object

syscall (state, allow_unsupported=True)
syscall_abi (state)

Return type
str

syscall_cc(state)

Return type
Optional[SimCCSyscall]

is_syscall_addr (addr)
syscall_from_addr (addr, allow_unsupported=True)
syscall_£from_number (number, allow_unsupported=True, abi=None)
setup_gdt (state, gdt)
Write the GlobalDescriptorTable object in the current state memory
Parameters
* state - state in which to write the GDT
¢ gdt — GlobalDescriptorTable object

Returns

169

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

angr

generate_gdt (fs, gs, fs_size=4294967295, gs_size=4294967295)

Generate a GlobalDescriptorTable object and populate it using the value of the gs and fs register
Parameters
¢ fs — value of the fs segment register
* gs — value of the gs segment register
» fs_size - size of the fs segment register
¢ gs_size - size of the gs segment register

Returns
gdt a GlobalDescriptorTable object

class angr.Block(addr, project=None, arch=None, size=None, byte_string=None, vex=None, thumb=False,
backup_state=None, extra_stop_points=None, opt_level=None, num_inst=None, traceflags=0,
strict_block_end=None, collect_data_refs=False, cross_insn_opt=True,
load_from_ro_regions=False, initial_regs=None)

Bases: Serializable
Represents a basic block in a binary or a program.

BLOCK_MAX_SIZE = 4096

__init__(addr, project=None, arch=None, size=None, byte_string=None, vex=None, thumb=False,
backup_state=None, extra_stop_points=None, opt_level=None, num_inst=None, traceflags=0,
strict_block_end=None, collect_data_refs=False, cross_insn_opt=True,
load_from_ro_regions=Fualse, initial_regs=None)

arch

thumb

addr

size

pp (**kwargs)
set_initial_regs()

static reset_initial_regs()
property vex: IRSB
property vex_nostmt

property disassembly: DisassemblerBlock

Provide a disassembly object using whatever disassembler is available

property capstone
property codenode
property bytes
property instructions

property instruction_addrs

170 Chapter 10. API Reference

https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.block.IRSB

angr

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage (cmsg)

Parse a protobuf cmessage and create a class object.

Parameters
cmsg — The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

class angr.SimulationManager (project, active_states=None, stashes=None, hierarchy=None,
resilience=None, save_unsat=False, auto_drop=None, errored=None,
completion_mode=<built-in function any>, techniques=None,
suggestions=True, **kwargs)

Bases: object
The Simulation Manager is the future future.

Simulation managers allow you to wrangle multiple states in a slick way. States are organized into “stashes”,
which you can step forward, filter, merge, and move around as you wish. This allows you to, for example, step
two different stashes of states at different rates, then merge them together.

Stashes can be accessed as attributes (i.e. .active). A mulpyplexed stash can be retrieved by prepending the name
with mp_, e.g. .mp_active. A single state from the stash can be retrieved by prepending the name with one_, e.g.
.one_active.

Note that you shouldn’t usually be constructing SimulationManagers directly - there is a convenient shortcut for
creating them in Project. factory: see angr. factory.AngrObjectFactory.

The most important methods you should look at are step, explore, and use_technique.
Parameters
* project (angr.project.Project)— A Project instance.
» stashes — A dictionary to use as the stash store.
* active_states — Active states to seed the “active” stash with.
* hierarchy — A StateHierarchy object to use to track the relationships between states.

» resilience — A set of errors to catch during stepping to put a state in the errore list. You
may also provide the values False, None (default), or True to catch, respectively, no errors,
all angr-specific errors, and a set of many common errors.

e save_unsat — Set to True in order to introduce unsatisfiable states into the unsat stash
instead of discarding them immediately.

* auto_drop — A set of stash names which should be treated as garbage chutes.

» completion_mode — A function describing how multiple exploration techniques with the
complete hook set will interact. By default, the builtin function any.

171

https://docs.python.org/3/library/functions.html#object

angr

» techniques — A list of techniques that should be pre-set to use with this manager.

* suggestions — Whether to automatically install the Suggestions exploration technique. De-

fault True.

Variables

» errored — Not a stash, but a list of ErrorRecords. Whenever a step raises an exception that
we catch, the state and some information about the error are placed in this list. You can adjust

the list of caught exceptions with the resilience parameter.

» stashes — All the stashes on this instance, as a dictionary.

» completion_mode — A function describing how multiple exploration techniques with the
complete hook set will interact. By default, the builtin function any.

ALL = '_ALL'

DROP = '_DROP'

__init__(project, active_states=None, stashes=None, hierarchy=None, resilience=None, save_unsat=False,
auto_drop=None, errored=None, completion_mode=<built-in function any>, techniques=None,

suggestions=True, **kwargs)

active: List[SimState]
stashed: List[SimState]
pruned: List[SimState]
unsat: List[SimState]
deadended: List[SimState]
unconstrained: List[SimState]
found: List[SimState]
one_active: SimState
one_stashed: SimState
one_pruned: SimState
one_unsat: SimState
one_deadended: SimState
one_unconstrained: SimState
one_found: SimState

property errored

property stashes: DefaultDict[str, List[SimState]]

mulpyplex (*stashes)
Mulpyplex across several stashes.

Parameters

stashes — the stashes to mulpyplex

172

Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.DefaultDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List

angr

Returns
a mulpyplexed list of states from the stashes in question, in the specified order

copy (deep=False)
Make a copy of this simulation manager. Pass deep=True to copy all the states in it as well.

If the current callstack includes hooked methods, the already-called methods will not be included in the
copy.

use_technique (rech)
Use an exploration technique with this SimulationManager.

Techniques can be found in angr. exploration_techniques.

Parameters
tech (ExplorationTechnique) — An ExplorationTechnique object that contains code to
modify this SimulationManager’s behavior.

Returns
The technique that was added, for convenience

remove_technique (tech)

Remove an exploration technique from a list of active techniques.

Parameters
tech (ExplorationTechnique) — An ExplorationTechnique object.

explore (stash='active', n=None, find=None, avoid=None, find_stash="found', avoid_stash="avoid',
cfg=None, num_find=1, avoid_priority=False, **kwargs)

Tick stash “stash” forward (up to “n” times or until “num_find” states are found), looking for condi-
tion “find”, avoiding condition “avoid”. Stores found states into “find_stash’ and avoided states into
“avoid_stash”.

The “find” and “avoid” parameters may be any of:
* An address to find
¢ A set or list of addresses to find
* A function that takes a state and returns whether or not it matches.

If an angr CFG is passed in as the “cfg” parameter and “find” is either a number or a list or a set, then any
states which cannot possibly reach a success state without going through a failure state will be preemptively
avoided.

run(stash="active', n=None, until=None, **kwargs)

Run until the SimulationManager has reached a completed state, according to the current exploration tech-
niques. If no exploration techniques that define a completion state are being used, run until there is nothing
left to run.

Parameters
¢ stash — Operate on this stash
* n — Step at most this many times

e until - If provided, should be a function that takes a SimulationManager and returns True
or False. Stepping will terminate when it is True.

Returns
The simulation manager, for chaining.

173

angr

Return type
SimulationManager

complete()
Returns whether or not this manager has reached a “completed” state.

step (stash='active', target_stash=None, n=None, selector_func=None, step_func=None, error_list=None,
successor_func=None, until=None, filter_func=None, **run_args)

Step a stash of states forward and categorize the successors appropriately.

The parameters to this function allow you to control everything about the stepping and categorization pro-
cess.

Parameters
¢ stash — The name of the stash to step (default: ‘active’)
e target_stash — The name of the stash to put the results in (default: same as stash)
e error_list — The list to put ErroredState objects in (default: self.errored)

¢ selector_func-If provided, should be a function that takes a state and returns a boolean.
If True, the state will be stepped. Otherwise, it will be kept as-is.

 step_func - If provided, should be a function that takes a SimulationManager and returns
a SimulationManager. Will be called with the SimulationManager at every step. Note that
this function should not actually perform any stepping - it is meant to be a maintenance
function called after each step.

¢ successor_func - If provided, should be a function that takes a state and return its suc-
cessors. Otherwise, project.factory.successors will be used.

» filter_func - If provided, should be a function that takes a state and return the name of
the stash, to which the state should be moved.

¢ until — (DEPRECATED) If provided, should be a function that takes a SimulationMan-
ager and returns True or False. Stepping will terminate when it is True.

* n— (DEPRECATED) The number of times to step (default: 1 if “until” is not provided)

Additionally, you can pass in any of the following keyword args for project.factory.successors:
Parameters

¢ jumpkind — The jumpkind of the previous exit

¢ addr — An address to execute at instead of the state’s ip.

e stmt_whitelist — A list of stmt indexes to which to confine execution.

¢ last_stmt — A statement index at which to stop execution.

¢ thumb — Whether the block should be lifted in ARM’s THUMB mode.

* backup_state — A state to read bytes from instead of using project memory.

* opt_level — The VEX optimization level to use.

¢ insn_bytes — A string of bytes to use for the block instead of the project.

» size — The maximum size of the block, in bytes.

e num_inst — The maximum number of instructions.

» traceflags - traceflags to be passed to VEX. Default: 0

174 Chapter 10. API Reference

angr

Returns
The simulation manager, for chaining.

Return type
SimulationManager

step_state (state, successor_func=None, error_list=None, **run_args)

Don’t use this function manually - it is meant to interface with exploration techniques.

filter (state, filter_func=None)

Don’t use this function manually - it is meant to interface with exploration techniques.

selector (state, selector_func=None)

Don’t use this function manually - it is meant to interface with exploration techniques.

successors (state, successor_func=None, **run_args)

Don’t use this function manually - it is meant to interface with exploration techniques.

prune (filter_func=None, from_stash='active', to_stash='pruned")

Prune unsatisfiable states from a stash.
This function will move all unsatisfiable states in the given stash into a different stash.
Parameters
o filter_func - Only prune states that match this filter.
e from_stash — Prune states from this stash. (default: ‘active’)
¢ to_stash — Put pruned states in this stash. (default: ‘pruned’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

populate (stash, states)
Populate a stash with a collection of states.

Parameters
¢ stash — A stash to populate.
* states — A list of states with which to populate the stash.

absorb (simgr)

Collect all the states from simgr and put them in their corresponding stashes in this manager. This will not
modify simgr.

move (from_stash, to_stash, filter_func=None)
Move states from one stash to another.
Parameters
» from_stash — Take matching states from this stash.
* to_stash — Put matching states into this stash.

e filter_func — Stash states that match this filter. Should be a function that takes a state
and returns True or False. (default: stash all states)

Returns
The simulation manager, for chaining.

175

angr

Return type
SimulationManager

stash(filter_func=None, from_stash="active', to_stash='stashed")
Stash some states. This is an alias for move(), with defaults for the stashes.
Parameters

o filter_func — Stash states that match this filter. Should be a function that takes a state
and returns True or False. (default: stash all states)

¢ from_stash — Take matching states from this stash. (default: ‘active’)

¢ to_stash — Put matching states into this stash. (default: ‘stashed’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

unstash (filter_func=None, to_stash="active', from_stash="stashed")
Unstash some states. This is an alias for move(), with defaults for the stashes.
Parameters

¢ filter_func — Unstash states that match this filter. Should be a function that takes a state
and returns True or False. (default: unstash all states)

» from_stash — take matching states from this stash. (default: ‘stashed’)

¢ to_stash — put matching states into this stash. (default: ‘active’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

drop (filter_func=None, stash="active")
Drops states from a stash. This is an alias for move(), with defaults for the stashes.

Parameters
» filter_func — Drop states that match this filter. Should be a function that takes a state

and returns True or False. (default: drop all states)

 stash — Drop matching states from this stash. (default: ‘active’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

apply (state_func=None, stash_func=None, stash="active', to_stash=None)

Applies a given function to a given stash.

Parameters

* state_func - A function to apply to every state. Should take a state and return a state.
The returned state will take the place of the old state. If the function doesn’t return a state,
the old state will be used. If the function returns a list of states, they will replace the original

states.

176 Chapter 10. API Reference

angr

« stash_func - A function to apply to the whole stash. Should take a list of states and return
a list of states. The resulting list will replace the stash. If both state_func and stash_func
are provided state_func is applied first, then stash_func is applied on the results.

¢ stash — A stash to work with.
* to_stash - If specified, this stash will be used to store the resulting states instead.

Returns
The simulation manager, for chaining.

Return type
SimulationManager

split (stash_splitter=None, stash_ranker=None, state_ranker=None, limit=8, from_stash="active',
to_stash='"stashed")

Split a stash of states into two stashes depending on the specified options.

The stash from_stash will be split into two stashes depending on the other options passed in. If to_stash is
provided, the second stash will be written there.

stash_splitter overrides stash_ranker, which in turn overrides state_ranker. If no functions are provided, the
states are simply split according to the limit.

The sort done with state_ranker is ascending.
Parameters

* stash_splitter — A function that should take a list of states and return a tuple of two
lists (the two resulting stashes).

¢ stash_ranker — A function that should take a list of states and return a sorted list of states.
This list will then be split according to “limit”.

* state_ranker — An alternative to stash_splitter. States will be sorted with outputs of this
function, which are to be used as a key. The first “limit” of them will be kept, the rest split
off.

¢ limit — For use with state_ranker. The number of states to keep. Default: 8
» from_stash — The stash to split (default: ‘active’)
¢ to_stash — The stash to write to (default: ‘stashed’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

merge (merge_func=None, merge_key=None, stash="active', prune=True)

Merge the states in a given stash.
Parameters
¢ stash — The stash (default: ‘active’)

» merge_func - If provided, instead of using state.merge, call this function with the states
as the argument. Should return the merged state.

» merge_key — If provided, should be a function that takes a state and returns a key that will
compare equal for all states that are allowed to be merged together, as a first aproximation.
By default: uses PC, callstack, and open file descriptors.

¢ prune — Whether to prune the stash prior to merging it

177

angr

Returns
The simulation manager, for chaining.

Return type
SimulationManager

class angr.Analysis
Bases: object

This class represents an analysis on the program.
Variables
» project — The project for this analysis.
* kb (KnowledgeBase) — The knowledgebase object.

» _progress_callback — A callback function for receiving the progress of this analysis. It
only takes one argument, which is a float number from 0.0 to 100.0 indicating the current
progress.

» _show_progressbar (bool) — If a progressbar should be shown during the analysis. It’s
independent from _progress_callback.

* _progressbar (progress.Progress) — The progress bar object.
project: Project
kb: KnowledgeBase
errors = []
named_errors = {}
angr.register_analysis(cls, name)
class angr.ExplorationTechnique
Bases: object

An otiegnqwvk is a set of hooks for a simulation manager that assists in the implementation of new techniques
in symbolic exploration.

TODO: choose actual name for the functionality (techniques? strategies?)

Any number of these methods may be overridden by a subclass. To use an exploration technique, call simgr.
use_technique with an instance of the technique.

_init__QO
setup (simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager)— The simulation manager to which you have just been
added

step (simgr, stash='active', **kwargs)

Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters

e simgr (angr.SimulationManager) —

178 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

e stash (str) -

filter (simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.
Parameters
e simgr (angr.SimulationManager) —
e state (angr.SimState) —

selector (simgr, state, **kwargs)

Determine if a state should participate in the current round of stepping. Return True if the state should be
stepped, and False if the state should not be stepped. To defer to the original selection procedure, return
the result of simgr.selector(state, **kwargs).

If the user provided a selector_func in their step or run command, it will appear here.
Parameters
e simgr (angr.SimulationManager) —
e state (angr.SimState) —

step_state(simgr, state, **kwargs)

Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to
look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
e simgr (angr.SimulationManager) —
e state (angr.SimState) —

successors (simgr, state, **kwargs)

Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.
Parameters
e simgr (angr.SimulationManager) —

e state (angr.SimState) —

179

https://docs.python.org/3/library/stdtypes.html#str

angr

complete (simgr)

Return whether or not this manager has reached a “completed” state, i.e. SimulationManager.run()

should halt.

This is the one hook which is not subject to the nesting rules of hooks. You should not call simgr.
complete, you should make your own decision and return True or False. Each of the techniques’ comple-
tion checkers will be called and the final result will be compted with simgr.completion_mode.

Parameters

simgr (angr.SimulationManager) —

class angr.StateHierarchy

Bases: object

The state hierarchy holds weak references to SimStateHistory objects in a directed acyclic graph. It is useful
for queries about a state’s ancestry, notably “what is the best ancestor state for a merge among these states” and

“what is the most recent unsatisfiable state while using LAZY_SOLVES”

__init__QO
get_ref (obj)
dead_ref (ref)
defer_cleanup()
add_state(s)
add_history(h)
simplify()
full_simplify(

lineage(h)

Returns the lineage of histories leading up to A.

all_successors(h)
history_successors (/)
history_predecessors (/)
history_contains (%)
unreachable_state (state)
unreachable_history (/)

most_mergeable (states)

Find the “most mergeable” set of states from those provided.

Parameters
states — a list of states

Returns

a tuple of: (list of states to merge, those states’ common history, list of states to not merge

yet)

180

Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

class angr.SimState (project=None, arch=None, plugins=None, mode=None, options=None,
add_options=None, remove_options=None, special_memory_filler=None, os_name=None,

plugin_preset="default', cle_memory_backer=None, dict_memory_backer=None,

permissions_map=None, default_permissions=3, stack_perms=None, stack_end=None,

stack_size=None, regioned_memory_cls=None, **kwargs)

Bases: PluginHub

The SimState represents the state of a program, including its memory, registers, and so forth.

Parameters

project (angr.Project) — The project instance.

arch (archinfo.Arch | str) — The architecture of the state.

Variables

solver:

posix:

regs — A convenient view of the state’s registers, where each register is a property

mem — A convenient view of the state’s memory, a angr.state_plugins.view.
SimMemView

registers — The state’s register file as a flat memory region

memory — The state’s memory as a flat memory region

solver — The symbolic solver and variable manager for this state

inspect — The breakpoint manager, a angr.state_plugins.inspect.SimInspector
log — Information about the state’s history

scratch — Information about the current execution step

posix — MISNOMER: information about the operating system or environment model
fs — The current state of the simulated filesystem

libc - Information about the standard library we are emulating

cgc — Information about the cgc environment

uc_manager — Control of under-constrained symbolic execution

unicorn — Control of the Unicorn Engine

SimSolver

registers:

regs:

memory:

callstack:

SimSystemPosix

DefaultMemory

SimRegNameView

Defaul tMemory

CallStack

mem: SimMemView

history:

inspect:

SimStateHistory

SimInspector

jni_references: SimStateJNIReferences

181

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.Arch
https://docs.python.org/3/library/stdtypes.html#str

angr

scratch: SimStateScratch

__init__(project=None, arch=None, plugins=None, mode=None, options=None, add_options=None,
remove_options=None, special_memory_filler=None, os_name=None, plugin_preset="default’',
cle_memory_backer=None, dict_memory_backer=None, permissions_map=None,
default_permissions=3, stack_perms=None, stack_end=None, stack_size=None,
regioned_memory_cls=None, **kwargs)

property plugins

property se
Deprecated alias for solver
property ip

Get the instruction pointer expression, trigger SimInspect breakpoints, and generate SimActions. Use _ip
to not trigger breakpoints or generate actions.

Returns
an expression
property addr

Get the concrete address of the instruction pointer, without triggering SimInspect breakpoints or generating
SimActions. An integer is returned, or an exception is raised if the instruction pointer is symbolic.

Returns
an int

property arch: Arch
T = ~T

get_plugin(name)
Get the plugin named name. If no such plugin is currently active, try to activate a new one using the current
preset.
has_plugin(name)
Return whether or not a plugin with the name name is currently active.
register_plugin(name, plugin, inhibit_init=False)
Add a new plugin plugin with name name to the active plugins.
property javavm_memory

In case of an JavaVM with JNI support, a state can store the memory plugin twice; one for the native and
one for the java view of the state.

Returns
The JavaVM view of the memory plugin.
property javavm_registers

In case of an JavaVM with JNI support, a state can store the registers plugin twice; one for the native and
one for the java view of the state.

Returns
The JavaVM view of the registers plugin.

simplify(*args)
Simplify this state’s constraints.

182 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch

angr

add_constraints (*args, **kwargs)
Add some constraints to the state.

You may pass in any number of symbolic booleans as variadic positional arguments.

satisfiable(**kwargs)
Whether the state’s constraints are satisfiable

downsize()
Clean up after the solver engine. Calling this when a state no longer needs to be solved on will reduce
memory usage.

step (**kwargs)
Perform a step of symbolic execution using this state. Any arguments to AngrObjectFactory.successors

can be passed to this.

Returns
A SimSuccessors object categorizing the results of the step.
block (*args, **kwargs)
Represent the basic block at this state’s instruction pointer. Any arguments to AngrObjectFactory.block
can ba passed to this.

Returns
A Block object describing the basic block of code at this point.

copy O
Returns a copy of the state.

merge (Fothers, **kwargs)

Merges this state with the other states. Returns the merging result, merged state, and the merge flag.
Parameters
* states — the states to merge
* merge_conditions — a tuple of the conditions under which each state holds

* common_ancestor — a state that represents the common history between the states being
merged. Usually it is only available when EFFICIENT_STATE_MERGING is enabled,
otherwise weak-refed states might be dropped from state history instances.

¢ plugin_whitelist — a list of plugin names that will be merged. If this option is given
and is not None, any plugin that is not inside this list will not be merged, and will be created
as a fresh instance in the new state.

» common_ancestor_history — a SimStateHistory instance that represents the common
history between the states being merged. This is to allow optimal state merging when
EFFICIENT_STATE_MERGING is disabled.

Returns
(merged state, merge flag, a bool indicating if any merging occurred)

widen (others)

Perform a widening between self and other states :type others: :param others: :return:
reg_concrete(*args, **kwargs)

Returns the contents of a register but, if that register is symbolic, raises a SimValueError.

mem_concrete (*args, **kwargs)
Returns the contents of a memory but, if the contents are symbolic, raises a SimValueError.

183

angr

stack_push (thing)

Push ‘thing’ to the stack, writing the thing to memory and adjusting the stack pointer.

stack_pop()
Pops from the stack and returns the popped thing. The length will be the architecture word size.

stack_read (offset, length, bp=False)
Reads length bytes, at an offset into the stack.

Parameters
» offset — The offset from the stack pointer.
¢ length — The number of bytes to read.
¢ bp - If True, offset from the BP instead of the SP. Default: False.

make_concrete_int (expr)
prepare_callsite(retval, args, cc="witf")

dbg_print_stack (depth=None, sp=None)

Only used for debugging purposes. Return the current stack info in formatted string. If depth is None, the
current stack frame (from sp to bp) will be printed out.

set_mode (mode)
property thumb
property with_condition
angr.default_cc(arch, platform="Linux', language=None, syscall=False, **kwargs)
Return the default calling convention for a given architecture, platform, and language combination.
Parameters
e arch (str) — The architecture name.
* platform (Optional[str]) — The platform name (e.g., “Linux” or “Win32").
» language (Optional[str])— The programming language name (e.g., “go”).

* syscall (bool) — Return syscall convention (True), or normal calling convention (False,
default).

Return type
Optional[Type[SimCC]]

Returns
A default calling convention class if we can find one for the architecture, platform, and language
combination, or None if nothing fits.

class angr.PointerWrapper (value, buffer=False)

Bases: object

__init__ (value, buffer=False)
class angr.SimCC(arch)

Bases: object

A calling convention allows you to extract from a state the data passed from function to function by calls and
returns. Most of the methods provided by SimCC that operate on a state assume that the program is just after a

184 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

call but just before stack frame allocation, though this may be overridden with the stack_base parameter to each
individual method.

This is the base class for all calling conventions.

Parameters
arch (Arch) -

__init__(arch)

Parameters
arch (Arch) — The Archinfo arch for this CC

ARG_REGS: List[str] = []
FP_ARG_REGS: List[str] = []

STACKARG_SP_BUFF

0

STACKARG_SP_DIFF = 0

CALLER_SAVED_REGS: List[str] = []
RETURN_ADDR: SimFunctionArgument = None
RETURN_VAL: SimFunctionArgument = None
OVERFLOW_RETURN_VAL: Optional[SimFunctionArgument] = None
FP_RETURN_VAL: Optional[SimFunctionArgument] = None
ARCH = None
CALLEE_CLEANUP = False
STACK_ALIGNMENT = 1
property int_args
Iterate through all the possible arg positions that can only be used to store integer or pointer values.

Returns an iterator of SimFunctionArguments

property memory_args
Iterate through all the possible arg positions that can be used to store any kind of argument.

Returns an iterator of SimFunctionArguments

property fp_args

Iterate through all the possible arg positions that can only be used to store floating point values.
Returns an iterator of SimFunctionArguments

is_fp_arg(arg)

This should take a SimFunctionArgument instance and return whether or not that argument is a floating-
point argument.

Returns True for MUST be a floating point arg,
False for MUST NOT be a floating point arg, None for when it can be either.

class ArgSession(cc)
Bases: object

A class to keep track of the state accumulated in laying parameters out into memory

185

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#object

angr

cc
fp_iter
int_iter
both_iter
_init__(co)
getstate()
setstate(srate)

arg_session(rer_ty)

Return an arg session.

A session provides the control interface necessary to describe how integral and floating-point arguments
are laid out into memory. The default behavior is that there are a finite list of int-only and fp-only argument
slots, and an infinite number of generic slots, and when an argument of a given type is requested, the most
slot available is used. If you need different behavior, subclass ArgSession.

You need to provide the return type of the function in order to kick off an arg layout session.

Parameters
ret_ty (SimType | None)—

return_in_implicit_outparam(ry)
stack_space(args)

Parameters
args — A list of SimFunctionArguments

Returns
The number of bytes that should be allocated on the stack to store all these args, NOT IN-
CLUDING the return address.

return_val (ty, perspective_returned=False)

The location the return value is stored, based on its type.

property return_addr
The location the return address is stored.

next_arg(session, arg_type)

Parameters
¢ session (ArgSession) —
e arg_type (SimType) —
static is_fp_value(val)
static guess_prototype(args, prototype=None)
Come up with a plausible SimTypeFunction for the given args (as would be passed to e.g. setup_callsite).

You can pass a variadic function prototype in the base_type parameter and all its arguments will be used,
only guessing types for the variadic arguments.

186 Chapter 10. API Reference

angr

arg_locs (prototype)

Return type
List[SimFunctionArgument]

get_args (state, prototype, stack_base=None)
set_return_val (state, val, ty, stack_base=None, perspective_returned=False)

setup_callsite(state, ret_addr, args, prototype, stack_base=None, alloc_base=None,

grow_like_stack=True)
This function performs the actions of the caller getting ready to jump into a function.
Parameters
* state — The SimState to operate on
e ret_addr — The address to return to when the called function finishes
 args — The list of arguments that that the called function will see

» prototype — The signature of the call you’re making. Should include variadic args con-
cretely.

» stack_base — An optional pointer to use as the top of the stack, circa the function entry
point

¢ alloc_base — An optional pointer to use as the place to put excess argument data

e grow_like_stack — When allocating data at alloc_base, whether to allocate at decreasing
addresses

The idea here is that you can provide almost any kind of python type in args and it’ll be translated to a
binary format to be placed into simulated memory. Lists (representing arrays) must be entirely elements of
the same type and size, while tuples (representing structs) can be elements of any type and size. If you’d
like there to be a pointer to a given value, wrap the value in a PointerWrapper.

If stack_base is not provided, the current stack pointer will be used, and it will be updated. If alloc_base is
not provided, the stack base will be used and grow_like_stack will implicitly be True.

grow_like_stack controls the behavior of allocating data at alloc_base. When data from args needs to
be wrapped in a pointer, the pointer needs to point somewhere, so that data is dumped into memory at
alloc_base. If you set alloc_base to point to somewhere other than the stack, set grow_like_stack to False
so that sequential allocations happen at increasing addresses.

teardown_callsite (state, return_val=None, prototype=None, force_callee_cleanup=False)

This function performs the actions of the callee as it’s getting ready to return. It returns the address to return
to.

Parameters
* state — The state to mutate
e return_val - The value to return
» prototype — The prototype of the given function

e force_callee_cleanup — If we should clean up the stack allocation for the arguments
even if it’s not the callee’s job to do so

TODO: support the stack_base parameter from setup_callsite...? Does that make sense in this context?
Maybe it could make sense by saying that you pass it in as something like the “saved base pointer” value?

187

https://docs.python.org/3/library/typing.html#typing.List

angr

static find_cc(arch, args, sp_delta, platform="'Linux")

Pinpoint the best-fit calling convention and return the corresponding SimCC instance, or None if no fit is
found.

Parameters
e arch (Arch) — An ArchX instance. Can be obtained from archinfo.

e args (List[SimFunctionArgument]) — A list of arguments. It may be updated by the
first matched calling convention to remove non-argument arguments.

¢ sp_delta (int) — The change of stack pointer before and after the call is made.
e platform (str) —

Return type
Optional[SimCC]

Returns
A calling convention instance, or None if none of the SimCC subclasses seems to fit the
arguments provided.

get_arg_info(state, prototype)

This is just a simple wrapper that collects the information from various locations prototype is as passed to
self.arg_locs and self.get_args :param angr.SimState state: The state to evaluate and extract the values from
:return: A list of tuples, where the nth tuple is (type, name, location, value) of the nth argument

class angr.SimFileBase (name=None, writable=True, ident=None, concrete=False, file_exists=True, **kwargs)
Bases: SimStatePlugin

SimFiles are the storage mechanisms used by SimFileDescriptors.

Different types of SimFiles can have drastically different interfaces, and as a result there’s not much that can
be specified on this base class. All the read and write methods take a pos argument, which may have different
semantics per-class. O will always be a valid position to use, though, and the next position you should use is part
of the return tuple.

Some simfiles are “streams”, meaning that the position that reads come from is determined not by the position
you pass in (it will in fact be ignored), but by an internal variable. This is stored as .pos if you care to read it.
Don’t write to it. The same lack-of-semantics applies to this field as well.

Variables
* name — The name of the file. Purely for cosmetic purposes

* ident - The identifier of the file, typically autogenerated from the name and a nonce. Purely
for cosmetic purposes, but does appear in symbolic values autogenerated in the file.

» seekable - Bool indicating whether seek operations on this file should succeed. If this is
True, then pos must be a number of bytes from the start of the file.

» writable - Bool indicating whether writing to this file is allowed.
* pos — If the file is a stream, this will be the current position. Otherwise, None.

» concrete — Whether or not this file contains mostly concrete data. Will be used by some
SimProcedures to choose how to handle variable-length operations like fgets.

» file_exists - Set to False, if file does not exists, set to a claripy Bool if unknown, default
True.

seekable = False

188 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

angr

pos = None
__init__(name=None, writable=True, ident=None, concrete=False, file_exists=True, **kwargs)
static make_ident (name)

concretize (**kwargs)

Return a concretization of the contents of the file. The type of the return value of this method will vary
depending on which kind of SimFile you’re using.

read(pos, size, **kwargs)

Read some data from the file.
Parameters
¢ pos — The offset in the file to read from.
e size - The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.

write(pos, data, size=None, **kwargs)
Write some data to the file.
Parameters
* pos — The offset in the file to write to. May be ignored if the file is a stream or device.
¢ data - The data to write as a bitvector

» size — The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.
property size
The number of data bytes stored by the file at present. May be a symbolic value.
copy (memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself

to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState
class angr.SimFile(name=None, content=None, size=None, has_end=None, seekable=True, writable=True,
ident=None, concrete=None, **kwargs)

Bases: SimFileBase, Defaul tMemory

The normal SimFile is meant to model files on disk. It subclasses SimSymbolicMemory so loads and stores
to/from it are very simple.

189

angr

Parameters
* name — The name of the file
» content — Optional initial content for the file as a string or bitvector
» size - Optional size of the file. If content is not specified, it defaults to zero

* has_end — Whether the size boundary is treated as the end of the file or a frontier at
which new content will be generated. If unspecified, will pick its value based on op-
tions.FILES_HAVE_EOF. Another caveat is that if the size is also unspecified this value
will default to False.

» seekable - Optional bool indicating whether seek operations on this file should succeed,
default True.

» writable — Whether writing to this file is allowed

» concrete — Whether or not this file contains mostly concrete data. Will be used by some
SimProcedures to choose how to handle variable-length operations like fgets.

Variables
has_end — Whether this file has an EOF

__init__ (name=None, content=None, size=None, has_end=None, seekable=True, writable=True,
ident=None, concrete=None, **kwargs)

property category

reg, mem, or file.

Type
Return the category of this SimMemory instance. It can be one of the three following cate-
gories

set_state(state)
Sets a new state (for example, if the state has been branched)

property size
The number of data bytes stored by the file at present. May be a symbolic value.

concretize (**kwargs)

Return a concretization of the contents of the file, as a flat bytestring.

read(pos, size, **kwargs)
Read some data from the file.

Parameters
¢ pos — The offset in the file to read from.
» size — The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.

write(pos, data, size=None, events=True, **kwargs)
Write some data to the file.

Parameters
» pos — The offset in the file to write to. May be ignored if the file is a stream or device.

¢ data — The data to write as a bitvector

190 Chapter 10. API Reference

angr

» size — The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

191

https://docs.python.org/3/library/functions.html#bool

angr

widen()

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState
class angr.SimPackets (name, write_mode=None, content=None, writable=True, ident=None, **kwargs)
Bases: SimFileBase

The SimPackets is meant to model inputs whose content is delivered a series of asynchronous chunks. The data
is stored as a list of read or write results. For symbolic sizes, state.libc.max_packet_size will be respected. If the
SHORT_READS option is enabled, reads will return a symbolic size constrained to be less than or equal to the
requested size.

A SimPackets cannot be used for both reading and writing - for socket objects that can be both read and writ-
ten to you should use a file descriptor to multiplex the read and write operations into two separate file storage
mechanisms.

Parameters
* name — The name of the file, for cosmetic purposes

* write_mode — Whether this file is opened in read or write mode. If this is unspecified it will
be autodetected.

* content — Some initial content to use for the file. Can be a list of bytestrings or a list of
tuples of content ASTs and size ASTs.

Variables
* write_mode — See the eponymous parameter
* content — A list of packets, as tuples of content ASTs and size ASTs.
__init__ (name, write_mode=None, content=None, writable=True, ident=None, **kwargs)
set_state(state)
Sets a new state (for example, if the state has been branched)

property size
The number of data bytes stored by the file at present. May be a symbolic value.

concretize (**kwargs)

Returns a list of the packets read or written as bytestrings.

read(pos, size, **kwargs)
Read a packet from the stream.

Parameters

* pos (int) — The packet number to read from the sequence of the stream. May be None to
append to the stream.

192 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

» size — The size to read. May be symbolic.

¢ short_reads — Whether to replace the size with a symbolic value constrained to less than
or equal to the original size. If unspecified, will be chosen based on the state option.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read) and
the actual size of the read.

write(pos, data, size=None, events=True, **kwargs)

Write a packet to the stream.
Parameters

* pos (int) — The packet number to write in the sequence of the stream. May be None to
append to the stream.

¢ data - The data to write, as a string or bitvector.

» size — The optional size to write. May be symbolic; must be constrained to at most the
size of data.

Returns
The next packet to use after this

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[0o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

193

https://docs.python.org/3/library/functions.html#int

angr

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen()

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState
class angr.SimFileStream(name=None, content=None, pos=0, **kwargs)
Bases: SimFile
A specialized SimFile that uses a flat memory backing, but functions as a stream, tracking its position internally.

The pos argument to the read and write methods will be ignored, and will return None. Instead, there is an
attribute pos on the file itself, which will give you what you want.

Parameters
* name — The name of the file, for cosmetic purposes
* pos — The initial position of the file, default zero
» kwargs — Any other keyword arguments will go on to the SimFile constructor.

Variables
pos — The current position in the file.

__init__ (name=None, content=None, pos=0, **kwargs)
set_state(state)
Sets a new state (for example, if the state has been branched)

read(pos, size, **kwargs)
Read some data from the file.

Parameters

194 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

¢ pos — The offset in the file to read from.
¢ size - The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.
write(_, data, size=None, **kwargs)
Write some data to the file.

Parameters
» pos — The offset in the file to write to. May be ignored if the file is a stream or device.
* data — The data to write as a bitvector

» size — The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

195

angr

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others - the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

state: angr.SimState

class angr.SimPacketsStream(name, pos=0, **kwargs)
Bases: SimPackets
A specialized SimPackets that tracks its position internally.

The pos argument to the read and write methods will be ignored, and will return None. Instead, there is an
attribute pos on the file itself, which will give you what you want.

Parameters
* name — The name of the file, for cosmetic purposes
* pos — The initial position of the file, default zero
» kwargs — Any other keyword arguments will go on to the SimPackets constructor.

Variables
pos — The current position in the file.

__init__(name, pos=0, **kwargs)
read(pos, size, **kwargs)
Read a packet from the stream.
Parameters

* pos (int) — The packet number to read from the sequence of the stream. May be None to
append to the stream.

¢ size - The size to read. May be symbolic.

» short_reads — Whether to replace the size with a symbolic value constrained to less than
or equal to the original size. If unspecified, will be chosen based on the state option.

Returns

A tuple of the data read (a bitvector of the length that is the maximum length of the read) and
the actual size of the read.

write(_, data, size=None, **kwargs)

Write a packet to the stream.
Parameters

* pos (int) — The packet number to write in the sequence of the stream. May be None to
append to the stream.

196 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

« data — The data to write, as a string or bitvector.

¢ size — The optional size to write. May be symbolic; must be constrained to at most the
size of data.

Returns
The next packet to use after this

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self. foo.merge(
[0o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others - the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

197

angr

Return type
bool

state: angr.SimState
class angr.SimFileDescriptor (simfile, flags=0)
Bases: SimFileDescriptorBase

A simple file descriptor forwarding reads and writes to a SimFile. Contains information about the current opened
state of the file, such as the flags or (if relevant) the current position.

Variables
» file - The SimFile described to by this descriptor
» flags — The mode that the file descriptor was opened with, a bitfield of flags
__init__(simfile, flags=0)
read_data(size, **kwargs)
Reads some data from the file, returning the data.

Parameters
size — The requested length of the read

Returns
A tuple of the data read and the real length of the read

write_data(data, size=None, **kwargs)
Write some data, provided as an argument into the file.
Parameters
» data — A bitvector to write into the file
» size — The requested size of the write (may be symbolic)

Returns
The real length of the write

seek (offset, whence='start")
Seek the file descriptor to a different position in the file.
Parameters
» offset — The offset to seek to, interpreted according to whence

99 ¢

* whence — What the offset is relative to; one of the strings “start”, “current”, or “end”

Returns
A symbolic boolean describing whether the seek succeeded or not

eof O
Return the EOF status. May be a symbolic boolean.

tell
Return the current position, or None if the concept doesn’t make sense for the given file.

size()

Return the size of the data stored in the file in bytes, or None if the concept doesn’t make sense for the given
file.

198 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

concretize (**kwargs)

Return a concretization of the underlying file. Returns whatever format is preferred by the file.

property file_exists
This should be True in most cases. Only if we opened an fd of unknown existence, ALL_FILES_EXIST is
False and ANY_FILE_MIGHT_EXIST is True, this is a symbolic boolean.

property read_storage
Return the SimFile backing reads from this fd

property write_storage
Return the SimFile backing writes to this fd

property read_pos
Return the current position of the read file pointer.
If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.
property write_pos
Return the current position of the read file pointer.
If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.
set_state(state)
Sets a new state (for example, if the state has been branched)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

199

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
¢ merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen()

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState
class angr.SimFileDescriptorDuplex(read_file, write_file)
Bases: SimFileDescriptorBase

A file descriptor that refers to two file storage mechanisms, one to read from and one to write to. As a result,
operations like seek, eof, etc no longer make sense.

Parameters
» read_file — The SimFile to read from
» write_file — The SimFile to write to
__init__(read_file, write_file)
read_data(size, **kwargs)
Reads some data from the file, returning the data.

Parameters
size — The requested length of the read

200 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Returns
A tuple of the data read and the real length of the read

write_data(data, size=None, **kwargs)
Write some data, provided as an argument into the file.
Parameters
¢ data — A bitvector to write into the file
» size — The requested size of the write (may be symbolic)

Returns
The real length of the write

set_state(state)

Sets a new state (for example, if the state has been branched)

eof O
Return the EOF status. May be a symbolic boolean.

tell
Return the current position, or None if the concept doesn’t make sense for the given file.

seek (offset, whence='start")
Seek the file descriptor to a different position in the file.

Parameters

¢ offset — The offset to seek to, interpreted according to whence

99 ¢

* whence — What the offset is relative to; one of the strings “start”, “current”, or “end”

Returns
A symbolic boolean describing whether the seek succeeded or not
size()
Return the size of the data stored in the file in bytes, or None if the concept doesn’t make sense for the given
file.
concretize (**kwargs)
Return a concretization of the underlying files, as a tuple of (read file, write file).

property read_storage

Return the SimFile backing reads from this fd
property write_storage

Return the SimFile backing writes to this fd

property read_pos
Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

property write_pos
Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

201

angr

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen()

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

202 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState
class angr.SimMount
Bases: SimStatePlugin

This is the base class for “mount points” in angr’s simulated filesystem. Subclass this class and give it to the
filesystem to intercept all file creations and opens below the mountpoint. Since this a SimStatePlugin you may
also want to implement set_state, copy, merge, etc.

get (path_elements)

Implement this function to instrument file lookups.

Parameters
path_elements — A list of path elements traversing from the mountpoint to the file

Returns
A SimFile, or None

insert (path_elements, simfile)

Implement this function to instrument file creation.
Parameters
¢ path_elements — A list of path elements traversing from the mountpoint to the file
» simfile — The file to insert

Returns
A bool indicating whether the insert occurred

delete(path_elements)
Implement this function to instrument file deletion.

Parameters
path_elements — A list of path elements traversing from the mountpoint to the file

Returns
A bool indicating whether the delete occurred

lookup (sim_file)
Look up the path of a SimFile in the mountpoint

Parameters
sim_file — A SimFile object needs to be looked up

Returns
A string representing the path of the file in the mountpoint Or None if the SimFile does not
exist in the mountpoint

state: angr.SimState

203

https://docs.python.org/3/library/functions.html#bool

angr

class angr.SimHostFilesystem(host_path=None, **kwargs)

Bases: SimConcreteFilesystem
Simulated mount that makes some piece from the host filesystem available to the guest.
Parameters
* host_path (str) — The path on the host to mount
» pathsep (str) — The host path separator character, default os.path.sep
__init__ Chost_path=None, **kwargs)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.SimHeapBrk (heap_base=None, heap_size=None)

Bases: SimHeapBase

SimHeapBrk represents a trivial heap implementation based on the Unix brk system call. This type of heap stores
virtually no metadata, so it is up to the user to determine when it is safe to release memory. This also means that
it does not properly support standard heap operations like realloc.

This heap implementation is a holdover from before any more proper implementations were modelled. At the
time, various libc (or win32) SimProcedures handled the heap in the same way that this plugin does now. To
make future heap implementations plug-and-playable, they should implement the necessary logic themselves, and
dependent SimProcedures should invoke a method by the same name as theirs (prepended with an underscore)
upon the heap plugin. Depending on the heap implementation, if the method is not supported, an error should
be raised.

Out of consideration for the original way the heap was handled, this plugin implements functionality for all rele-
vant SimProcedures (even those that would not normally be supported together in a single heap implementation).

Variables
heap_location - the address of the top of the heap, bounding the allocations made starting
from heap_base

__init__(heap_base=None, heap_size=None)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

204

Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

allocate (sim_size)

The actual allocation primitive for this heap implementation. Increases the position of the break to allocate
space. Has no guards against the heap growing too large.

Parameters
sim_size — a size specifying how much to increase the break pointer by

Returns
a pointer to the previous break position, above which there is now allocated space

release (sim_size)

The memory release primitive for this heap implementation. Decreases the position of the break to deallo-
cate space. Guards against releasing beyond the initial heap base.

Parameters
sim_size - a size specifying how much to decrease the break pointer by (may be symbolic
or not)

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

205

angr

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState
class angr.SimHeapPTMalloc (heap_base=None, heap_size=None)
Bases: SimHeapFreelist

A freelist-style heap implementation inspired by ptmalloc. The chunks used by this heap contain heap metadata
in addition to user data. While the real-world ptmalloc is implemented using multiple lists of free chunks (corre-
sponding to their different sizes), this more basic model uses a single list of chunks and searches for free chunks
using a first-fit algorithm.

NOTE: The plugin must be registered using register_plugin with name heap in order to function properly.
Variables
* heap_base — the address of the base of the heap in memory
* heap_size — the total size of the main memory region managed by the heap in memory
» mmap_base — the address of the region from which large mmap allocations will be made
» free_head_chunk - the head of the linked list of free chunks in the heap
__init__(heap_base=None, heap_size=None)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

chunks ()

Returns an iterator over all the chunks in the heap.

allocated_chunks ()
Returns an iterator over all the allocated chunks in the heap.

206 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

free_chunks ()

Returns an iterator over all the free chunks in the heap.

chunk_from_mem (pzr)

Given a pointer to a user payload, return the base of the chunk associated with that payload (i.e. the chunk
pointer). Returns None if ptr is null.

Parameters
ptr — a pointer to the base of a user payload in the heap

Returns
a pointer to the base of the associated heap chunk, or None if ptr is null

malloc(sim_size)

A somewhat faithful implementation of libc malloc.

Parameters
sim_size — the amount of memory (in bytes) to be allocated

Returns
the address of the allocation, or a NULL pointer if the allocation failed

free(ptr)

A somewhat faithful implementation of libc free.

Parameters
ptr — the location in memory to be freed

calloc(sim_nmemb, sim_size)

A somewhat faithful implementation of libc calloc.
Parameters
¢ sim_nmemb — the number of elements to allocated
¢ sim_size — the size of each element (in bytes)

Returns
the address of the allocation, or a NULL pointer if the allocation failed
realloc(ptr, size)

A somewhat faithful implementation of libc realloc.
Parameters
e ptr — the location in memory to be reallocated
¢ size - the new size desired for the allocation

Returns
the address of the allocation, or a NULL pointer if the allocation was freed or if no new
allocation was made

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

207

angr

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

)

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool
widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool
init_state()

Use this function to perform any initialization on the state at plugin-add time

state: angr.SimState

class angr.PTChunk (base, sim_state, heap=None)
Bases: Chunk

A chunk, inspired by the implementation of chunks in ptmalloc. Provides a representation of a chunk
via a view into the memory plugin. For the chunk definitions and docs that this was loosely based
off of, see glibc malloc/malloc.c, line 1033, as of commit 5a580643111ef6081be7b4c7bd1997a5447c903f.
Alternatively, take the following link. https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=
67cdfd0ad2f003964cd0f7dfe3bcd85ca98528a7;hb=5a580643111ef6081be7b4c7bd1997a5447c903f#11033

Variables

208 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=67cdfd0ad2f003964cd0f7dfe3bcd85ca98528a7;hb=5a580643111ef6081be7b4c7bd1997a5447c903f#l1033
https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=67cdfd0ad2f003964cd0f7dfe3bcd85ca98528a7;hb=5a580643111ef6081be7b4c7bd1997a5447c903f#l1033

angr

* base — the location of the base of the chunk in memory
* state — the program state that the chunk is resident in
* heap - the heap plugin that the chunk is managed by
__init__(base, sim_state, heap=None)
get_size()
Returns the actual size of a chunk (as opposed to the entire size field, which may include some flags).
get_data_size()
Returns the size of the data portion of a chunk.

set_size(size, is_free=None)

Use this to set the size on a chunk. When the chunk is new (such as when a free chunk is shrunk to form an
allocated chunk and a remainder free chunk) it is recommended that the is_free hint be used since setting
the size depends on the chunk’s freeness, and vice versa.

Parameters
¢ size - size of the chunk
* is_free - boolean indicating the chunk’s freeness
set_prev_freeness(is_free)
Sets (or unsets) the flag controlling whether the previous chunk is free.

Parameters
is_free - if True, sets the previous chunk to be free; if False, sets it to be allocated
is_prev_free()

Returns a concrete state of the flag indicating whether the previous chunk is free or not. Issues a warning
if that flag is symbolic and has multiple solutions, and then assumes that the previous chunk is free.

Returns
True if the previous chunk is free; False otherwise
prev_size()

Returns the size of the previous chunk, masking off what would be the flag bits if it were in the actual size
field. Performs NO CHECKING to determine whether the previous chunk size is valid (for example, when
the previous chunk is not free, its size cannot be determined).

is_free()

Returns a concrete determination as to whether the chunk is free.
data_ptr(Q)

Returns the address of the payload of the chunk.
next_chunk()

Returns the chunk immediately following (and adjacent to) this one, if it exists.

Returns
The following chunk, or None if applicable
prev_chunk ()
Returns the chunk immediately prior (and adjacent) to this one, if that chunk is free. If the prior chunk is
not free, then its base cannot be located and this method raises an error.

Returns
If possible, the previous chunk; otherwise, raises an error

209

angr

fwd_chunk O

Returns the chunk following this chunk in the list of free chunks. If this chunk is not free, then it resides in
no such list and this method raises an error.

Returns
If possible, the forward chunk; otherwise, raises an error

set_fwd_chunk (fwd)
Sets the chunk following this chunk in the list of free chunks.

Parameters
fwd — the chunk to follow this chunk in the list of free chunks

bck_chunk ()

Returns the chunk backward from this chunk in the list of free chunks. If this chunk is not free, then it
resides in no such list and this method raises an error.

Returns
If possible, the backward chunk; otherwise, raises an error

set_bck_chunk (bck)

Sets the chunk backward from this chunk in the list of free chunks.

Parameters
bck — the chunk to precede this chunk in the list of free chunks

class angr.Server (project, spill_yard=None, db=None, max_workers=None, max_states=10, staging_max=10,
bucketizer=True, recursion_limit=1000, worker_exit_callback=None, techniques=None,
add_options=None, remove_options=None)

Bases: object
Server implements the analysis server with a series of control interfaces exposed.
Variables

* project — An instance of angr.Project.
* spill_yard (str) — A directory to store spilled states.
* db (str) — Path of the database that stores information about spilled states.
* max_workers (int) — Maximum number of workers. Each worker starts a new process.
e max_states (int) — Maximum number of active states for each worker.

* staging_max (int)— Maximum number of inactive states that are kept into memory before
spilled onto the disk and potentially be picked up by another worker.

* bucketizer (bool) — Use the Bucketizer exploration strategy.
o _worker_exit_callback — A method that will be called upon the exit of each worker.

__init__ (project, spill_yard=None, db=None, max_workers=None, max_states=10, staging_max=10,
bucketizer=True, recursion_limit=1000, worker_exit_callback=None, techniques=None,
add_options=None, remove_options=None)

inc_active_workers()
dec_active_workers()

stop(O)

210 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

angr

property active_workers
property stopped
on_worker_exit (worker_id, stashes)
run()

class angr.KnowledgeBase (project, obj=None, name=None)
Bases: object

Represents a “model” of knowledge about an artifact.
Contains things like a CFG, data references, etc.

functions: FunctionManager
variables: VariableManager
structured_code: StructuredCodeManager
defs: KeyDefinitionManager

cfgs: CFGManager

types: TypesStore

propagations: PropagationManager
xrefs: XRefManager
__init__(project, obj=None, name=None)
property callgraph

property unresolved_indirect_jumps
property resolved_indirect_jumps
has_plugin(name)

get_plugin(name)
register_plugin(name, plugin)
release_plugin(name)

K =-~K

get_knowledge (requested_plugin_cls)

Type inference safe method to request a knowledge base plugin Explicitly passing the type of the requested
plugin achieves two things: 1. Every location using this plugin can be easily found with an IDE by searching
explicit references to the type 2. Basic type inference can deduce the result type and properly type check
usages of it

If there isn’t already an instance of this class None will be returned to make it clear to the caller that there
is no existing knowledge of this type yet. The code that initially creates this knowledge should use the reg-
ister_plugin method to register the initial knowledge state :type requested_plugin_cls: Type[TypeVar(K,
bound= KnowledgeBasePlugin)] :param requested_plugin_cls: :rtype: Optional[TypeVar(K, bound=
KnowledgeBasePlugin)] :return: Instance of the requested plugin class or null if it is not a known plugin

211

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.TypeVar

angr

Parameters
requested_plugin_cls (Type[K]) —

Return type
K | None

request_knowledge (requested_plugin_cls)

Return type
TypeVar(K, bound= KnowledgeBasePlugin)

Parameters
requested_plugin_cls (Type[K]) —

10.1 Project

angr.project.load_shellcode(shellcode, arch, start_offset=0, load_address=0, thumb=False, **kwargs)

Load a new project based on a snippet of assembly or bytecode.
Parameters

e shellcode (Union[bytes, str]) — The data to load, as either a bytestring of instructions
or a string of assembly text

¢ arch — The name of the arch to use, or an archinfo class

» start_offset — The offset into the data to start analysis (default 0)
* load_address — The address to place the data in memory (default 0)
* thumb — Whether this is ARM Thumb shellcode

class angr.project.Project (thing, default_analysis_mode=None, ignore_functions=None,
use_sim_procedures=True, exclude_sim_procedures_func=None,
exclude_sim_procedures_list=(), arch=None, simos=None, engine=None,
load_options=None, translation_cache=True, selfmodifying_code=False,
support_selfmodifying_code=None, store_function=None, load_function=None,
analyses_preset=None, concrete_target=None, eager_ifunc_resolution=None,
*rkwargs)

Bases: object

This is the main class of the angr module. It is meant to contain a set of binaries and the relationships between
them, and perform analyses on them.

Parameters
 thing - The path to the main executable object to analyze, or a CLE Loader object.
e arch (Arch) -
e load_options (Dict[str, Any] | None) -
e selfmodifying_code (bool) -
» support_selfmodifying_code (bool | None)-

The following parameters are optional.
Parameters

* default_analysis_mode — The mode of analysis to use by default. Defaults to ‘symbolic’.

212 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

» ignore_functions — A list of function names that, when imported from shared libraries,
should never be stepped into in analysis (calls will return an unconstrained value).

* use_sim_procedures — Whether to replace resolved dependencies for which simproce-
dures are available with said simprocedures.

» exclude_sim_procedures_func — A function that, when passed a function name, returns
whether or not to wrap it with a simprocedure.

* exclude_sim_procedures_list — A list of functions to not wrap with simprocedures.
» arch - The target architecture (auto-detected otherwise).

* simos — a SimOS class to use for this project.

* engine — The SimEngine class to use for this project.

e translation_cache (bool) — If True, cache translated basic blocks rather than re-
translating them.

selfmodifying_code (bool) — Whether we aggressively support self-modifying code.
When enabled, emulation will try to read code from the current state instead of the origi-
nal memory, regardless of the current memory protections.

» store_function — A function that defines how the Project should be stored. Default to
pickling.

e load_function — A function that defines how the Project should be loaded. Default to
unpickling.

* analyses_preset (angr.misc.PluginPreset) — The plugin preset for the analyses
provider (i.e. Analyses instance).

e load_options (Dict[str, Any] | None) -
e support_selfmodifying_code (hool | None)-—
Any additional keyword arguments passed will be passed onto cle.Loader.
Variables
* analyses - The available analyses.
* entry — The program entrypoint.

» factory — Provides access to important analysis elements such as path groups and symbolic
execution results.

» filename — The filename of the executable.

* loader — The program loader.

* storage — Dictionary of things that should be loaded/stored with the Project.
Parameters

e arch (Arch) -

e load_options (Dict[str, Any] | None) -

e selfmodifying_code (bool) —

e support_selfmodifying_code (bool | None)-—

10.1.

Project 213

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

__init__(thing, default_analysis_mode=None, ignore_functions=None, use_sim_procedures=True,
exclude_sim_procedures_func=None, exclude_sim_procedures_list=(), arch=None, simos=None,
engine=None, load_options=None, translation_cache=True, selfmodifying_code=False,
support_selfmodifying_code=None, store_function=None, load_function=None,
analyses_preset=None, concrete_target=None, eager_ifunc_resolution=None, **kwargs)

Parameters
¢ load_options (Dict[str, Any] | None) -
¢ selfmodifying_code (bool) —
¢ support_selfmodifying_code (bool | None)-—

arch: Arch
property analyses: AnalysesHubWithDefault

hook (addr, hook=None, length=0, kwargs=None, replace=False)

Hook a section of code with a custom function. This is used internally to provide symbolic summaries of
library functions, and can be used to instrument execution or to modify control flow.

When hook is not specified, it returns a function decorator that allows easy hooking. Usage:

Assuming proj is an instance of angr.Project, we will add a custom hook at.
—the entry
point of the project.
@proj.hook(proj.entry)
def my_hook(state):
print("Welcome to execution!'")

Parameters
¢ addr — The address to hook.

* hook — A angr.project.Hook describing a procedure to run at the given address. You
may also pass in a SimProcedure class or a function directly and it will be wrapped in a
Hook object for you.

¢ length - If you provide a function for the hook, this is the number of bytes that will be
skipped by executing the hook by default.

* kwargs - If you provide a SimProcedure for the hook, these are the keyword arguments
that will be passed to the procedure’s run method eventually.

e replace (Optional[bool]) — Control the behavior on finding that the address is already
hooked. If true, silently replace the hook. If false (default), warn and do not replace the
hook. If none, warn and replace the hook.

is_hooked (addr)
Returns True if addr is hooked.

Parameters
addr — An address.

Return type
bool

Returns
True if addr is hooked, False otherwise.

214 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

hooked_by (addr)

Returns the current hook for addr.

Parameters
addr — An address.

Return type
Optional[SimProcedure]

Returns
None if the address is not hooked.

unhook (addr)
Remove a hook.

Parameters
addr — The address of the hook.
hook_symbol (symbol_name, simproc, kwargs=None, replace=None)

Resolve a dependency in a binary. Looks up the address of the given symbol, and then hooks that address.
If the symbol was not available in the loaded libraries, this address may be provided by the CLE externs
object.

Additionally, if instead of a symbol name you provide an address, some secret functionality will kick in
and you will probably just hook that address, UNLESS you’re on powerpc64 ABIv1 or some yet-unknown
scary ABI that has its function pointers point to something other than the actual functions, in which case
it’ll do the right thing.

Parameters
¢ symbol_name — The name of the dependency to resolve.
e simproc — The SimProcedure instance (or function) with which to hook the symbol

* kwargs - If you provide a SimProcedure for the hook, these are the keyword arguments
that will be passed to the procedure’s run method eventually.

e replace (Optional[bool]) — Control the behavior on finding that the address is already
hooked. If true, silently replace the hook. If false, warn and do not replace the hook. If
none (default), warn and replace the hook.

Returns
The address of the new symbol.

Return type
int

symbol_hooked_by (symbol_name)

Return the SimProcedure, if it exists, for the given symbol name.

Parameters
symbol_name (str)— Name of the symbol.

Return type
Optional[SimProcedure]

Returns
None if the address is not hooked.

is_symbol_hooked (symbol_name)
Check if a symbol is already hooked.

10.1. Project 215

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

angr

Parameters
symbol_name (str)— Name of the symbol.

Returns
True if the symbol can be resolved and is hooked, False otherwise.

Return type
bool

unhook_symbol (symbol_name)

Remove the hook on a symbol. This function will fail if the symbol is provided by the extern object, as that
would result in a state where analysis would be unable to cope with a call to this symbol.

rehook_symbol (new_address, symbol_name, stubs_on_sync)

Move the hook for a symbol to a specific address :type new_address: :param new_address: the new address
that will trigger the SimProc execution :type symbol_name: :param symbol_name: the name of the symbol
(f.i. strcmp) :return: None

execute (*args, **kwargs)

This function is a symbolic execution helper in the simple style supported by triton and manticore. It
designed to be run after setting up hooks (see Project.hook), in which the symbolic state can be checked.

This function can be run in three different ways:
e When run with no parameters, this function begins symbolic execution from the entrypoint.
* It can also be run with a “state” parameter specifying a SimState to begin symbolic execution from.

e Finally, it can accept any arbitrary keyword arguments, which are all passed to
project.factory.full_init_state.

If symbolic execution finishes, this function returns the resulting simulation manager.

terminate_execution()

Terminates a symbolic execution that was started with Project.execute().

class angr.factory.AngrObjectFactory(project, default_engine=None)
Bases: object

This factory provides access to important analysis elements.

Parameters
default_engine (Type[SimEngine] | None)—

__init__(project, default_engine=None)

Parameters
default_engine (Type[SimEngine] | None)—

snippet (addr, jumpkind=None, **block_opts)

successors (*args, engine=None, **kwargs)

Perform execution using an engine. Generally, return a SimSuccessors object classifying the results of the
run.

Parameters
» state — The state to analyze
* engine — The engine to use. If not provided, will use the project default.
 addr - optional, an address to execute at instead of the state’s ip

¢ jumpkind - optional, the jumpkind of the previous exit

216 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Type

angr

inline — This is an inline execution. Do not bother copying the state.

Additional keyword arguments will be passed directly into each engine’s process method.

blank_state(**kwargs)
Returns a mostly-uninitialized state object. All parameters are optional.

Parameters

addr — The address the state should start at instead of the entry point.

initial_prefix — If this is provided, all symbolic registers will hold symbolic values
with names prefixed by this string.

fs — A dictionary of file names with associated preset SimFile objects.

concrete_fs — bool describing whether the host filesystem should be consulted when
opening files.

chroot — A path to use as a fake root directory, Behaves similarly to a real chroot. Used
only when concrete_fs is set to True.

kwargs — Any additional keyword args will be passed to the SimState constructor.

Returns
The blank state.

Return type
SimState

entry_state (**kwargs)

Returns a state object representing the program at its entry point. All parameters are optional.

Parameters

addr — The address the state should start at instead of the entry point.

initial_prefix — If this is provided, all symbolic registers will hold symbolic values
with names prefixed by this string.

fs — a dictionary of file names with associated preset SimFile objects.

concrete_fs — boolean describing whether the host filesystem should be consulted when
opening files.

chroot - a path to use as a fake root directory, behaves similar to a real chroot. used only
when concrete_fs is set to True.

argc — a custom value to use for the program’s argc. May be either an int or a bitvector. If
not provided, defaults to the length of args.

args — a list of values to use as the program’s argv. May be mixed strings and bitvectors.

env — a dictionary to use as the environment for the program. Both keys and values may
be mixed strings and bitvectors.

Returns
The entry state.

Return type
SimState

10.1. Project

217

angr

full_init_state(**kwargs)

Very much like entry_state(), except that instead of starting execution at the program entry point, ex-
ecution begins at a special SimProcedure that plays the role of the dynamic loader, calling each of the
initializer functions that should be called before execution reaches the entry point.

It can take any of the arguments that can be provided to entry_state, except for addr.

call_state(addr, *args, **kwargs)

Returns a state object initialized to the start of a given function, as if it were called with given parameters.
Parameters
¢ addr — The address the state should start at instead of the entry point.
* args — Any additional positional arguments will be used as arguments to the function call.
The following parameters are optional.
Parameters
* base_state — Use this SimState as the base for the new state instead of a blank state.
* cc — Optionally provide a SimCC object to use a specific calling convention.
e ret_addr - Use this address as the function’s return target.

» stack_base — An optional pointer to use as the top of the stack, circa the function entry
point

¢ alloc_base — An optional pointer to use as the place to put excess argument data

e grow_like_stack — When allocating data at alloc_base, whether to allocate at decreasing
addresses

* toc — The address of the table of contents for ppc64

e initial_prefix — If this is provided, all symbolic registers will hold symbolic values
with names prefixed by this string.

» fs — A dictionary of file names with associated preset SimFile objects.

concrete_fs — bool describing whether the host filesystem should be consulted when
opening files.

* chroot — A path to use as a fake root directory, Behaves similarly to a real chroot. Used
only when concrete_fs is set to True.

¢ kwargs — Any additional keyword args will be passed to the SimState constructor.

Returns
The state at the beginning of the function.

Return type
SimState

The idea here is that you can provide almost any kind of python type in args and it’ll be translated to a
binary format to be placed into simulated memory. Lists (representing arrays) must be entirely elements of
the same type and size, while tuples (representing structs) can be elements of any type and size. If you’d
like there to be a pointer to a given value, wrap the value in a SimCC. PointerWrapper. Any value that can’t
fit in a register will be automatically put in a PointerWrapper.

If stack_base is not provided, the current stack pointer will be used, and it will be updated. If alloc_base is
not provided, the current stack pointer will be used, and it will be updated. You might not like the results
if you provide stack_base but not alloc_base.

218

Chapter 10. API Reference

angr

grow_like_stack controls the behavior of allocating data at alloc_base. When data from args needs to
be wrapped in a pointer, the pointer needs to point somewhere, so that data is dumped into memory at
alloc_base. If you set alloc_base to point to somewhere other than the stack, set grow_like_stack to False
so that sequencial allocations happen at increasing addresses.

simulation_manager (thing=None, **kwargs)
Constructs a new simulation manager.
Parameters

¢ thing (Union[List[SimState], SimState, None]) — What to put in the new Simulation-
Manager’s active stash (either a SimState or a list of SimStates).

* kwargs — Any additional keyword arguments will be passed to the SimulationManager
constructor

Returns
The new SimulationManager

Return type
angr.sim_manager.SimulationManager

Many different types can be passed to this method:

¢ If nothing is passed in, the SimulationManager is seeded with a state initialized for the program entry
point, i.e. entry_state().

e If a SimState is passed in, the SimulationManager is seeded with that state.

* If a list is passed in, the list must contain only SimStates and the whole list will be used to seed the
SimulationManager.

simgr (*args, **kwargs)
Alias for simulation_manager to save our poor fingers

callable(addr, prototype=None, concrete_only=False, perform_merge=True, base_state=None, toc=None,
cc=None, add_options=None, remove_options=None)

A Callable is a representation of a function in the binary that can be interacted with like a native python
function.

Parameters
¢ addr — The address of the function to use
» prototype — The prototype of the call to use, as a string or a SimTypeFunction
e concrete_only — Throw an exception if the execution splits into multiple states

» perform_merge — Merge all result states into one at the end (only relevant if con-
crete_only=False)

* base_state — The state from which to do these runs
* toc — The address of the table of contents for ppc64
* cc — The SimCC to use for a calling convention

Returns
A Callable object that can be used as a interface for executing guest code like a python func-
tion.

Return type
angr.callable.Callable

10.1. Project 219

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/constants.html#None

angr

ccQ

Return a SimCC (calling convention) parameterized for this project.

Relevant subclasses of SimFunctionArgument are SimRegArg and SimStackArg, and shortcuts to them can
be found on this cc object.

For stack arguments, offsets are relative to the stack pointer on function entry.

function_prototype()

Return a default function prototype parameterized for this project and SimOS.

block (addr, size=None, max_size=None, byte_string=None, vex=None, thumb=False, backup_state=None,
extra_stop_points=None, opt_level=None, num_inst=None, traceflags=0, insn_bytes=None,
insn_text=None, strict_block_end=None, collect_data_refs=False, cross_insn_opt=True,
load_from_ro_regions=False, initial_regs=None)

fresh_block(addr, size, backup_state=None)

class angr.block.DisassemblerBlock(addr, insns, thumb, arch)
Bases: object

Helper class to represent a block of dissassembled target architecture instructions

__init__(addr, insns, thumb, arch)
addr

insns

thumb

arch

ppO

class angr.block.DisassemblerInsn

Bases: object
Helper class to represent a disassembled target architecture instruction
property size: int
property address: int
property mnemonic: str
property op_str: str
class angr.block.CapstoneBlock (addr, insns, thumb, arch)

Bases: DisassemblerBlock

Deep copy of the capstone blocks, which have serious issues with having extended lifespans outside of capstone
itself

class angr.block.CapstoneInsn(capstone_insn)
Bases: DisassemblerInsn

Represents a capstone instruction.

__init__ (capstone_insn)

220 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

insn

property size: int
property address: int
property mnemonic: str
property op_str: str

class angr.block.Block(addr, project=None, arch=None, size=None, byte_string=None, vex=None,
thumb=False, backup_state=None, extra_stop_points=None, opt_level=None,
num_inst=None, traceflags=0, strict_block_end=None, collect_data_refs=False,
cross_insn_opt=True, load_from_ro_regions=False, initial_regs=None)

Bases: Serializable
Represents a basic block in a binary or a program.

BLOCK_MAX_SIZE = 4096

__init__(addr, project=None, arch=None, size=None, byte_string=None, vex=None, thumb=False,
backup_state=None, extra_stop_points=None, opt_level=None, num_inst=None, traceflags=0,
strict_block_end=None, collect_data_refs=False, cross_insn_opt=True,
load_from_ro_regions=False, initial_regs=None)

arch

thumb

addr

size

pp (**kwargs)
set_initial_regs()

static reset_initial_regs()
property vex: IRSB
property vex_nostmt

property disassembly: DisassemblerBlock
Provide a disassembly object using whatever disassembler is available

property capstone
property codenode
property bytes
property instructions

property instruction_addrs

10.1. Project 221

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/pyvex/en/latest/api.html#pyvex.block.IRSB

angr

serialize_to_cmessage()

Serialize the class object and returns a protobuf cmessage object.

Returns
A protobuf cmessage object.

Return type
protobuf.cmessage

classmethod parse_from_cmessage (cmsg)

Parse a protobuf cmessage and create a class object.

Parameters
cmsg — The probobuf cmessage object.

Returns
A unserialized class object.

Return type
cls

class angr.block.SootBlock(addr, project=None, arch=None)
Bases: object

Represents a Soot IR basic block.

__init__(addr, project=None, arch=None)
property soot
property size

property codenode

10.2 Plugin Ecosystem

class angr.misc.plugins.PluginHub
Bases: Generic[P]

A plugin hub is an object which contains many plugins, as well as the notion of a “preset”, or a backer that can
provide default implementations of plugins which cater to a certain circumstance.

Objects in angr like the SimState, the Analyses hub, the SimEngine selector, etc all use this model to unify their
mechanisms for automatically collecting and selecting components to use. If you’re familiar with design patterns
this is a configurable Strategy Pattern.

Each PluginHub subclass should have a corresponding Plugin subclass, and perhaps a PluginPreset subclass if it
wants its presets to be able to specify anything more interesting than a list of defaults.

__init__O
classmethod register_default (name, plugin_cls, preset="'default")

classmethod register_preset(name, preset)

Register a preset instance with the class of the hub it corresponds to. This allows individual plugin objects
to automatically register themselves with a preset by using a classmethod of their own with only the name
of the preset to register with.

222 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Generic

angr

property plugin_preset
Get the current active plugin preset
property has_plugin_preset: bool
Check whether or not there is a plugin preset in use on this hub right now
use_plugin_preset (preset)
Apply a preset to the hub. If there was a previously active preset, discard it.
Preset can be either the string name of a preset or a PluginPreset instance.
discard_plugin_preset()
Discard the current active preset. Will release any active plugins that could have come from the old preset.
get_plugin(name)

Get the plugin named name. If no such plugin is currently active, try to activate a new one using the current
preset.

Return type
TypeVar(P)

Parameters
name (str) —

has_plugin(name)

Return whether or not a plugin with the name name is currently active.
register_plugin(name, plugin)

Add a new plugin plugin with name name to the active plugins.

Parameters
name (str) —

release_plugin(name)
Deactivate and remove the plugin with name name.
class angr.misc.plugins.PluginPreset

Bases: object

A plugin preset object contains a mapping from name to a plugin class. A preset can be active on a hub, which
will cause it to handle requests for plugins which are not already present on the hub.

Unlike Plugins and PluginHubs, instances of PluginPresets are defined on the module level for individual presets.
You should register the preset instance with a hub to allow plugins to easily add themselves to the preset without
an explicit reference to the preset itself.

__init__QO
activate(hub)

This method is called when the preset becomes active on a hub.
deactivate (hub)

This method is called when the preset is discarded from the hub.
add_default_plugin(name, plugin_cls)

Add a plugin to the preset.
list_default_plugins()

Return a list of the names of available default plugins.

10.2. Plugin Ecosystem 223

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

angr

request_plugin(name)
Return the plugin class which is registered under the name name, or raise NoPlugin if the name isn’t avail-

able.
Return type
Type[TypeVar(P)]
Parameters
name (str) —
copy O

Return a copy of self.

class angr.misc.plugins.PluginVendor
Bases: Generic[P], PluginHub[P]

A specialized hub which serves only as a plugin vendor, never having any “active” plugins. It will directly return
the plugins provided by the preset instead of instanciating them.

release_plugin(name)
Deactivate and remove the plugin with name name.

register_plugin(name, plugin)
Add a new plugin plugin with name name to the active plugins.

class angr.misc.plugins.VendorPreset
Bases: PluginPreset

A specialized preset class for use with the PluginVendor.

10.3 Program State

angr.sim_state.arch_overrideable(f)

class angr.sim_state.SimState(project=None, arch=None, plugins=None, mode=None, options=None,
add_options=None, remove_options=None, special_memory_filler=None,
os_name=None, plugin_preset='default', cle_memory_backer=None,
dict_memory_backer=None, permissions_map=None,
default_permissions=3, stack_perms=None, stack_end=None,
stack_size=None, regioned_memory_cls=None, **kwargs)

Bases: PluginHub
The SimState represents the state of a program, including its memory, registers, and so forth.
Parameters
* project (angr.Project) — The project instance.
e arch (archinfo.Arch |str) — The architecture of the state.
Variables
* regs — A convenient view of the state’s registers, where each register is a property

e mem — A convenient view of the state’s memory, a angr.state_plugins.view.
SimMemView

» registers — The state’s register file as a flat memory region

* memory — The state’s memory as a flat memory region

224 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Generic
https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.Arch
https://docs.python.org/3/library/stdtypes.html#str

angr

» solver — The symbolic solver and variable manager for this state

» inspect — The breakpoint manager, a angr. state_plugins.inspect.SimInspector
* log - Information about the state’s history

» scratch - Information about the current execution step

* posix — MISNOMER: information about the operating system or environment model

» fs — The current state of the simulated filesystem

* libc - Information about the standard library we are emulating

* cgc — Information about the cgc environment

* uc_manager — Control of under-constrained symbolic execution

* unicorn — Control of the Unicorn Engine

solver: SimSolver

posix: SimSystemPosix
registers: DefaultMemory
regs: SimRegNameView
memory: DefaultMemory
callstack: CallStack
mem: SimMemView

history: SimStateHistory
inspect: SimInspector
jni_references: SimStateJNIReferences
scratch: SimStateScratch

__init__(project=None, arch=None, plugins=None, mode=None, options=None, add_options=None,
remove_options=None, special_memory_filler=None, os_name=None, plugin_preset="default’',
cle_memory_backer=None, dict_memory_backer=None, permissions_map=None,
default_permissions=3, stack_perms=None, stack_end=None, stack_size=None,
regioned_memory_cls=None, **kwargs)

property plugins
property se
Deprecated alias for solver

property ip
Get the instruction pointer expression, trigger SimInspect breakpoints, and generate SimActions. Use _ip
to not trigger breakpoints or generate actions.

Returns
an expression

10.3. Program State 225

angr

property addr

Get the concrete address of the instruction pointer, without triggering SimInspect breakpoints or generating
SimActions. An integer is returned, or an exception is raised if the instruction pointer is symbolic.

Returns
an int

property arch: Arch
T=-~T

get_plugin(name)

Get the plugin named name. If no such plugin is currently active, try to activate a new one using the current
preset.

has_plugin(name)

Return whether or not a plugin with the name name is currently active.
register_plugin(name, plugin, inhibit_init=False)

Add a new plugin plugin with name name to the active plugins.
property javavm_memory

In case of an JavaVM with JNI support, a state can store the memory plugin twice; one for the native and
one for the java view of the state.

Returns
The JavaVM view of the memory plugin.

property javavm_registers

In case of an JavaVM with JNI support, a state can store the registers plugin twice; one for the native and
one for the java view of the state.

Returns
The JavaVM view of the registers plugin.

simplify(*args)
Simplify this state’s constraints.

add_constraints (*args, **kwargs)

Add some constraints to the state.
You may pass in any number of symbolic booleans as variadic positional arguments.
satisfiable(**kwargs)
Whether the state’s constraints are satisfiable
downsize()
Clean up after the solver engine. Calling this when a state no longer needs to be solved on will reduce
memory usage.
step (**kwargs)
Perform a step of symbolic execution using this state. Any arguments to AngrObjectFactory.successors
can be passed to this.

Returns
A SimSuccessors object categorizing the results of the step.

226 Chapter 10. API Reference

https://docs.angr.io/projects/archinfo/en/latest/api.html#archinfo.arch.Arch

angr

block (*args, **kwargs)

Represent the basic block at this state’s instruction pointer. Any arguments to AngrObjectFactory.block
can ba passed to this.

Returns
A Block object describing the basic block of code at this point.

copy O
Returns a copy of the state.

merge (*others, **kwargs)
Merges this state with the other states. Returns the merging result, merged state, and the merge flag.

Parameters
* states — the states to merge
¢ merge_conditions — a tuple of the conditions under which each state holds

* common_ancestor — a state that represents the common history between the states being
merged. Usually it is only available when EFFICIENT_STATE_MERGING is enabled,
otherwise weak-refed states might be dropped from state history instances.

¢ plugin_whitelist — a list of plugin names that will be merged. If this option is given
and is not None, any plugin that is not inside this list will not be merged, and will be created
as a fresh instance in the new state.

» common_ancestor_history — a SimStateHistory instance that represents the common
history between the states being merged. This is to allow optimal state merging when
EFFICIENT_STATE_MERGING is disabled.

Returns
(merged state, merge flag, a bool indicating if any merging occurred)

widen (Yothers)

Perform a widening between self and other states :type others: :param others: :return:

reg_concrete (*args, **kwargs)

Returns the contents of a register but, if that register is symbolic, raises a SimValueError.

mem_concrete(*args, **kwargs)

Returns the contents of a memory but, if the contents are symbolic, raises a SimValueError.

stack_push (thing)
Push ‘thing’ to the stack, writing the thing to memory and adjusting the stack pointer.

stack_pop()
Pops from the stack and returns the popped thing. The length will be the architecture word size.

stack_read (offset, length, bp=False)
Reads length bytes, at an offset into the stack.

Parameters
« offset — The offset from the stack pointer.
¢ length — The number of bytes to read.
¢ bp - If True, offset from the BP instead of the SP. Default: False.

make_concrete_int (expr)

10.3. Program State 227

angr

prepare_callsite(retval, args, cc="witf")

dbg_print_stack (depth=None, sp=None)

Only used for debugging purposes. Return the current stack info in formatted string. If depth is None, the
current stack frame (from sp to bp) will be printed out.

set_mode (mode)
property thumb

property with_condition

class angr.sim_state_options.StateOption(name, types, default="_NO_DEFAULT _VALUE',

description=None)

Bases: object
Describes a state option.

__init__(name, types, default="_NO_DEFAULT_VALUE', description=None)
name

types

default

description

property has_default_value

one_type()

class angr.sim_state_options.SimStateOptions (thing)

Bases: object

A per-state manager of state options. An option can be either a key-valued entry or a Boolean switch (which can
be seen as a key-valued entry whose value can only be either True or False).

228

Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

10.3.

OPTIONS = {'ABSTRACT_MEMORY': <O ABSTRACT_MEMORY[bool]>, 'ABSTRACT_SOLVER': <O
ABSTRACT_SOLVER[bool]>, 'ACTION_DEPS': <O ACTION_DEPS[bool]>, 'ADD_AUTO_REFS': <O
ADD_AUTO_REFS[bool]>, 'ALLOW_SEND_FAILURES': <O ALLOW_SEND_FAILURES[bool]>,
'ALL_FILES_EXIST': <O ALL_FILES_EXIST[bool]l>, 'ANY_FILE_MIGHT_EXIST': <O

ANY_FILE MIGHT_EXIST[bool]>, 'APPROXIMATE_FIRST': <O APPROXIMATE_FIRST[bool]l>,

' APPROXIMATE_GUARDS': <O APPROXIMATE_GUARDS[bool]>, 'APPROXIMATE_MEMORY_INDICES': <O
APPROXIMATE_MEMORY_INDICES[bool]>, 'APPROXIMATE_MEMORY_SIZES': <O
APPROXIMATE_MEMORY_SIZES[bool]>, 'APPROXIMATE_SATISFIABILITY': <O
APPROXIMATE_SATISFIABILITY[bool]>, 'AST_DEPS': <O AST_DEPS[bool]>, 'AUTO_REFS': <0
AUTO_REFS[bool]l>, 'AVOID_MULTIVALUED_READS': <O AVOID_MULTIVALUED_READS[booll>,
'AVOID_MULTIVALUED_WRITES': <O AVOID_MULTIVALUED_WRITES[bool]>,
'BEST_EFFORT_MEMORY_STORING': <O BEST_EFFORT_MEMORY_STORING[bool]>,
'BYPASS_ERRORED_IRCCALL': <O BYPASS_ERRORED_IRCCALL[bool]>, 'BYPASS_ERRORED_IROP':
<0 BYPASS_ERRORED_IROP[bool]>, 'BYPASS_ERRORED_IRSTMT': <O
BYPASS_ERRORED_IRSTMT[bool]>, 'BYPASS_UNSUPPORTED_IRCCALL': <O
BYPASS_UNSUPPORTED_IRCCALL[bool]l>, 'BYPASS_UNSUPPORTED_IRDIRTY': <O
BYPASS_UNSUPPORTED_IRDIRTY[bool]l>, 'BYPASS_UNSUPPORTED_IREXPR': <O
BYPASS_UNSUPPORTED_IREXPR[bool]>, 'BYPASS_UNSUPPORTED_IROP': <O
BYPASS_UNSUPPORTED_IROP[bool]>, 'BYPASS_UNSUPPORTED_IRSTMT': <O
BYPASS_UNSUPPORTED_IRSTMT [bool]>, 'BYPASS_UNSUPPORTED_SYSCALL': <O
BYPASS_UNSUPPORTED_SYSCALL[bool]>, 'BYPASS_VERITESTING_EXCEPTIONS': <O
BYPASS_VERITESTING_EXCEPTIONS[bool]>, 'CACHELESS_SOLVER': <O
CACHELESS_SOLVER[bool]>, 'CALLLESS': <O CALLLESS[bool]>, 'CGC_ENFORCE_FD': <O
CGC_ENFORCE_FD[bool]>, 'CGC_NON_BLOCKING_FDS': <0 CGC_NON_BLOCKING_FDS[bool]>,
'CGC_NO_SYMBOLIC_RECEIVE_LENGTH': <O CGC_NO_SYMBOLIC_RECEIVE_LENGTH[bool]>,
'COMPOSITE_SOLVER': <O COMPOSITE_SOLVER[bool]>, 'CONCRETIZE': <O CONCRETIZE[bool]l>,
'CONCRETIZE_SYMBOLIC_FILE_READ_SIZES': <O
CONCRETIZE_SYMBOLIC_FILE_READ_SIZES[bool]>, 'CONCRETIZE_SYMBOLIC_WRITE_SIZES': <O
CONCRETIZE_SYMBOLIC_WRITE_SIZES[bool]>, 'CONSERVATIVE_READ_STRATEGY': <O
CONSERVATIVE_READ_STRATEGY[bool]>, 'CONSERVATIVE_WRITE_STRATEGY': <O
CONSERVATIVE_WRITE_STRATEGY[bool]>, 'CONSTRAINT_TRACKING_IN_SOLVER': <O
CONSTRAINT_TRACKING_IN_SOLVER[bool]>, 'COPY_STATES': <O COPY_STATES[bool]l>,
'CPUID_SYMBOLIC': <O CPUID_SYMBOLIC[bool]>, 'DOWNSIZE_Z3': <O DOWNSIZE_Z3[bool]>,
'DO_CCALLS': <O DO_CCALLS[bool]>, 'DO_RET_EMULATION': <O DO_RET_EMULATION[bool]>,
'EFFICIENT_STATE_MERGING': <O EFFICIENT_STATE_MERGING[bool]>, 'ENABLE_NX': <O
ENABLE_NX[bool]l>, 'EXCEPTION_HANDLING': <O EXCEPTION_HANDLING[bool]l>,
'EXTENDED_IROP_SUPPORT': <O EXTENDED_IROP_SUPPORT[bool]l>, 'FAST_MEMORY': <O
FAST_MEMORY[bool]l>, 'FAST_REGISTERS': <O FAST_REGISTERS[bool]>, 'FILES_HAVE_EOF': <O
FILES_HAVE_EOF[bool]>, 'HYBRID_SOLVER': <O HYBRID_SOLVER[bool]>,
'JAVA_IDENTIFY_GETTER_SETTER': <O JAVA_IDENTIFY_GETTER_SETTER[bool]>,
'JAVA_TRACK_ATTRIBUTES': <O JAVA_TRACK_ATTRIBUTES[bool]>, 'KEEP_IP_SYMBOLIC': <O
KEEP_IP_SYMBOLIC[bool]l>, 'KEEP_MEMORY_READS_DISCRETE': <O
KEEP_MEMORY_READS_DISCRETE[bool]l>, 'LAZY_SOLVES': <O LAZY_SOLVES[bool]>,
'"MEMORY_CHUNK_INDIVIDUAL_READS': <O MEMORY_CHUNK_INDIVIDUAL_READS[bool]>,
'"MEMORY_FIND_STRICT_SIZE_LIMIT': <O MEMORY_FIND_STRICT_SIZE_LIMIT[bool]>,
'"MEMORY_SYMBOLIC_BYTES_MAP': <O MEMORY_SYMBOLIC_BYTES_MAP[bool]>,
'NO_CROSS_INSN_OPT': <O NO_CROSS_INSN_OPT[bool]>, 'NO_IP_CONCRETIZATION': <O
NO_IP_CONCRETIZATION[bool]>, 'NO_SYMBOLIC_JUMP_RESOLUTION': <O
NO_SYMBOLIC_JUMP_RESOLUTION[bool]>, 'NO_SYMBOLIC_SYSCALL_RESOLUTION': <O
NO_SYMBOLIC_SYSCALL_RESOLUTION[bool]>, 'OPTIMIZE_IR': <O OPTIMIZE_IR[bool]>,
'PRODUCE_ZERODIV_SUCCESSORS': <O PRODUCE_ZERODIV_SUCCESSORS[bool]>,
'REGION_MAPPING': <O REGION_MAPPING[bool]l>, 'REPLACEMENT_SOLVER': <O
REPLACEMENT_SOLVER[bool]>, 'REVERSE_MEMORY_HASH_MAP': <O
REVERSE_MEMORY_HASH_MAP[bool]>, 'REVERSE_MEMORY_NAME_MAP': <O
REVERSE_MEMORY_NAME_MAP[bool]>, 'SHORT_READS': <O SHORT_READS[bool]>,

MP 0 0 MP O) RA

00 MP A

SErpgram State GUARD [bool]l>, 'SIMPLIFY_ EXIT_STATE': <O SIMPLIFY_EXIT_STATE[booll>, 229
'SIMPLIFY_EXIT_TARGET': <O SIMPLIFY_EXIT_TARGET[bool]>, 'SIMPLIFY_EXPRS': <O
SIMPLIFY_EXPRS[booll>, 'SIMPLIFY_MEMORY_READS': <O SIMPLIFY_ MEMORY_READS[booll>,
'SIMPLIFY_MEMORY_WRITES': <O SIMPLIFY_MEMORY_WRITES[booll>,

angr

__init__(thing)

Parameters
thing — Either a set of Boolean switches to enable, or an existing SimStateOptions instance.
add (boolean_switch)
[COMPATIBILITY] Enable a Boolean switch.

Parameters
boolean_switch (str)— Name of the Boolean switch.

Returns
None
update (boolean_switches)

[COMPATIBILITY] In order to be compatible with the old interface, you can enable a collection of Boolean
switches at the same time by doing the following:

[>>> state.options.update({sim_options.SYMBOLIC, sim_options.ABSTRACT_MEMORY})

or

[>>> state.options.update(sim_options.unicorn)

Parameters
boolean_switches (set) — A collection of Boolean switches to enable.

Returns
None

remove (name)
Drop a state option if it exists, or raise a KeyError if the state option is not set.

[COMPATIBILITY] Remove a Boolean switch.

Parameters
name (str) — Name of the state option.

Returns
NNone

discard (name)
Drop a state option if it exists, or silently return if the state option is not set.
[COMPATIBILITY] Disable a Boolean switch.

Parameters
name (str) — Name of the Boolean switch.

Returns
None
difference (boolean_switches)
[COMPATIBILITY] Make a copy of the current instance, and then discard all options that are in
boolean_switches.

Parameters
boolean_switches (set) — A collection of Boolean switches to disable.

230 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set

angr

Returns
A new SimStateOptions instance.

copy O
Get a copy of the current SimStateOptions instance.

Returns
A new SimStateOptions instance.

Return type
SimStateOptions

tally(exclude_false=True, description=False)

Return a string representation of all state options.
Parameters
¢ exclude_false (bool) — Whether to exclude Boolean switches that are disabled.
 description (bool) — Whether to display the description of each option.

Returns
A string representation.

Return type
Str

classmethod register_option(name, types, default=None, description=None)
Register a state option.
Parameters
* name (str)— Name of the state option.
* types — A collection of allowed types of this state option.
¢ default — The default value of this state option.
¢ description (str) — The description of this state option.

Returns
None

classmethod register_bool_option(name, description=None)

Register a Boolean switch as state option. This is equivalent to cls.register_option(name, set([bool]), de-
scription=description)

Parameters
* name (str)— Name of the state option.
* description (str) — The description of this state option.

Returns
None
class angr.state_plugins.plugin.SimStatePlugin
Bases: object
This is a base class for SimState plugins. A SimState plugin will be copied along with the state when the state is

branched. They are intended to be used for things such as tracking open files, tracking heap details, and providing
storage and persistence for SimProcedures.

STRONGREF_STATE = False

10.3. Program State 231

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

angr

__init__QO
state: SimState

set_state(state)

Sets a new state (for example, if the state has been branched)

set_strongref_state(state)

copy (_memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

static memo(f)

A decorator function you should apply to copy

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with

¢ merge_conditions — a symbolic condition for each of the plugins

232

Chapter 10. API Reference

angr

» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

classmethod register_default (name, xtr=None)
init_state()
Use this function to perform any initialization on the state at plugin-add time

class angr.state_plugins.inspect.BP(when='before', enabled=None, condition=None, action=None,
**kwargs)

Bases: object
A breakpoint.
__init__ (when="before', enabled=None, condition=None, action=None, **kwargs)
check (state, when)
Checks state state to see if the breakpoint should fire.
Parameters
» state - The state.
» when — Whether the check is happening before or after the event.

Returns
A boolean representing whether the checkpoint should fire.

fire(state)
Trigger the breakpoint.

Parameters
state — The state.

class angr.state_plugins.inspect.SimInspector
Bases: SimStatePlugin

The breakpoint interface, used to instrument execution. For usage information, look here: https://docs.angr.io/
core-concepts/simulation#breakpoints

BP_AFTER = 'after'

BP_BEFORE = 'before'

10.3. Program State 233

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/core-concepts/simulation#breakpoints
https://docs.angr.io/core-concepts/simulation#breakpoints

angr

BP_BOTH = 'both'
__init__O

action(event_type, when, **kwargs)
Called from within the engine when events happens. This function checks all breakpoints registered for
that event and fires the ones whose conditions match.

make_breakpoint (event_type, *args, **kwargs)
Creates and adds a breakpoint which would trigger on event_type. Additional arguments are passed to the

BP constructor.

Returns
The created breakpoint, so that it can be removed later.

b (event_type, *args, **kwargs)

Creates and adds a breakpoint which would trigger on event_type. Additional arguments are passed to the
BP constructor.

Returns
The created breakpoint, so that it can be removed later.

add_breakpoint (event_type, bp)
Adds a breakpoint which would trigger on event_type.

Parameters
* event_type — The event type to trigger on
* bp — The breakpoint

Returns
The created breakpoint.
remove_breakpoint (event_type, bp=None, filter_func=None)

Removes a breakpoint.
Parameters
* bp — The breakpoint to remove.

e filter_func — A filter function to specify whether each breakpoint should be removed
or not.
copy (memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself

to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

downsize()

Remove previously stored attributes from this plugin instance to save memory. This method is supposed to
be called by breakpoint implementors. A typical workflow looks like the following :

234 Chapter 10. API Reference

angr

>>> # Add “attr® and ‘attrl’ to ‘self.state.inspect’

>>> self.state.inspect(xxxxxx, attrO=yyyy, attrl=zzzz)

>>> # Get new attributes out of SimInspect in case they are modified by the user
>>> new_attr® = self.state._inspect.attr0

>>> new_attrl = self.state._inspect.attrl

>>> # Remove them from SimInspect

>>> self.state._inspect.downsize()

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

10.3.

Program State 235

https://docs.python.org/3/library/functions.html#bool

angr

Returns
True if the state plugin is actually widened.

Return type
bool

set_state(state)

Sets a new state (for example, if the state has been branched)
state: angr.SimState
class angr.state_plugins.libc.SimStateLibc
Bases: SimStatePlugin

This state plugin keeps track of various libc stuff:

236

Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

10.3.

LOCALE_ARRAY =

b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00"',
b'\x00\x00"',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x02\x00',
', b"\x02 ',
b'\x02\x00"',
b'\x02\x00',
b'\x02\x00',
b'\x04\xc0',
b'\x04\xc0',
b'\x04\xc0"',
b'\x08\xd8',
b'\x04\xc0',
b'\x08\xd5"',
b'\x08\xc5',
b'\x08\xc5"',
b'\x08\xc5"',
b'\x08\xc5',
b'\x04\xc0',
b'\x08\xd6’,
b'\x08\xc6"',
b'\x08\xc6"',
b'\x08\xc6',
b'\x04\xc0',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00"',
b'\x00\x00"',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b'\x00\x00',
b' \x@@\x@@'

[b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x02\x00', b'\x02\x00',
b'\x02 ', b'\x02 ', b'\x02 ',
b'\x02\x00', b'\x02\x00',
b'\x02\x00', b'\x02\x00',
b'\x02\x00', b'\x02\x00',
b'\x04\xc0', b'\x04\xc0',
b'\x04\xc0', b'\x04\xc0',
b'\x08\xd8', b'\x08\xd8',
b'\x08\xd8', b'\x08\xd8’,
b'\x04\xc®', b'\x04\xcO',
b'\x08\xd5', b'\x08\xd5',
b'\x08\xc5', b'\x08\xc5',
b'\x08\xc5"', b'\x08\xc5"',
b'\x08\xc5"', b'\x08\xc5"',
b'\x08\xc5', b'\x04\xcO',
b'\x04\xc0', b'\x08\xd6"',
b'\x08\xd6"', b'\x08\xc6',
b'\x08\xc6', b'\x08\xc6',
b'\x08\xc6', b'\x08\xc6',
b'\x08\xc6', b'\x08\xc6"',
b'\x04\xc®', b'\x02\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00',
b' \x@@\x@@' b' \x@@\x@@'

bPKQﬂMmﬁt?tQ \x@@\x@@'

b'\x00\x00"',
b'\x00\x00',
b'\x00\x00',

b'\x00\x00',

b'\x00\x00',
b'\x00\x00"',

b \x00\x00"',
b'\x00\x00',

b'\x00\x00',
b'\x00\x00"',

b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00"', b'\x00\x00', b'\x00\x00"',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00"',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00"',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00"', b'\x00\x00', b'\x00\x00',
b'\x00\x00"', b'\x00\x00', b'\x00\x00"',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x02\x00', b'\x02\x00', b'\x02\x00',
b'\x02\x00', b'\x02\x00', b'\x02\x00', b'\x03
b'\x02\x00', b'\x02\x00', b'\x02\x00"',

b'\x02\x00', b'\x02\x00', b'\x02\x00"',
b'\x02\x00', b'\x02\x00', b'\x02\x00',
b'\x01" ', b'\x04\xc0', b'\x04\xc0',
b'\x04\xc0', b'\x04\xcO0', b'\x04\xcO',
b'\x04\xc0', b'\x04\xcO0', b'\x04\xcO',
b'\x08\xd8', b'\x08\xd8', b'\x08\xd8',
b'\x08\xd8"', b'\x08\xd8', b'\x04\xcO',
b'\x04\xc®', b'\x04\xcO®', b'\x04\xcO',
b'\x08\xd5"', b'\x08\xd5', b'\x08\xd5"',
b'\x08\xc5"', b'\x08\xc5', b'\x08\xc5',
b'\x08\xc5"', b'\x08\xc5', b'\x08\xc5"',
b'\x08\xc5"', b'\x08\xc5', b'\x08\xc5"',
b'\x04\xc®', b'\x04\xcO®', b'\x04\xcO',
b'\x08\xd6', b'\x08\xd6', b'\x08\xd6"',
b'\x08\xc6', b'\x08\xc6', b'\x08\xc6',
b'\x08\xc6', b'\x08\xc6', b'\x08\xc6',
b'\x08\xc6', b'\x08\xc6', b'\x08\xc6"',
b'\x08\xc6', b'\x04\xcO0', b'\x04\xcO',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00"',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00"', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00"',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b'\x00\x00', b'\x00\x00', b'\x00\x00',
b' \x@@\x@@' b' \x@&\x@@'

N 00!
b \x00\x00"',
b'\x00\x00',

b'\x00\x00',
b'\x00\x00',

b' \x@@\x@@'

b \x@@\x@@'
b'\x00\x00"',
b'\x00\x00',
b'\x00\x00"',

b \x@@\x@@'
b'\x00\x00',

b'\x00\x00',
b'\x00\x00"',

237

angr

TOLOWER_LOC_ARRAY = [128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,
208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224,
225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,
242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 4294967295, 0, 1,
2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98,
99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 1260, 121, 122, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 1609, 1160, 111, 112, 113, 114, 115, 116, 117, 118,
119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
176, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,
187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203,
204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,
221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237,
238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254,
255]

TOUPPER_LOC_ARRAY = [128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,
208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224,
225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,
242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 4294967295, 0, 1,
2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,
145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161,
162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229,
230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246,
247, 248, 249, 250, 251, 252, 253, 254, 255]

__init__O

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

238 Chapter 10. API Reference

angr

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

10.3.

Program State 239

https://docs.python.org/3/library/functions.html#bool

angr

Returns
True if the state plugin is actually widened.

Return type
bool

property errno
ret_errno(val)
state: angr.SimState
class angr.state_plugins.posix.PosixDevFS
Bases: SimMount

get(path)
Implement this function to instrument file lookups.

Parameters
path_elements — A list of path elements traversing from the mountpoint to the file

Returns
A SimFile, or None

insert (path, simfile)

Implement this function to instrument file creation.
Parameters

* path_elements — A list of path elements traversing from the mountpoint to the file

» simfile — The file to insert

Returns
A bool indicating whether the insert occurred

delete(path)
Implement this function to instrument file deletion.

Parameters
path_elements — A list of path elements traversing from the mountpoint to the file

Returns
A bool indicating whether the delete occurred

lookup ()
Look up the path of a SimFile in the mountpoint

Parameters
sim_file — A SimFile object needs to be looked up

Returns

A string representing the path of the file in the mountpoint Or None if the SimFile does not

exist in the mountpoint

merge (others, conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to

240

Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

copy (L)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

10.3. Program State 241

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.state_plugins.posix.PosixProcFS

Bases: SimMount
The virtual file system mounted at /proc (as of now, on Linux).

get(path)

Implement this function to instrument file lookups.

Parameters
path_elements — A list of path elements traversing from the mountpoint to the file

Returns
A SimFile, or None

insert (path, simfile)
Implement this function to instrument file creation.
Parameters
» path_elements — A list of path elements traversing from the mountpoint to the file
» simfile — The file to insert

Returns
A bool indicating whether the insert occurred
delete(path)
Implement this function to instrument file deletion.

Parameters
path_elements — A list of path elements traversing from the mountpoint to the file

Returns
A bool indicating whether the delete occurred

lookup ()
Look up the path of a SimFile in the mountpoint

Parameters
sim_file — A SimFile object needs to be looked up

Returns
A string representing the path of the file in the mountpoint Or None if the SimFile does not
exist in the mountpoint

merge (others, conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

242

Chapter 10. API Reference

angr

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

copy (L)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself

to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

10.3. Program State 243

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

state: angr.SimState

class angr.state_plugins.posix.SimSystemPosix (stdin=None, stdout=None, stderr=None, fd=None,
sockets=None, socket_queue=None, argv=None,
argc=None, environ=None, auxv=None,
tls_modules=None, sigmask=None, pid=None,
ppid=None, uid=None, gid=None, brk=None)

Bases: SimStatePlugin

Data storage and interaction mechanisms for states with an environment conforming to posix. Available as
state.posix.

SIG_BLOCK = 0
SIG_UNBLOCK = 1

SIG_SETMASK = 2

EPERM =1
ENOENT = 2
ESRCH = 3
EINTR = 4
EIO =5
ENXIO = 6
E2BIG = 7
ENOEXEC = 8
EBADF = 9
ECHILD = 10
EAGAIN = 11
ENOMEM = 12
EACCES = 13
EFAULT = 14
ENOTBLK = 15
EBUSY = 16
EEXIST = 17
EXDEV = 18
ENODEV = 19
ENOTDIR = 20
EISDIR = 21

244 Chapter 10. API Reference

angr

EINVAL = 22
ENFILE = 23
EMFILE = 24
ENOTTY = 25
ETXTBSY = 26
EFBIG = 27
ENOSPC = 28
ESPIPE = 29
EROFS = 30
EMLINK = 31
EPIPE = 32
EDOM = 33
ERANGE = 34

__init__(stdin=None, stdout=None, stderr=None, fd=None, sockets=None, socket_queue=None,
argv=None, argc=None, environ=None, auxv=None, tls_modules=None, sigmask=None,
pid=None, ppid=None, uid=None, gid=None, brk=None)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

property closed_£fds
init_state()
Use this function to perform any initialization on the state at plugin-add time
set_brk(new_brk)
set_state(state)
Sets a new state (for example, if the state has been branched)

open(name, flags, preferred_fd=None)
Open a symbolic file. Basically open(2).

Parameters
* name (string or bytes) — Path of the symbolic file, as a string or bytes.

 flags - File operation flags, a bitfield of constants from open(2), as an AST

10.3. Program State 245

https://docs.python.org/3/library/stdtypes.html#bytes

angr

» preferred_£fd — Assign this fd if it’s not already claimed.

Returns
The file descriptor number allocated (maps through posix.get_fd to a SimFileDescriptor) or
-1 if the open fails.

mode from open(2) is unsupported at present.
open_socket (ident)

get_f£fd(fd, create_file=True)

Looks up the SimFileDescriptor associated with the given number (an AST). If the number is concrete and
does not map to anything, return None. If the number is symbolic, constrain it to an open fd and create a
new file for it. Set create_file to False if no write-access is planned (i.e. fd is read-only).

get_concrete_f£fd(fd, create_file=True)
Same behavior as get_fd(fd), only the result is a concrete integer fd (or -1) instead of a SimFileDescriptor.

close(fd)
Closes the given file descriptor (an AST). Returns whether the operation succeeded (a concrete boolean)

fstat(fd)
fstat_with_result(sim_fd)
sigmask (sigsetsize=None)
Gets the current sigmask. If it’s blank, a new one is created (of sigsetsize).

Parameters
sigsetsize — the size (in byfes of the sigmask set)

Returns
the sigmask

sigprocmask (how, new_mask, sigsetsize, valid_ptr=True)
Updates the signal mask.

Parameters
¢ how — the “how” argument of sigprocmask (see manpage)
* new_mask — the mask modification to apply
» sigsetsize - the size (in bytes of the sigmask set)
e valid_ptr —is set if the new_mask was not NULL

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

246

Chapter 10. API Reference

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
¢ merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen()

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

dump_file_by_path(path, **kwargs)

Returns the concrete content for a file by path.
Parameters
» path — file path as string
¢ kwargs — passed to state.solver.eval

Returns
file contents as string

dumps (fd, **kwargs)
Returns the concrete content for a file descriptor.

BACKWARD COMPATIBILITY: if you ask for file descriptors O 1 or 2, it will return the data from stdin,
stdout, or stderr as a flat string.

Parameters
fd - A file descriptor.

10.3. Program State 247

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Returns
The concrete content.

Return type
str

state: angr.SimState

class angr.state_plugins.filesystem.Stat(st_dev, st_ino, st_nlink, st_mode, st_uid, st_gid, st_rdev,
st_size, st_blksize, st_blocks, st_atime, st_atimensec, st_mtime,
st_mtimensec, st_ctime, st_ctimensec)

Bases: tuple
st_atime
Alias for field number 10

st_atimensec
Alias for field number 11

st_blksize
Alias for field number 8

st_blocks
Alias for field number 9

st_ctime
Alias for field number 14

st_ctimensec
Alias for field number 15

st_dev

Alias for field number 0
st_gid

Alias for field number 5
st_ino

Alias for field number 1

st_mode
Alias for field number 3

st_mtime
Alias for field number 12

st_mtimensec

Alias for field number 13
st_nlink

Alias for field number 2
st_rdev

Alias for field number 6
st_size

Alias for field number 7

248 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

angr

st_uid
Alias for field number 4

class angr.state_plugins.filesystem.SimFilesystem(files=None, pathsep=None, cwd=None,
mountpoints=None)

Bases: SimStatePlugin
angr’s emulated filesystem. Available as state.fs. When constructing, all parameters are optional.
Parameters
» files — A mapping from filepath to SimFile
» pathsep — The character used to separate path elements, default forward slash.
» cwd — The path of the current working directory to use
* mountpoints — A mapping from filepath to SimMountpoint
Variables
» pathsep — The current pathsep
» cwd — The current working directory

* unlinks — A list of unlink operations, tuples of filename and simfile. Be careful, this list is
shallow-copied from successor to successor, so don’t mutate anything in it without copying.

__init__(files=None, pathsep=None, cwd=None, mountpoints=None)

copy (memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

property unlinks

set_state(state)
Sets a new state (for example, if the state has been branched)

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

10.3. Program State 249

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
¢ merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

chdir (path)

Changes the current directory to the given path

get(path)
Get a file from the filesystem. Returns a SimFile or None.

insert (path, simfile)

Insert a file into the filesystem. Returns whether the operation was successful.

delete(path)
Remove a file from the filesystem. Returns whether the operation was successful.

This will add a £s_unlink event with the path of the file and also the index into the unlinks list.

mount (path, mount)
Add a mountpoint to the filesystem.

unmount (path)
Remove a mountpoint from the filesystem.

250 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

get_mountpoint (path)

Look up the mountpoint servicing the given path.

Returns
A tuple of the mount and a list of path elements traversing from the mountpoint to the specified
file.

state: angr.SimState
class angr.state_plugins.filesystem.SimMount
Bases: SimStatePlugin

This is the base class for “mount points” in angr’s simulated filesystem. Subclass this class and give it to the
filesystem to intercept all file creations and opens below the mountpoint. Since this a SimStatePlugin you may
also want to implement set_state, copy, merge, etc.

get(path_elements)
Implement this function to instrument file lookups.

Parameters
path_elements — A list of path elements traversing from the mountpoint to the file

Returns
A SimFile, or None

insert (path_elements, simfile)

Implement this function to instrument file creation.
Parameters
¢ path_elements — A list of path elements traversing from the mountpoint to the file
» simfile - The file to insert

Returns
A bool indicating whether the insert occurred

delete(path_elements)

Implement this function to instrument file deletion.

Parameters
path_elements — A list of path elements traversing from the mountpoint to the file

Returns
A bool indicating whether the delete occurred

lookup (sim_file)
Look up the path of a SimFile in the mountpoint

Parameters
sim_file — A SimFile object needs to be looked up

Returns
A string representing the path of the file in the mountpoint Or None if the SimFile does not
exist in the mountpoint

state: angr.SimState
class angr.state_plugins.filesystem.SimConcreteFilesystem(pathsep="")
Bases: SimMount

Abstract SimMount allowing the user to import files from some external source into the guest

10.3. Program State 251

angr

Parameters
pathsep (str) — The host path separator character, default os.path.sep

__init__(pathsep="7")
get(path_elements)
Implement this function to instrument file lookups.

Parameters
path_elements — A list of path elements traversing from the mountpoint to the file

Returns
A SimFile, or None

insert (path_elements, simfile)
Implement this function to instrument file creation.

Parameters
¢ path_elements — A list of path elements traversing from the mountpoint to the file
» simfile — The file to insert

Returns
A bool indicating whether the insert occurred

delete(path_elements)
Implement this function to instrument file deletion.

Parameters
path_elements — A list of path elements traversing from the mountpoint to the file

Returns
A bool indicating whether the delete occurred

lookup (sim_file)
Look up the path of a SimFile in the mountpoint

Parameters
sim_file — A SimFile object needs to be looked up

Returns

A string representing the path of the file in the mountpoint Or None if the SimFile does not

exist in the mountpoint

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

set_state(state)

Sets a new state (for example, if the state has been branched)

252

Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str

angr

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self. foo.merge(
[0o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others - the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool
widen(others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

10.3. Program State 253

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

class angr.state_plugins.filesystem.SimHostFilesystem(host_path=None, **kwargs)

Bases: SimConcreteFilesystem

Simulated mount that makes some piece from the host filesystem available to the guest.

Parameters

* host_path (str) — The path on the host to mount

 pathsep (str) — The host path separator character, default os.path.sep

__init__ Chost_path=None, **kwargs)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState
angr.state_plugins.solver.
angr.state_plugins.
angr.state_plugins.
angr.state_plugins.
angr.state_plugins.
angr.state_plugins.
angr.state_plugins.
angr.state_plugins.

angr.state_plugins.solver.

solver.

solver.

solver
solver
solver
solver

solver

timed_function(f)
enable_timing()

disable_timing()

.error_converter(f)
.concrete_path_bool (f)
.concrete_path_not_bool (f)
.concrete_path_scalar(f)

.concrete_path_tuple(f)

concrete_path_list(f)

class angr.state_plugins.solver.SimSolver (solver=None, all_variables=None,
temporal_tracked_variables=None,
eternal_tracked_variables=None)

Bases: SimStatePlugin

This is the plugin you’ll use to interact with symbolic variables, creating them and evaluating them. It should be
available on a state as state.solver.

Any top-level variable of the claripy module can be accessed as a property of this object.

__init__(solver=None, all_variables=None, temporal_tracked_variables=None,
eternal_tracked_variables=None)

254

Chapter 10

. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

angr

reload_solver (constraints=None)

Reloads the solver. Useful when changing solver options.

Parameters

constraints (1ist)— A new list of constraints to use in the reloaded solver instead of the
current one

get_variables (*keys)

Iterate over all variables for which their tracking key is a prefix of the values provided.

Elements are a tuple, the first element is the full tracking key, the second is the symbol.

>>> list(s.solver.get_variables('mem'))

[(('mem', Ox1000), <BV64 mem_1000_4_64>), (('mem', 0x1008), <BV64 mem_1008_5_64>
)]

>>> list(s.solver.get_variables('file'))

[(("file', 1, ®), <BV8 file_1_0_6_8>), (('file', 1, 1), <BV8 file_1_1_7_8>), ((
—'file', 2, 0), <BV8 file_2_0_8_8>)]

>>> list(s.solver.get_variables('file', 2))
[(('file', 2, ®), <BV8 file_2_0_8_8>)]

>>> list(s.solver.get_variables())

[(("'mem', 0x1000), <BV64 mem_1000_4_64>), (('mem', 0x1008), <BV64 mem_1008_5_64>
), (('file', 1, 0), <BV8 file_1_0_6_8>), (('file', 1, 1), <BV8 file_1_1_7_8>),
<« (('file', 2, 0), <BV8 file_2_0_8_8>)]

register_variable(v, key, eternal=True)

Register a value with the variable tracking system
Parameters
* v —The BVS to register
* key — A tuple to register the variable under

Parma eternal

Whether this is an eternal variable, default True. If False, an incrementing counter will be
appended to the key.

describe_variables(v)

Given an AST, iterate over all the keys of all the BVS leaves in the tree which are registered.

Unconstrained (name, bits, uninitialized=True, inspect=True, events=True, key=None, eternal=False,
**kwargs)

Creates an unconstrained symbol or a default concrete value (0), based on the state options.
Parameters
e name — The name of the symbol.
¢ bits - The size (in bits) of the symbol.

e uninitialized — Whether this value should be counted as an “uninitialized” value in the
course of an analysis.

¢ inspect — Set to False to avoid firing SimInspect breakpoints

» events — Set to False to avoid generating a SimEvent for the occasion

10.3. Program State 255

https://docs.python.org/3/library/stdtypes.html#list

angr

e key — Set this to a tuple of increasingly specific identifiers (for example, ('mem',
0xffbeff0®0) or ('file', 4, 0x20) to cause it to be tracked, i.e. accessable through
solver.get_variables.

e eternal — Set to True in conjunction with setting a key to cause all states with the same
ancestry to retrieve the same symbol when trying to create the value. If False, a counter
will be appended to the key.

Returns
an unconstrained symbol (or a concrete value of 0).

BVS (name, size, min=None, max=None, stride=None, uninitialized=False, explicit_name=None, key=None,
eternal=False, inspect=True, events=True, **kwargs)

Creates a bit-vector symbol (i.e., a variable). Other keyword parameters are passed directly on to the
constructor of claripy.ast.BV.

Parameters
e name — The name of the symbol.
¢ size — The size (in bits) of the bit-vector.
e min — The minimum value of the symbol. Note that this only work when using VSA.
e max — The maximum value of the symbol. Note that this only work when using VSA.
e stride — The stride of the symbol. Note that this only work when using VSA.

e uninitialized — Whether this value should be counted as an “uninitialized” value in the
course of an analysis.

¢ explicit_name — Set to True to prevent an identifier from appended to the name to ensure
uniqueness.

e key — Set this to a tuple of increasingly specific identifiers (for example, ('mem',
0xffbeff00) or ('file', 4, 0x20) to cause it to be tracked, i.e. accessable through
solver.get_variables.

¢ eternal — Set to True in conjunction with setting a key to cause all states with the same
ancestry to retrieve the same symbol when trying to create the value. If False, a counter
will be appended to the key.

* inspect - Set to False to avoid firing SimInspect breakpoints
» events — Set to False to avoid generating a SimEvent for the occasion

Returns
A BV object representing this symbol.

copy (memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself

to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

256 Chapter 10. API Reference

angr

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self. foo.merge(
[0o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others - the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool
widen(others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

downsize()
Frees memory associated with the constraint solver by clearing all of its internal caches.

10.3. Program State 257

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

property constraints

Returns the constraints of the state stored by the solver.

eval_to_ast (e, n, extra_constraints=(), exact=None)

Evaluate an expression, using the solver if necessary. Returns AST objects.
Parameters
* e — the expression
e n — the number of desired solutions
e extra_constraints — extra constraints to apply to the solver
» exact — if False, returns approximate solutions

Returns
a tuple of the solutions, in the form of claripy AST nodes

Return type
tuple

max (e, extra_constraints=(), exact=None, signed=False)

Return the maximum value of expression e.

:param e : expression (an AST) to evaluate :type extra_constraints: :param extra_constraints: extra con-
straints (as ASTs) to add to the solver for this solve :param exact : if False, return approximate solutions.
:param signed : Whether the expression should be treated as a signed value. :return: the maximum possible
value of e (backend object)

min (e, extra_constraints=(), exact=None, signed=False)

Return the minimum value of expression e.

:param e : expression (an AST) to evaluate :type extra_constraints: :param extra_constraints: extra con-
straints (as ASTs) to add to the solver for this solve :param exact : if False, return approximate solutions.
:param signed : Whether the expression should be treated as a signed value. :return: the minimum possible
value of e (backend object)

solution(e, v, extra_constraints=(), exact=None)

Return True if v is a solution of expr with the extra constraints, False otherwise.
Parameters
* e — An expression (an AST) to evaluate
* v — The proposed solution (an AST)
e extra_constraints — Extra constraints (as ASTs) to add to the solver for this solve.
» exact — If False, return approximate solutions.

Returns
True if v is a solution of expr, False otherwise

is_true(e, extra_constraints=(), exact=None)

If the expression provided is absolutely, definitely a true boolean, return True. Note that returning False
doesn’t necessarily mean that the expression can be false, just that we couldn’t figure that out easily.

Parameters
* e — An expression (an AST) to evaluate
¢ extra_constraints — Extra constraints (as ASTs) to add to the solver for this solve.

* exact — If False, return approximate solutions.

258 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple

angr

Returns
True if v is definitely true, False otherwise

is_false(e, extra_constraints=(), exact=None)

If the expression provided is absolutely, definitely a false boolean, return True. Note that returning False
doesn’t necessarily mean that the expression can be true, just that we couldn’t figure that out easily.

Parameters
* e — An expression (an AST) to evaluate
e extra_constraints — Extra constraints (as ASTs) to add to the solver for this solve.
* exact — If False, return approximate solutions.

Returns
True if v is definitely false, False otherwise

unsat_core (extra_constraints=())
This function returns the unsat core from the backend solver.

Parameters
extra_constraints — Extra constraints (as ASTs) to add to the solver for this solve.

Returns
The unsat core.

satisfiable (extra_constraints=(), exact=None)
This function does a constraint check and checks if the solver is in a sat state.

Parameters
¢ extra_constraints — Extra constraints (as ASTs) to add to s for this solve
» exact — If False, return approximate solutions.

Returns
True if sat, otherwise false

add (**constraints)

Add some constraints to the solver.

Parameters
constraints — Pass any constraints that you want to add (ASTs) as varargs.

CastType = ~CastType

eval_upto(e, n, cast_to=None, **kwargs)

Evaluate an expression, using the solver if necessary. Returns primitives as specified by the cast_ro param-
eter. Only certain primitives are supported, check the implementation of _cast_to to see which ones.

Parameters
* e — the expression
* n — the number of desired solutions
e extra_constraints — extra constraints to apply to the solver
* exact - if False, returns approximate solutions
* cast_to — desired type of resulting values

Returns
a tuple of the solutions, in the form of Python primitives

10.3. Program State 259

angr

Return type
tuple

eval (e, cast_to=None, **kwargs)
Evaluate an expression to get any possible solution. The desired output types can be specified using the
cast_to parameter. extra_constraints can be used to specify additional constraints the returned values must

satisfy.
Parameters
* e — the expression to get a solution for
¢ kwargs — Any additional kwargs will be passed down to eval_upto
e cast_to — desired type of resulting values
Raises
SimUnsatError — if no solution could be found satisfying the given constraints
Returns

eval_one(e, cast_to=None, **kwargs)
Evaluate an expression to get the only possible solution. Errors if either no or more than one solution is
returned. A kwarg parameter default can be specified to be returned instead of failure!

Parameters
* e — the expression to get a solution for
* cast_to — desired type of resulting values
e default — A value can be passed as a kwarg here. It will be returned in case of failure.
* kwargs — Any additional kwargs will be passed down to eval_upto
Raises
e SimUnsatError — if no solution could be found satisfying the given constraints
e SimValueError — if more than one solution was found to satisfy the given constraints

Returns
The value for e

state: angr.SimState
eval_atmost (e, n, cast_to=None, **kwargs)

Evaluate an expression to get at most n possible solutions. Errors if either none or more than n solutions
are returned.

Parameters
* e — the expression to get a solution for
* n — the inclusive upper limit on the number of solutions
* cast_to — desired type of resulting values
» kwargs — Any additional kwargs will be passed down to eval_upto
Raises
e SimUnsatError — if no solution could be found satisfying the given constraints

e SimValueError — if more than n solutions were found to satisfy the given constraints

260 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple

angr

Returns
The solutions for e

eval_atleast(e, n, cast_to=None, **kwargs)
Evaluate an expression to get at least n possible solutions. Errors if less than n solutions were found.

Parameters
* e — the expression to get a solution for
* n - the inclusive lower limit on the number of solutions
e cast_to — desired type of resulting values
» kwargs — Any additional kwargs will be passed down to eval_upto
Raises
e SimUnsatError — if no solution could be found satisfying the given constraints
e SimValueError — if less than n solutions were found to satisfy the given constraints

Returns
The solutions for e

eval_exact (e, n, cast_to=None, **kwargs)

Evaluate an expression to get exactly the n possible solutions. Errors if any number of solutions other than
n was found to exist.

Parameters
* e — the expression to get a solution for
* n — the inclusive lower limit on the number of solutions
e cast_to — desired type of resulting values
* kwargs — Any additional kwargs will be passed down to eval_upto
Raises
e SimUnsatError — if no solution could be found satisfying the given constraints

e SimValueError — if any number of solutions other than n were found to satisfy the given
constraints

Returns
The solutions for e

min_int (e, extra_constraints=(), exact=None, signed=False)
Return the minimum value of expression e.
:param e : expression (an AST) to evaluate :type extra_constraints: :param extra_constraints: extra con-
straints (as ASTs) to add to the solver for this solve :param exact : if False, return approximate solutions.
:param signed : Whether the expression should be treated as a signed value. :return: the minimum possible
value of e (backend object)

max_int (e, extra_constraints=(), exact=None, signed=False)
Return the maximum value of expression e.
:param e : expression (an AST) to evaluate :type extra_constraints: :param extra_constraints: extra con-
straints (as ASTs) to add to the solver for this solve :param exact : if False, return approximate solutions.

:param signed : Whether the expression should be treated as a signed value. :return: the maximum possible
value of e (backend object)

10.3. Program State 261

angr

unique (e, **kwargs)

Returns True if the expression e has only one solution by querying the constraint solver. It does also add
that unique solution to the solver’s constraints.

symbolic(e)
Returns True if the expression e is symbolic.
single_valued(e)

Returns True whether e is a concrete value or is a value set with only 1 possible value. This differs from
unique in that this does not query the constraint solver.

simplify(e=None)
Simplifies e. If e is None, simplifies the constraints of this state.

variables(e)

Returns the symbolic variables present in the AST of e.

class angr.state_plugins.log.SimStateLog(log=None)

Bases: SimStatePlugin

__init__(log=None)

property actions

add_event (event_type, **kwargs)
add_action(action)
extend_actions (new_actions)
events_of_type(event_type)
actions_of_type (action_type)
property fresh_constraints

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

262

Chapter 10. API Reference

angr

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool
widen(others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

clear()
state: angr.SimState

class angr.state_plugins.callstack.CallStack(call_site_addr=0, func_addr=0, stack_ptr=0,
ret_addr=0, jumpkind='"Ijk_Call', next_frame=None,
invoke_return_variable=None)

Bases: SimStatePlugin

Stores the address of the function you’re in and the value of SP at the VERY BOTTOM of the stack, i.e. points
to the return address.

Parameters
next_£frame (CallStack | None) -

10.3. Program State 263

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

__init__(call_site_addr=0, func_addr=0, stack_ptr=0, ret_addr=0, jumpkind="Ijk_Call',
next_frame=None, invoke_return_variable=None)

Parameters
next_frame (CallStack | None) -

state: angr.SimState

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

set_state(state)

Sets a new state (for example, if the state has been branched)

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self. foo.merge(
[0.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins

e common_ancestor — a common ancestor of this plugin and the others being merged

264 Chapter 10. API Reference

angr

Returns
True if the state plugins are actually merged.

Return type
bool
widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

property current_function_address
Address of the current function.

Returns
the address of the function

Return type
int

property current_stack_pointer
Get the value of the stack pointer.

Returns
Value of the stack pointer

Return type
int

property current_return_target
Get the return target.

Returns
The address of return target.

Return type
int
static stack_suffix_to_string(stack_suffix)

Convert a stack suffix to a human-readable string representation. :param tuple stack_suffix: The stack suffix.
:return: A string representation :rtype: str

property top
Returns the element at the top of the callstack without removing it.

Returns
A CallStack.

push(cf)
Push the frame cf onto the stack. Return the new stack.

10.3. Program State 265

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

pop()
Pop the top frame from the stack. Return the new stack.

call (callsite_addr, addr, retn_target=None, stack_pointer=None)

Push a stack frame into the call stack. This method is called when calling a function in CFG recovery.
Parameters
e callsite_addr (int) — Address of the call site
e addr (int) — Address of the call target
e retn_target (int or None)— Address of the return target
¢ stack_pointer (int) — Value of the stack pointer

Returns
None

ret (retn_target=None)

Pop one or many call frames from the stack. This method is called when returning from a function in CFG
recovery.

Parameters
retn_target (int) — The target to return to.

Returns
None

dbg_repr()
Debugging representation of this CallStack object.

Returns
Details of this CalLStack

Return type
str

stack_suffix(context_sensitivity_level)

Generate the stack suffix. A stack suffix can be used as the key to a SimRun in CFG recovery.

Parameters
context_sensitivity_level (int)— Level of context sensitivity.

Returns
A tuple of stack suffix.

Return type
tuple

class angr.state_plugins.callstack.CallStackAction(callstack_hash, callstack_depth, action,
callframe=None, ret_site_addr=None)

Bases: object

Used in callstack backtrace, which is a history of callstacks along a path, to record individual actions occurred
each time the callstack is changed.

__init__(callstack_hash, callstack_depth, action, callframe=None, ret_site_addr=None)

class angr.state_plugins.light_registers.SimLightRegisters(reg_map=None, registers=None)
Bases: SimStatePlugin

266 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

angr

__init__(reg_map=None, registers=None)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

set_state(state)
Sets a new state (for example, if the state has been branched)

resolve_register (offset, size)
load (offset, size=None, **kwargs)
store (offset, value, size=None, endness=None, **kwargs)
state: angr.SimState
class angr.state_plugins.history.SimStateHistory(parent=None, clone=None)
Bases: SimStatePlugin

This class keeps track of historically-relevant information for paths.

STRONGREF_STATE = True
__init__ (parent=None, clone=None)

init_state()

Use this function to perform any initialization on the state at plugin-add time

set_strongref_state(state)
property addr

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

10.3. Program State 267

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
¢ merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

copy (memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself

to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.
trimQ
Discard the ancestry of this state.

filter_actions (start_block_addr=None, end_block_addr=None, block_stmt=None, insn_addr=None,
read_from=None, write_to=None)

268 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Filter self.actions based on some common parameters.
[start_block_addr, end_block_addr]
Parameters

» start_block_addr — Only return actions generated in blocks starting at this address.
¢ end_block_addr — Only return actions generated in blocks ending at this address.
* block_stmt — Only return actions generated in the nth statement of each block.
¢ insn_addr - Only return actions generated in the assembly instruction at this address.
¢ read_from — Only return actions that perform a read from the specified location.
e write_to — Only return actions that perform a write to the specified location.

Notes: If IR optimization is turned on, reads and writes may not occur in the instruction they originally
came from. Most commonly, If a register is read from twice in the same block, the second read will not
happen, instead reusing the temp the value is already stored in.

Valid values for read_from and write_to are the string literals ‘reg’ or ‘mem’ (matching any read or write
to registers or memory, respectively), any string (representing a read or write to the named register), and
any integer (representing a read or write to the memory at this address).

demote()

Demotes this history node, causing it to drop the strong state reference.

reachable()

add_event (event_type, **kwargs)
add_action(action)
extend_actions (new_actions)
subscribe_actions()
property recent_constraints
property recent_actions
property block_count
property lineage

property parents

property events

property actions

property jumpkinds

property jump_guards
property jump_targets
property jump_sources

property descriptions

10.3. Program State 269

angr

property bbl_addrs

property ins_addrs

property stack_actions
closest_common_ancestor (other)

Find the common ancestor between this history node and ‘other’.

Parameters
other - the PathHistory to find a common ancestor with.

Returns
the common ancestor SimStateHistory, or None if there isn’t one

constraints_since(other)

Returns the constraints that have been accumulated since other.

Parameters
other - a prior PathHistory object

Returns
a list of constraints

make_child()
state: angr.SimState

class angr.state_plugins.history.Treelter (start, end=None)
Bases: object

__init__(srart, end=None)
property hardcopy

count (v)

Count occurrences of value v in the entire history. Note that the subclass must implement the __reversed__
method, otherwise an exception will be thrown. :param object v: The value to look for :return: The number
of occurrences :rtype: int

class angr.state_plugins.history.HistoryIter (start, end=None)
Bases: Treelter

class angr.state_plugins.history.LambdaAttrIter (start,f, **kwargs)
Bases: Treelter

__init__(start, f, **kwargs)
class angr.state_plugins.history.LambdaIterIter (start,f, reverse=True, **kwargs)
Bases: LambdaAttrIter
__init__(start, f, reverse=True, **kwargs)
class angr.state_plugins.gdb.GDB(omit_fp=False, adjust_stack=False)
Bases: SimStatePlugin

Initialize or update a state from gdb dumps of the stack, heap, registers and data (or arbitrary) segments.

270 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

__init__(omit_fp=False, adjust_stack=False)

Parameters

e omit_fp - The frame pointer register is used for something else. (.e.
—omit_frame_pointer)

* adjust_stack — Use different stack addresses than the gdb session (not recommended).

set_stack (stack_dump, stack_top)
Stack dump is a dump of the stack from gdb, i.e. the result of the following gdb command :

dump binary memory [stack_dump] [begin_addr] [end_addr]
We set the stack to the same addresses as the gdb session to avoid pointers corruption.
Parameters
e stack_dump — The dump file.
» stack_top — The address of the top of the stack in the gdb session.

set_heap (heap_dump, heap_base)
Heap dump is a dump of the heap from gdb, i.e. the result of the following gdb command:

dump binary memory [stack_dump] [begin] [end]
Parameters
* heap_dump — The dump file.
¢ heap_base — The start address of the heap in the gdb session.

set_data(addr, data_dump)
Update any data range (most likely use is the data segments of loaded objects)

set_regs (regs_dump)
Initialize register values within the state

Parameters
regs_dump — The output of info registers in gdb.

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.state_plugins.cgc.SimStateCGC
Bases: SimStatePlugin
This state plugin keeps track of CGC state.
EBADF =1

10.3. Program State 271

angr

EFAULT = 2
EINVAL = 3
ENOMEM = 4
ENOSYS = 5
EPIPE = 6

FD_SETSIZE = 1024
max_allocation = 268435456
__init__QO

copy (memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

peek_input()
discard_input (num_bytes)
peek_output ()
discard_output (num_bytes)
addr_invalid(a)

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

272

Chapter 10. API Reference

angr

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

get_max_sinkhole (length)
Find a sinkhole which is large enough to support length bytes.

This uses first-fit. The first sinkhole (ordered in descending order by their address) which can hold length
bytes is chosen. If there are more than length bytes in the sinkhole, a new sinkhole is created representing
the remaining bytes while the old sinkhole is removed.

add_sinkhole (address, length)
Add a sinkhole.

Allow the possibility for the program to reuse the memory represented by the address length pair.

state: angr.SimState

This file contains objects to track additional information during a trace or modify symbolic variables during a trace.

The ChallResplnfo plugin tracks variables in stdin and stdout to enable handling of challenge response It handles
atoi/int2str in a special manner since path constraints will usually prevent their values from being modified

The Zen plugin simplifies expressions created from variables in the flag page (losing some accuracy) to avoid situations
where they become to complex for z3, but the actual equation doesn’t matter much. This can happen in challenge
response if all of the values in the flag page are multiplied together before being printed.

class angr.state_plugins.trace_additions.FormatInfo
Bases: object

copy O

10.3. Program State 273

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

compute (state)
get_type()

class angr.state_plugins.trace_additions.FormatInfoStrToInt (addr, func_name, str_arg_num, base,
base_arg, allows_negative)

Bases: FormatInfo

__init__(addr, func_name, str_arg_num, base, base_arg, allows_negative)
copy O

compute (state)

get_type()

class angr.state_plugins.trace_additions.FormatInfoIntToStr (addr, func_name, int_arg_num,
str_dst_num, base, base_arg)

Bases: FormatInfo

__init__(addr, func_name, int_arg_num, str_dst_num, base, base_arg)
copy O

compute (state)

get_type()

class angr.state_plugins.trace_additions.FormatInfoDontConstrain(addr, func_name,
check_symbolic_arg)

Bases: FormatInfo

__init__(addr, func_name, check_symbolic_arg)

copy O

compute (state)

get_type()
angr.state_plugins.trace_additions.int2base(x, base)
angr.state_plugins.trace_additions.generic_info_hook (state)
angr.state_plugins.trace_additions.end_info_hook (state)
angr.state_plugins.trace_additions.exit_hook(state)
angr.state_plugins.trace_additions.syscall_hook (state)
angr.state_plugins.trace_additions.constraint_hook (srate)

class angr.state_plugins.trace_additions.ChallRespInfo
Bases: SimStatePlugin

This state plugin keeps track of the reads and writes to symbolic addresses

__init__QO

274 Chapter 10. API Reference

angr

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

10.3. Program State 275

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

static get_byte(var_name)

lookup_original (replacement)

pop_£from_backup ()

get_stdin_indices (variable)

get_stdout_indices (variable)

get_real_len(input_val, base, result_bv, allows_negative)

get_possible_len(input_val, base, allows_negative)

get_same_length_constraints()

static atoi_dumps(state, require_same_length=True)

static prep_tracer (state, format_infos=None)

state: SimState
angr.state_plugins.trace_additions.zen_hook (state, expr)
angr.state_plugins.trace_additions.zen_memory_write (state)
angr.state_plugins.trace_additions.zen_register_write(state)

class angr.state_plugins.trace_additions.ZenPlugin(max_depth=13)
Bases: SimStatePlugin

__init__(max_depth=13)
static get_flag_rand_args(expr)
get_expr_depth(expr)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

276 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self. foo.merge(
[0o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others - the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

get_flag_bytes(ast)

filter_constraints (constraints)

10.3. Program State 277

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

analyze_transmit (state, buf)
static prep_tracer(state)
state: SimState

class angr.state_plugins.globals.SimStateGlobals (backer=None)
Bases: SimStatePlugin

__init__(backer=None)

set_state(srate)
Sets a new state (for example, if the state has been branched)

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
¢ merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

278 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool
keys()
values()
items()

get (k, alt=None)
pop (k, alt=None)

copy (memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState
class angr.state_plugins.uc_manager.SimUCManager (man=None)
Bases: SimStatePlugin
__init__ (man=None)
assign(dst_addr_ast)
Assign a new region for under-constrained symbolic execution.

Parameters
dst_addr_ast — the symbolic AST which address of the new allocated region will be as-
signed to.

Returns
as ast of memory address that points to a new region
copy (memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

10.3. Program State 279

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

get_alloc_depth(addr)
is_bounded (ast)
Test whether an AST is bounded by any existing constraint in the related solver.

Parameters
ast — an claripy.AST object

Returns
True if there is at least one related constraint, False otherwise

state: angr.SimState
set_state(state)
Sets a new state (for example, if the state has been branched)

class angr.state_plugins.scratch.SimStateScratch(scratch=None)
Bases: SimStatePlugin

Implements the scratch state plugin.
__init__(scratch=None)
state: angr.SimState
property priv
push_priv(priv)
pop_priv()
set_tyenv(tyenv)
tmp_expr (rmp)
Returns the Claripy expression of a VEX temp value.
Parameters
 tmp — the number of the tmp
e simplify — simplify the tmp before returning it

Returns
a Claripy expression of the tmp

store_tmp (¢mp, content, reg_deps=None, tmp_deps=None, deps=None, **kwargs)

Stores a Claripy expression in a VEX temp value. If in symbolic mode, this involves adding a constraint
for the tmp’s symbolic variable.

Parameters
 tmp — the number of the tmp
» content — a Claripy expression of the content
» reg_deps - the register dependencies of the content

¢ tmp_deps - the temporary value dependencies of the content

280 Chapter 10. API Reference

angr

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

10.3. Program State 281

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

clear()

class angr.state_plugins.preconstrainer.SimStatePreconstrainer (constrained_addrs=None)
Bases: SimStatePlugin

This state plugin manages the concept of preconstraining - adding constraints which you would like to remove
later.

Parameters
constrained_addrs — SimActions for memory operations whose addresses should be con-
strained during crash analysis

__init__ (constrained_addrs=None)

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[0o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
* others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

282 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

preconstrain(value, variable)
Add a preconstraint that variable == value to the state.

Parameters
* value — The concrete value. Can be a bitvector or a bytestring or an integer.
» variable — The BVS to preconstrain.

preconstrain_file(content, simfile, set_length=False)
Preconstrain the contents of a file.

Parameters
» content — The content to preconstrain the file to. Can be a bytestring or a list thereof.
e simfile - The actual simfile to preconstrain

preconstrain_flag_page (magic_content)
Preconstrain the data in the flag page.

Parameters
magic_content — The content of the magic page as a bytestring.

remove_preconstraints (fo_composite_solver=True, simplify=True)

Remove the preconstraints from the state.
If you are using the zen plugin, this will also use that to filter the constraints.
Parameters

¢ to_composite_solver — Whether to convert the replacement solver to a composite
solver. You probably want this if you’re switching from tracing to symbolic analysis.

10.3. Program State 283

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

» simplify — Whether to simplify the resulting set of constraints.

reconstrain()

Split the solver. If any of the subsolvers time out after a short timeout (10 seconds), re-add the preconstraints
associated with each of its variables. Hopefully these constraints still allow us to do meaningful things to

the state.
state: angr.SimState
class angr.state_plugins.unicorn_engine.MEM_PATCH
Bases: Structure
struct mem_update_t

address

Structure/Union member

length

Structure/Union member

next

Structure/Union member

class angr.state_plugins.unicorn_engine.TRANSMIT_RECORD

Bases: Structure
struct transmit_record_t

count

Structure/Union member

data

Structure/Union member

fd

Structure/Union member

class angr.state_plugins.unicorn_engine.TaintEntityEnum

Bases: object

taint_entity_enum_t

TAINT_ENTITY_REG = 0
TAINT_ENTITY_TMP = 1
TAINT_ENTITY_MEM = 2

TAINT_ENTITY_NONE = 3

class angr.state_plugins.unicorn_engine.MemoryValue
Bases: Structure
struct memory_value_t

address

Structure/Union member

is_value_set

Structure/Union member

284 Chapter 10

. API Reference

https://docs.python.org/3/library/functions.html#object

angr

is_value_symbolic

Structure/Union member

value

Structure/Union member

class angr.state_plugins.unicorn_engine.RegisterValue

Bases: Structure
struct register_value_t

offset
Structure/Union member

size
Structure/Union member

value

Structure/Union member

class angr.state_plugins.unicorn_engine.VEXStmtDetails

Bases: Structure
struct sym_vex_stmt_details_t

has_memory_dep
Structure/Union member

memory_values
Structure/Union member

memory_values_count

Structure/Union member

stmt_idx
Structure/Union member

class angr.state_plugins.unicorn_engine.BlockDetails

Bases: Structure
struct sym_block_details_ret_t

block_addr

Structure/Union member

block_size

Structure/Union member

block_trace_ind

Structure/Union member

has_symbolic_exit

Structure/Union member

register_values

Structure/Union member

register_values_count

Structure/Union member

10.3. Program State 285

angr

symbolic_vex_stmts

Structure/Union member

symbolic_vex_stmts_count

Structure/Union member

class angr.state_plugins.unicorn_engine.STOP

Bases: object
enum stop_t

STOP_NORMAL = 0
STOP_STOPPOINT = 1
STOP_ERROR = 2
STOP_SYSCALL = 3

STOP_EXECNONE = 4

STOP_ZEROPAGE = 5

STOP_NOSTART = 6

STOP_SEGFAULT = 7
STOP_ZERO_DIV = 8
STOP_NODECODE = 9

STOP_HLT = 10
STOP_VEX_LIFT_FAILED = 11
STOP_SYMBOLIC_PC = 12

STOP_SYMBOLIC_READ_ADDR = 13

STOP_SYMBOLIC_READ_SYMBOLIC_TRACKING_DISABLED = 14

STOP_SYMBOLIC_WRITE_ADDR = 15
STOP_SYMBOLIC_BLOCK_EXIT_CONDITION = 16
STOP_SYMBOLIC_BLOCK_EXIT_TARGET = 17
STOP_UNSUPPORTED_STMT_PUTI = 18
STOP_UNSUPPORTED_STMT_STOREG = 19
STOP_UNSUPPORTED_STMT_LOADG = 20
STOP_UNSUPPORTED_STMT_CAS = 21
STOP_UNSUPPORTED_STMT_LLSC = 22
STOP_UNSUPPORTED_STMT_DIRTY = 23

STOP_UNSUPPORTED_EXPR_GETI = 24

286

Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

STOP_UNSUPPORTED_STMT_UNKNOWN

25

STOP_UNSUPPORTED_EXPR_UNKNOWN = 26
STOP_UNKNOWN_MEMORY_WRITE_SIZE = 27
STOP_SYSCALL_ARM = 28

STOP_X86_CPUID = 29

stop_message = {0: 'Reached maximum steps', 1: 'Hit a stop point', 2: 'Something
wrong', 3: 'Unable to handle syscall', 4: 'Fetching empty page', 5: 'Accessing

zero page', 6: 'Failed to start', 7: 'Permissions or mapping error', 8: 'Divide
by zero', 9: 'Instruction decoding error', 10: 'hlt instruction encountered', 11:

'Failed to lift block to VEX', 12: 'Instruction pointer became symbolic', 13:
'Attempted to read from symbolic address', 14: 'Attempted to read symbolic data
from memory but symbolic tracking is disabled', 15: 'Attempted to write to symbolic
address', 16: "Guard condition of block's exit statement is symbolic", 17: 'Target
of default exit of block is symbolic', 18: 'Symbolic taint propagation for Putl
statement not yet supported', 19: 'Symbolic taint propagation for StoreG statement
not yet supported', 20: 'Symbolic taint propagation for LoadG statement not yet
supported', 21: 'Symbolic taint propagation for CAS statement not yet supported’,
22: 'Symbolic taint propagation for LLSC statement not yet supported’', 23:
'Symbolic taint propagation for Dirty statement not yet supported', 24: 'Symbolic
taint propagation for GetI expression not yet supported', 25: 'Canoo propagate
symbolic taint for unsupported VEX statement type', 26: 'Cannot propagate symbolic
taint for unsupported VEX expression', 27: 'Unicorn failed to determine size of
memory write', 28: 'ARM syscalls are currently not supported by SimEngineUnicorn',
29: 'Block executes cpuid which should be handled in VEX engine'}

symbolic_stop_reasons = {12, 13, 14, 15, 16, 17, 28, 29}
unsupported_reasons = {11, 18, 19, 20, 21, 22, 23, 25, 26}
static name_stop (num)
static get_stop_msg(stop_reason)

class angr.state_plugins.unicorn_engine.StopDetails
Bases: Structure

struct stop_details_t

block_addr
Structure/Union member

block_size

Structure/Union member

stop_reason

Structure/Union member

class angr.state_plugins.unicorn_engine.SimOSEnum

Bases: object
enum Ssimos_t

SIMOS_CGC = 0

10.3. Program State 287

https://docs.python.org/3/library/functions.html#object

angr

SIMOS_LINUX

1

SIMOS_OTHER = 2

exception angr.state_plugins.unicorn_engine.MemoryMappingError
Bases: Exception

exception angr.state_plugins.unicorn_engine.AccessingZeroPageError

Bases: MemoryMappingError

exception angr.state_plugins.unicorn_engine.FetchingZeroPageError
Bases: MemoryMappingError

exception angr.state_plugins.unicorn_engine.SegfaultError
Bases: MemoryMappingError

exception angr.state_plugins.unicorn_engine.MixedPermissonsError
Bases: MemoryMappingError

class angr.state_plugins.unicorn_engine.AggressiveConcretizationAnnotation(addr)
Bases: SimplificationAvoidanceAnnotation

__init__(addr)
class angr.state_plugins.unicorn_engine.Uniwrapper (arch, cache_key, thumb=False)
Bases: Uc

__init__(arch, cache_key, thumb=False)

hook_add (htype, callback, user_data=None, begin=1, end=0, arg1=0)
hook_del (k)

mem_map (addr, size, perms=7)

mem_map_ptr (addr, size, perms, ptr)

mem_unmap (addr, size)

mem_reset()

hook_reset ()

reset()

class angr.state_plugins.unicorn_engine.Unicorn(syscall_hooks=None, cache_key=None,
unicount=None, symbolic_var_counts=None,
symbolic_inst_counts=None, concretized_asts=None,
always_concretize=None, never_concretize=None,
concretize_at=None,
concretization_threshold_memory=None,
concretization_threshold_registers=None,
concretization_threshold_instruction=None,
cooldown_symbolic_stop=2,
cooldown_unsupported_stop=2,
cooldown_nonunicorn_blocks=100,
cooldown_stop_point=1, max_steps=1000000)

Bases: SimStatePlugin

setup the unicorn engine for a state

288 Chapter 10. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.SimplificationAvoidanceAnnotation

angr

UC_CONFIG = {}

__init__(syscall_hooks=None, cache_key=None, unicount=None, symbolic_var_counts=None,
symbolic_inst_counts=None, concretized_asts=None, always_concretize=None,
never_concretize=None, concretize_at=None, concretization_threshold_memory=None,
concretization_threshold_registers=None, concretization_threshold_instruction=None,
cooldown_symbolic_stop=2, cooldown_unsupported_stop=2, cooldown_nonunicorn_blocks=100,
cooldown_stop_point=1, max_steps=1000000)

Initializes the Unicorn plugin for angr. This plugin handles communication with UnicornEngine.

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins

» common_ancestor — a common ancestor of this plugin and the others being merged

10.3. Program State 289

angr

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

set_state(state)
Sets a new state (for example, if the state has been branched)

property uc

static delete_uc()
set_last_block_details (details)
set_stops (stop_points)
set_tracking(track_bbls, track_stack)
hook)
uncache_region (addr, length)
clear_page_cache()

setup (syscall_data=None, fd_bytes=None)
start (step=None)
get_recent_bbl_addrs()
get_stop_details()
finish(succ_state)

destroy (succ_state)

set_regs()

setting unicorn registers

setup_flags()
setup_gdt (fs, gs)
read_msr (msr=3221225728)

write_msr(val, msr=3221225728)

290 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

get_regs (succ_state)

loading registers from unicorn. If succ_state is not None, update it instead of self.state. Needed when
handling symbolic exits in native interface

state: angr.SimState

class angr.state_plugins.loop_data.SimStateLoopData(back_edge_trip_counts=None,
header_trip_counts=None, current_loop=None)

Bases: SimStatePlugin

This class keeps track of loop-related information for states. Note that we have 2 counters for loop iterations
(trip counts): the first recording the number of times one of the back edges (or continue edges) of a loop is
taken, whereas the second recording the number of times the loop header (or loop entry) is executed. These 2
counters may differ since compilers usually optimize loops hence completely change the loop structure at the
binary level. This is supposed to be used with LoopSeer exploration technique, which monitors loop execution.
For the moment, the only thing we want to analyze is loop trip counts, but nothing prevents us from extending
this plugin for other loop analyses.

__init__ (back_edge_trip_counts=None, header_trip_counts=None, current_loop=None)

Parameters

* back_edge_trip_counts — Dictionary that stores back edge based trip counts for each
loop. Keys are address of loop headers.

* header_trip_counts — Dictionary that stores header based trip counts for each loop.
Keys are address of loop headers.

e current_loop — List of currently running loops. Each element is a tuple (loop object, list
of loop exits).

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self. foo.merge(
[0o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

10.3. Program State 291

angr

Parameters
¢ others — the other state plugins to merge with
¢ merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

copy (memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.state_plugins.concrete.Concrete(segment_registers_initialized=False,
segment_registers_callback_initialized=False,
whitelist=None, fs_register_bp=None,
already_sync_objects_addresses=None)
Bases: SimStatePlugin

__init__(segment_registers_initialized=False, segment_registers_callback_initialized=False,
whitelist=None, fs_register_bp=None, already_sync_objects_addresses=None)

copy (_memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

292 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (_others, _merge_conditions, _common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen’ both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(_others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

10.3. Program State 293

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

set_state(state)
Sets a new state (for example, if the state has been branched)

syncQ
Handle the switch between the concrete execution and angr. This method takes care of: 1- Synchronize
registers. 2- Set a concrete target to the memory backer so the memory reads are redirected in the concrete
process memory. 3- If possible restore the SimProcedures with the real addresses inside the concrete pro-

cess. 4- Set an inspect point to sync the segments register as soon as they are read during the symbolic
execution. 5- Flush all the pages loaded until now.

Returns
state: angr.SimState
class angr.state_plugins.javavm_classloader.SimJavaVmClassloader (initialized_classes=None)
Bases: SimStatePlugin
JavaVM Classloader is used as an interface for resolving and initializing Java classes.
__init__ (initialized_classes=None)
get_class(class_name, init_class=Fualse, step_func=None)
Get a class descriptor for the class.
Parameters
¢ class_name (str)— Name of class.
e init_class (bool) — Whether the class initializer <clinit> should be executed.

» step_func (func) — Callback function executed at every step of the simulation manager
during the execution of the main <clinit> method
get_superclass(class_)
Get the superclass of the class.

get_class_hierarchy(base_class)
Walks up the class hierarchy and returns a list of all classes between base class (inclusive) and
java.lang.Object (exclusive).

is_class_initialized(class_)

Indicates whether the classes initializing method <clinit> was already executed on the state.

init_class(class_, step_func=None)

This method simulates the loading of a class by the JVM, during which parts of the class (e.g. static fields)
are initialized. For this, we run the class initializer method <clinit> (if available) and update the state
accordingly.

Note: Initialization is skipped, if the class has already been
initialized (or if it’s not loaded in CLE).
property initialized_classes
List of all initialized classes.

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

294 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

angr

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self. foo.merge(
[0.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

10.3. Program State 295

https://docs.python.org/3/library/functions.html#bool

angr

Return type
bool

state: angr.SimState

class angr.state_plugins.jni_references.SimStateJNIReferences (local_refs=None,
global_refs=None)

Bases: SimStatePlugin
Management of the mapping between opaque JNI references and the corresponding Java objects.
__init__(local_refs=None, global_refs=None)
lookup (opaque_ref)
Lookups the object that was used for creating the reference.
create_new_reference (obj, global_ref=False)
Create a new reference thats maps to the given object.
Parameters
¢ obj — Object which gets referenced.
* global_ref (bool) — Whether a local or global reference is created.

clear_local_references()
Clear all local references.

delete_reference (opaque_ref, global_ref=False)

Delete the stored mapping of a reference.
Parameters
* opaque_ref — Reference which should be removed.
* global_ref (bool)— Whether opaque_ref is a local or global reference.

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

296 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState
class angr.state_plugins.heap.heap_base.SimHeapBase (heap_base=None, heap_size=None)
Bases: SimStatePlugin

This is the base heap class that all heap implementations should subclass. It defines a few handlers for common
heap functions (the libc memory management functions). Heap implementations are expected to override these
functions regardless of whether they implement the SimHeapLibc interface. For an example, see the SimHeapBrk
implementation, which is based on the original libc SimProcedure implementations.

Variables
* heap_base - the address of the base of the heap in memory

* heap_size — the total size of the main memory region managed by the heap in memory

10.3. Program State 297

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

» mmap_base — the address of the region from which large mmap allocations will be made

__init__(Cheap_base=None, heap_size=None)

copy (memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

init_state()

Use this function to perform any initialization on the state at plugin-add time

state: angr.SimState

class angr.state_plugins.heap.heap_brk.SimHeapBrk (heap_base=None, heap_size=None)
Bases: SimHeapBase

SimHeapBrk represents a trivial heap implementation based on the Unix brk system call. This type of heap stores
virtually no metadata, so it is up to the user to determine when it is safe to release memory. This also means that
it does not properly support standard heap operations like realloc.

This heap implementation is a holdover from before any more proper implementations were modelled. At the
time, various libc (or win32) SimProcedures handled the heap in the same way that this plugin does now. To
make future heap implementations plug-and-playable, they should implement the necessary logic themselves, and
dependent SimProcedures should invoke a method by the same name as theirs (prepended with an underscore)
upon the heap plugin. Depending on the heap implementation, if the method is not supported, an error should
be raised.

Out of consideration for the original way the heap was handled, this plugin implements functionality for all rele-
vant SimProcedures (even those that would not normally be supported together in a single heap implementation).

Variables
heap_location - the address of the top of the heap, bounding the allocations made starting
from heap_base

__init__(heap_base=None, heap_size=None)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

298 Chapter 10. API Reference

angr

allocate(sim_size)

The actual allocation primitive for this heap implementation. Increases the position of the break to allocate
space. Has no guards against the heap growing too large.

Parameters
sim_size — a size specifying how much to increase the break pointer by

Returns
a pointer to the previous break position, above which there is now allocated space

release (sim_size)

The memory release primitive for this heap implementation. Decreases the position of the break to deallo-
cate space. Guards against releasing beyond the initial heap base.

Parameters
sim_size — a size specifying how much to decrease the break pointer by (may be symbolic
or not)

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self. foo.merge(
[0o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others - the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

10.3. Program State 299

https://docs.python.org/3/library/functions.html#bool

angr

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState
class angr.state_plugins.heap.heap_freelist.Chunk(base, sim_state)
Bases: object

The sort of chunk as would typically be found in a freelist-style heap implementation. Provides a representation
of a chunk via a view into the memory plugin. Chunks may be adjacent, in different senses, to as many as four
other chunks. For any given chunk, two of these chunks are adjacent to it in memory, and are referred to as the
“previous” and “next” chunks throughout this implementation. For any given free chunk, there may also be two
significant chunks that are adjacent to it in some linked list of free chunks. These chunks are referred to the
“backward” and “foward” chunks relative to the chunk in question.

Variables
* base — the location of the base of the chunk in memory
* state — the program state that the chunk is resident in
__init__(base, sim_state)
get_size()
Returns the actual size of a chunk (as opposed to the entire size field, which may include some flags).
get_data_size()
Returns the size of the data portion of a chunk.
set_size(size)
Sets the size of the chunk, preserving any flags.
data_ptr(Q)
Returns the address of the payload of the chunk.
is_free()
Returns a concrete determination as to whether the chunk is free.
next_chunk()
Returns the chunk immediately following (and adjacent to) this one.
prev_chunk ()
Returns the chunk immediately prior (and adjacent) to this one.

fwd_chunk)

Returns the chunk following this chunk in the list of free chunks.

300 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

set_fwd_chunk (fwd)
Sets the chunk following this chunk in the list of free chunks.

Parameters
fwd — the chunk to follow this chunk in the list of free chunks

bck_chunk ()

Returns the chunk backward from this chunk in the list of free chunks.

set_bck_chunk (bck)

Sets the chunk backward from this chunk in the list of free chunks.

Parameters
bck — the chunk to precede this chunk in the list of free chunks

class angr.state_plugins.heap.heap_freelist.SimHeapFreelist (heap_base=None, heap_size=None)
Bases: SimHeapLibc

A freelist-style heap implementation. Distinguishing features of such heaps include chunks containing heap
metadata in addition to user data and at least (but often more than) one linked list of free chunks.

chunks)

Returns an iterator over all the chunks in the heap.

allocated_chunks()

Returns an iterator over all the allocated chunks in the heap.

free_chunks ()

Returns an iterator over all the free chunks in the heap.

chunk_from_mem (pr)

Given a pointer to a user payload, return the chunk associated with that payload.

Parameters
ptr — a pointer to the base of a user payload in the heap

Returns
the associated heap chunk

print_heap_state()
print_all_chunks()
state: angr.SimState
class angr.state_plugins.heap.heap_libc.SimHeapLibc (heap_base=None, heap_size=None)
Bases: SimHeapBase

A class of heap that implements the major libc heap management functions.

malloc(sim_size)

A somewhat faithful implementation of libc malloc.

Parameters
sim_size — the amount of memory (in bytes) to be allocated

Returns
the address of the allocation, or a NULL pointer if the allocation failed

10.3. Program State 301

angr

free(ptr)

A somewhat faithful implementation of libc free.

Parameters
ptr — the location in memory to be freed

calloc(sim_nmemb, sim_size)

A somewhat faithful implementation of libc calloc.
Parameters
e sim_nmemb — the number of elements to allocated
* sim_size — the size of each element (in bytes)

Returns
the address of the allocation, or a NULL pointer if the allocation failed

realloc(prr, size)

A somewhat faithful implementation of libc realloc.
Parameters
e ptr — the location in memory to be reallocated
¢ size - the new size desired for the allocation

Returns
the address of the allocation, or a NULL pointer if the allocation was freed or if no new
allocation was made

state: angr.SimState
angr.state_plugins.heap.heap_ptmalloc.silence_logger()
angr.state_plugins.heap.heap_ptmalloc.unsilence_logger (level)
class angr.state_plugins.heap.heap_ptmalloc.PTChunk (base, sim_state, heap=None)

Bases: Chunk

A chunk, inspired by the implementation of chunks in ptmalloc. Provides a representation of a chunk
via a view into the memory plugin. For the chunk definitions and docs that this was loosely based
off of, see glibc malloc/malloc.c, line 1033, as of commit 5a580643111ef6081be7b4c7bd1997a5447c903f.
Alternatively, take the following link. https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=
67cdfd0ad2f003964cd0f7dfe3bcd85ca98528a7;hb=5a580643111ef6081be7b4c7bd1997a5447c903#11033

Variables
* base — the location of the base of the chunk in memory
* state — the program state that the chunk is resident in
* heap - the heap plugin that the chunk is managed by
__init__(base, sim_state, heap=None)
get_size()
Returns the actual size of a chunk (as opposed to the entire size field, which may include some flags).

get_data_size()

Returns the size of the data portion of a chunk.

302 Chapter 10. API Reference

https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=67cdfd0ad2f003964cd0f7dfe3bcd85ca98528a7;hb=5a580643111ef6081be7b4c7bd1997a5447c903f#l1033
https://sourceware.org/git/?p=glibc.git;a=blob;f=malloc/malloc.c;h=67cdfd0ad2f003964cd0f7dfe3bcd85ca98528a7;hb=5a580643111ef6081be7b4c7bd1997a5447c903f#l1033

angr

set_size(size, is_free=None)

Use this to set the size on a chunk. When the chunk is new (such as when a free chunk is shrunk to form an
allocated chunk and a remainder free chunk) it is recommended that the is_free hint be used since setting
the size depends on the chunk’s freeness, and vice versa.

Parameters
* size - size of the chunk
* is_free - boolean indicating the chunk’s freeness

set_prev_freeness(is_free)
Sets (or unsets) the flag controlling whether the previous chunk is free.

Parameters
is_free —if True, sets the previous chunk to be free; if False, sets it to be allocated

is_prev_£free()

Returns a concrete state of the flag indicating whether the previous chunk is free or not. Issues a warning
if that flag is symbolic and has multiple solutions, and then assumes that the previous chunk is free.

Returns
True if the previous chunk is free; False otherwise

prev_size()

Returns the size of the previous chunk, masking off what would be the flag bits if it were in the actual size
field. Performs NO CHECKING to determine whether the previous chunk size is valid (for example, when
the previous chunk is not free, its size cannot be determined).

is_free()

Returns a concrete determination as to whether the chunk is free.
data_ptr(Q)

Returns the address of the payload of the chunk.
next_chunk()

Returns the chunk immediately following (and adjacent to) this one, if it exists.

Returns
The following chunk, or None if applicable

prev_chunk ()

Returns the chunk immediately prior (and adjacent) to this one, if that chunk is free. If the prior chunk is
not free, then its base cannot be located and this method raises an error.

Returns
If possible, the previous chunk; otherwise, raises an error

fwd_chunk

Returns the chunk following this chunk in the list of free chunks. If this chunk is not free, then it resides in
no such list and this method raises an error.

Returns
If possible, the forward chunk; otherwise, raises an error

set_fwd_chunk (fwd)
Sets the chunk following this chunk in the list of free chunks.

Parameters
fwd — the chunk to follow this chunk in the list of free chunks

10.3. Program State 303

angr

bck_chunk)

Returns the chunk backward from this chunk in the list of free chunks. If this chunk is not free, then it
resides in no such list and this method raises an error.

Returns
If possible, the backward chunk; otherwise, raises an error

set_bck_chunk (bck)
Sets the chunk backward from this chunk in the list of free chunks.

Parameters
bck — the chunk to precede this chunk in the list of free chunks

class angr.state_plugins.heap.heap_ptmalloc.PTChunkIterator (chunk, cond=<function
PTChunklterator.<lambda>>)

Bases: object
__init__ (chunk, cond=<function PTChunklterator.<lambda>>)

class angr.state_plugins.heap.heap_ptmalloc.SimHeapPTMalloc (heap_base=None, heap_size=None)
Bases: SimHeapFreelist

A freelist-style heap implementation inspired by ptmalloc. The chunks used by this heap contain heap metadata
in addition to user data. While the real-world ptmalloc is implemented using multiple lists of free chunks (corre-
sponding to their different sizes), this more basic model uses a single list of chunks and searches for free chunks
using a first-fit algorithm.

NOTE: The plugin must be registered using register_plugin with name heap in order to function properly.
Variables
» heap_base - the address of the base of the heap in memory
* heap_size — the total size of the main memory region managed by the heap in memory
» mmap_base — the address of the region from which large mmap allocations will be made
» free_head_chunk - the head of the linked list of free chunks in the heap
__init__ (heap_base=None, heap_size=None)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

chunks ()

Returns an iterator over all the chunks in the heap.

allocated_chunks ()
Returns an iterator over all the allocated chunks in the heap.

304 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

free_chunks ()

Returns an iterator over all the free chunks in the heap.

chunk_from_mem (pzr)
Given a pointer to a user payload, return the base of the chunk associated with that payload (i.e. the chunk
pointer). Returns None if ptr is null.

Parameters
ptr — a pointer to the base of a user payload in the heap

Returns
a pointer to the base of the associated heap chunk, or None if ptr is null

malloc(sim_size)

A somewhat faithful implementation of libc malloc.

Parameters
sim_size — the amount of memory (in bytes) to be allocated

Returns
the address of the allocation, or a NULL pointer if the allocation failed

free(ptr)

A somewhat faithful implementation of libc free.

Parameters
ptr — the location in memory to be freed

calloc(sim_nmemb, sim_size)

A somewhat faithful implementation of libc calloc.
Parameters
¢ sim_nmemb — the number of elements to allocated
¢ sim_size — the size of each element (in bytes)

Returns
the address of the allocation, or a NULL pointer if the allocation failed
realloc(ptr, size)

A somewhat faithful implementation of libc realloc.
Parameters
e ptr — the location in memory to be reallocated
¢ size - the new size desired for the allocation

Returns
the address of the allocation, or a NULL pointer if the allocation was freed or if no new
allocation was made

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

10.3. Program State 305

angr

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

init_stateQ
Use this function to perform any initialization on the state at plugin-add time

state: angr.SimState

angr.state_plugins.heap.utils.concretize(x, solver, sym_handler)

For now a lot of naive concretization is done when handling heap metadata to keep things manageable. This
idiom showed up a lot as a result, so to reduce code repetition this function uses a callback to handle the one or
two operations that varied across invocations.

Parameters
¢ X — the item to be concretized

* solver — the solver to evaluate the item with

306 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

» sym_handler — the handler to be used when the item may take on more than one value

Returns
a concrete value for the item

class angr.state_plugins.symbolizer.SimSymbolizer
Bases: SimStatePlugin

The symbolizer state plugin ensures that pointers that are stored in memory are symbolic. This allows for the
tracking of and reasoning over these pointers (for example, to reason about memory disclosure).

__init__QO
init_state()
Use this function to perform any initialization on the state at plugin-add time

set_symbolization_for_all_pages()

Sets the symbolizer to symbolize pointers to all pages as they are written to memory..

set_symbolized_target_range (base, length)

All pointers to the target range will be symbolized as they are written to memory.

Due to optimizations, the _pages_ containing this range will be set as symbolization targets, not just the
range itself.

resymbolize()

Re-symbolizes all pointers in memory. This can be called to symbolize any pointers to target regions that
were written (and not mangled beyond recognition) before symbolization was set.

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState
class angr.state_plugins.debug_variables.SimDebugVariable (state, addr, var_type)
Bases: object

A SimDebugVariable will get dynamically created when queriyng for variable in a state with the SimDebug Vari-
ablePlugin. It features a link to the state, an address and a type.

Parameters
* state (SimState) —
e var_type (VariableType) —
__init__(state, addr, var_type)
Parameters

* state (SimState) —

10.3. Program State 307

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable_type.VariableType

angr

e var_type (VariableType) —

static from_cle_variable(state, cle_variable, dwarf_cfa)

Return type
SimDebugVariable

Parameters
* state (SimState) —
¢ cle_variable (Variable) —

property mem_untyped: SimMemView
property mem: SimMemView
property string: SimMemView
with_type(sim_type)

Return type
SimMemView

Parameters
sim_type (SimType) —

property resolvable

property resolved

property concrete

store (value)

property deref: SimDebugVariable
array (i)

Return type
SimDebugVariable

member (member_name)

Return type
SimDebugVariable

Parameters
member_name (str) —

class angr.state_plugins.debug_variables.SimDebugVariablePlugin
Bases: SimStatePlugin
This is the plugin you’ll use to interact with (global/local) program variables. These variables have a name and a
visibility scope which depends on the pc address of the state. With this plugin, you can access/modify the value

of such variable or find its memory address. For creating program varibles, or for importing them from cle, see
the knowledge plugin debug_variables. Run p.kb.dvars.load_from_dwarf() before using this plugin.

308 Chapter 10. API Reference

https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable_type.VariableType
https://docs.angr.io/projects/cle/en/latest/api/backends/elf.html#cle.backends.elf.variable.Variable
https://docs.python.org/3/library/stdtypes.html#str

angr

Example

>>> p = angr.Project("various_variables", load_debug_info=True)
>>> p.kb.dvars.load_from_dwarf()

>>> state = # navigate to the state you want

>>> state.dvars.get_variable("'pointer2").deref.mem

<int (32 bits) <BV32 0x1> at 0x404020>

get_variable (var_name)
Returns the visible variable (if any) with name var_name based on the current state.ip.

Return type
SimDebugVariable

Parameters
var_name (str) —
property dwarf_cfa

Returns the current cfa computation. Set this property to the correct value if needed.

property dwarf_cfa_approx

state: angr.SimState

10.4 Storage

class angr.state_plugins.view.SimRegNameView
Bases: SimStatePlugin

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

10.4. Storage 309

https://docs.python.org/3/library/stdtypes.html#str

angr

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
¢ merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

get (reg_name)
state: angr.SimState
class angr.state_plugins.view.SimMemView(ty=None, addr=None, state=None)
Bases: SimStatePlugin
This is a convenient interface with which you can access a program’s memory.
The interface works like this:
* You first use [array index notation] to specify the address you’d like to load from

« If at that address is a pointer, you may access the deref property to return a SimMemView at the address
present in memory.

* You then specify a type for the data by simply accesing a property of that name. For a list of supported
types, look at state.mem. types.

310 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

* You can then refine the type. Any type may support any refinement it likes. Right now the only refinements
supported are that you may access any member of a struct by its member name, and you may index into a
string or array to access that element.

« If the address you specified initially points to an array of that type, you can say .array(n) to view the data
as an array of n elements.

* Finally, extract the structured data with .resolvedor .concrete. .resolved will return bitvector values,
while . concrete will return integer, string, array, etc values, whatever best represents the data.

* Alternately, you may store a value to memory, by assigning to the chain of properties that you’ve con-
structed. Note that because of the way python works, x = s.mem[...].prop; x = val will NOT work,
you must say s.mem[...].prop = val.

For example:

(>>> s.mem[0x601048].1long

<long (64 bits) <BV64 0x4008d0> at 0x601048>
>>> s.mem[0x601048] .1long.resolved

<BV64 0x4008d0>

>>> s.mem[0x601048] .deref

<<untyped> <unresolvable> at 0x4008d0>

>>> s.mem[0x601048] .deref.string.concrete
'SOSNEAKY '

L

Parameters
state (SimState) —

__init__ (ty=None, addr=None, state=None)

set_state(state)

Sets a new state (for example, if the state has been branched)

10.4. Storage 311

angr

types = {'CharT': char, 'FILE_t': struct FILE_t, '_Bool': bool, '_ENTRY': struct
_ENTRY, '_IO_codecvt': struct _IO_codecvt, '_IO_iconv_t': struct _IO_iconv_t,
'_T0_lock_t': struct pthread_mutex_t, '_IO_marker': struct _IO_marker,

'_IO_wide_data': struct _IO_wide_data, '__clock_t': wuint32_t, '__dev_t':

uint64_t, '__gid_t': wunsigned int, '__ino64_t': unsigned long long, '__ino_t':
unsigned long, '__intl128': intl28_t, '__int256': int256_t, '__mbstate_t': struct
__mbstate_t, '__mode_t': wunsigned int, '__nlink_t': wunsigned int, '__off64_t':
long long, '__off t': 1long, '__pid_t': int, '__suseconds_t': int64_t, '__time_t"':
long, '__uid_t': wunsigned int, '_obstack_chunk': struct _obstack_chunk, 'aiocb':
struct aiocb, 'aiocb64': struct aiocb64, 'aioinit': struct aioinit, 'argp':

struct argp, 'argp_child': struct argp_child, 'argp_option': struct argp_option,
'argp_parser_t': (int, char*, struct argp_state*) -> int, 'argp_state': struct

argp_state, 'basic_string': string_t, 'bool': bool, 'byte': wuint8_t, 'cc_t':
char, 'char': char, 'clock_t': wuint32_t, 'crypt_data': struct crypt_data,

'dirent': struct dirent, 'dirent64': struct dirent64, 'double': double,
'drand48_data': struct <anon>, 'dword': uint32_t, 'error_t': int, 'exit_status':
struct exit_status, 'float': float, 'fstab': struct fstab, 'group': struct group,
'hostent': struct hostent, 'hsearch_data': struct hsearch_data, 'if_nameindex':
struct if_nameindex, 'in_addr': struct in_addr, 'in_port_t': uintl6_t, 'ino64_t':
unsigned long long, 'ino_t': wunsigned long, 'int': int, 'intl6_t': intlé6_t,
'int32_t': int32_t, 'int64_t': int64_t, 'int8_t': int8_t, 'iovec': struct
<anon>, 'itimerval': struct itimerval, 'lconv': struct lconv, 'long': 1long, 'long

double': double, 'long int': 1long, 'long long': 1long long, 'long long int': long
long, 'long signed': long, 'long unsigned int': wunsigned long, 'mallinfo': struct

mallinfo, 'mallinfo2': struct mallinfo2, 'mntent': struct mntent, 'netent':
struct netent, 'ntptimeval': struct ntptimeval, 'obstack': struct obstack,
'off64_t': 1long long, 'off_t': 1long, 'option': struct option, 'passwd': struct
passwd, 'pid_t': int, 'printf info': struct printf_info, 'protoent': struct

protoent, 'ptrdiff_t': long, 'qword': wuint64_t, 'random_data': struct <anon>,
'rlim64_t': uint64_t, 'rlim_t': wunsigned long, 'rlimit': struct rlimit,
'rlimit64': struct rlimit64, 'rusage': struct rusage, 'sa_family_t': unsigned
short, 'sched_param': struct sched_param, 'sembuf': struct sembuf, 'servent':
struct servent, 'sgttyb': struct sgttyb, 'short': short, 'short int': short,
'sigevent': struct sigevent, 'signed': int, 'signed char': char, 'signed int':
int, 'signed long': 1long, 'signed long int': long, 'signed long long': 1long long,
'signed long long int': 1long long, 'signed short': short, 'signed short int':
short, 'sigstack': struct sigstack, 'sigval': wunion sigval { sival_int int;
sival_ptr void*; }, 'size_t': size_t, 'sockaddr': struct sockaddr, 'sockaddr_in':
struct sockaddr_in, 'speed_t': long, 'ssize': size_t, 'ssize_t': size_t, 'stat':
struct stat, 'stat64': struct stat64, 'string': string_t, 'struct iovec': struct
iovec, 'struct timespec': struct timespec, 'struct timeval': struct timeval,
'tcflag_t': wunsigned long, 'termios': struct termios, 'time_t': long, 'timespec':
struct timeval, 'timeval': struct timeval, 'timex': struct timex, 'timezone':
struct timezone, 'tm': struct tm, 'tms': struct tms, 'uintl6_t': uintlé_t,
'uint32_t': wuint32_t, 'uint64_t': wuint64_t, 'uint8_t': wuint8_t, 'uintptr_t':
unsigned long, 'unsigned': unsigned int, 'unsigned __int128': uintl128_t, 'unsigned

__int256': uint256_t, 'unsigned char': char, 'unsigned int': unsigned int,
'unsigned long': unsigned long, 'unsigned long int': unsigned long, 'unsigned long
long': unsigned long long, 'unsigned long long int': unsigned long long, 'unsigned
short': wunsigned short, 'unsigned short int': wunsigned short, 'utimbuf': struct
utimbuf, 'utmp': struct utmp, 'utmpx': struct utmx, 'utsname': struct utsname,
'va_list': struct va_list[1], 'void': void, 'vtimes': struct vtimes, 'wchar_t':
short, 'winsize': struct winsize, 'word': wuintl6_t, 'wstring': wstring_t}

312

Chapter 10. API Reference

angr

state: angr.SimState = None
struct: StructMode

with_type(sim_type)
Returns a copy of the SimMemView with a type.

Parameters
sim_type (SimType) — The new type.

Return type
SimMemView

Returns
The typed SimMemView copy.

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters

10.4. Storage 313

angr

 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen(others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

property resolvable
property resolved

property concrete

property deref: SimMemView
array(n)

Return type
SimMemView

member (member_name)

If self is a struct and member_name is a member of the struct, return that member element. Otherwise raise
an exception.

Return type
SimMemView

Parameters
member_name (str) —

store (value)
class angr.state_plugins.view.StructMode (view)
Bases: object
__init__(view)
class angr.storage.file.Flags
Bases: object

O_RDONLY = 0

O_WRONLY =1

314 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

O_RDWR = 2
O_ACCMODE = 3
O_APPEND = 1024
O_ASYNC = 8192
O_CLOEXEC = 524288
O_CREAT = 64
O_DIRECT = 16384
O_DIRECTORY = 65536
O_DSYNC = 4096
O_EXCL = 128
O_LARGEFILE = 32768
O_NOATIME = 262144
O_NOCTTY = 256

O_NOFOLLOW = 131072

O_NONBLOCK = 2048

O_NDELAY = 2048

O_PATH = 2097152

O_SYNC = 1052672

O_TMPFILE = 4259840

O_TRUNC = 512

class angr.storage.file.SimFileBase (name=None, writable=True, ident=None, concrete=Fulse,

file_exists=True, **kwargs)
Bases: SimStatePlugin
SimFiles are the storage mechanisms used by SimFileDescriptors.

Different types of SimFiles can have drastically different interfaces, and as a result there’s not much that can
be specified on this base class. All the read and write methods take a pos argument, which may have different
semantics per-class. 0 will always be a valid position to use, though, and the next position you should use is part
of the return tuple.

Some simfiles are “streams”, meaning that the position that reads come from is determined not by the position
you pass in (it will in fact be ignored), but by an internal variable. This is stored as .pos if you care to read it.
Don’t write to it. The same lack-of-semantics applies to this field as well.

Variables
* name — The name of the file. Purely for cosmetic purposes

 ident - The identifier of the file, typically autogenerated from the name and a nonce. Purely
for cosmetic purposes, but does appear in symbolic values autogenerated in the file.

10.4.

Storage 315

angr

» seekable - Bool indicating whether seek operations on this file should succeed. If this is
True, then pos must be a number of bytes from the start of the file.

» writable — Bool indicating whether writing to this file is allowed.
* pos — If the file is a stream, this will be the current position. Otherwise, None.

» concrete — Whether or not this file contains mostly concrete data. Will be used by some
SimProcedures to choose how to handle variable-length operations like fgets.

» file_exists — Set to False, if file does not exists, set to a claripy Bool if unknown, default
True.

seekable = False

pos = None

__init__(name=None, writable=True, ident=None, concrete=False, file_exists=True, **kwargs)
static make_ident (name)

concretize (**kwargs)

Return a concretization of the contents of the file. The type of the return value of this method will vary
depending on which kind of SimFile you’re using.

read(pos, size, **kwargs)
Read some data from the file.

Parameters
¢ pos — The offset in the file to read from.
» size — The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.

write(pos, data, size=None, **kwargs)
Write some data to the file.
Parameters
» pos — The offset in the file to write to. May be ignored if the file is a stream or device.
¢ data - The data to write as a bitvector

» size — The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.
property size
The number of data bytes stored by the file at present. May be a symbolic value.

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

316 Chapter 10. API Reference

angr

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.file.SimFile (name=None, content=None, size=None, has_end=None, seekable=True,
writable=True, ident=None, concrete=None, **kwargs)

Bases: SimFileBase, DefaultMemory

The normal SimFile is meant to model files on disk. It subclasses SimSymbolicMemory so loads and stores
to/from it are very simple.

Parameters
* name — The name of the file
» content — Optional initial content for the file as a string or bitvector
» size - Optional size of the file. If content is not specified, it defaults to zero

* has_end — Whether the size boundary is treated as the end of the file or a frontier at
which new content will be generated. If unspecified, will pick its value based on op-
tions.FILES_HAVE_EOF. Another caveat is that if the size is also unspecified this value
will default to False.

» seekable — Optional bool indicating whether seek operations on this file should succeed,
default True.

» writable — Whether writing to this file is allowed

* concrete — Whether or not this file contains mostly concrete data. Will be used by some
SimProcedures to choose how to handle variable-length operations like fgets.

Variables
has_end — Whether this file has an EOF

__init__ (name=None, content=None, size=None, has_end=None, seekable=True, writable=True,
ident=None, concrete=None, **kwargs)

property category
reg, mem, or file.
Type

Return the category of this SimMemory instance. It can be one of the three following cate-
gories

set_state(state)

Sets a new state (for example, if the state has been branched)
property size

The number of data bytes stored by the file at present. May be a symbolic value.
concretize (**kwargs)

Return a concretization of the contents of the file, as a flat bytestring.
read(pos, size, **kwargs)

Read some data from the file.

10.4. Storage 317

angr

Parameters
¢ pos — The offset in the file to read from.
¢ size - The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.
write(pos, data, size=None, events=True, **kwargs)

Write some data to the file.
Parameters
* pos — The offset in the file to write to. May be ignored if the file is a stream or device.
 data - The data to write as a bitvector

¢ size — The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self. foo.merge(
[0o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

318 Chapter 10. API Reference

angr

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen()

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState
class angr.storage.file.SimFileStream(name=None, content=None, pos=0, **kwargs)
Bases: SimFile
A specialized SimFile that uses a flat memory backing, but functions as a stream, tracking its position internally.

The pos argument to the read and write methods will be ignored, and will return None. Instead, there is an
attribute pos on the file itself, which will give you what you want.

Parameters
* name — The name of the file, for cosmetic purposes
* pos — The initial position of the file, default zero
» kwargs — Any other keyword arguments will go on to the SimFile constructor.

Variables
pos — The current position in the file.

__init__ (name=None, content=None, pos=0, **kwargs)
set_state(state)
Sets a new state (for example, if the state has been branched)

read(pos, size, **kwargs)
Read some data from the file.

Parameters

10.4. Storage 319

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

¢ pos — The offset in the file to read from.
¢ size - The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.
write(_, data, size=None, **kwargs)
Write some data to the file.

Parameters
» pos — The offset in the file to write to. May be ignored if the file is a stream or device.
* data — The data to write as a bitvector

» size — The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

320 Chapter 10. API Reference

angr

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others - the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

state: angr.SimState

class angr.storage.file.SimPackets (name, write_mode=None, content=None, writable=True, ident=None,
**kwargs)

Bases: SimFileBase

The SimPackets is meant to model inputs whose content is delivered a series of asynchronous chunks. The data
is stored as a list of read or write results. For symbolic sizes, state.libc.max_packet_size will be respected. If the
SHORT_READS option is enabled, reads will return a symbolic size constrained to be less than or equal to the
requested size.

A SimPackets cannot be used for both reading and writing - for socket objects that can be both read and writ-
ten to you should use a file descriptor to multiplex the read and write operations into two separate file storage
mechanisms.

Parameters
* name — The name of the file, for cosmetic purposes

* write_mode — Whether this file is opened in read or write mode. If this is unspecified it will
be autodetected.

* content — Some initial content to use for the file. Can be a list of bytestrings or a list of
tuples of content ASTs and size ASTs.

Variables
* write_mode — See the eponymous parameter
* content — A list of packets, as tuples of content ASTs and size ASTs.
__init__ (name, write_mode=None, content=None, writable=True, ident=None, **kwargs)
set_state(state)
Sets a new state (for example, if the state has been branched)

property size
The number of data bytes stored by the file at present. May be a symbolic value.

concretize (**kwargs)

Returns a list of the packets read or written as bytestrings.

read(pos, size, **kwargs)
Read a packet from the stream.

Parameters

10.4. Storage 321

https://docs.python.org/3/library/functions.html#bool

angr

* pos (int) — The packet number to read from the sequence of the stream. May be None to
append to the stream.

» size — The size to read. May be symbolic.

» short_reads — Whether to replace the size with a symbolic value constrained to less than
or equal to the original size. If unspecified, will be chosen based on the state option.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read) and
the actual size of the read.
write(pos, data, size=None, events=True, **kwargs)

Write a packet to the stream.
Parameters

* pos (int) — The packet number to write in the sequence of the stream. May be None to
append to the stream.

» data - The data to write, as a string or bitvector.

» size — The optional size to write. May be symbolic; must be constrained to at most the
size of data.

Returns
The next packet to use after this

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,

(continues on next page)

322

Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

(continued from previous page)

common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen()

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.storage.file.SimPacketsStream(name, pos=0, **kwargs)
Bases: SimPackets
A specialized SimPackets that tracks its position internally.

The pos argument to the read and write methods will be ignored, and will return None. Instead, there is an
attribute pos on the file itself, which will give you what you want.

Parameters
* name — The name of the file, for cosmetic purposes
* pos — The initial position of the file, default zero
* kwargs — Any other keyword arguments will go on to the SimPackets constructor.

Variables
pos — The current position in the file.

__init__(name, pos=0, **kwargs)

10.4. Storage 323

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

read(pos, size, **kwargs)

Read a packet from the stream.
Parameters

* pos (int) — The packet number to read from the sequence of the stream. May be None to
append to the stream.

» size - The size to read. May be symbolic.

» short_reads — Whether to replace the size with a symbolic value constrained to less than
or equal to the original size. If unspecified, will be chosen based on the state option.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read) and
the actual size of the read.
write(_, data, size=None, **kwargs)

Write a packet to the stream.
Parameters

* pos (int) — The packet number to write in the sequence of the stream. May be None to
append to the stream.

» data — The data to write, as a string or bitvector.

¢ size — The optional size to write. May be symbolic; must be constrained to at most the
size of data.

Returns
The next packet to use after this

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

324

Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
¢ merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

state: angr.SimState
class angr.storage.file.SimFileDescriptorBase
Bases: SimStatePlugin
The base class for implementations of POSIX file descriptors.
All file descriptors should respect the CONCRETIZE_SYMBOLIC_{READ,WRITE}_SIZES state options.

read(pos, size, **kwargs)
Reads some data from the file, storing it into memory.

Parameters
¢ pos — The address to read data from file
» size — The requested length of the read

Returns
The real length of the read

write(pos, size, **kwargs)

Writes some data, loaded from the state, into the file.
Parameters
* pos — The address to read the data to write from in memory
¢ size - The requested size of the write

Returns
The real length of the write

read_data(size, **kwargs)

Reads some data from the file, returning the data.

10.4. Storage 325

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
size — The requested length of the read

Returns
A tuple of the data read and the real length of the read

write_data(data, size=None, **kwargs)
Write some data, provided as an argument into the file.
Parameters
« data - A bitvector to write into the file
¢ size - The requested size of the write (may be symbolic)

Returns
The real length of the write

seek (offset, whence='start")
Seek the file descriptor to a different position in the file.

Parameters

» offset — The offset to seek to, interpreted according to whence

9% ¢

* whence — What the offset is relative to; one of the strings “start”, “current”, or “end”

Returns
A symbolic boolean describing whether the seek succeeded or not

tell)
Return the current position, or None if the concept doesn’t make sense for the given file.

eof O
Return the EOF status. May be a symbolic boolean.

size()

Return the size of the data stored in the file in bytes, or None if the concept doesn’t make sense for the given
file.

property read_storage

Return the SimFile backing reads from this fd
property write_storage

Return the SimFile backing writes to this fd
property read_pos

Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

property write_pos
Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

concretize (**kwargs)

Return a concretizeation of the data in the underlying file. Has different return types to represent different
data structures on a per-class basis.

Any arguments passed to this will be passed onto state.solver.eval.

326 Chapter 10. API Reference

angr

property file_exists

This should be True in most cases. Only if we opened an fd of unknown existence, ALL_FILES_EXIST is
False and ANY_FILE_MIGHT_EXIST is True, this is a symbolic boolean.

state: angr.SimState
class angr.storage.file.SimFileDescriptor (simfile, flags=0)
Bases: SimFileDescriptorBase

A simple file descriptor forwarding reads and writes to a SimFile. Contains information about the current opened
state of the file, such as the flags or (if relevant) the current position.

Variables
» file - The SimFile described to by this descriptor
» flags — The mode that the file descriptor was opened with, a bitfield of flags
__init__(simfile, flags=0)
read_data(size, **kwargs)
Reads some data from the file, returning the data.

Parameters
size — The requested length of the read

Returns
A tuple of the data read and the real length of the read

write_data(data, size=None, **kwargs)
Write some data, provided as an argument into the file.
Parameters
» data — A bitvector to write into the file
» size - The requested size of the write (may be symbolic)

Returns
The real length of the write

seek (offset, whence='start")
Seek the file descriptor to a different position in the file.

Parameters

» offset — The offset to seek to, interpreted according to whence

LEINTS

* whence — What the offset is relative to; one of the strings “start”, “current”, or “end”

Returns
A symbolic boolean describing whether the seek succeeded or not

eof O
Return the EOF status. May be a symbolic boolean.

tell
Return the current position, or None if the concept doesn’t make sense for the given file.
size()

Return the size of the data stored in the file in bytes, or None if the concept doesn’t make sense for the given
file.

10.4. Storage 327

angr

concretize (**kwargs)

Return a concretization of the underlying file. Returns whatever format is preferred by the file.

property file_exists
This should be True in most cases. Only if we opened an fd of unknown existence, ALL_FILES_EXIST is
False and ANY_FILE_MIGHT_EXIST is True, this is a symbolic boolean.

property read_storage
Return the SimFile backing reads from this fd

property write_storage
Return the SimFile backing writes to this fd

property read_pos
Return the current position of the read file pointer.
If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.
property write_pos
Return the current position of the read file pointer.
If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.
set_state(state)
Sets a new state (for example, if the state has been branched)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

328

Chapter 10. API Reference

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
¢ merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen()

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState
class angr.storage.file.SimFileDescriptorDuplex(read._file, write_file)
Bases: SimFileDescriptorBase

A file descriptor that refers to two file storage mechanisms, one to read from and one to write to. As a result,
operations like seek, eof, etc no longer make sense.

Parameters
» read_file — The SimFile to read from
» write_file — The SimFile to write to
__init__(read_file, write_file)
read_data(size, **kwargs)
Reads some data from the file, returning the data.

Parameters
size — The requested length of the read

10.4. Storage 329

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Returns
A tuple of the data read and the real length of the read

write_data(data, size=None, **kwargs)
Write some data, provided as an argument into the file.
Parameters
¢ data — A bitvector to write into the file
» size — The requested size of the write (may be symbolic)

Returns
The real length of the write

set_state(state)

Sets a new state (for example, if the state has been branched)

eof O
Return the EOF status. May be a symbolic boolean.

tell
Return the current position, or None if the concept doesn’t make sense for the given file.

seek (offset, whence='start")
Seek the file descriptor to a different position in the file.

Parameters

¢ offset — The offset to seek to, interpreted according to whence

99 ¢

* whence — What the offset is relative to; one of the strings “start”, “current”, or “end”

Returns
A symbolic boolean describing whether the seek succeeded or not
size()
Return the size of the data stored in the file in bytes, or None if the concept doesn’t make sense for the given
file.
concretize (**kwargs)
Return a concretization of the underlying files, as a tuple of (read file, write file).

property read_storage

Return the SimFile backing reads from this fd
property write_storage

Return the SimFile backing writes to this fd

property read_pos
Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

property write_pos
Return the current position of the read file pointer.

If the underlying read file is a stream, this will return the position of the stream. Otherwise, will return the
position of the file descriptor in the file.

330 Chapter 10. API Reference

angr

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen()

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

10.4. Storage 331

https://docs.python.org/3/library/functions.html#bool

angr

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

class angr.storage.file.SimPacketsSlots(name, read_sizes, ident=None, **kwargs)
Bases: SimFileBase
SimPacketsSlots is the new SimDialogue, if you’ve ever seen that before.

The idea is that in some cases, the only thing you really care about is getting the lengths of reads right, and some
of them should be short reads, and some of them should be truncated. You provide to this class a list of read
lengths, and it figures out the length of each read, and delivers some content.

This class will NOT respect the position argument you pass it - this storage is not stateless.

seekable = False
__init__(name, read_sizes, ident=None, **kwargs)

concretize (**kwargs)

Return a concretization of the contents of the file. The type of the return value of this method will vary
depending on which kind of SimFile you’re using.

read(pos, size, **kwargs)
Read some data from the file.

Parameters
¢ pos — The offset in the file to read from.
» size — The size to read. May be symbolic.

Returns
A tuple of the data read (a bitvector of the length that is the maximum length of the read), the
actual size of the read, and the new file position pointer.

write(pos, data, size=None, **kwargs)
Write some data to the file.

Parameters
» pos — The offset in the file to write to. May be ignored if the file is a stream or device.
¢ data - The data to write as a bitvector

* size — The optional size of the data to write. If not provided will default to the length of
the data. Must be constrained to less than or equal to the size of the data.

Returns
The new file position pointer.

property size
The number of data bytes stored by the file at present. May be a symbolic value.

332 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

10.4. Storage 333

https://docs.python.org/3/library/functions.html#bool

angr

widen()

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

angr.storage.memory_object.obj_bit_size(o)

class angr.storage.memory_object.SimMemoryObject (obj, base, endness, length=None, byte_width=38)
Bases: object

A SimMemoryObiject is a reference to a byte or several bytes in a specific object in memory. It should be used
only by the bottom layer of memory.

__init__(obj, base, endness, length=None, byte_width=38)
is_bytes

base

object

length

endness

size()

property variables
property cache_key
property symbolic
property last_addr
concrete_bytes (offset, size)

Return type
Optional[bytes]

Parameters
e offset (int) -
e size (int) -
includes(x)

bytes_at (addr, length, allow_concrete=False, endness='lend_BE")

class angr.storage.memory_object.SimLabeledMemoryObject (obj, base, endness, length=None,
byte_width=8, label=None)

Bases: SimMemoryObject

334 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

__init__(obj, base, endness, length=None, byte_width=8, label=None)
label

angr.storage.memory_object.bv_slice(value, offset, size, rev, bw)

Extremely cute utility to pretend you’ve serialized a value to stored bytes, sliced it a la python slicing, and then
deserialized those bytes to an integer again.

Parameters
* value (BV) — The bitvector to slice

» offset (int) — The byte offset from the first stored byte to slice from, or a negative offset
from the end.

* size (int) — The number of bytes to return. If None, return all bytes from the offset to the
end. If larger than the number of bytes from the offset to the end, return all bytes from the
offset to the end.

* rev (bool) — Whether the pretend-serialization should be little-endian
* bw (int) — The byte width

Return type
BV

Returns
The new bitvector

class angr.storage.pcap.PCAP(path, ip_port_tup, init=True)
Bases: object

__init__(path, ip_port_tup, init=True)
initialize(path)
recv(length)

copy O
class angr.concretization_strategies.SimConcretizationStrategy (filter=None, exact=True)
Bases: object

Concretization strategies control the resolution of symbolic memory indices in SimuVEX. By sub-
classing this class and setting it as a concretization strategy (on state.memory.read_strategies and
state.memory.write_strategies), SimuVEX’s memory index concretization behavior can be modified.

__init__ (filter=None, exact=True)

Initializes the base SimConcretizationStrategy.
Parameters

o filter — A function, taking arguments of (SimMemory, claripy.AST) that determins if
this strategy can handle resolving the provided AST.

* exact — A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

concretize (memory, addr, **kwargs)
Concretizes the address into a list of values. If this strategy cannot handle this address, returns None.

10.4. Storage 335

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

copy O
Returns a copy of the strategy, if there is data that should be kept separate between states. If not, returns

self.
merge (others)

Merges this strategy with others (if there is data that should be kept separate between states. If not, is a
no-op.

10.5 Memory Mixins

class angr.storage.memory_mixins.MemoryMixin(memory_id=None, endness='lend_BE")
Bases: SimStatePlugin

SUPPORTS_CONCRETE_LOAD = False
__init__(memory_id=None, endness='lend_BE")

copy (memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.
property category
reg, mem, or file.
Type
Return the category of this SimMemory instance. It can be one of the three following cate-
gories

property variable_key_prefix
find (addr, data, max_search, **kwargs)
load (addr, size=None, **kwargs)
store (addr, data, **kwargs)

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

336 Chapter 10. API Reference

angr

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
¢ merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

permissions (addr, permissions=None, **kwargs)
map_region(addr, length, permissions, init_zero=False, **kwargs)
unmap_region(addr, length, **kwargs)

concrete_load(addr, size, writing=False, **kwargs)

Set SUPPORTS_CONCRETE_LOAD to True and implement concrete_load if reading concrete bytes is
faster in this memory model.

Parameters
¢ addr — The address to load from.
* size - Size of the memory read.

e writing —

10.5. Memory Mixins 337

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

Return type
memoryview

Returns
A memoryview into the loaded bytes.

erase (addr, size=None, **kwargs)

Set [addr:addr+size) to uninitialized. In many cases this will be faster than overwriting those locations with
new values. This is commonly used during static data flow analysis.

Parameters
¢ addr - The address to start erasing.
* size — The number of bytes for erasing.

Return type
None

Returns
None

replace_all(old, new)

Parameters
e 0ld (BV) -
* new (BV) —
copy_contents (dst, src, size, condition=None, **kwargs)
Override this method to provide faster copying of large chunks of data.
Parameters
¢ dst — The destination of copying.
e src — The source of copying.
* size — The size of copying.
e condition — The storing condition.
* kwargs — Other parameters.

Returns
None

state: angr.SimState

class angr.storage.memory_mixins.DefaultMemory (*args, **kwargs)

Bases: HexDumperMixin, SmartFindMixin, UnwrapperMixin, NameResolutionMixin,
DataNormalizationMixin, SimplificationMixin, InspectMixinHigh, ActionsMixinHigh,
UnderconstrainedMixin, SizeConcretizationMixin, SizeNormalizationMixin,
AddressConcretizationMixin, ActionsMixinLow, ConditionalMixin, ConvenientMappingsMixin,
DirtyAddrsMixin, StackAllocationMixin, ConcreteBackerMixin, ClemoryBackerMixin,
DictBackerMixin, PrivilegedPagingMixin, UltraPagesMixin, DefaultFillerMixin,
SymbolicMergerMixin, PagedMemoryMixin

class angr.storage.memory_mixins.DefaultListPagesMemory (*args, **kwargs)

Bases: HexDumperMixin, SmartFindMixin, UnwrapperMixin, NameResolutionMixin,
DataNormalizationMixin, SimplificationMixin, ActionsMixinHigh, UnderconstrainedMixin,
SizeConcretizationMixin, SizeNormalizationMixin, InspectMixinHigh,

338 Chapter 10. API Reference

https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/constants.html#None
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV

angr

AddressConcretizationMixin, ActionsMixinLow, ConditionalMixin, ConvenientMappingsMixin,

DirtyAddrsMixin, StackAllocationMixin, ClemoryBackerMixin, DictBackerMixin,
PrivilegedPagingMixin, ListPagesMixin, DefaultFillerMixin, SymbolicMergerMixin,
PagedMemoryMixin

class angr.storage.memory_mixins.FastMemory (uninitialized_read_handler=None, **kwargs)
Bases: NameResolutionMixin, SimpleInterfaceMixin, SimplificationMixin, InspectMixinHigh,
ConditionalMixin, ExplicitFillerMixin, DefaultFillerMixin, SlottedMemoryMixin

state: angr.SimState

class angr.storage.memory_mixins.AbstractMemory (*args, **kwargs)

Bases: UnwrapperMixin, NameResolutionMixin, DataNormalizationMixin,
SimplificationMixin, InspectMixinHigh, ActionsMixinHigh, UnderconstrainedMixin,
SizeConcretizationMixin, SizeNormalizationMixin, ActionsMixinLow, ConditionalMixin,
RegionedAddressConcretizationMixin, RegionedMemoryMixin

state: angr.SimState

class angr.storage.memory_mixins.RegionedMemory (related_function_addr=None, **kwargs)
Bases: RegionCategoryMixin, MemoryRegionMetalMixin, StaticFindMixin,
UnwrapperMixin, NameResolutionMixin, DataNormalizationMixin, SimplificationMixin,
SizeConcretizationMixin, SizeNormalizationMixin, AddressConcretizationMixin,
ConvenientMappingsMixin, DirtyAddrsMixin, ClemoryBackerMixin, DictBackerMixin,
UltraPagesMixin, DefaultFillerMixin, AbstractMergerMixin, PagedMemoryMixin

class angr.storage.memory_mixins.LabeledMemory (*args, top_func=None, **kwargs)
Bases: SizeNormalizationMixin, ListPagesWithLabelsMixin, DefaultFillerMixin,
TopMergerMixin, LabelMergerMixin, PagedMemoryMixin
LabeledMemory is used in static analysis. It allows storing values with labels, such as Definition.

class angr.storage.memory_mixins.MultiValuedMemory (*args,
skip_missing_values_during_merging=False,
**kwargs)

Bases: SizeNormalizationMixin, MVListPagesMixin, DefaultFillerMixin,
MultiValueMergerMixin, PagedMemoryMixin, PagedMemoryMultiValueMixin

class angr.storage.memory_mixins.KeyValueMemory (*args, **kwargs)
Bases: KeyValueMemoryMixin

state: angr.SimState

class angr.storage.memory_mixins.JavaVmMemory (memory_id="mem’', stack=None, heap=None,
vm_static_table=None, load_strategies=None,
store_strategies=None, max_array_size=1000,
**kwargs)

Bases: JavaVmMemoryMixin

state: angr.SimState

class angr.storage.memory_mixins.name_resolution_mixin.NameResolutionMixin(memory_id=None,
end-
ness='lend_BE")

Bases: MemoryMixin

This mixin allows you to provide register names as load addresses, and will automatically translate this to an
offset and size.

10.5. Memory Mixins 339

angr

store (addr, data, size=None, **kwargs)
load (addr, size=None, **kwargs)
state: angr.SimState

class angr.storage.memory_mixins.smart_find_mixin.SmartFindMixin(memory_id=None,
endness='lend_BE")

Bases: MemoryMixin

Memory mixin providing basic searching over concrete and symbolic data.

find(addr, data, max_search, default=None, endness=None, chunk_size=None, max_symbolic_bytes=None,
condition=None, char_size=1, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.default_filler_mixin.DefaultFillerMixin(memory_id=None,
endness='lend_BE")

Bases: MemoryMixin

state: angr.SimState

class angr.storage.memory_mixins.default_filler_mixin.SpecialFillerMixin(special_memory_filler=None,
**kwargs)

Bases: MemoryMixin
__init__ (special_memory_filler=None, **kwargs)

copy (memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.default_filler_mixin.ExplicitFillerMixin(uninitialized_read_handler=None,
**kewargs)

Bases: MemoryMixin
__init__ (uninitialized_read_handler=None, **kwargs)

copy (memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

340 Chapter 10. API Reference

angr

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.bvv_conversion_mixin.DataNormalizationMixin(memory_id=None,
end-
ness='lend_BE")

Bases: MemoryMixin
Normalizes the data field for a store and the fallback field for a load to be BVs.

store (addr, data, size=None, **kwargs)
load (addr, size=None, fallback=None, **kwargs)
state: angr.SimState

class angr.storage.memory_mixins.hex_dumper_mixin.HexDumperMixin(memory_id=None,
endness='lend_BE")

Bases: MemoryMixin

hex_dump (start, size, word_size=4, words_per_row=4, endianness="lend_BE', symbolic_char="?",
unprintable_char=".", solve=False, extra_constraints=None, inspect=False,
disable_actions=True)

Returns a hex dump as a string. The solver, if enabled, is called once for every byte potentially making this
function very slow. It is meant to be used mainly as a “visualization” for debugging.

Warning: May read and display more bytes than size due to rounding. Particularly, if size is less than, or
not a multiple of word_size*words_per_line.

Parameters
e start - starting address from which to print
* size — number of bytes to display
¢ word_size — number of bytes to group together as one space-delimited unit
¢ words_per_row — number of words to display per row of output

* endianness — endianness to use when displaying each word (ASCII representation is un-
changed)

¢ symbolic_char - the character to display when a byte is symbolic and has multiple solu-
tions

e unprintable_char - the character to display when a byte is not printable

* solve — whether or not to attempt to solve (warning: can be very slow)

¢ extra_constraints — extra constraints to pass to the solver is solve is True
 inspect — whether or not to trigger SimInspect breakpoints for the memory load
» disable_actions — whether or not to disable SimActions for the memory load

Returns
hex dump as a string

state: angr.SimState

10.5. Memory Mixins 341

angr

class angr.storage.memory_mixins.underconstrained_mixin.UnderconstrainedMixin(*args,
**kwargs)

Bases: MemoryMixin
__init__(*args, **kwargs)
copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

load (addr, **kwargs)
store (addr, data, **kwargs)
state: angr.SimState

class angr.storage.memory_mixins.simple_interface_mixin.SimpleInterfaceMixin(memory_id=None,
end-
ness='lend_BE")

Bases: MemoryMixin

load (addr, size=None, endness=None, condition=None, fallback=None, **kwargs)
store (addr, data, size=None, endness=None, condition=None, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.actions_mixin.ActionsMixinHigh(memory_id=None,
endness='lend_BE")

Bases: MemoryMixin

load(addr, size=None, condition=None, fallback=None, disable_actions=False, action=None, **kwargs)
store (addr, data, size=None, disable_actions=False, action=None, condition=None, **kwargs)
state: angr.SimState

class angr.storage.memory_mixins.actions_mixin.ActionsMixinLow(memory_id=None,
endness='lend_BE")

Bases: MemoryMixin

load (addr, action=None, **kwargs)
store (addr, data, action=None, **kwargs)

Parameters
action (SimActionData | None)—

state: angr.SimState

342 Chapter 10. API Reference

angr

class angr.storage.memory_mixins.symbolic_merger_mixin.SymbolicMergerMixin(memory_id=None,
end-
ness='lend_BE")

Bases: MemoryMixin

state: angr.SimState

class angr.storage.memory_mixins.size_resolution_mixin.SizeNormalizationMixin(memory_id=None,

end-
ness='lend_BE")

Bases: MemoryMixin

Provides basic services related to normalizing sizes. After this mixin, sizes will always be a plain int. Assumes
that the data is a BV.

¢ load will throw a TypeError if no size is provided
* store will default to len(data)//byte_width if no size is provided

load (addr, size=None, **kwargs)
store (addr, data, size=None, **kwargs)
state: angr.SimState

class angr.storage.memory_mixins.size_resolution_mixin.SizeConcretizationMixin(concretize_symbolic_write_size
max_concretize_count=256,
max_symbolic_size=4194304,
raise_memory_limit_error=Fal
size_limit=257,
**kwargs)

Bases: MemoryMixin

This mixin allows memory to process symbolic sizes. It will not touch any sizes which are not ASTs with non-
BVYV ops. Assumes that the data is a BV.

» symbolic load sizes will be concretized as their maximum and a warning will be logged

* symbolic store sizes will be dispatched as several conditional stores with concrete sizes

Parameters
e concretize_symbolic_write_size (bool)—
e max_concretize_count (int | None)—
e max_symbolic_size (int) -
e raise_memory_limit_error (bool) —
e size_limit (int) -

__init__ (concretize_symbolic_write_size=False, max_concretize_count=256,
max_symbolic_size=4194304, raise_memory_limit_error=False, size_limit=257, **kwargs)

Parameters
e concretize_symbolic_write_size (bool) —
e max_concretize_count (int | None) -

e max_symbolic_size (int)—

10.5. Memory Mixins 343

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

e raise_memory_limit_error (bool) -
e size_limit (int)-

copy (memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

load (addr, size=None, **kwargs)
store (addr, data, size=None, condition=None, **kwargs)
state: angr.SimState

class angr.storage.memory_mixins.dirty_addrs_mixin.DirtyAddrsMixin(memory_id=None,
endness='lend_BE")

Bases: MemoryMixin
store (addr, data, size=None, **kwargs)
state: angr.SimState
class angr.storage.memory_mixins.address_concretization_mixin.MultiwriteAnnotation
Bases: Annotation

property eliminatable
Returns whether this annotation can be eliminated in a simplification.

Returns
True if eliminatable, False otherwise

property relocateable

class angr.storage.memory_mixins.address_concretization_mixin.AddressConcretizationMixin(read_strategies=N
write_strategies=I
**kwargs)

Bases: MemoryMixin

The address concretization mixin allows symbolic reads and writes to be handled sanely by dispatching them as
a number of conditional concrete reads/writes. It provides a “concretization strategies” interface allowing the
process of serializing symbolic addresses into concrete ones to be specified.

__init__(read_strategies=None, write_strategies=None, **kwargs)

set_state(state)
Sets a new state (for example, if the state has been branched)

344 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.annotation.Annotation

angr

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

concretize_write_addr (addr, strategies=None, condition=None)

Concretizes an address meant for writing.

Parameters

10.5. Memory Mixins 345

https://docs.python.org/3/library/functions.html#bool

angr

¢ addr — An expression for the address.
¢ strategies — A list of concretization strategies (to override the default).

e condition — Any extra constraints that should be observed when determining address
satisfiability

Returns
A list of concrete addresses.

concretize_read_addr (addr, strategies=None, condition=None)
Concretizes an address meant for reading.

Parameters
¢ addr — An expression for the address.
* strategies — A list of concretization strategies (to override the default).

Returns
A list of concrete addresses.

load (addr, size=None, condition=None, **kwargs)
store (addr, data, size=None, condition=None, **kwargs)
permissions (addr, permissions=None, **kwargs)
map_region(addr, length, permissions, **kwargs)
unmap_region(addr, length, **kwargs)

concrete_load(addr, size, *args, **kwargs)

Set SUPPORTS_CONCRETE_LOAD to True and implement concrete_load if reading concrete bytes is
faster in this memory model.

Parameters
¢ addr — The address to load from.
* size - Size of the memory read.
e writing -

Returns
A memoryview into the loaded bytes.

state: angr.SimState

class angr.storage.memory_mixins.clouseau_mixin.InspectMixinHigh (memory_id=None,
endness='lend_BE")

Bases: MemoryMixin

store (addr, data, size=None, condition=None, endness=None, inspect=True, **kwargs)
load (addr, size=None, condition=None, endness=None, inspect=True, **kwargs)
state: angr.SimState

class angr.storage.memory_mixins.conditional_store_mixin.ConditionalMixin(memory_id=None,
end-
ness='lend_BE")

Bases: MemoryMixin

346 Chapter 10. API Reference

angr

load (addr, condition=None, fallback=None, **kwargs)
store (addr, data, size=None, condition=None, **kwargs)
state: angr.SimState

class angr.storage.memory_mixins.label_merger_mixin.LabelMergerMixin(*args, **kwargs)
Bases: MemoryMixin
A memory mixin for merging labels. Labels come from SimLabeledMemoryObject.
__init__(*args, **kwargs)

copy (memo=None)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.simplification_mixin.SimplificationMixin(memory_id=None,
end-
ness='lend_BE")

Bases: MemoryMixin

store (addr, data, **kwargs)
state: angr.SimState

class angr.storage.memory_mixins.unwrapper_mixin.UnwrapperMixin(memory_id=None,
endness='lend_BE")

Bases: MemoryMixin
This mixin processes SimActionObjects by passing on their .ast field.
store (addr, data, size=None, condition=None, **kwargs)
load (addr, size=None, condition=None, fallback=None, **kwargs)
find (addr, what, max_search, default=None, **kwargs)
copy_contents (dst, src, size, condition=None, **kwargs)
Override this method to provide faster copying of large chunks of data.
Parameters

¢ dst — The destination of copying.

» src — The source of copying.

» size - The size of copying.

e condition — The storing condition.

10.5. Memory Mixins 347

angr

* kwargs — Other parameters.

Returns
None

state: angr.SimState
class angr.storage.memory_mixins.convenient_mappings_mixin.ConvenientMappingsMixin(**kwargs)
Bases: MemoryMixin

Implements mappings between names and hashes of symbolic variables and these variables themselves.
__init__(**kwargs)

copy (memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

store (addr, data, size=None, **kwargs)
get_symbolic_addrs()
addrs_for_name (n)
Returns addresses that contain expressions that contain a variable named n.

addrs_for_hash(h)
Returns addresses that contain expressions that contain a variable with the hash of &.

replace_all (old, new)
Replaces all instances of expression old with expression new.
Parameters

* 0ld (BV) — A claripy expression. Must contain at least one named variable (to make it
possible to use the name index for speedup).

* new (BV) — The new variable to replace it with.

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.mv_list_page.MVListPage (memory=None,
content=None,
sinkhole=None,
mo_cmp=None,

**kwargs)
Bases: MemoryObjectSetMixin, PageBase
MVListPage allows storing multiple values at the same location, thus allowing weak updates.

Each store() may take a value or multiple values, and a “weak” parameter to specify if this store is a weak update
or not. Each load() returns an iterator of all values stored at that location.

348 Chapter 10. API Reference

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV

angr

__init__ (memory=None, content=None, sinkhole=None, mo_cmp=None, **kwargs)

copy (memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

Return type
MVListPage

load (addr, size=None, endness=None, page_addr=None, memory=None, cooperate=False, **kwargs)

Return type
List[Tuple[int, Union[SimMemoryObject, SimLabeledMemoryObjectl]]]

store (addr, data, size=None, endness=None, memory=None, cooperate=False, weak=False, **kwargs)

erase (addr, size=None, **kwargs)
Set [addr:addr+size) to uninitialized. In many cases this will be faster than overwriting those locations with
new values. This is commonly used during static data flow analysis.
Parameters
¢ addr - The address to start erasing.

* size — The number of bytes for erasing.

Return type
None

Returns
None

merge (others, merge_conditions, common_ancestor=None, page_addr=None, memory=None,
changed_offsets=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

10.5. Memory Mixins 349

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
e others (List[MVListPage]) — the other state plugins to merge with
¢ merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged
e page_addr (int | None) -
¢ changed_offsets (Set[int] | None)-—

Returns
True if the state plugins are actually merged.

Return type
bool

changed_bytes (other, page_addr=None)

Parameters
e other (MVListPage) —
e page_addr (int | None) -

content_gen (index)
state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.multi_values.MultiValues (v=None, off-
set_to_values=None)

Bases: object
Represents a byte vector where each byte can have one or multiple values.

As an implementation optimization (so that we do not create excessive sets and dicts), self._single_value stores
a claripy AST when this MultiValues object represents only one value at offset 0.

Parameters
v(Bits [MultiValues [None | Dict[int, Set[Bits]])-—

__init__ (v=None, offset_to_values=None)

Parameters
v(Bits | MultiValues | None | Dict[int, Set[Bits]])-—

350 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits

angr

add_value (offset, value)

Return type
None

Parameters
* offset (int)—
e value (Bits) —

one_value (strip_annotations=False)

Return type
Optional[Bits]

Parameters
strip_annotations (bool) —

merge (mv)
Return type
MultiValues
Parameters
mv (MultiValues) —
keys()
Return type
Set[int]
values()
Return type
Iterator[Set[Bits]]
items()
Return type
Iterator[Tuple[int, Set[Bits]]]
count ()
Return type

int

extract (offset, length, endness)

Return type
MultiValues

Parameters
e offset (int) —
e length (int) -
¢ endness (str) —

concat (other)

Return type
MultiValues

10.5. Memory Mixins 351

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

angr

Parameters
other (MultiValues [Bits | bytes)—

class angr.storage.memory_mixins.top_merger_mixin.TopMergerMixin(*args, top_func=None,
**kwargs)
Bases: MemoryMixin

A memory mixin for merging values in memory to TOP.

__init__ (*args, top_func=None, **kwargs)

copy (memo=None)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!
Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.multi_value_merger_mixin.MultiValueMergerMixin(*args, ele-
ment_limit=5,
annota-
tion_limit=256,
top_func=None,
phi_maker=None,
*rkwargs)

Bases: MemoryMixin

__init__ (*args, element_limit=5, annotation_limit=256, top_func=None, phi_maker=None, **kwargs)
copy (memo=None)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters

memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.PagedMemoryMixin(page_size=4096,
de-
fault_permissions=3,
permis-
sions_map=None,
page_kwargs=None,
**kwargs)

352 Chapter 10. API Reference

https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.python.org/3/library/stdtypes.html#bytes

angr

Bases: MemoryMixin

A bottom-level storage mechanism. Dispatches reads to individual pages, the type of which is the PAGE_TYPE
class variable.

SUPPORTS_CONCRETE_LOAD = True
PAGE_TYPE: Type[TypeVar(PageType, bound= PageBase)] = None

__init__ (page_size=4096, default_permissions=3, permissions_map=None, page_kwargs=None,
**kwargs)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

load (addr, size=None, endness=None, **kwargs)

Parameters
e addr (int) -
e size (int | None) -

store (addr, data, size=None, endness=None, **kwargs)

Parameters
e addr (int) -
e size (int | None)-

erase (addr, size=None, **kwargs)

Set [addr:addr+size) to uninitialized. In many cases this will be faster than overwriting those locations with
new values. This is commonly used during static data flow analysis.

Parameters
¢ addr — The address to start erasing.
¢ size — The number of bytes for erasing.

Return type
None

Returns
None
merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

10.5. Memory Mixins 353

https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

angr

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
» others (Iterable[PagedMemoryMixin]) — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

permissions (addr, permissions=None, **kwargs)
map_region(addr, length, permissions, init_zero=False, **kwargs)
unmap_region(addr, length, **kwargs)

concrete_load(addr, size, writing=False, with_bitmap=False, **kwargs)

Set SUPPORTS_CONCRETE_LOAD to True and implement concrete_load if reading concrete bytes is
faster in this memory model.

Parameters
¢ addr — The address to load from.
* size - Size of the memory read.
e writing -

Returns
A memoryview into the loaded bytes.

354 Chapter 10. API Reference

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool

angr

changed_bytes (other)
Return type
Set[int]
changed_pages (other)
Return type
Dict[int, Optional[Set[int]]]
copy_contents (dst, src, size, condition=None, **kwargs)
Override this method to provide faster copying of large chunks of data.
Parameters
¢ dst — The destination of copying.
» src — The source of copying.
» size — The size of copying.
e condition — The storing condition.
* kwargs — Other parameters.

Returns
None

flush_pages (white_list)

Flush all pages not included in the white_list by removing their pages. Note, this will not wipe them from
memory if they were backed by a memory_backer, it will simply reset them to their initial state. Returns
the list of pages that were cleared consisting of (addr, length) tuples. :type white_list: :param white_list:

white list of regions in the form of (start, end) to exclude from the flush :return: a list of memory page
ranges that were flushed :rtype: list

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.LabeledPagesMixin(page_size=4096,
de-
fault_permissions=3,
permis-
sions_map=None,
page_kwargs=None,
**kwargs)

Bases: PagedMemoryMixin

load_with_labels(addr, size=None, endness=None, **kwargs)

Return type
Tuple[Base, Tuple[Tuple[int, int, int, Any]]]

Parameters
e addr (int) -
e size (int | None)-

state: angr.SimState

10.5. Memory Mixins 355

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.base.Base
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

class angr.storage.memory_mixins.paged_memory.paged_memory _mixin.ListPagesMixin(page_size=4096,
de-
Sfault_permissions=3,
permis-
sions_map=None,
page_kwargs=None,
**kwargs)

Bases: PagedMemoryMixin

PAGE_TYPE

alias of ListPage

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.MVListPagesMixin(*args,

skip_missing_values_during
**kwargs)
Bases: PagedMemoryMixin

PAGE_TYPE
alias of MVListPage

__init__ (*args, skip_missing_values_during_merging=False, **kwargs)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.ListPagesWithLabelsMixin(page_size=4096,
de-
fault_permission.
per-
mis-
sions_map=None
page_kwargs=Nc
*rkwargs)

Bases: LabeledPagesMixin, ListPagesMixin

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.MVListPagesWithLabelsMixin(*args,
skip_missing_)
**kwargs)
Bases: LabeledPagesMixin, MVListPagesMixin

356 Chapter 10. API Reference

angr

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.paged_memory_mixin.UltraPagesMixin(page_size=4096,

de-
fault_permissions=3,
permis-
sions_map=None,
page_kwargs=None,
*rkwargs)

Bases: PagedMemoryMixin

PAGE_TYPE

alias of Ul traPage

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.page_backer_mixins.NotMemoryview(obj, offset,
size)
Bases: object

__init__(obj, offset, size)

class angr.storage.memory_mixins.paged_memory.page_backer_mixins.ClemoryBackerMixin(cle_memory_backer=Noi
**kwargs)
Bases: PagedMemoryMixin

Parameters
cle_memory_backer (None | Loader | Clemory) -

__init__(cle_memory_backer=None, **kwargs)
Parameters
cle_memory_backer (None | Loader | Clemory)—
copy (memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters

memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.page_backer_mixins.ConcreteBackerMixin(cle_memory_backer=N
*kkwargs)
Bases: ClemoryBackerMixin

Parameters
cle_memory_backer (None | Loader | Clemory)—

state: angr.SimState

10.5. Memory Mixins 357

https://docs.python.org/3/library/functions.html#object
https://docs.angr.io/projects/cle/en/latest/api/loader.html#cle.Loader
https://docs.angr.io/projects/cle/en/latest/api/utils.html#cle.memory.Clemory
https://docs.angr.io/projects/cle/en/latest/api/loader.html#cle.Loader
https://docs.angr.io/projects/cle/en/latest/api/utils.html#cle.memory.Clemory
https://docs.angr.io/projects/cle/en/latest/api/loader.html#cle.Loader
https://docs.angr.io/projects/cle/en/latest/api/utils.html#cle.memory.Clemory

angr

class angr.storage.memory_mixins.paged_memory.page_backer_mixins.DictBackerMixin(dict_memory_backer=None,
**kwargs)

Bases: PagedMemoryMixin

__init__ (dict_memory_backer=None, **kwargs)
state: angr.SimState

copy (memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

class angr.storage.memory_mixins.paged_memory.stack_allocation_mixin.StackAllocationMixin(stack_end=None,
stack_size=None,
stack_perms=Noi
*rkwargs)

Bases: PagedMemoryMixin
This mixin adds automatic allocation for a stack region based on the stack_end and stack_size parameters.
__init__ (stack_end=None, stack_size=None, stack_perms=None, **kwargs)

copy (memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

allocate_stack_pages(addr, size, **kwargs)

Pre-allocates pages for the stack without triggering any logic related to reading from them.
Parameters
¢ addr (int) — The highest address that should be mapped

e size (int) — The number of bytes to be allocated. byte 1 is the one at addr, byte 2 is the
one before that, and so on.

Returns
A list of the new page objects

state: angr.SimState

358 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

class angr.storage.memory_mixins.paged_memory.privileged_mixin.PrivilegedPagingMixin(page_size=4096,
de-
fault_permissions=3,
per-
mis-
sions_map=None,
page_kwargs=None,
**kwargs)

Bases: PagedMemoryMixin

A mixin for paged memory models which will raise SimSegfaultExceptions if STRICT_PAGE_ACCESS is en-
abled and a segfault condition is detected.

Segfault conditions include: - getting a page for reading which is non-readable - getting a page for writing which
is non-writable - creating a page

The latter condition means that this should be inserted under any mixins which provide other implementations
of _initialize_page.

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.PageBase(*args, **kwargs)

Bases: HistoryTrackingMixin, RefcountMixin, CooperationBase, ISPOMixin, PermissionsMixin,
MemoryMixin

This is a fairly succinct definition of the contract between PagedMemoryMixin and its constituent pages:
* Pages must implement the MemoryMixin model for loads, stores, copying, merging, etc

* However, loading/storing may not necessarily use the same data domain as PagedMemoryMixin. In order
to do more efficient loads/stores across pages, we use the CooperationBase interface which allows the page
class to determine how to generate and unwrap the objects which are actually stored.

* To support COW, we use the RefcountMixin and the ISPOMixin (which adds the contract element that
memory=self be passed to every method call)

* Pages have permissions associated with them, stored in the PermissionsMixin.
Read the docstrings for each of the constituent classes to understand the nuances of their functionalities
state: angr.SimState
class angr.storage.memory_mixins.paged_memory.pages.refcount_mixin.RefcountMixin(**kwargs)
Bases: MemoryMixin

This mixin adds a locked reference counter and methods to manipulate it, to facilitate copy-on-write optimiza-
tions.

__init__ (**kwargs)

copy (memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

10.5. Memory Mixins 359

angr

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

acquire_unique()

Call this function to return a version of this page which can be used for writing, which may or may not be
the same object as before. If you use this you must immediately replace the shared reference you previously
had with the new unique copy.

acquire_shared ()

Call this function to indicate that this page has had a reference added to it and must be copied before it can
be acquired uniquely again. Creating the object implicitly starts it with one shared reference.

Return type
None

release_shared()
Call this function to indicate that this page has had a shared reference to it released

Return type
None

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.permissions_mixin.PermissionsMixin(permissions=None,
**kwargs)

Bases: MemoryMixin

This mixin adds a permissions field and properties for extracting the read/write/exec permissions. It does NOT
add permissions checking.

__init__ (permissions=None, **kwargs)

copy (memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

property perm_read
property perm_write
property perm_exec
state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.history_tracking mixin.HistoryTrackingMixin(*args,
**kwargs

Bases: RefcountMixin, MemoryMixin

Tracks the history of memory writes.

360 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

angr

__init__(*args, **kwargs)
store(addr, data, size=None, **kwargs)

copy (memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

acquire_unique()

Call this function to return a version of this page which can be used for writing, which may or may not be
the same object as before. If you use this you must immediately replace the shared reference you previously
had with the new unique copy.

parents()
changed_bytes (other, **kwargs)

Return type
Optional[Set[int]]

all_bytes_changed_in_history()

Return type
SegmentList

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.ispo_mixin.ISPOMixin(memory_id=None,
endness='lend_BE")

Bases: MemoryMixin

An implementation of the International Stateless Persons Organisation, a mixin which should be applied as a
bottom layer for memories which have no state and must redirect certain operations to a parent memory. Main
usecase is for memory region classes which are stored within other memories, such as pages.

set_state(state)
Sets a new state (for example, if the state has been branched)

state: angr.SimState
class angr.storage.memory_mixins.paged_memory.pages.cooperation.CooperationBase
Bases: object

Any given subclass of this class which is not a subclass of MemoryMixin should have the property that any
subclass it which is a subclass of MemoryMixin should all work with the same datatypes

class angr.storage.memory_mixins.paged_memory.pages.cooperation.MemoryObjectMixin
Bases: CooperationBase

Uses SimMemoryObjects in region storage. With this, load will return a list of tuple (address, MO) and store
will take a MO.

10.5. Memory Mixins 361

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

angr

class angr.storage.memory_mixins.paged_memory.pages.cooperation.MemoryObjectSetMixin

Bases: CooperationBase
Uses sets of SimMemoryObjects in region storage.

class angr.storage.memory_mixins.paged_memory.pages.cooperation.BasicClaripyCooperation
Bases: CooperationBase

Mix this (along with PageBase) into a storage class which supports loading and storing claripy bitvectors and it
will be able to work as a page in the paged memory model.

class angr.storage.memory_mixins.paged_memory.pages.list_page.ListPage (memory=None,
content=None,
sinkhole=None,
mo_cmp=None,
**kwargs)

Bases: MemoryObjectMixin, PageBase
This class implements a page memory mixin with lists as the main content store.
__init__(memory=None, content=None, sinkhole=None, mo_cmp=None, **kwargs)

copy (memo)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

load (addr, size=None, endness=None, page_addr=None, memory=None, cooperate=False, **kwargs)
store (addr, data, size=None, endness=None, memory=None, cooperate=False, **kwargs)

erase (addr, size=None, **kwargs)

Set [addr:addr+size) to uninitialized. In many cases this will be faster than overwriting those locations with
new values. This is commonly used during static data flow analysis.

Parameters
¢ addr - The address to start erasing.
* size — The number of bytes for erasing.

Return type
None

Returns
None

merge (others, merge_conditions, common_ancestor=None, page_addr=None, memory=None,
changed_offsets=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

362 Chapter 10. API Reference

https://docs.python.org/3/library/constants.html#None

angr

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
e others (List[ListPage]) — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged
e page_addr (int | None) -
e changed_offsets (Set[int] | None) -

Returns
True if the state plugins are actually merged.

Return type
bool

changed_bytes (other, page_addr=None)
Parameters
e other (ListPage) —
e page_addr (int | None) -

state: angr.SimState

class angr.storage.memory_mixins.paged_memory.pages.ultra_page.UltraPage(memory=None,

init_zero=False,
**kwargs)

Bases: MemoryObjectMixin, PageBase
Default page implementation

SUPPORTS_CONCRETE_LOAD = True

10.5. Memory Mixins 363

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

angr

__init__ (memory=None, init_zero=False, **kwargs)
classmethod new_from_shared(data, memory=None, **kwargs)

copy (memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

load (addr, size=None, page_addr=None, endness=None, memory=None, cooperate=False, **kwargs)
store (addr, data, size=None, endness=None, memory=None, page_addr=None, cooperate=False,
**kwargs)
Parameters
e data (int | SimMemoryObject)—
e size (int | None) -

merge (others, merge_conditions, common_ancestor=None, page_addr=None, memory=None,
changed_offsets=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self. foo.merge(
[0o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters

364 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

» others (List[UltraPage]) — the other state plugins to merge with

* merge_conditions — a symbolic condition for each of the plugins

e common_ancestor — a common ancestor of this plugin and the others being merged
e page_addr (int | None)-

¢ changed_offsets (Set[int] | None)-—

Returns
True if the state plugins are actually merged.

Return type
bool

concrete_load(addr, size, **kwargs)

Set SUPPORTS_CONCRETE_LOAD to True and implement concrete_load if reading concrete bytes is
faster in this memory model.

Parameters
¢ addr - The address to load from.
¢ size - Size of the memory read.
e writing -

Returns
A memoryview into the loaded bytes.

changed_bytes (other, page_addr=None)

Return type
Set[int]

state: angr.SimState
replace_all_with_offsets(offsets, old, new, memory=None)
Parameters
e offsets (Iterable[int]) —
e 0ld (BV) -
* new (BV) —

class angr.storage.memory_mixins.regioned_memory.regioned_memory_mixin.RegionedMemoryMixin(write_targets_li

Bases: MemoryMixin

Regioned memory. This mixin manages multiple memory regions. Each address is represented as a tuple of
(region ID, offset into the region), which is called a regioned address.

10.5. Memory Mixins 365

read_targets_lir
stack_region_mu
generic_region_
stack_size=655:
cle_memory_ba
dict_memory_b¢
re-
gioned_memory
*rkwargs)

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV

angr

Converting absolute addresses into regioned addresses: We map an absolute address to a region by looking up
which region this address belongs to in the region map. Currently this is only enabled for stack. Heap support
has not landed yet.

When start analyzing a function, the user should call set_stack_address_mapping() to create a new region map-
ping. Likewise, when exiting from a function, the user should cancel the previous mapping by calling un-
set_stack_address_mapping().

Parameters
e write_targets_limit (int) -
e read_targets_limit (int) -
e stack_region_map (RegionMap | None) -
e generic_region_map (RegionMap | None)—
e stack_size (int) -
e cle_memory_backer (Optional)—
e dict_memory_backer (Dict | None)—
e regioned_memory_cls (type | None) -

__init__ (write_targets_limit=2048, read_targets_limit=4096, stack_region_map=None,
generic_region_map=None, stack_size=65536, cle_memory_backer=None,
dict_memory_backer=None, regioned_memory_cls=None, **kwargs)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

load (addr, size=None, endness=None, condition=None, **kwargs)

Parameters
e size (BV | int | None)-
e condition (Bool | None) -

store (addr, data, size=None, endness=None, **kwargs)

Parameters
size (int | None)—

merge (others, merge_conditions, common_ancestor=None)
Should merge the state plugin with the provided others. This will be called by state.merge() after

copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to

366

Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#type
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bool.Bool
https://docs.python.org/3/library/functions.html#int

angr

resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others (Iterable[RegionedMemoryMixin]) — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

find(addr, data, max_search, **kwargs)

Parameters
addr (int | Bits)-—

set_state(state)
Sets a new state (for example, if the state has been branched)

replace_all (old, new)

Parameters
e 0ld (BV) -
e new (BV) —

set_stack_address_mapping(absolute_address, region_id, related_function_address=None)

Create a new mapping between an absolute address (which is the base address of a specific stack frame)
and a region ID.

Parameters
¢ absolute_address (int) — The absolute memory address.
e region_id (str) — The region ID.

e related_function_address (Optional[int]) — Related function address.

10.5. Memory Mixins 367

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bits.Bits
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.ast.bv.BV
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

angr

unset_stack_address_mapping (absolute_address)

Remove a stack mapping.

Parameters
absolute_address (int) — An absolute memory address that is the base address of the
stack frame to destroy.

stack_id(function_address)

Return a memory region ID for a function. If the default region ID exists in the region mapping, an integer
will appended to the region name. In this way we can handle recursive function calls, or a function that
appears more than once in the call frame.

This also means that stack_id() should only be called when creating a new stack frame for a function. You
are not supposed to call this function every time you want to map a function address to a stack ID.

Parameters
function_address (int) — Address of the function.

Return type
str

Returns
ID of the new memory region.

set_stack_size(size)

Parameters
size (int) —
state: angr.SimState
class angr.storage.memory_mixins.regioned_memory.region_data.AddressWrapper (region, re-
gion_base_addr,
address,
is_on_stack,

func-
tion_address)

Bases: object

AddressWrapper is used in SimAbstractMemory, which provides extra meta information for an address (or a
ValueSet object) that is normalized from an integer/BV V/StridedInterval.

Parameters
e region (str) —
e region_base_addr (int) -
e is_on_stack (bool) -
e function_address (int | None)—

__init__(region, region_base_addr, address, is_on_stack, function_address)

Constructor for the class AddressWrapper.
Parameters
* region (str) — Name of the memory regions it belongs to.
* region_base_addr (int) — Base address of the memory region

¢ address — An address (not a ValueSet object).

368 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

angr

* is_on_stack (bool) — Whether this address is on a stack region or not.
e function_address (Optional[int]) — Related function address (if any).
region
region_base_addr
address
is_on_stack
function_address
to_valueset (state)

Convert to a ValueSet instance

Parameters
state — A state

Returns
The converted ValueSet instance

class angr.storage.memory_mixins.regioned_memory.region_data.RegionDescriptor (region_id,
base_address,
re-
lated_function_address=None)

Bases: object
Descriptor for a memory region ID.

__init__(region_id, base_address, related_function_address=None)
region_id
base_address
related_function_address
class angr.storage.memory_mixins.regioned_memory.region_data.RegionMap (is_stack)

Bases: object

Mostly used in SimAbstractMemory, RegionMap stores a series of mappings between concrete memory address
ranges and memory regions, like stack frames and heap regions.

__init__ (is_stack)

Constructor

Parameters
is_stack — Whether this is a region map for stack frames or not. Different strategies apply
for stack regions.

property is_empty
property stack_base
property region_ids

copy (memo=None, **kwargs)

10.5. Memory Mixins 369

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

map (absolute_address, region_id, related_function_address=None)

Add a mapping between an absolute address and a region ID. If this is a stack region map, all stack regions
beyond (lower than) this newly added regions will be discarded.

Parameters
¢ absolute_address — An absolute memory address.
» region_id - ID of the memory region.
* related_function_address — A related function address, mostly used for stack regions.
unmap_by_address (absolute_address)
Removes a mapping based on its absolute address.

Parameters
absolute_address — An absolute address

absolutize (region_id, relative_address)

Convert a relative address in some memory region to an absolute address.
Parameters
» region_id — The memory region ID
¢ relative_address — The relative memory offset in that memory region

Returns
An absolute address if converted, or an exception is raised when region id does not exist.
relativize (absolute_address, target_region_id=None)
Convert an absolute address to the memory offset in a memory region.
Note that if an address belongs to heap region is passed in to a stack region map, it will be converted to
an offset included in the closest stack frame, and vice versa for passing a stack address to a heap region.
Therefore you should only pass in address that belongs to the same category (stack or non-stack) of this
region map.
Parameters
absolute_address — An absolute memory address

Returns
A tuple of the closest region ID, the relative offset, and the related function address.

class angr.storage.memory_mixins.regioned_memory.region_category_mixin.RegionCategoryMixin(memory_id=No
end-

ness='lend_BE'
Bases: MemoryMixin
property category
reg, mem, or file.

Type

Return the category of this SimMemory instance. It can be one of the three following cate-
gories

state: angr.SimState

class angr.storage.memory_mixins.regioned_memory.static_find mixin.StaticFindMixin(memory_id=None,
end-

ness='lend_BE")

370 Chapter 10. API Reference

angr

Bases: SmartFindMixin

Implements data finding for abstract memory.

find (addr, data, max_search, default=None, endness=None, chunk_size=None, max_symbolic_bytes=None,
condition=None, char_size=1, **kwargs)

state: angr.SimState

class angr.storage.memory_mixins.regioned_memory.abstract_address_descriptor.
AbstractAddressDescriptor

Bases: object

AbstractAddressDescriptor describes a list of region+offset tuples. It provides a convenient way for accessing
the cardinality (the total number of addresses) without enumerating or creating all addresses in static mode.

__init__O
property cardinality
add_regioned_address (region, addr)

Parameters
e region (str) —
¢ addr (StridedInterval) —

clear()

class angr.storage.memory_mixins.regioned_memory.region_meta_mixin.MemoryRegionMetaMixin (related_function_a
**kwargs)

Bases: MemoryMixin
__init__ (related_function_addr=None, **kwargs)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

property is_stack
property related_function_addr
get_abstract_locations (addr, size)
Get a list of abstract locations that is within the range of [addr, addr + size]

This implementation is pretty slow. But since this method won’t be called frequently, we can live with the
bad implementation for now.

Parameters

10.5. Memory Mixins 371

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.angr.io/projects/claripy/en/latest/api.html#claripy.vsa.strided_interval.StridedInterval

angr

 addr - Starting address of the memory region.
¢ size - Size of the memory region, in bytes.

Returns
A list of covered AbstractLocation objects, or an empty list if there is none.

store (addr, data, bbl_addr=None, stmt_id=None, ins_addr=None, endness=None, **kwargs)
load (addr, size=None, bbl_addr=None, stmt_idx=None, ins_addr=None, **kwargs)

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

widen (others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

372 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

Returns
True if the state plugin is actually widened.

Return type
bool
dbg_print (indent=0)

Print out debugging information

state: angr.SimState

class angr.storage.memory_mixins.regioned_memory.abstract_merger_mixin.AbstractMergerMixin(memory_id=No
end-
ness='lend_BE'

Bases: MemoryMixin

state: angr.SimState

class angr.storage.memory_mixins.regioned_memory.regioned_address_concretization_mixin.RegionedAddressC

Bases: MemoryMixin

__init__(read_strategies=None, write_strategies=None, **kwargs)

set_state(state)

Sets a new state (for example, if the state has been branched)

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

10.5. Memory Mixins 373

https://docs.python.org/3/library/functions.html#bool

angr

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
¢ others — the other state plugins to merge with
¢ merge_conditions — a symbolic condition for each of the plugins
» common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

state: angr.SimState

class angr.storage.memory_mixins.slotted_memory.SlottedMemoryMixin(width=None, **kwargs)

Bases: MemoryMixin

__init__(width=None, **kwargs)

set_state(state)

Sets a new state (for example, if the state has been branched)

copy (memo)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

374 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool

angr

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool

load (addr, size=None, endness=None, **kwargs)
store (addr, data, size=None, endness=None, **kwargs)
changed_bytes (other)

state: angr.SimState

class angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin.TypedVariable (sype_,
value)

Bases: object
—-init__(type_, value)
type

value

class angr.storage.memory_mixins.keyvalue_memory.keyvalue_memory_mixin.KeyValueMemoryMixin(*args,
**kwargs)

Bases: MemoryMixin

__init__(*args, **kwargs)
load (key, none_if_missing=False, **kwargs)

store (key, data, type_=None, **kwargs)

10.5. Memory Mixins 375

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

angr

copy (memo=None, **kwargs)

Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

state: angr.SimState

class angr.storage.memory_mixins.javavm_memory.javavm_memory_mixin.JavaVmMemoryMixin(memory_id='mem’,

stack=None,
heap=None,
vm_static_table=None,
load_strategies=None,
store_strategies=None,
max_array_size=1000,
*rkwargs)

Bases: MemoryMixin

__init__(memory_id="mem’, stack=None, heap=None, vm_static_table=None, load_strategies=None,
store_strategies=None, max_array_size=1000, **kwargs)

static get_new_uuid()

Generate a unique id within the scope of the JavaVM memory. This, for example, is used for distinguishing
memory objects of the same type (e.g. multiple instances of the same class).

store (addr, data, frame=0)

load (addr, frame=0, none_if missing=False)
push_stack_£frame()

pop_stack_frame()

property stack
store_array_element (array, idx, value)

store_array_elements (array, start_idx, data)
Stores either a single element or a range of elements in the array.
Parameters
e array — Reference to the array.
e start_idx — Starting index for the store.
 data - Either a single value or a list of values.

load_array_element (array, idx)

376 Chapter 10. API Reference

angr

load_array_elements (array, start_idx, no_of _elements)

Loads either a single element or a range of elements from the array.
Parameters
e array — Reference to the array.
» start_idx - Starting index for the load.
* no_of_elements — Number of elements to load.

concretize_store_idx(idx, strategies=None)

Concretizes a store index.
Parameters
e idx — An expression for the index.
* strategies — A list of concretization strategies (to override the default).
e min_idx — Minimum value for a concretized index (inclusive).
e max_idx — Maximum value for a concretized index (exclusive).

Returns
A list of concrete indexes.

concretize_load_idx (idx, strategies=None)
Concretizes a load index.
Parameters
¢ idx — An expression for the index.
e strategies — A list of concretization strategies (to override the default).
e min_idx — Minimum value for a concretized index (inclusive).
e max_idx — Maximum value for a concretized index (exclusive).

Returns
A list of concrete indexes.

set_state(state)

Sets a new state (for example, if the state has been branched)

copy (memo=None, **kwargs)
Should return a copy of the plugin without any state attached. Should check the memo first, and add itself
to memo if it ends up making a new copy.

In order to simplify using the memo, you should annotate implementations of this function with
SimStatePlugin.memo

The base implementation of this function constructs a new instance of the plugin’s class without calling its
initializer. If you super-call down to it, make sure you instanciate all the fields in your copy method!

Parameters
memo — A dictionary mapping object identifiers (id(obj)) to their copied instance. Use this to
avoid infinite recursion and diverged copies.

merge (others, merge_conditions, common_ancestor=None)

Should merge the state plugin with the provided others. This will be called by state.merge() after
copying the target state, so this should mutate the current instance to merge with the others.

10.5. Memory Mixins 377

angr

Note that when multiple instances of a single plugin object (for example, a file) are referenced in the state,
it is important that merge only ever be called once. This should be solved by designating one of the plugin’s
referees as the “real owner”, who should be the one to actually merge it. This technique doesn’t work to
resolve the similar issue that arises during copying because merging doesn’t produce a new reference to
insert.

There will be n others and n+1 merge conditions, since the first condition corresponds to self. To match
elements up to conditions, say zip([self] + others, merge_conditions)

When implementing this, make sure that you “deepen” both others and common_ancestor before calling
sub-elements’ merge methods, e.g.

self.foo.merge(
[o.foo for o in others],
merge_conditions,
common_ancestor=common_ancestor.foo if common_ancestor is not None else None

During static analysis, merge_conditions can be None, in which case you should use state.solver.
union(values). TODO: fish please make this less bullshit

There is a utility state.solver.ite_cases which will help with constructing arbitrarily large merged
ASTs. Use it like self.bar = self.state.solver.ite_cases(zip(conditions[1:], [o.bar
for o in others]), self.bar)

Parameters
 others — the other state plugins to merge with
* merge_conditions — a symbolic condition for each of the plugins
e common_ancestor — a common ancestor of this plugin and the others being merged

Returns
True if the state plugins are actually merged.

Return type
bool
widen(others)

The widening operation for plugins. Widening is a special kind of merging that produces a more general
state from several more specific states. It is used only during intensive static analysis. The same behavior
regarding copying and mutation from merge should be followed.

Parameters
others — the other state plugin

Returns
True if the state plugin is actually widened.

Return type
bool

state: angr.SimState

378 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

10.6 Concretization Strategies

class angr.concretization_strategies.single.SimConcretizationStrategySingle (filter=None,
exact=True)

Bases: SimConcretizationStrategy
Concretization strategy that ensures a single solution for an address.

class angr.concretization_strategies.eval.SimConcretizationStrategyEval (limit, **kwargs)
Bases: SimConcretizationStrategy

Concretization strategy that resolves an address into some limited number of solutions. Always handles the
concretization, but only returns a maximum of limit number of solutions. Therefore, should only be used as the
fallback strategy.

__init__(limit, **kwargs)
Initializes the base SimConcretizationStrategy.

Parameters

e filter — A function, taking arguments of (SimMemory, claripy.AST) that determins if
this strategy can handle resolving the provided AST.

* exact — A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

class angr.concretization_strategies.norepeats.SimConcretizationStrategyNorepeats (repeat_expr,
re-
peat_constraints=None,
**kwargs)

Bases: SimConcretizationStrategy

Concretization strategy that resolves addresses, without repeating.

__init__(repeat_expr, repeat_constraints=None, **kwargs)
Initializes the base SimConcretizationStrategy.

Parameters

e filter — A function, taking arguments of (SimMemory, claripy.AST) that determins if
this strategy can handle resolving the provided AST.

* exact — A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

copy O

Returns a copy of the strategy, if there is data that should be kept separate between states. If not, returns
self.

merge (others)

Merges this strategy with others (if there is data that should be kept separate between states. If not, is a
no-op.

class angr.concretization_strategies.solutions.SimConcretizationStrategySolutions (limir,
**kwargs)

Bases: SimConcretizationStrategy

Concretization strategy that resolves an address into some limited number of solutions.

10.6. Concretization Strategies 379

angr

__init__(limit, **kwargs)
Initializes the base SimConcretizationStrategy.
Parameters

e filter — A function, taking arguments of (SimMemory, claripy.AST) that determins if
this strategy can handle resolving the provided AST.

* exact — A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

class angr.concretization_strategies.nonzero_range.SimConcretizationStrategyNonzeroRange (limit,
**kwargs)

Bases: SimConcretizationStrategy
Concretization strategy that resolves a range in a non-zero location.
__init__ (limit, **kwargs)
Initializes the base SimConcretizationStrategy.
Parameters

e filter — A function, taking arguments of (SimMemory, claripy.AST) that determins if
this strategy can handle resolving the provided AST.

» exact — A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

class angr.concretization_strategies.range.SimConcretizationStrategyRange (limit, **kwargs)
Bases: SimConcretizationStrategy
Concretization strategy that resolves addresses to a range.
__init__ (limit, **kwargs)
Initializes the base SimConcretizationStrategy.
Parameters

o filter — A function, taking arguments of (SimMemory, claripy.AST) that determins if
this strategy can handle resolving the provided AST.

* exact — A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

class angr.concretization_strategies.max.SimConcretizationStrategyMax (max_addr=None)
Bases: SimConcretizationStrategy
Concretization strategy that returns the maximum address.

Parameters
max_addr (int | None)—

__init__ (max_addr=None)
Initializes the base SimConcretizationStrategy.
Parameters

e filter — A function, taking arguments of (SimMemory, claripy.AST) that determins if
this strategy can handle resolving the provided AST.

* exact — A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

e max_addr (int | None)-—

380 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

angr

class angr.concretization_strategies.norepeats_range.SimConcretizationStrategyNorepeatsRange (repeat_expr,
min=None,
gran-
u-
lar-
ity=None,
**kwargs)

Bases: SimConcretizationStrategy

Concretization strategy that resolves a range, with no repeats.

__init__ (repeat_expr, min=None, granularity=None, **kwargs)

Initializes the base SimConcretizationStrategy.
Parameters

e filter — A function, taking arguments of (SimMemory, claripy.AST) that determins if
this strategy can handle resolving the provided AST.

* exact — A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

copy O

Returns a copy of the strategy, if there is data that should be kept separate between states. If not, returns
self.

merge (others)
Merges this strategy with others (if there is data that should be kept separate between states. If not, is a
no-op.

class angr.concretization_strategies.nonzero.SimConcretizationStrategyNonzero (filter=None,
exact=True)

Bases: SimConcretizationStrategy
Concretization strategy that returns any non-zero solution.

class angr.concretization_strategies.any.SimConcretizationStrategyAny (filter=None,
exact=True)

Bases: SimConcretizationStrategy
Concretization strategy that returns any single solution.

class angr.concretization_strategies.controlled_data.SimConcretizationStrategyControlledData (limir,
fixed_addrs,
**kwargs)

Bases: SimConcretizationStrategy

Concretization strategy that constraints the address to controlled data. Controlled data consists of symbolic data
and the addresses given as arguments. memory.

__init__(limit, fixed_addrs, **kwargs)
Initializes the base SimConcretizationStrategy.

Parameters

e filter — A function, taking arguments of (SimMemory, claripy.AST) that determins if
this strategy can handle resolving the provided AST.

* exact — A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

10.6. Concretization Strategies 381

angr

class angr.concretization_strategies.unlimited_range.SimConcretizationStrategyUnlimitedRange (limir,
**kwargs)

Bases: SimConcretizationStrategy

Concretization strategy that resolves addresses to a range without checking if the number of possible addresses
is within the limit.

__init__(limit, **kwargs)
Initializes the base SimConcretizationStrategy.
Parameters

e filter — A function, taking arguments of (SimMemory, claripy.AST) that determins if
this strategy can handle resolving the provided AST.

» exact — A flag (default: True) that determines if the convenience resolution functions
provided by this class use exact or approximate resolution.

10.7 Simulation Manager

class angr.sim_manager.SimulationManager (project, active_states=None, stashes=None, hierarchy=None,
resilience=None, save_unsat=False, auto_drop=None,
errored=None, completion_mode=<built-in function any>,
techniques=None, suggestions=True, **kwargs)

Bases: object
The Simulation Manager is the future future.

Simulation managers allow you to wrangle multiple states in a slick way. States are organized into “stashes”,
which you can step forward, filter, merge, and move around as you wish. This allows you to, for example, step
two different stashes of states at different rates, then merge them together.

Stashes can be accessed as attributes (i.e. .active). A mulpyplexed stash can be retrieved by prepending the name
with mp_, e.g. .mp_active. A single state from the stash can be retrieved by prepending the name with one_, e.g.
.one_active.

Note that you shouldn’t usually be constructing SimulationManagers directly - there is a convenient shortcut for
creating them in Project. factory: see angr. factory.AngrObjectFactory.

The most important methods you should look at are step, explore, and use_technique.
Parameters
* project (angr.project.Project)— A Project instance.
» stashes — A dictionary to use as the stash store.
e active_states — Active states to seed the “active” stash with.
* hierarchy — A StateHierarchy object to use to track the relationships between states.

» resilience — A set of errors to catch during stepping to put a state in the errore list. You
may also provide the values False, None (default), or True to catch, respectively, no errors,
all angr-specific errors, and a set of many common errors.

* save_unsat — Set to True in order to introduce unsatisfiable states into the unsat stash
instead of discarding them immediately.

* auto_drop — A set of stash names which should be treated as garbage chutes.

382 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object

angr

» completion_mode — A function describing how multiple exploration techniques with the
complete hook set will interact. By default, the builtin function any.

» techniques — A list of techniques that should be pre-set to use with this manager.

» suggestions — Whether to automatically install the Suggestions exploration technique. De-
fault True.

Variables

» errored — Not a stash, but a list of ErrorRecords. Whenever a step raises an exception that
we catch, the state and some information about the error are placed in this list. You can adjust
the list of caught exceptions with the resilience parameter.

» stashes — All the stashes on this instance, as a dictionary.

» completion_mode — A function describing how multiple exploration techniques with the
complete hook set will interact. By default, the builtin function any.

ALL = '_ALL'
DROP = '_DROP'

__init__ (project, active_states=None, stashes=None, hierarchy=None, resilience=None, save_unsat=False,
auto_drop=None, errored=None, completion_mode=<built-in function any>, techniques=None,
suggestions=True, **kwargs)

active: List[SimState]
stashed: List[SimState]
pruned: List[SimState]
unsat: List[SimState]
deadended: List[SimState]
unconstrained: List[SimState]
found: List[SimState]
one_active: SimState
one_stashed: SimState
one_pruned: SimState
one_unsat: SimState
one_deadended: SimState
one_unconstrained: SimState
one_found: SimState
property errored

property stashes: DefaultDict[str, List[SimState]]

10.7. Simulation Manager 383

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.DefaultDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List

angr

mulpyplex (*stashes)

Mulpyplex across several stashes.

Parameters
stashes — the stashes to mulpyplex

Returns
a mulpyplexed list of states from the stashes in question, in the specified order

copy (deep=False)
Make a copy of this simulation manager. Pass deep=True to copy all the states in it as well.
If the current callstack includes hooked methods, the already-called methods will not be included in the
copy.
use_technique (tech)
Use an exploration technique with this SimulationManager.

Techniques can be found in angr. exploration_techniques.

Parameters
tech (ExplorationTechnique) — An ExplorationTechnique object that contains code to
modify this SimulationManager’s behavior.

Returns
The technique that was added, for convenience

remove_technique (tech)
Remove an exploration technique from a list of active techniques.

Parameters
tech (ExplorationTechnique) — An ExplorationTechnique object.

explore (stash='active', n=None, find=None, avoid=None, find_stash='found', avoid_stash='avoid’,
cfg=None, num_find=1, avoid_priority=False, **kwargs)

699

Tick stash “stash” forward (up to “n” times or until “num_find” states are found), looking for condi-
tion “find”, avoiding condition “avoid”. Stores found states into “find_stash’ and avoided states into
“avoid_stash”.

The “find” and “avoid” parameters may be any of:
¢ An address to find
* A set or list of addresses to find
* A function that takes a state and returns whether or not it matches.

If an angr CFG is passed in as the “cfg” parameter and “find” is either a number or a list or a set, then any
states which cannot possibly reach a success state without going through a failure state will be preemptively
avoided.

run(stash="active', n=None, until=None, **kwargs)

Run until the SimulationManager has reached a completed state, according to the current exploration tech-
niques. If no exploration techniques that define a completion state are being used, run until there is nothing
left to run.

Parameters
¢ stash — Operate on this stash

* n — Step at most this many times

384 Chapter 10. API Reference

angr

until - If provided, should be a function that takes a SimulationManager and returns True
or False. Stepping will terminate when it is True.

Returns
The simulation manager, for chaining.

Return type
SimulationManager

complete()

Returns whether or not this manager has reached a “completed” state.

step (stash='active', target_stash=None, n=None, selector_func=None, step_func=None, error_list=None,
successor_func=None, until=None, filter_func=None, **run_args)

Step a stash of states forward and categorize the successors appropriately.

The parameters to this function allow you to control everything about the stepping and categorization pro-

CESSs.

Parameters

stash — The name of the stash to step (default: ‘active’)
target_stash — The name of the stash to put the results in (default: same as stash)
error_list — The list to put ErroredState objects in (default: self.errored)

selector_func - If provided, should be a function that takes a state and returns a boolean.
If True, the state will be stepped. Otherwise, it will be kept as-is.

step_func - If provided, should be a function that takes a SimulationManager and returns
a SimulationManager. Will be called with the SimulationManager at every step. Note that
this function should not actually perform any stepping - it is meant to be a maintenance
function called after each step.

successor_func — If provided, should be a function that takes a state and return its suc-
cessors. Otherwise, project.factory.successors will be used.

filter_func - If provided, should be a function that takes a state and return the name of
the stash, to which the state should be moved.

until — (DEPRECATED) If provided, should be a function that takes a SimulationMan-
ager and returns True or False. Stepping will terminate when it is True.

n — (DEPRECATED) The number of times to step (default: 1 if “until” is not provided)

Additionally, you can pass in any of the following keyword args for project.factory.successors:

Parameters

jumpkind — The jumpkind of the previous exit

addr — An address to execute at instead of the state’s ip.

stmt_whitelist — A list of stmt indexes to which to confine execution.
last_stmt — A statement index at which to stop execution.

thumb — Whether the block should be lifted in ARM’s THUMB mode.
backup_state — A state to read bytes from instead of using project memory.
opt_level — The VEX optimization level to use.

insn_bytes — A string of bytes to use for the block instead of the project.

10.7. Simulation Manager 385

angr

» size — The maximum size of the block, in bytes.
e num_inst — The maximum number of instructions.
» traceflags — traceflags to be passed to VEX. Default: 0

Returns
The simulation manager, for chaining.

Return type
SimulationManager

step_state(state, successor_func=None, error_list=None, **run_args)

Don’t use this function manually - it is meant to interface with exploration techniques.

filter (state, filter_func=None)

Don’t use this function manually - it is meant to interface with exploration techniques.

selector (state, selector_func=None)

Don’t use this function manually - it is meant to interface with exploration techniques.

successors (state, successor_func=None, **run_args)

Don’t use this function manually - it is meant to interface with exploration techniques.

prune (filter_func=None, from_stash='active', to_stash='pruned")

Prune unsatisfiable states from a stash.
This function will move all unsatisfiable states in the given stash into a different stash.
Parameters
e filter_func — Only prune states that match this filter.
o from_stash — Prune states from this stash. (default: ‘active’)
* to_stash — Put pruned states in this stash. (default: ‘pruned’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

populate (stash, states)
Populate a stash with a collection of states.

Parameters
¢ stash — A stash to populate.
* states — A list of states with which to populate the stash.

absorb (simgr)

Collect all the states from simgr and put them in their corresponding stashes in this manager. This will not
modify simgr.

move (from_stash, to_stash, filter_func=None)
Move states from one stash to another.

Parameters
» from_stash — Take matching states from this stash.

* to_stash — Put matching states into this stash.

386 Chapter 10. API Reference

angr

o filter_func — Stash states that match this filter. Should be a function that takes a state
and returns True or False. (default: stash all states)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

stash(filter_func=None, from_stash="active', to_stash='stashed")
Stash some states. This is an alias for move(), with defaults for the stashes.

Parameters

« filter_func — Stash states that match this filter. Should be a function that takes a state
and returns True or False. (default: stash all states)

¢ from_stash — Take matching states from this stash. (default: ‘active’)
¢ to_stash — Put matching states into this stash. (default: ‘stashed’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

unstash (filter_func=None, to_stash="active', from_stash="stashed")
Unstash some states. This is an alias for move(), with defaults for the stashes.

Parameters

o filter_func — Unstash states that match this filter. Should be a function that takes a state
and returns True or False. (default: unstash all states)

¢ from_stash - take matching states from this stash. (default: ‘stashed’)
¢ to_stash — put matching states into this stash. (default: ‘active’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

drop (filter_func=None, stash="active")

Drops states from a stash. This is an alias for move(), with defaults for the stashes.

Parameters

« filter_func — Drop states that match this filter. Should be a function that takes a state
and returns True or False. (default: drop all states)

 stash — Drop matching states from this stash. (default: ‘active’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

apply (state_func=None, stash_func=None, stash="active', to_stash=None)

Applies a given function to a given stash.

Parameters

10.7. Simulation Manager 387

angr

state_func — A function to apply to every state. Should take a state and return a state.
The returned state will take the place of the old state. If the function doesn’t return a state,
the old state will be used. If the function returns a list of states, they will replace the original
states.

stash_func - A function to apply to the whole stash. Should take a list of states and return
a list of states. The resulting list will replace the stash. If both state_func and stash_func
are provided state_func is applied first, then stash_func is applied on the results.

stash — A stash to work with.

to_stash — If specified, this stash will be used to store the resulting states instead.

Returns
The simulation manager, for chaining.

Return type
SimulationManager

split (stash_splitter=None, stash_ranker=None, state_ranker=None, limit=8, from_stash="active',
to_stash="stashed")

Split a stash of states into two stashes depending on the specified options.

The stash from_stash will be split into two stashes depending on the other options passed in. If to_stash is
provided, the second stash will be written there.

stash_splitter overrides stash_ranker, which in turn overrides state_ranker. If no functions are provided, the
states are simply split according to the limit.

The sort done with state_ranker is ascending.

Parameters

stash_splitter — A function that should take a list of states and return a tuple of two
lists (the two resulting stashes).

stash_ranker — A function that should take a list of states and return a sorted list of states.
This list will then be split according to “limit”.

state_ranker — An alternative to stash_splitter. States will be sorted with outputs of this
function, which are to be used as a key. The first “limit” of them will be kept, the rest split
off.

limit — For use with state_ranker. The number of states to keep. Default: 8
from_stash — The stash to split (default: ‘active’)

to_stash — The stash to write to (default: ‘stashed’)

Returns
The simulation manager, for chaining.

Return type
SimulationManager

merge (merge_func=None, merge_key=None, stash="active', prune=True)

Merge the states in a given stash.

Parameters

stash — The stash (default: ‘active’)

merge_func — If provided, instead of using state.merge, call this function with the states
as the argument. Should return the merged state.

388

Chapter 10. API Reference

angr

» merge_key — If provided, should be a function that takes a state and returns a key that will
compare equal for all states that are allowed to be merged together, as a first aproximation.
By default: uses PC, callstack, and open file descriptors.

* prune — Whether to prune the stash prior to merging it

Returns
The simulation manager, for chaining.

Return type
SimulationManager

class angr.sim_manager.ErrorRecord(state, error, traceback)

Bases: object

A container class for a state and an error that was thrown during its execution. You can find these in Simulation-
Manager.errored.

Variables

» state — The state that encountered an error, at the point in time just before the erroring step
began.

e error — The error that was thrown.
e traceback — The traceback for the error that was thrown.

__init__ (state, error, traceback)

debug ()

Launch a postmortem debug shell at the site of the error.

reraise()

class angr.state_hierarchy.StateHierarchy

Bases: object

The state hierarchy holds weak references to SimStateHistory objects in a directed acyclic graph. It is useful
for queries about a state’s ancestry, notably “what is the best ancestor state for a merge among these states” and
“what is the most recent unsatisfiable state while using LAZY_SOLVES”

__init__QO
get_ref (obj)
dead_ref (ref)
defer_cleanup()
add_state(s)
add_history(h)
simplify ()
full_simplify ()

lineage(h)

Returns the lineage of histories leading up to A.

all_successors(h)

10.7. Simulation Manager 389

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

angr

history_successors (/)
history_predecessors (/)
history_contains (%)
unreachable_state (state)
unreachable_history (/)

most_mergeable (states)
Find the “most mergeable” set of states from those provided.

Parameters
states — a list of states

Returns
a tuple of: (list of states to merge, those states’ common history, list of states to not merge

yet)

10.8 Exploration Techniques

class angr.exploration_techniques.ExplorationTechnique

Bases: object

An otiegnqwvk is a set of hooks for a simulation manager that assists in the implementation of new techniques
in symbolic exploration.

TODO: choose actual name for the functionality (techniques? strategies?)

Any number of these methods may be overridden by a subclass. To use an exploration technique, call simgr.
use_technique with an instance of the technique.

__init__QO
setup (simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) — The simulation manager to which you have just been
added

step (simgr, stash='active', **kwargs)

Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
¢ simgr (angr.SimulationManager) —
e stash (str) -

filter (simgr, state, **kwargs)

Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.

390

Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

angr

Parameters
¢ simgr (angr.SimulationManager) —
e state (angr.SimState) —

selector (simgr, state, **kwargs)

Determine if a state should participate in the current round of stepping. Return True if the state should be
stepped, and False if the state should not be stepped. To defer to the original selection procedure, return
the result of simgr.selector(state, **kwargs).

If the user provided a selector_func in their step or run command, it will appear here.
Parameters
e simgr (angr.SimulationManager) —
e state (angr.SimState) —

step_state(simgr, state, **kwargs)

Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to
look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
¢ simgr (angr.SimulationManager) —
e state (angr.SimState) —

successors (simgr, state, **kwargs)

Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.
Parameters
¢ simgr (angr.SimulationManager) —
e state (angr.SimState) —

complete (simgr)

Return whether or not this manager has reached a “completed” state, i.e. SimulationManager.run()
should halt.

This is the one hook which is not subject to the nesting rules of hooks. You should not call simgr.
complete, you should make your own decision and return True or False. Each of the techniques’ comple-
tion checkers will be called and the final result will be compted with simgr.completion_mode.

Parameters
simgr (angr.SimulationManager) —

10.8. Exploration Techniques 391

angr

class angr.exploration_techniques.Slicecutor (annotated_cfg, force_taking_exit=False,
force_sat=False)

Bases: ExplorationTechnique
The Slicecutor is an exploration that executes provided code slices.

Parameters
force_sat (bool) —

__init__(annotated_cfg, force_taking_exit=False, force_sat=False)

All parameters except annotated_cfg are optional.
Parameters
¢ annotated_cfg — The AnnotatedCFG that provides the code slice.

e force_taking_exit — Set to True if you want to create a successor based on our slice in
case of unconstrained successors.

» force_sat (bool) — If a branch specified by the slice is unsatisfiable, set this option to
True if you want to force it to be satisfiable and be taken anyway.

setup (simgr)
Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager) — The simulation manager to which you have just been
added

filter (simgr, state, **kwargs)

Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_func in their step or run command, it will appear here.
Parameters
¢ simgr (angr.SimulationManager) —
e state (angr.SimState) —

step_state(simgr, state, **kwargs)

Determine the categorization of state successors into stashes. The result should be a dict mapping stash
names to the list of successor states that fall into that stash, or None as a stash name to use the original stash
name.

If you would like to directly work with a SimSuccessors object, you can obtain it with simgr.
successors(state, **kwargs). This is not recommended, as it denies other hooks the opportunity to
look at the successors. Therefore, the usual technique is to call simgr.step_state(state, **kwargs)
and then mutate the returned dict before returning it yourself.

..note:: This takes precedence over the filter hook - filter is only applied to states returned from here in the
None stash.

Parameters
e simgr (angr.SimulationManager) —

e state (angr.SimState) —

392 Chapter 10. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

angr

successors (simgr, state, **kwargs)

Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project.factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.
Parameters
¢ simgr (angr.SimulationManager) —
e state (angr.SimState) —

class angr.exploration_techniques.DrillerCore (trace, fuzz_bitmap=None)

Bases: ExplorationTechnique
An exploration technique that symbolically follows an input looking for new state transitions.
It has to be used with Tracer exploration technique. Results are put in ‘diverted’ stash.

__init__(trace, fuzz_bitmap=None)

:param trace : The basic block trace. :type fuzz_bitmap: :param fuzz_bitmap: AFL’s bitmap of state
transitions. Defaults to saying every transition is worth satisfying.

setup (simgr)

Perform any initialization on this manager you might need to do.

Parameters
simgr (angr.SimulationManager)— The simulation manager to which you have just been
added

step (simgr, stash='active', **kwargs)

Hook the process of stepping a stash forward. Should call simgr.step(stash, **kwargs) in order to
do the actual processing.

Parameters
e simgr (angr.SimulationManager) —
e stash (str)—

class angr.exploration_techniques.LoopSeer (cfg=None, functions=None, loops=None,
use_header=False, bound=None, bound_reached=None,
discard_stash="spinning’, limit_concrete_loops=True)

Bases: ExplorationTechnique

This exploration technique monitors exploration and maintains all loop-related data (well, currently it is just the
loop trip counts, but feel free to add something else).

__init__(cfg=None, functions=None, loops=None, use_header=False, bound=None, bound_reached=None,
discard_stash="spinning’, limit_concrete_loops=True)

Parameters
¢ cfg — Normalized CFG is required.
» functions - Function(s) containing the loop(s) to be analyzed.

* loops - Specific group of Loop(s) to be analyzed, if this is None we run the LoopFinder
analysis.

10.8. Exploration Techniques 393

https://docs.python.org/3/library/stdtypes.html#str

angr

» use_header — Whether to use header based trip counter to compare with the bound limit.
¢ bound - Limit the number of iterations a loop may be executed.

* bound_reached - If provided, should be a function that takes the LoopSeer and the
succ_state. Will be called when loop execution reach the given bound. Default to mov-
ing states that exceed the loop limit to a discard stash.

¢ discard_stash — Name of the stash containing states exceeding the loop limit.

e limit_concrete_loops — If False, do not limit a loop back-edge if it is the only successor
(Defaults to True to maintain the original behavior)

setup (simgr)
Perform any initialization on this manager you might need to do.

Parameters

simgr (angr.SimulationManager) — The simulation manager to which you have just been
added

filter (simgr, state, **kwargs)
Perform filtering on which stash a state should be inserted into.

If the state should be filtered, return the name of the stash to move the state to. If you want to modify the
state before filtering it, return a tuple of the stash to move the state to and the modified state. To defer to
the original categorization procedure, return the result of simgr.filter(state, **kwargs)

If the user provided a filter_£func in their step or run command, it will appear here.
Parameters
¢ simgr (angr.SimulationManager) —
e state (angr.SimState) —

successors (simgr, state, **kwargs)

Perform the process of stepping a state forward, returning a SimSuccessors object.

To defer to the original succession procedure, return the result of simgr.successors(state,
**kwargs). Be careful about not calling this method (e.g. calling project. factory.successors man-
ually) as it denies other hooks the opportunity to instrument the step. Instead, you can mutate the kwargs
for the step before calling the original, and mutate the result before returning it yourself.

If the user provided a successor_func in their step or run command, it will appear here.
Parameters
e simgr (angr.SimulationManager) —

e state (angr.SimState) —

class angr.exploration_techniques.Tracer (trace=None, resiliency=False, keep_predecessors=1,

crash_addr=None, syscall_data=None, copy_states=False,
fast_forward_to_entry=True, mode='"strict’', aslr=True,
follow_unsat=False)

Bases: ExplorationTechnique

An exploration technique that follows an angr path with a concrete input. The tracing result is the state at the last
address of the trace, which can be found in the ‘traced’ stash.

If the given concrete input makes the program crash, you should provide crash_addr, and the crashing state will
be found in the ‘crashed’ stash.

Parameters

394

Chapter 10. API Reference

angr

» trace — The basic block trace.
» resiliency - Should we continue to step forward even if gemu and angr disagree?
» keep_predecessors — Number of states before the final state we should log.

» crash_addr - If the trace resulted in a crash, provide the crashing instruction pointer here,
and the ‘crashed’ stash will be populated with the crashing state.

» syscall_data — Data related to various syscalls recorded by tracer for replaying

» copy_states — Whether COPY_STATES should be enabled for the tracing state. It is off
by default because most tracing workloads benefit greatly from not performing copying. You
want to enable it if you want to see the missed states. It will be re-added for the last 2% of
the trace in order to set the predecessors list correctly. If you turn this on you may want to
enable the LAZY_SOLVES option.

* mode — Tracing mode.
* aslr — Whether there are aslr slides. if not, tracer uses trace address as state address.

e follow_unsat — Whether unsatisfiable states should be treated as potential successors or
not.

Variables
predecessors — A list of states in the history before the final state.

__init__(trace=None, resiliency=False, keep_predecessors=1, crash_addr=None, syscall_data=None,
copy_states=False, fast_forward_to_entry=True, mode='"strict', aslr=True, follow_unsat=False)

set_fd_data(fd_data)
Set concrete bytes of various fds read by the program
Parameters
fd_data (Dict[int, bytes])-—
setup (simgr)
Perform any initialization on this manager you might need to do.
Parameters
simgr (angr.SimulationManager) — The simulation manager to which you have just been
added
complete (simgr)
Return whether or not this manager has reached a “completed” state, i.e. SimulationManager.run()

should halt.

This is the one hook which is not subject to the nesting rules of hooks. You should not call simgr.
complete, you should make your own decision and return True or False. Each of the techniques’ comple-
tion checkers will be called and the final result will be compted with simgr.completion_mode.

Parameters
simgr (angr.SimulationManager) —

filter (simgr, state, **kwargs)
Perform filtering on which stash a